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Abstract. The paper presents a globally convergent algorithm for solving coefficient inverse
problems. Being rooted in the globally convergent numerical method (SIAM J. Sci. Comput.,
31, No.1 (2008), pp. 478-509) for solving multidimensional coefficient inverse problems, it has two
distinctive features: the new iterative and refinement procedures. These novelties enhance, some-
times significantly, both the spatial and contrast resolutions. The computational effectiveness of
the proposed technique is demonstrated in numerical experiments with two applied coefficient in-
verse problems: electromagnetic or acoustic frequency sounding and electrical prospecting of layered
media. The Slichter-Langer-Tikhonov formulation is exploited as a mathematical model of the latter.
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1. Introduction. The paper addresses a challenging problem of constructing
globally convergent algorithms for Coefficient Inverse Problems (CIPs), i.e., the in-
verse problems for the partial differential equations where one needs to determine one
or several coefficients from a given solution (or its functionals) on some manifolds
(see, e.g., [3], [7], [15] and references cited there). In this paper, the global conver-
gence is understood in the sense that a reconstruction algorithm produces a sequence
of iterates that converge to the sought coefficient or to its "good” estimate from an
initial approximation, which is not necessarily close to this coefficient.

Due to both the nonlinearity and ill-posedness of CIPs, providing the global
convergence is important for many, if not for all, reconstruction algorithms. Being
applied to a CIP, the nonlinear least squares approach normally results in a nonconvex
minimization problem. Clearly, under such conditions, the traditional numerical tech-
niques, such as the gradient or Newton-like methods, may be not applicable or they
may fail to converge to the true solution. On the other hand, the methods of global
optimization are extremely time consuming and heuristic. Thus, the development of
globally convergent algorithms is of particular interest to quantitative imaging in de-
fence science, geophysics, medical diagnostics, non-destructive testing and evaluation,
ete.

The goal of this paper is twofold. First, this is to present a globally convergent
algorithm for solving some CIPs in one dimension. Second, this is to demonstrate
its computational effectiveness by applying it to frequency sounding and resistivity
prospecting of layered media. Introduced by Tikhonov [26] and Cagniard [4] in explo-
ration geophysics, the method of frequency sounding became one of the most popular
techniques used in a variety of applications (see, e.g., survey [9]). The term "resistivity
prospecting” is associated with geophysical prospecting techniques utilizing measure-
ments of the voltage potential produced by currents injected from the Earth’s surface
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into the ground (see, e.g. [30]). Unlike the Calderon formulation which is widely
used in electrical impedance tomography with multiple boundary measurements, we
utilize the Slichter-Langer-Tikhonov mathematical model [13], [20], [27] with a single
boundary measurement. Based, in general, on three dimensional mathematical mod-
els, these CIPs allow, nevertheless, for one dimensional formulations making, by the
same token, more descriptive the underlying ideas of the proposed algorithm. On the
other hand, one dimensional quantitative imaging is widely used in many applications,
such as studying Earth interior [21] and seafloor resources [6], as well as in studying
macromolecular biological interactions [22], nuclear magnetic resonance 1D imaging
[16], mine countermeasures [12], etc.

The globally convergent numerical method for solving the hyperbolic CIPs was
proposed and developed in [2], [3], [7], [10], [11], [12]. In [7] the authors utilized the
Carleman estimates and constructed some strictly convex least squares functionals
at each step of a layer stripping procedure with respect to the spatial variable. In
[2], [3], [10], [11], [12] the layer stripping procedure with respect to the real-valued
parameter of the Laplace transform combined with an iterative procedure for treat-
ment of the so-called tails was developed and applied to solving nD (n = 1,2,3)
CIPs. Being rooted in the globally convergent numerical method [2], the proposed
algorithm possesses two new features. First, in the iterative procedure for solving an
overdetermined boundary value problem for the nonlinear second-order differential
equation the successive approximations are constructed for every parameter from the
Laplace transform. Second, we refine the iterative solution by matching the inte-
rior field generated by this solution with the solution of the forward problem in the
region of interest unlike the traditional refinement by matching the boundary data.
This technique differs significantly from a refinement procedure (see [3]) based on the
adaptive FM/FD methods [1].

