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Abstract. Artificial dissipation is a well known tool for the improvement of stability of nu-
merical algorithms. At the same time, this affects the accuracy of the computation. We analyze
various approaches proposed for enhancement of the Lattice Boltzmann Methods (LBM) stability.
In addition to the previously known methods, the Multiple Relaxation Time (MRT) models, the
entropic lattice Boltzmann method (ELBM), and filtering (including entropic median filtering), we
develop and analyze new filtering techniques with independent filtering of different modes.

All these methods affect the dissipation in the system and may adversely affect the reproduction
of the proper physics. To analyze the effect of dissipation on accuracy and to prepare practical
recommendations, we test the enhanced LBM methods on the standard benchmark, the 2D lid
driven cavity on a coarse grid (101×101 nodes). The accuracy was estimated by the position of the
first Hopf bifurcation points in these systems.

We find that two techniques, MRT and median filtering, succeed in yielding a reasonable value
of the Reynolds number for the first bifurcation point. The newly created limiters, which filter the
modes independently, also pick a reasonable value of the Reynolds number for the first bifurcation.

1. Introduction. Lattice Boltzmann schemes are a type of discrete algorithm
which can be used to simulate fluid dynamics and more [3, 12, 32]. One of the
nicest properties of an LB scheme is that the transport component of the algorithm,
advection, is exact. All of the dissipation in the discrete system then occurs due
to the relaxation operation. This dissipation occurs at different orders of the small
parameter, the time step [28]. The first order gives an approximation to the Navier
Stokes equations (with some error terms due to the discrete velocity system). The
higher orders include higher space derivatives, similarly to Burnett and super-Burnett
type systems. (They differ from the Burnett and super-Burnett terms and may have
better stability properties, see a simple case study for the Ehrenfests’ collisions in
[24]). The form of the dissipative terms in the macroscopic dynamics is driven by
the form of the discrete equilibrium, the analogy to the Maxwell distribution, the
coefficients of the dissipative terms are selected by the collision operator. In the
standard and most basic relaxation operation, the single time BGK relaxation [4],
these coefficients cannot be modified independently. One mechanism which is used to
stabilize LB schemes is to generalize this to an MRT operator where these coefficients
can be varied independently [16, 17, 13, 14, 15, 25].

An MRT relaxation operation involves selecting a new basis to perform relaxation
in. This basis must necessarily include the macroscopic moments (which do not vary
during relaxation) and also includes elements used to vary the hydrodynamic viscosity.
Depending on the size of the velocity set a number of degrees of freedom may remain
available. These degrees of freedom can be used to modify the coefficients of some of
the dissipative dynamics at the post Navier-Stokes level.

A barrier to the stability of certain LB schemes is the presence of parasitic os-
cillations in the vicinity of sharp gradients in the flow. These may be caused by
shock waves travelling through the fluid as well as thin shear layers or singularities in
boundary conditions. These oscillations are analagous to Gibbs oscillations and are
common in discrete approximations. The MRT operation can be used to delete the
contribution to these oscillations made by the higher order modes, by equilibrating
them. The cost of this is a fixed increase in the dissipation coefficients in the post
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Navier-Stokes dynamics.

Since most LB collisions are linear relaxations, linear stability of the collision
operation is the most common minimal criteria for choice of the relaxation rate(s).
One can however use a Lyapunov function instead and the physical meaning of such
a function is an entropy function. There are two generic methods by which this
technology is incorporated into LB systems.

A method to remove the dispersive oscillations in a single relaxation time setting,
which makes use of these entropy functions, is Entropic Filtering [7, 8, 9]. Here the
relaxation rate is not fixed across the system. Rather it can be varied in the presence
of shock waves and oscillations to adaptively modify dissipation locally (including on
the Navier-Stokes level). The choice of the local relaxation rate is informed by the
change in the Entropy (Lyapunov) function given by different rates. Iin the presence
of a shock wave, for example, a large contraction to equilibrium, with respect to the
Lyapunov function, can be made. In particular the relaxation rate can be modified
to implement a type of low pass filter, removing the non-physical high frequency
oscillations while leaving the low frequence physical dynamics untouched. Filtering
can also be applied at other stages of the lattice Boltzmann system, for example to
the macroscopic dynamics [31].

In this work we attempt to combine the entropic filtering and MRT techniques
by applying a type of filter to the separate modes of the MRT system. By doing so
we hope to achieve the stability benefits exhibited by these methods while adding as
little extra dissipation as possible.

An alternative suggested stabilizer is to use an entropic lattice Boltzmann method
(ELBM) [23, 22]. In this case the collision operator is modified to guarantee positive
entropy production and hence respect the Second Law. In terms of stability this
represents a complete replacement of the linear stability of collision operations, to a
Lyapunov criteria for the chosen entropy function. In a single relaxation time setting
this effect can be achieved be modifying the relaxation rate so that the limit of the
relaxation is the so-called ‘entropy balance’.

The difference between the ELBM and the entropic filtering comes in two parts.
Firstly ELBM would be applied across the entire system, so the relaxation rate is
different for every point in space. By comparison the entropic filtering should be ap-
plied at a small proportion (� 1%) of the lattice sites which are far from equilibrium.
Secondly the primary purpose of the ELBM is to guarantee the ‘proper’ entropy pro-
duction for a particular H function. From this some stability benefits may arise. To
be particular one might say that it is hoped that Lyapunov stability of the collision,
with respect to the particular entropy function, is a stronger requirement than the
usual linear stability. The entropic filtering is designed entirely as a stability tech-
nique, some regions of the system may not satisfy the Second Law (for a particular
H function) just as in the BGK and MRT systems.