The paper is formatted as follows. In the next section, a generic coefficient in-
verse problem is formulated to exemplify our approach. In section 3 we describe
the proposed algorithm. In sections 4 and 5 we state convergence results for both
the successive approximations produced by the proposed algorithm and their refine-
ments. In section 6 we conduct the numerical study to demonstrate the computational
effectiveness of the proposed algorithm. We conclude our investigation in section 7.

2. Problem formulation. We introduce a generic coefficient inverse problem
as follows. Let Q C R3 be a convex bounded domain with a sufficiently smooth
boundary 9. Tet the function p(x) > 1 be such that u € C?(R3),u(z) = 1 for
r € R3\Q. Consider the Cauchy problem for the hyperbolic equation

(2.1) w(x)Uy — AU =0 in R® x (0,00),
(2.2) U(z,0) =0, Ugz,0)=20d(x— xo).

In particular, if the problem (2.1)-(2.2) models the propagation and scattering of
the electromagnetic or acoustic field, then u(z) = ¢=2?(z), where c(z) is the speed of
electromagnetic or acoustic waves. We emphasize that we do not impose the smallness
assumption on the coefficient p.

Generic Coefficient Inverse Problem (GCIP). Let the function U(z,t) be
the solution of the Cauchy problem (2.1)-(2.2). Given a single measurement U(z,t) =
f(z,t) on the boundary 8Q for a fived source position xo ¢ Q and for all t € (0, 00),
find the coefficient p(x) in Q.

To our knowledge, there is no global uniqueness result for the GCIP available in
the mathematics literature. We assume below uniqueness of the solution of GCIP,
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because we will utilize the generic inverse problem only for the purpose of describing
the globally convergent algorithm. Consider the Laplace transform of the function
U(z,t) for s > s, where s is a positive constant,

oo
u(x, s) = / U(z,t)e *'dt, s> s= const. > 0.
0

Tt follows from [3] (see Theorem 2.7.1) that for all s > s, where s is sufficiently large,
the function u(x, s) is the unique solution of the problem

(2.3) Au — sp(z)u = —6(x — x0), =€ R3,
(2.4) ‘ l‘im u(z,s) =0

satisfying the following conditions

(2.5) u(z,s) > 0,Vx # zo;u(z,s) = exp (—s |z — 20))

47 |z — 0| +T(2,5),Te O (RY)
for all @ € (0,1). Furthermore, for any s > 0 the theorem 2.7.2 in [3] ensures existence
of a unique solution of the problem (2.3), (2.4) satisfying conditions 2.5). In this paper,
Ckte are Holder spaces, where k > 0 is an integer and « € (0,1).

For simplicity, we describe the proposed algorithm in one dimension. Its general-
ization to two and three dimensions is straightforward. In one dimension, 2 = (0, 1),
and the source is located outside of this interval, i.e., 29 € {z < 0}. Also, we assume
that the function p(z) satisfies the following conditions

(2.6) weCY(R),u(x)el,m],u(x)=1frz¢(0,1),

where the number m > 1 is given. Then a single measurement is given by U(0,¢) =
f(t), and the one dimensional analogue of the problem (2.3)-(2.4) acquires the form

(2.7 Upe — s2p(2)u = —6(z — 20), T € R,
(2.8) ‘ llim u(z,s) = 0.

Tt follows from [12] (see the theorem 3.1) that the Laplace transform of U (x, t) satisfies
the problem (2.7)-(2.8) for all s > s for a sufficiently large s > 0, and for all s > 0 there

exists a unique solution u (z,s) of the problem (2.7), (2.8). Tt satisfies the analogue
of (2.5)

(2.9) u(z,s) > 0,2 € Ryu(x,s) =up(x,s) +u(z,s),7 € C*(R),
where

exp (—s|z — zo|)
2s

is the solution of the problem (2.7)-(2.8) with u(z) = 1. Let ¢(s) be the Laplace
transform of f(t). Since p(z) = 1 for @ < 0, then given ¢(s), one can uniquely
determine the function u,(0,s) = sp(s) — exp(sxg) := @(s) (see, e.g., [12]).