2. Single relaxation time LB schemes. The usual approach for deriving the
single relaxation time LB systems starts from the Boltzmann Equation

∂tf + v · ∂xf = Q(f) (2.1)

where f ≡ f(x,v, t) is a one particle distribution function over space, velocity space
and time and Q(f) represents the interaction between particles, sometimes called a
collision operation. The nonlinear Boltzmann collision integral Q(f) is substituted by
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the Bhatnagar-Gross-Krook [4] equation

Q(f) = − 1

τ
(f − f eq). (2.2)

The BGK operation represents a relaxation towards the local equilibrium f eq with
rate 1/τ . The distribution f eq is given by the Maxwell Boltzmann distribution,

f eq =
ρ

(2πT )D/2
exp

(−(v − u)2

2T

)
. (2.3)

The macroscopic quantities are available as integrals over velocity space of the distri-
bution function,

ρ =

∫
f dv, ρu =

∫
vf dv,

1

2
ρu2 + ρDΘ =

1

2

∫
v2f dv. (2.4)

A quadrature approximation to these integrals is the first ingredient to discretize
this system. The second is a time integration along the discrete velocities given by
the quadrature. In order to achieve a fully discrete system it is necessary to make
an appropriate choice of quadrature. The set of all quadrature nodes is denoted
V = {v1, . . . ,vn}. This set should be chosen such that it defines a discrete subgroup
of space L called the lattice, which is invariant under shifts given by elements of V ,
L = L+ vi.

The scalar field of the population function (over space, velocity space and time)
becomes a sequence of vector fields (over space) in time fi(x, nt ε), nt ∈ Z, where the
elements of the vector each correspond with an element of the quadrature.

Explicitly the macroscopic moments are given by,

ρ =

n∑
i=1

fi, ρu =

n∑
i=1

vifi,
1

2

(
ρu2 + ρΘ

)
=

1

2

n∑
i=1

v2
i fi. (2.5)

The complete discrete scheme is given by

fi(x+ εvi, t+ ε) = fi(x, t) + ω(f eq
i (x, t)− fi(x, t)) (2.6)

where ε is the time step and ω controls the degree of the relaxation in each indi-
vidual step For this system a discrete equilibrium must be used. One way to find a
discrete equilibrium is simply to evaluate a second order Mach number expansion of
the Maxwell Boltzmann distribution at each quadrature node. The second order ex-
pansion is taken in order to guarantee the exact zero order hydrodynamics (the Euler
equations). In the collision operation there is a new notation ω for the relaxation rate.
This indicates that this parameter has a qualitatively different effect in the discrete
system from the continuous one.

The relaxation coefficient ω depends on the continuous BGK relaxation time:
ω = 2ε/(2τ + ε), and at first order in ε, the viscosity ν = c2sτ , cs is the speed of sound.
ω ∈ [1, 2). ω = 1 (τ = ε/2) corresponds to equilibrating at each time step and ω = 2
corresponds to a reflection and the zero viscosity limit.

3. MRT lattice Boltzmann. MRT has been proposed for LBM collision op-
eration [16, 17, 13, 14, 15, 25], where the additional degrees of freedom arising from
a velocity set with sufficient isotropy to reproduce the Navier-Stokes equations are
exploited to introduce varying levels of dissipation on different modes of the system.
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Usually this involves a change of basis for the collision operation, the change of basis
matrix can be denoted M . In this new basis a diagonal relaxation matrix Ω can be
used to relax the different modes independently before the change of basis is reverted,

f �→ f +M−1ΩM(f eq − f). (3.1)

The choice of which basis M is ‘best’ is not obvious. Several components of the
basis are necessary, inparticular the macroscopic moments should form a part of the
basis. The next components of the basis should be chosen to represent the momentum
flux in the system and may be subdivided to implement independent control of bulk
and shear viscosities. The most interesting selection is the completion of the basis
following this, corresponding to the post Navier-Stokes dynamics. The additional
modes used to complete the basis may be known as ‘ghost’ modes.

To consider a choice of basis it is instructive to imagine the collision operation
as a reduction in the non-equilibrium volume of a system. If for example we have
a 9 velocity system with 3 conserved moments then this non-equilibrium volume is
6-dimensional. For the single relaxation time BGK operation this volume shrinks uni-
formly along any axis passing through the equilibrium. MRT allows us the possibility
to shrink this volume independently along different axes, the choice of the MRT basis
is equivalent to the choice of these axes. If the higher order modes are equilibrated
at every time step then that component of the volume is removed entirely during any
collision. When we are concerned with dynamically shrinking this volume however
the choice of basis becomes especially important. We would like to choose a basis
which will target the non-physical oscillations in the system.

One choice of basis which has been suggested is an 	2 orthogonal extension of the
macroscopic moments made by cross powers of the velocity set [17, 25].