Now we introduce a new function

uo(x,s) =

(2.10) oz, ) = Sizm(uio).
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Then the problem (2.7)-(2.8) is reduced to the problem

(2.11) Vo + 8202 — 250, = p(x) — 1 in (0,1),
(2.12) v(0,8) = vo(s), v4(0,s) =wvi(s),
where
Inp(s)—1In2s xo 2 es%o
wls) = =g+ ul) = - o0

Introducing one more function ¢(z,s) = d,v(z, s), we eliminate the unknown coeffi-
cient p(z) from equation (2.11) by differentiating (2.11), (2.12) with respect to the
s-variable in accordance with [10] and [12]. As a result, we obtain the problem

(213) Qo + 252(]30”30 — 258G, = 20, — 25”2 in (07 1)7 s € [§a §]7
(214) (J(Oa S) = U(l)(s)a qgn(oa S) = Ui(s)a
(2.15) q(1,5) = 0.

Note that the condition (2.15) follows directly from (2.8), because p(z) = 1 outside
of the interval (0,1) and

(2.16) o) = [ (e r)dr o (2,3).
where

o0
v(a;,?) = _/ Q<x77—> dr
S

3. Description of the algorithm. It follows from the previous section that if
both functions ¢(z, s) and v(x, s) are known, then the solution of GCIP can be found
in the closed form from the equation (2.11). However, these functions are unknown.
If one knows an approximate solution (¢,) to this problem, then the approximate

solution fi(z) of the generic inverse problem is given by

(3.1) f(x) = Dy + 5202 — 250, + 1.

Thus, determining the approximate solution of the problem (2.13)-(2.15) plays the
crucial role in developing the reconstruction algorithm.

Note that if the function v(x, s) is given, then the problem (2.13)-(2.15) is linear
with respect to g(z,s). It may seem, therefore, that in order to produce an approx-
imate solution to this problem, one may solve a traditional boundary value problem
for the second-order ODE (2.13) with two boundary conditions (2.14) and (2.15).
However, since ¢g(z,s) depends on v(x, s), one needs to iterate both functions ¢ and
v. In this case, the sucessive approximations may not converge to the appropriate
approximations of ¢(x, s) and v(z, s). This fact was observed in [10] as well as in our
numerical experiments when attempting to solve the traditional BVP. Therefore, the
method of quasi-reversibility (see, e.g., [14]), which is well suited to handle overde-
termined boundary value problems, has been used for the approximate solution of
the problem (2.13)-(2.15). Let the function v(z,s) be fixed for any fixed parameter
s € [5,5), and the left- and right-hand sides of the equation (2.13) be denoted as
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L(q)(z) and F(z). Then the method of quasi-reversibility consists of minimizing the
Tikhonov functional

(3.2) Tx(q) = | L(a)(@) = F(@)lI,0,1) + Mallrz(0,1);

where A > 0 is the regularization parameter, subject to the boundary conditions
(2.14) - (2.15). It was shown in [12] that this functional has a unique minimizer.
Furthermore, since this functional is the sum of squares of two expressions, which
depend linearly on the function ¢ , it is strictly convex. This means that any numerical
method, such as the gradient or Newton-like one, allows for determining numerically
that unique minimizer ¢, of the functional T\(q) for every s € [s,3]. However, it
should be emphasized that in accordance with the theory of ill-posed problems (see,
e.g., [29] ), the regularization parameter A must be chosen consistently with the level
of noise 0 in the "measured” data @(s), i.e., such that |[¢ — @|crsz < 9, in order
to ensure the regularizing property. A priori parameter choice A\(§) = 42, where
v e (0,1) (see, e.g., [25, 29]) is recommended for use.

The regularization procedure described above allows us to solve numerically the
problems (2.13) - (2.15) only if the function v(x,s) is known. However, in reality
both functions ¢(z, s) and v(z, s) are unknown. To overcome this difficulty, we deter-
mine the successive approximations of these functions as follows. We first utilize the
asymptotic behavior of v(z, s). Tt follows from [10] (see Lemma 2.1) that there exists
a function p(x) € C?1[0,1], such that

p(x) 1
v(z,s) = — +0 (5_2> ,8 = oo,z €[0,1].
Since ¢(x,s) = dsv(x, s), we obtain for sufficiently large s

(3.3) o(,8) ~ @7(1(%8) - _p)

s2
Because of asymptotics (3.3), we choose s = 5 and substitute these representations in
(2.13) - (2.15). As a result, we obtain the following problem
(3.4) Pee(x) =0 in (0,1),
(3.5) p(0) = —5%uy(3), p' (0) = —5%01(5), p/(1) =0.
This problem is also overdetermined.
Initialization. We solve numerically the problem (3.4)-(3.5) by the method of quasi-

reversibility. Denote pgra () its solution. Then we determine the initial approxima-
tion of the function v(z, s) as

(3.6) v (2, 5) = pQRTM("”C), ze0,1], s € [s,3].

Clearly, the initial approximations of the functions u(z, s) and ¢(x, s) will be ug(zx, s)
and ¢°(z,s) = —porm(z)/s*.

Step 1. Beginning with v%(x,s), we start the iterative process. Assume that
the kth successive approximation v(®)(z, s) has been determined for all parameters
5 € [s,3). Then, given v*)(x, s), we solve the overdetermined problem for ¢(*+1)

82(](’““)(3:, s)+ 2528$q(k+1)(x, s)@wv(k)(x, s) — 258wq(k+1)(x, s)
= 20,0 (2, 5) — 25(0,0) (2, 5))? in (0,1),
q(k+1)(07 S) = @6(‘9)7 awq(kJrl)(Ov 5) = 9011<5>7 awq(kJrl)(lv S) =0
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for each fixed parameter s € [s,5) and find the successive approximation ¢**'(z, 5).
Step 2. We use the formula (2.16) to update the function v(z, s) for each parameter
s € [s,3) as follows.

(3.7 o0 8) = [ gD )+ oz,
(3.8) 00D (2, 5) / 9%V (2, v)dv + 8,00 (2, 3),
(3.9) 2okt (g, 5, 1) = 7/ O2q ) (2, v)dy + 020F) (,5).

Step 3. Let s* € [3,5) be a certain number which is independent on k. We update
the coeflicient as

(3.1Qg41(x) = 831)(]““)(33, s*) + (5*)2(8wv(k+1)(x, s*))2 — 25*8501)(]““)(3;, s*)+ 1,

where z € (0,1), and set pp41(x) =1for z =0and z = 1.
Step 4. Update the function v(x,5) and its derivatives by solving the forward problem

(3.11) ?u* D (2,5) — B2 pp 1 (2)u(z,3) = —0(x — x0), =€ (0,1), xo ¢ (0,1),
(3.12) lim w*t)(2,5) =0

|z|—o00

and determining the functions

(44D (4, 5) — Inu®t(2,3) z—-2¢9 In2s

(3.13) = =

Ozu kH)(a;,E)
B u(k+1)(x,§)
(
(

k+1) b (k+1) 21\ 2
2,(k+1) (1 5) — z,5) w7 (@)
(3.15) Ozv T (@,3) = < u(k+1) ,%) ( sulkt(z,3)

(3.14) ) (2,3) =

’

C0||>—‘ |

?

for x € [0,1]. Tt follows from (3.7)-(3.9) that knowledge of the function v(**+1)(z,3)
and its derivatives is crucial in reconstructing p(z) via the formula (3.10).

Stopping criterion. The iterative process continues until a stopping criterion is ful-
filled. TIf the level of noise ¢ in the data ¢(s) is given or it can be estimated, then it
is natural to stop the process at the iterate

(3.16) Estop = min {k 10zt (0,8) — B(8) | Lo1s 5 < 5} )

where the function u,, (z, s) is determined by solving the forward problem (2.7)-(2.8)
with p(z) = pg(x) for every successive approximation py(z). Note that since the
norm in (3.16) represents the residual functional on gk (z), the number kyop plays
the role of the regularization parameter. In this case, the closeness of jix_,,, (x) to the
true coefficient u(x) needs to be estimated. Also, we note that in computing we deal
with the discrete functions defined on grids with respect to both variables z and s.
In this case, the derivatives are approximated by their finite difference analogous and
the integrals in (3.7)-(3.9) - by appropriate quadratures.
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4. Convergence of successive approximations. Let s > 0,5 > 1. Let u*(x)
be the unique solution of the GCIP satisfying conditions (2.6) and corresponding to
the data ¢(s), s € [s,3]. In the convergence analysis we assume that all successive
approximations p(z) obtained by the algorithm described in the section 3 also
satisfy the conditions (2.6). In addition, following (2.10) and (3.3), we assume that
the function v (z,s) = s721In (u/uo) can be represented as