In this work we choose to use the basis used by Dellar [14] which has the alternative
property of being orthogonal in the weighted inner product given by the quadrature
weights. Our computational examples will be calculated on the D2Q9 lattice, this is
a uniform nine-speed square lattice with horizontal and vertical components of the
velocity set given by the vectors,

vx1 = (0, 1, 0,−1, 0, 1,−1,−1, 1)

vx2 = (0, 0, 1, 0,−1, 1, 1,−1,−1).
(3.2)

For the MRT implementation we will use the standard polynomial equilibrium,

f eq
i = wiρ

(
1 + 3vi · u+

9

2
(vi · u)2 − 3

2
u2

)
. (3.3)

Here, the lattice weights, wi, are given lattice-specific constants: w0 = 4/9, w1,2,3,4 =
1/9 and w5,6,7,8 = 1/36. In addition to define the basis completely a supplementary
vector is used,

g = (1,−2,−2,−2,−2, 4, 4, 4, 4) , (3.4)

this may be expressed in terms of the velocity set,

gi = 1− 15

2
|vi|2+9

2
|vi|4. (3.5)

Altogether then the change of basis matrix can be given by a matrix consisting of
the 9 following rows, where just in this instance I represents a row of ones, all vector



Enhancement of the LBM Stability by the Dissipation Control 5

multiplications are implied elementwise,

M =
[
I; vx1 ; vx2 ; v

2
x1

− I/3; v2x2
− I/3; vx1vx2 ; gvx1 ; gvx2 ; g

]
. (3.6)

The first three modes in this basis correspond to the conserved moments and no
relaxation is performed on these modes. In principle the other modes can be modified
separately. In practice we use the same relaxation coefficient for the next three modes
which together control bulk and shear viscosity. The next two modes are denoted
J and could be modified to improve stability, in fact for these modes we just follow
Dellar and use the same rate as the hydrodynamic modes. Our use of MRT then
is limited to varying the relaxation rate of the final mode consisting of even order
components, this ghost mode is denoted N .

In fact for a numerical implementation it is not necessary to explicitly form the
complete change of basis operation. Again following Dellar, as the macroscopic mo-
ments are calculated we also calculate the ghost mode we are interested in modifying,

N =

n∑
i=1

gifi. (3.7)

After that the MRT lattice Boltzmann can be implemented,

fi(x+ εvi, t+ ε) = fi(x, t) + ω(f eq
i (x, t)− fi(x, t)) − (ωN − ω)wigiN(x, t)/4. (3.8)

Altogether then we have just two relaxation rate parameters, the standard rate ω
and a further parameter separately controlling the relaxation of the ghost mode ωN .
Evidently in the case ω = ωN this system reduces to the BGK collision operation.

A popular choice of rate for the ghost mode is to equilibrate it be setting ωN = 1
and for the rest of this work doing so will be referred to as the ‘standard’ or ‘usual’
MRT operation. Since the equilibrium of this mode is zero this corresponds to deleting
this component of the dynamics at each time step. This could be the most effective
choice of parameter in terms of stability, however it may not be without penalty.
Despite being orthogonal in the collision this mode is coupled to the hydrodynamics
by means of the advection operation. In terms of the macroscopic dynamics this rate
affects dissipation at a post Navier-Stokes level.

An alternative choice of rate for the ghost mode is to deliberately under relax
the mode (set ωN less than one). For the benchmark problem used in this work
we find that the choice of ωN = 1 outperforms this under-relaxation strategy, hence
those results are not included. Some other realizations of the MRT lattice Boltzmann
collisions were tested in [10].

4. Entropic collisions and the entropy balance. In the continuous case
the Maxwellian distribution maximizes entropy, as measured by the Boltzmann H
function, and therefore also has zero entropy production. In the context of lattice
Boltzmann methods a discrete form of the H-theorem has been suggested as a way
to introduce thermodynamic control to the system [23].

From this perspective the goal is to find an equilibrium state equivalent to the
Maxwellian in the continuum which will similarly maximize entropy. Before the equi-
librium can be found an appropriate H function must be known for a given lattice.
These functions have been constructed in a lattice dependent fashion in [22]. The
general form of the perfect lattice Boltzmann entropy is

S(f) = −
∑
i

fi log

(
fi
wi

)
. (4.1)
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Here, the wi, are the lattice weights. The celebrated example gives us the D2Q9
lattice (w0 = 4/9, w1,2,3,4 = 1/9 and w5,6,7,8 = 1/36). The entropic equilibrium state,
f eq, is uniquely determined by maximizing the entropy functional (4.1) subject to the
constraints of conservation of mass and momentum [2]:

∑
i

fi = ρ
∑
i

vifi = ρu. (4.2)

The equilibrium which maximizes this is also known explicitly,

f eq
i = wiρ

2∏
j=1

(
2−

√
1 + 3u2

j

)⎛
⎝2uj +

√
1 + 3u2

j

1− uj

⎞
⎠

vi,j

. (4.3)

The entropic equilibria should maximize the entropy and, at the same time, it is
expected that the LBGK scheme (2.6) with these equilibria approximates the proper
transport equation. This combination of conditions may be too strong for the exis-
tence of such equilibria, especially, if one adds additional restrictions like polynomial
form of the discrete equilibria [33, 34]. In addition, some restrictions on the Mach
number are needed for the discrete H -theorem [34].