(4.1) v(x,s) = pi:r) ,Vs >3,

where the function p € C?t¢[0,1]. Let h > 0 be the largest distance between two
adjacent nodes in a grid with respect to the s-variable. Let x € (0,1) be a given real
number, such that [|¢ —@[/¢s,3 < X, Where ¢(s) is the single boundary measurement.
Denote n = max(4, h). Then the following analogue of Theorem 6.1 in [12] takes place.

THEOREM 4.1. If the initial approzimation v\%(z,s) in the proposed algorithm
is determined as in (3.6), and the reqularization parameter X in the Tikhonov’s func-
tional (3.2) is chosen as A = x?, then there exists a constant C = C(x9,m,5), such
that for n chosen from

1
n < Ckstop

the following inequality is fulfilled for all k € [1, ksyop]
(4.2) k(@) = ()| L20,0) <075 v € (0,1),

where the number v does not depend on k, h, x, pr(z) and p*(z).

Proof. Since the arguments are analogous to those used for the proof of Theorem
6.1 of [12], we only outline the scheme of the proof. First, using (3.4)-(3.6), (4.1) and
Lemma 6.1 in [12], it is shown that

(4.3) max

s€(s,s]

v (2, 5) — v (z, S>HH2(O’1) <o

Recall that m is the constant in (2.6). Consider the solution ug (z, s) of the problem
(2.7), (2.8) for the case p(x) = m,

(2, 8) = =2 (75\/277_??5 —zl),

Then it follows from [12]
(4.4) U (2, 8) <u(x,s) <wug(z,s),Vx €[0,1],Vs € [s,5].

Using (4.4), as well as estimates of a minimizer of the functional (3.2) indicated in

,n € [1,N]. Next,
H2(0,1)

using (3.7) - (3.15) and (4.3), one can obtain the estimate (4.2) for k¥ = 1. Next,
using the latter estimate as well as (4.4), one can obtain an analogue of (4.3) for
maX,es 3] Hv(l) (x,s) —v(x,s Finally, we can continue this process in a sim-

Lemma 5.2 in [12], one can estimate norms Hqﬁ}) —qn

)HH2(0,1)'
ilar way until it stops at k£ = kg0p. O

The main consequence of this theorem that it guarantees a good approximation
of the true solution p* regardless a priori knowledge of a small neigborhood of this
solution.
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5. Refinement of . The theorem 4.1 guarantees an appropriate closeness
of successive approximations to the true coefficient only if numbers x and h are suffi-
ciently small. In practice, however, it is more typical than exceptional that the level of
noise y in the experimental data is fixed and it is not small enough. In this case, the
approximation gy, () may not possess high spatial and contrast resolutions, i.e.,
the quantitative imaging may be problematic. To alleviate this restriction, we propose
to take advantage of knowledge of not only sy, () but also the field vston) (1, 5)
everywhere in [0,1]. Indeed, we observe that given v(¥sto»)(z, 5), one can determine
from (2.10) the function

(5.1) ulkstor) (2, 5) = ug(z, s) exp [s2vFstor) (z, 5)].

Choose a parameter s, € [s,5) and denote @(z, s,) = ulFstor)(z, s,) the interior data.
We observe that although the function @(z,s.) may be close to the solution of (2.7
)-(2.8), it does not satisfy this problem. This observation makes it possible matching
the interior field @(x, s,) with the function w,(z, s«) with the hope of improving the
approximation py_,, (z). Here, u,(z,s),s € [s,3] is the solution of the problem (2.7)-
(2.8) that corresponds to the function p (x) satisfying conditions (2.6).

Although the results established below remain valid in the Banach spaces, we
consider the finite-dimensional Hilbert spaces in view of their use in scientific com-
puting. Let H be such a space. As an example, we indicate the subspace of the space
Lo (R) spanned by a finite number of piecewise linear finite elements vanished out-
side of the interval (0, 1). For every function u (x) satisfying conditions (2.6) denote
w(z) —1 =T7(x) € Ly (R). Let G C H be the set of such functions. Clearly, G is
bounded in the space H. Consider the map F : G — Ly (0, 1), where

F(ﬁ) :UH(ZE,S*),ZEE (0,1),W(ZE) :u(l')*lEG.

It follows from (2.7) that the operator F is one to one. Denote K = F (G) the range
of F. Since G is a compact set in H, then the Tikhonov’s theorem [3], [29] implies
that the inverse operator F~' : K — G is continuous. Let wy (2),z € {z > 0} be the
modulo of continuity of the operator F~! on the set K. Then

(5.2) 17— Tl < wre (IF ()~ F @)y ) VT € G-
In the GCIP both functions p* (z) and uy.(w, s.) are supposed to be unknown. In-
stead, their approximations fi =y, (z) € G (see (4.2)) and u(x,s.) € L2 (0,1) are
given, such that

(5.3) [y, (@, 84) — (2, 54) [ 2 (0,1) < 0,

where o = Cn9%™m™? C = const > 0. We are interested in finding a new approxima-
tion of p*(z) that would be more close to it than the approximation puy_, (z).
Consider the Tikhonov functional

st (

(5.4) ) = IF (7) — i (2,50 12, 0.0) + AT = T, s

where 71,70, € G. Since G is a bounded compact set in the finite dimensional space
H, then it follows from the Weierstrass theorem that for any A > 0 there exists a
minimizer py(z) € G of the functional (5.4), i.e.,

pa(z) = argmin {Ty\(p) : L€ G} .
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Moreover, one can show that the map F has the Lipshitz-continuous Fréchet deriva-
tive. Then, it follows from Theorem 1.9.1.2 in [3] that the Tikhonov’s functional T (%)
is strictly convex in a sufficiently small neighborhood of the function z*. This property
allows for establishing convergence of p»(z) to u*(z). For any positive real number a
and any x € H we denote U, () = {z € H : ||z — 2| < a} the a - neighborhood of the
element x. Then the following theorem takes place.

THEOREM 5.1. Let A = Ao) = 0*,v € (0,1/2), and £ € (0,1) be an arbitrary
number. Then there exists a sufficiently small number o9 = 09 (H, m,v,§) such that
for all ¢ € (0, 0o)

<{ e =T, s if Pt #1,
H 57 ’Lf /u’kstop :N .

If v € (0,1/4), then there exists a sufficiently small number 3 = 3 (H,m,v) € (0,1)
such that for every o € (O,g) the functional (5.4) is strictly convex in the neighborhood
Ugsw (). If the solution pu,,,, is so accurate that |@* — Ty, o < 0*/3, then
Bixo) € Ugsv 3 (), and any gradient or Newton-like method of minimization of Tx(T)
with the initial approzimation yy.,,, converges to Ty (-

Proof. Since the arguments established in [8] and in theorems 1.8 and 1.9.1.2 of
[3] work for this proof, we only prove (5.5). We have

HF (M/\(o‘)) —F(a )’ (o) HF (M/\ o)) (2, sx)
Hence, (5.3) implies that

656 ||F (Fa) - F @)

(5.5) Hﬁx(a) -

L2(0,1)+”F (7)) —a(@ s )llp,00) -

HF (MA o)) — U (z,54)

We now estimate the first term in the right hand side of (5.6). Since p is sufficiently
small, ¢o®> < 0?V. Hence, we have

+ 0.

L(0,1) L2(0,1)

HF (“A(@)) u(z, ) 2L2(0 0 < Tao)(Bae)) < Ty (")

<&+ T T, I < 02 (1418 =T, 1) -
Then we obtain
HF (ﬁ)\(g)) - F(ﬁ*)’ La(0.0) < QV\/l + 7~ T, I3+ < 2g"\/1 T 1%

Using (5.2), we obtain

(5.7) [ =7, < wr (2014 17"~ ) -

We first consider the option 7z, , 7 7". Since lim, o+ wr (2) = 0, then we can find
such number gy = o (H,m,v,&) € (0,1) that for all ¢ € (0, go)

(5.8) wr (2014 7" =T, I3) < €07 =T,

Combining (5.7) and (5.8), we obtain the inequality (5.5). The second option can be
considered by analogy. O

Note that although the theorem 5.1 does not allow for the quantitative estimate
of the distance between p* and py, it justifies the use of the Tikhonov regularization
with the interior data for refining p

stop*
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Fia. 5.1. The simulated electromagnetic frequency data B(s) in the interval [1,10]. The noise-
less data is shown by bullets and the data corrupted by noise at the level of 5% is shown by asterisks.