With the entropic equilibrium, the entropic collisions with exact balance of en-
tropy are proposed. Together they form ELBGK [1]. In this case the single relaxation
time is varied to ensure a constant entropy condition according to the discrete H-
theorem. This can be implemented by implementing an extra relaxation parameter
into the BGK collision, this can be called the EBGK collision,

fi �→ fi +
ωα

2
(f eq

i − fi). (4.4)

Here α effectively replaces the mirror reflection in the equilibrium as the limit of the
over-relaxation. The parameter α should be selected as the non-trivial root of the
equation

S(f) = S(f + α(f eq − f)). (4.5)

ELBGK finds the value of α that with ω = 2 (inviscid fluid) would give zero
entropy production, therefore making the position of zero entropy production the
limit of any relaxation. For the fixed α used in the LBGK method it remains possible,
particularly for low viscosity fluids, to relax past this point resulting in negative
entropy production, violating the Second Law.

The ELBGK collision obviously respects the Second Law (if ω ≤ 2), and a simple
analysis of entropy production gives the proper evaluation of viscosity.

The splitting of the entropic collision in two steps, entropic involution and linear
contraction (4.4), assumes that both steps are possible. The entropic involution is not
always possible: for highly nonequilibrium states f equation (4.5) may have no non-
zero solution. Strictly speaking, the existence of the entropic involution is necessary
for existence of collisions with preservation of entropy and it is sufficient (but not
necessary) for existence of collisions with given entropy production. It is possible
to relax the requirement of the existence of the entropic involution and to introduce
entropic contraction. For this purpose, let us introduce a different form of the ELBGK
collision operation which we call enhanced entropic collisions (EEC). We directly
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search for the distribution function f ′ = f + α(f eq − f) (α ≥ 1) which satisfies the
equation (1 ≤ ω < 2),

S(f ′)− S(f eq) =
√
ω − 1 (S(f)− S(f eq)) . (4.6)

If ω is close to 2 then EEC approaches ELBGK collisions. If f is close to feq then both
EEC and ELBGK coincide with the simple LBGK in the main order. If ω is close to
1 then EEC coincides with LBGK. This is not true for ELBGK because the nontrivial
solution to (4.5) may not exist. Its existence does not depend on ω but only on the
populations. Attempting to solve (4.5) assumes that the entropic reflection exists,
which is a strong requirement of existence of collisions with preservation of entropy
whereas we just need a proper entropy balance.

4.1. Existence and non-existence of entropy balance. In [20] it was demon-
strated that near an equilibrium there always exists a vicinity where it is possible to
introduce LBM collisions with the proper entropy balance. At the same time it was
proven, that for the standard Boltzmann type entropy function used in this work, there
always exist areas of nonequilibrium distributions where the LBM collisions with the
proper entropy balance are impossible. In particular the simplex of distributions can
be split into two subsets A and B: in the set A the entropic involution exists, and for
distributions from the set B equation (4.5) has no non-trivial solutions. Both sets A
and B have non-empty interior (apart from a trivial symmetric degenerated case). In
the numerical experiments conducted later in this work this scenario did not arise.

4.2. Numerical solution of entropy balance. In order to numerically inves-
tigate the stabilization properties of ELBGK it is necessary to use a numerical method
capable of finding the non-trivial root in (4.5), while remaining as computationally
efficient as possible. For a given lattice site and time step we recast Eq (4.5) as a
function of α only:

F (α) = S(f + α(f eq − f))− S(f). (4.7)

In this setting we attempt to find the non-trivial root r of (4.7) such that F (r) = 0. It
should be noted that as we search for r numerically we should always take care that
the approximation we use is less than r itself. An upper approximation could result
in negative entropy production.

The algorithm we use in this work is simple Newton iterations, because of the
concavity of S the accuracy of the nth iteration of the method can be estimated,

|αn − r|� |F (αn)/F
′(αn)| . (4.8)

In fact we use a convergence criteria based not solely on α but on α||feq − f ||,
this has the intuitive appeal that in the case where the populations are close to the
local equilibrium ΔS = S(f eq) − S(f) will be small and a very precise estimate of α
is unnecessary.

Altogether we stop the method at the point,

|αn − r|·||f eq − f ||< εELBM. (4.9)

To ensure that we use an estimate that is less than the root, at the point where
the method has converged we check the sign of F (αn). If F (αn) > 0 then we have
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achieved a lower estimate, if F (αn) < 0 we correct the estimate to the other side of
the root with a double length Newton step,

αn = αn − 2
F (αn)

F ′(αn)
.

At each time step before we begin root finding we eliminate all sites with ΔS <
10−15. For these sites we make a simple LBGK step. At such sites we find that round
off error in the calculation of F by solution of equation (4.7) can result in the root
of the parabola becoming imaginary. In such cases a mirror image given by LBGK is
effectively indistinct from the exact ELBGK collision.

In the numerical experiments in this work the chosen value of εELBM is 10−5,
due to the fast convergence of this method we anecdotally observe that the actual
accuracy reached is roughly of the order 10−10.

We implement ELBM in the form ‘as it is described’. For this purpose, we estimate
the nontrivial root α of the equation (4.5) from below with high accuracy. Then we
use the entropic collision (4.4) with the same ω as for LBGK and other methods and
compare the results. In some publications, a regularization by ELBM was reported
that cannot be reproduced in such a way (compare, for example [1] to [27]). This may
be caused, for example, by additional smoothing operations implemented in [1] and
similar papers but omitted in the reports.

5. Oscillations and filtering. Dispersive oscillations pose a problem for low
viscosity (high Reynolds number) flows in certain types of lattice Boltzmann sim-
ulations. In particular non-physical oscillations arise near to sharp gradients and
singularities. These oscillations may cause the system to ‘blow up’ or simply pollute
the system enough to render the results useless. We can use a signal filtering technique
to target and remove these oscillations from the system.

5.1. Entropic filtering. Entropic filtering is a technique by which the relax-
ation rate in a BGK system is manipulated locally in order to suppress dispersive
oscillations. The entropic terminology comes from using a discrete entropy function
as an indicator for an unstable region of the fluid. We can say that entropic filtering
uses some of the technology of the ELBM, but with a rather different motivation. In
ELBM the entropy function is used as a Lyapunov function for the collision opera-
tion. Collisions are modified so that across the system positive entropy is produced
with respect to the chosen entropy function. In entropic limiting the same entropy
functions are used, but only as a measure of distance from equilibrium. The pur-
pose of measuring this distance is to introduce an additional contraction if it becomes
too much. Since entropic filtering is only applied at a small number of lattice sites,
positive entropy production is not guaranteed across the system.

It has been shown that discrete entropy functions may be constructed in a lattice
dependent fashion. These functions can be used in an Entropic Lattice Boltzmann
Method (ELBM) [23, 22] as a Lyapunov function, which under certain conditions can
be used to derive stability theorems. For these techniques we simply use a discrete
entropy function as a metric for ‘distance from equilibrium’. There are a number of
other intuitively reasonable choices of metric, such as the 1 norm ||f − feq||1, to do
the same job but in this work we use the so called relative non-equilibrium entropy
[8], this entropy function can be used with standard polynomial equilibria,

ΔS =
∑
i

fi log

(
fi
f eq
i

)
. (5.1)
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A useful approximation to this ΔS gives the quadratic entropy (the second order
Taylor expansion):

ΔS =
∑
i

(fi − f eq
i )2

f eq
i

. (5.2)

This formula can be used without positivity control: it is not singular for negative fi.
We use the logic that any lattice site which exhibits very high non-equilibrium

entropy, above a certain threshold, represents the peak of a dispersive oscillation.
At such a site it could be appropriate to modify the relaxation rate to bring the
distribution function back near to equilibrium, and thereby erase the peak of the
oscillation. One option to stabilize the system is to return such lattice sites directly
to their local equilibrium in an ‘Ehrenfest Step’ If we prefer to maintain the low
frequency features of the non-equilibrium dynamics then the equivalent of a low pass
filter can be applied.

A filter which has successfully been applied to single relaxation time lattice Boltz-
mann systems is the median filter [8]. This can be implemented as a post-process to
a relaxation operation. A filter is formed of some computational molecule of nearby
neighbours. In this work where we use the D2Q9 system we use the set of adja-
cent non-boundary lattice sites. The median average of the non-equilibrium entropy
ΔSmed and the scaling coefficent δ =

√
ΔSmed/ΔS are then calculated. A site with

high non-equilibrium entropy can then be updated again,

fi �→ f eq
i + δ(fi − f eq

i ). (5.3)

The coefficient δ arises from the quadratic approximation to the discrete entropy
function and collapses the non-equilibrium volume of the filtered site back to the level
(in non-equilibrium entropy terms) of the median of its neighbours.

The reason for selecting the median filter to regularize the lattice Boltzmann
system is that it preserves the low frequency dynamics while eliminating the high
frequency parts.

5.2. Median filtering MRT. We are now interested in implementing a median
filter for the separate modes of the MRT collision operation. In an MRT setting our
post-processing operation is given by,

fi �→ f eq
i + δ(fi − f eq

i ) + (δN − δ)wigiN/4. (5.4)

Evidently in the case δ = δN this reduces to the single relaxation time limiter.
In this setting we have two parameters we may wish to manipulate, δ and δN ,

and there are a few ideas we can present as to how to utilize them;
1. We can use the standard BGK collision across the system, set δ = 1 and

dynamically choose δN . This corresponds to not filtering the Navier-Stokes
level modes at all, we attempt to locally trim out the oscillations in the ghost
mode N . This is a weaker operation than using a full MRT (which would
be equivalent to setting δN = 0 everywhere) but we hope it will be nearly as
effective while adding less dissipation.

2. We can use the full MRT collision everywhere and dynamically choose δ. This
corresponds to equilibrating the ghost mode N and trimming out oscillations
in the other dynamics. This is a stronger operation than the usual MRT and
might be appropriate for use at Reynolds numbers where the standard MRT
fails to stabilize the system. It also adds dissipation on the Navier-Stokes and
J moments.
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3. We can use the BGK collision everywhere and dynamically and separately
choose both δ and δN . The rationale for doing so is that we filter all the
modes as in the single relaxation time setting, but due to the extra freedom
in parameters we can treat separate modes independently. Therefore if oscil-
lations appearing in different modes can be targetted for deletion separately,
without adding undue dissipation on all modes.

As δN controls the dissipation on a single mode it is relatively straightforward to
create a strategy to select a value for it. We simply take the ratio of absolute value
of the mode to the median absolute value of its neighbours, δN = |N |/|N |med where
|N |med is the median of the absolute values of N locally. It is also simple to select
which sites to apply the filter at, we simply take the sites where |N | is above a certain
threshold.

Selecting a relaxation for the combined remaining nodes is not so obvious as again
there are a number of reasonable choices. We use the quadratic approximation to the
non-equilibrium entropy of the populations with the contribution due to N moment
stripped out, we can define an auxiliary set of populations,

f∗
i = fi − wigiN/4. (5.5)

The non-equilibrium entropy of this component of the dynamics is evaluated by the
quadratic approximation of the relative entropy (5.2). The coefficient δ may be cal-
culated as δ =

√
ΔSmed/ΔS, where again ΔSmed is the median value of ΔS (5.2)

locally.
Due to the differing methods for calculating the post processing coefficients δ and

δN , as well as the relative size of the modes, it is not appropriate to use the same
threshold for selecting filtering sites. A separate threshold should be chosen for each,
which selects a small proportion of the sites for filtering.

6. Numerical tests. In this section we test the effectiveness of the techniques
detailed above at stabilizing the lattice Boltzmann method, and at what cost.

The numerical benchmark that we use is the lid-driven cavity. This is a 2D
test problem which consists of a square domain with a tangential velocity applied at
the top boundary edge. This boundary condition drives the formation of vortices,
which for low Reynolds numbers form a steady state and, for high Reynolds numbers,
periodic or chaotic results. This transition begins with a Hopf bifurcation where the
steady state evolves into a periodic flow, and localizing this bifurcation will be our
goal. The lid-driven cavity has already been used for lattice Boltzmann methods [21],
including in particular for the comparison of collision operations [26]. In these works
the accuracy of the steady states pre-bifurcation were considered whereas now we are
concerned with the onset of periodicity.

In this study we use diffusive boundary conditions. The essence of the condition is
that populations reaching a boundary are reflected, proportional to equilibrium, such
that mass-balance (in the bulk) and detailed-balance are achieved. In each corner of
the cavity, similarly to in the bounce-back boundary condition the outward population
is simply reflected inward to conserve mass.

To illustrate, immediately following the advection of populations consider the
situation of a wall, aligned with the lattice, moving with tangential velocity uwall

and with inward normal in the down direction. The implementation of the diffusive
Maxwell boundary condition at a boundary site x on this wall consists of the update

fi(x, t+ 1) = γf eq
i (uwall), i = 4, 7, 8, (6.1)
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Table 6.1

Results of lid driven cavity simulations

Paper Method Re Grid
Size

Re of
HB∗

Brezillon et al [6] FE∗, 12 modes and 13122
DoF∗

6000-
11000

N/A 7890

Brownlee et al [9] Median Filtered LBM 0-8000 100 7135
Bruneau & Saad
[11]

Mixed order (3rd and
2nd) FD∗ scheme

10-
10000

256-
1024

8000-
8050

Hou et al[21] BGK type LBM 10-7500 256 N/A
Luo et al [26] MRT type LBMs 100-

1000
65-
513

N/A

Peng et al [30] Mixed order (7th and
6th) FD scheme

0-10500
100
150
200

7402
7694
7704

∗ HB – Hopf Bifurcation, FE – Finite Elements FD – Finite Difference, DoF –
Degrees of Freedom.

with

γ =
f2(x, t) + f5(x, t) + f6(x, t)

f eq
4 (uwall) + f eq

7 (uwall) + f eq
8 (uwall)

. (6.2)

The reason for the selection of this boundary condition vs the often used and stan-
dard ‘bounce-back’ condition, is that this choice results in reduced noise in the popula-
tions functions and therefore the macroscopic moments. When using the bounce-back
boundary conditions this noise makes the transition from a steady to a periodic flow
difficult to detect.

A survey of available literature reveals that the precise value of Re at which the
first Hopf bifurcation occurs is somewhat contentious, with most current studies (all
of which are for incompressible flow) putting the bifurcation in the range Re = 7400–
8500 [11, 29, 30]. Here, we do not intend to give a precise value, rather we will be
content to approximately localise the first bifurcation and by doing so measure the
relative amount of dissipation produced by different systems. A system which becomes
unsteady before a Reynolds number in this range is achieved can be considered to be
unstable at that point. In 6.1 we detail some results of lid driven cavity simulations.

To localise the first bifurcation we take the following algorithmic approach. The
initial uniform fluid density profile is ρ = 1.0 and the velocity of the lid is uwall = 1/10
(in lattice units). This is chosen as it is a typical lid speed used in previous works
[21, 25], similar experiments were carried out for uwall = 1/100 and no qualitative
differences in the relative performances of the methods were observed. We use 101
interior lattice points in each direction for the domain. The equilibria used are the
entropic equilibria (Eq. 4.3) for ELBGK and polynomial equilibria (Eq. 3.3) for all
other systems. We record the velocity data at a single control point with coordinates
(6, 18) (relative to the upper left corner) and run the simulation for 5000L/u0 time
steps. We denote the final 0.1% of the time series given by this signal by usig.

In this problem the standard BGK system becomes unsteady before the expected
Reynolds number of the first bifurcation, at approximately Re=2500. For our next
benchmark test we examine the bifurcation in the standard MRT system.
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Fig. 6.1. Mean filtered usig for the standard MRT at a) Re=7400, b) Re=7600, c) Re=7800,
d) Re=8000

In Figure 6.1 the emergence of a periodic state in the standard MRT system is
observed. Again we do not precisely locate the bifurcation, only noting that it appears
to emerge between a steady state solution at Re=7400 and a periodic solution at
Re=7600. We should note that any additional dissipation produced by this operation
has an extremely limited effect as the first bifurcation is detected in the expected
region.
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Fig. 6.2. Mean filtered usig for the BGK system equipped with the single relaxation time median
filter at a) Re=7400, b) Re=7600, c) Re=7800, d) Re=8000

The next benchmark is the BGK system with the single relaxation time Median
Filter. In Figure 6.2 we see that this system similarly seems to pick a bifurcation
between Re=7400 and Re=7600, although the form of that bifurcation is somewhat
different and the system is subject to some noise due to the non-constant application
of the limiter.

The final benchmark is the test of the ELBM system. In this experiment the
system becomes unsteady before the expected Reynolds number of the first bifurcation
at approximately Re=6700.

The next test involves filtering only the N mode as discussed previously. In this
case we set a threshold of 10−2 for sites where the filter is applied. In particular, we
make two tests where we observe the following:

• In a test where the relaxation rate δN is selected dynamically the system be-
comes unsteady before the expected Reynolds number of the first bifurcation
at approximately Re=3800. In this instance approximately 23 lattice sites
per time step are selected for filtering.

• In a test where the relaxation rate δN is always chosen as zero the system be-
comes unsteady before the expected Reynolds number of the first bifurcation
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at approximately Re=4700. In this instance approximately 20 lattice sites
per time step are selected for filtering.

Altogether we observe that applying an MRT operation in this manner is consider-
ably less effective at stabilizing the system than the standard method of applying it
uniformly everywhere in the system.

Fig. 6.3. Stream function of BGK with an enlarged grid size of 401 at the final time step of
the Re=7000 simulations (negative stream regions in dashed lines)

a b c d

Fig. 6.4. Stream function of a) Full MRT, b) BGK equipped with the single relaxation time
median filter c) BGK with MRT Limiter with δN dynamically chosen, d) ELBM with the standard
grid size of 401 at the final time step of the Re=7000 simulations (negative stream regions in dashed
lines)

Although ELBM and these MRT-filtered systems become unsteady before the
expected Reynolds number of the first bifurcation, the systems may complete the
requested number of time steps (they do not ‘blow up’) but in fact complete the
simulation up to higher values of Reynolds numbers. Nevertheless the results of these
simulations are not necessarily useful as can be seen in Figures 6.3,6.4. The large
panel given in Figure 6.3 is the standard BGK system on a much larger grid size
(401 × 401) so that the system is steady up to Re7000. The first two panels of
Figure 6.4 are qualitatively similar, with the caveat that the larger grid introduces
some extra stability, accounting for the disappearance of the small sub vortex in the
upper left corner. The form of the stream function in the remaining two panels varies
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significantly from the large grid system.

a b c d

Fig. 6.5. Steam function of a)BGK, b) Full MRT, c) BGK equipped with the single relaxation
time median filter, d) ELBM at the final time step of the Re=5000 simulations (negative stream
regions in dashed lines)

The other side of the coin is that although simulations may not be completely
steady before the bifurcation, the results may be quite good up to higher values of Re.
In Figure 6.5 the stream functions are given for all the benchmark tests at Re=5000.
For this Reynolds number BGK (a) is unsteady (having non-zero disturbance energy),
nevertheless the stream function is rather close to the steady solutions given by the
three primary stabilizing techniques and positions of the vortex centres are practically
stationary. We presume that in this case the disturbances in the pure BGK systems
consist of minor fluctuations which average out in time. This explains the good
results for vortex centres for BGK at this Reynolds number and grid resolution given
elsewhere [9].
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Fig. 6.6. Mean filtered usig for the full MRT system equipped with the median filter as a
post-processor at a) Re=7400, b) Re=7600, c) Re=7800, d) Re=8000

The next test represents using the full MRT everywhere and applying the Median
Filter as a post-processor. We can see from Figure 6.6 that although this system also
picks out the first bifurcation, it does so at a larger Reynolds number.

The final techniques to test are the combinations of filtering both parameters δ
and δN . We try two options, in both for the Navier-Stokes part we use the Median
Filtering where ΔS is above the threshold. For the N component in the first option we
dynamically choose δN , in the second option we just set δN = 0, where the magnitude
of N exceeds the threshold.

In Figures 6.7, 6.8 we see the systems with the median-filtered Navier Stokes
dynamics as well as the median filtered/ selectively equilibrated ghost mode respec-
tively. In these systems we see the bifurcation develops into a very noisy phase before
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Fig. 6.7. Mean filtered usig for the BGK system with the Navier-Stokes modes and ghost mode
median filters as a post-processor at a) Re=7400, b) Re=7600, c) Re=7800, d) Re=8000
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Fig. 6.8. Mean filtered usig for the BGK system with the Navier-Stokes modes and ghost mode
selectively equilibrated as a post-processor at a) Re=7400, b) Re=7600, c) Re=7800, d) Re=8000

seeming to return to a more structured dynamic.
To further examine the relative positions of the bifrucations in the systems we

measure the mean squared deviation of usig from its own average in that time, this
gives the ‘disturbance energy’ of the signal,

E = ‖(usig − usig)‖22 . (6.3)

For the steady state E = 0 and post bifurcation E ∝ (Re − Rec) where Rec is the
Reynolds number of the bifurcation.

In Figure 6.9 we plot E as a function of Reynolds number, including the results of
the benchmark tests. The emergence of the first bifurcation in the systems shown in
Figures 6.1, 6.2,6.6, 6.7, 6.8 can also be observed here. From this figure we can see that
the standard MRT as well as the two limiters which filter the modes independently
produce marginally less dissipation.

In Figure 6.10 we extend the range of Reynolds numbers up to 100000. The scope
of energy exhibited by the systems diverges apart perhaps from the full MRT and the
full MRT with Median Filter which stay relatively close together until the full MRT
becomes unstable at approximately Re=44000.

7. Conclusion. The first observation is that in both the MRT and Median
Filtered simulations the first bifurcation is detected in the expected range. We should
not say that the bifurcation appears at the proper value, as we do not have a precise
expectation of what it should be. Rather we can just say that both techniques add
a minor and comparable amount of dissipation into the system, while improving the
stability relative to the BGK system.
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Fig. 6.9. Disturbance energy (Eq. 6.3) in the systems with collision operations a)Full MRT
b)BGK with single relaxation time Median Filtering c)BGK with Median Filtering the Navier-
Stokes and ghost modes independently d) BGK with Median Filtering the Navier-Stokes modes and
selectively equilibrating the ghost mode e) Full MRT with Median Filtering the Navier-Stokes modes.
Plots represented for two different scales: at Re=1000 to Re=10000 and at Re=7000 to Re=8000
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Fig. 6.10. Disturbance energy (Eq. 6.3) in the systems with collision operations a)Full MRT
b)BGK with single relaxation time Median Filtering c)BGK with Median Filtering the Navier-
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The other primary technique outlined in this work, ELBGK, stabilized the system
up to a higher Reynolds number than the basic LBGK system, however not enough
to reach the first bifurcation. On the basis of this test this technique cannot be
recommended as a stabilizer for lattice Boltzmann systems as it not only performs
worse, but is significantly more computationally expensive than an application of
MRT or Median Filtering, due to the requirement to solve Eq 4.7 at every lattice
site and time step. Low levels of stabilizing performance have also been found for
other benchmark problems [27]. This seems very natural in the light of the analysis
of entropic methods in other areas. Precise entropy balance, for example, does not
decrease the dispersive oscillations in the finite difference simulations [35].

The experiments which only filtered the ghost mode N were also not stable up
to the first bifurcation. While it may be interesting that such minor modifications
to the BGK system (altering only some of the post Navier-Stokes dynamics at a
small number of sites) provides a stability increase by Re=1000–2000, on the basis
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of this test this limiter cannot be recommended very strongly. The reasons being
that the standard MRT is considerably more effective, exhibits a reasonable value
for the first bifurcation (and hence adds little dissipative error) and doesn’t bear
the computational overhead of applying a post-processing operation in addition to
evaluating the field N at each time step.

The combination of the full MRT and the Median Filter as a post process in-
troduces an additional quantity of dissipation which delays the onset of the first
bifurcation, as might be expected as the combination of two smoothing techniques.
This combination could be appropriate for applications where the stabilizing effects
of the MRT alone are not sufficient.

The systems we tested which attempted to filter the modes independently also
stabilize the system, picking a reasonable value of the Reynolds number for the first
bifurcation but with some additional noise in the dynamics.

According to Figure 6.9 the systems which pick the bifurcation at the lowest
value of Re are the Full MRT system and the two systems which filter the modes
independently, although the difference is quite marginal. All the results of the filtered
systems will be affected by the particular choice of the thresholds used to select the
sites where filtering is applied. Fewer applications of any filter would be expected to
move the bifurcation to a lower Reynolds number. No investigation was made in this
work into varying these thresholds, they were simply chosen via some initial tests as
values which selected a very small proportion of lattice sites.

We also observe that in the realm of higher Reynolds numbers (Figure 6.10)
that the energy of the systems at the monitoring point diverges. Another method of
validation should be used at these lower viscosities to realize which technique is most
accurate in this regime.

Altogether we have observed that two existing techniques for stabilizing lattice
Boltzmann methods by generalizing the BGK collision operation succeed in picking
the first Hopf Birfucation at a reasonable value of the Reynolds number. Of course
these two operations can be combined to produce even more artificial dissipation
and hence move the bifurcation to a greater value of the Reynolds number. This is
obviously undesirable but such a procedure may be useful at very low viscosities to
produce a stable system. Another existing technique, ELBM, performs more poorly,
providing less stability benefits while being more computationally expensive. The
newly created limiters, which filter the modes independently, also pick a reasonable
of the Reynolds number for the first bifurcation. A fuller investigation into the effects
of altering the threshold parameters could to be made to see if this performance can
be further improved. The fact that the ‘parent’ methods of these limiters, namely
MRT and Median Filtering, perform so well, indicates that any performance gains
from using a limiter of this type will be fairly marginal.
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