6. Numerical study. In this section we perform some numerical experiments
in order to demonstrate the computational effectiveness of the proposed algorithm.
For this purpose, we show how it can be applied to frequency sounding and electrical
prospecting of layered media.

Relative Permittivity
+

O [T I I I I I

o=

0.4 0.6 0.8

.0

F1G. 6.1. Reconstructions of the relative electrical permittivity of a single mid-contrast land
mine in the air: (1) without refinement (dashed), (2) with refinement using the boundary data
(asterisks), (3) with refinement using the interior data (bullets). The original distribution is shown
by a solid line.

6.1. Frequency sounding. Without loss of generality, we consider frequency
sounding of layered media and exploit its mathematical model developed in [24]. Tn
accordance with this model, a pulsed plane wave, which is normally incident at the
plane z = 0, propagates through an inhomogeneous layer whose material property
depends continuously on one variable z only and it is supposed to be constant outside
of the interval (0,L). The propagation and scattering of such a pulsed plane wave
can be described by the following initial boundary value problem

(6.1) 22Uy —U., =0, z2>0, t>0,

(6.2) U(z,0) = Uy (2,0) = 0,
(6.3) U(0,1) = 6(t).
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If the incident wave is electromagnetic and a medium is dielectric, the scalar quantity
U(z,t) can be interpreted as an appropriate component of the electric field propagat-
ing with the speed ¢(z) = 1/4/popeoe(z). Here, £(z) and p are relative permittivity
and permeability of the inhomogeneous layer and €9 and pg are absolute permittivity
and permeability of vacuum. TIf the incident wave is acoustic, the quantity U(z,t) can
be interpited as the acoustic potential and ¢(z) is the sound speed.

Relative Permittivity

o
o
o
N
o
IS
o
o
o
™

.0

F1G. 6.2. Recovering the relative electrical permittivity of a single mid-contrast land mine from
the perturbed data (the level of noise is 5%) without refinement (asterisks) and with refinement

(bullets).

Inverse Problem of Frequency Sounding. Let the function U(z,t) be the so-
lution of the initial boundary value problem (6.1)-(6.3). Given the function U,(0,t) =
U(t),t > 0 and parameters cg > 0,L > 0, such that c(z) = ¢y for z > L, find the
variable speed c(z) on (0, L).

The traditional approach to this inverse problem consists of reducing the wave
equation (6.1) to the Helmholtz equation by performing the Fourier transform and
solving it by some globally convergent algorithms. To the author’s knowledge, there
are three groups of such algorithms. The algorithms of the first group are based on
the so-called trace (asymptotic) formulae (see, e.g., [5]). The algorithms of the second
group utilize the nonlinear Riesz transform allowing for reducing to an equivalent
Volterra integral equation [23]. The algorithms of the third group are based on the
convexification method [7]. Unlike the traditional approach, in [2], [3], [10], [11], [12],
and [24] the Laplace transform was applied to an initial-boundary value problem for
the wave equation. It was resulted in several other globally convergent algorithms.

Following the latter approach, we apply the Laplace transform

oo
u(z,v) :/ e U (z,t)dt, 2>0, v>up
0

to the problem (6.1)-(6.3) and introduce the dimensionless variables = z/L,s =
vL/co,n(x) = co/c(Lx). Denoting u(z,s) = w(Lx,cos/L), we obtain the dimension-
less two-point problem for the second-order ordinary differential equation

(6.4) (2, 8) — s°n?(x)u(z,s) =0, =< (0,1), scls,3],
(6.5) u(0,s) =1,
(6.6) ug(1,8) + su(l,s) =0.
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Tt should be emphasized that if we consider the equation (6.1) for any z € (—o0, 00)
together with the condition U(z,0) = d(z — 20),20 < 0, then we obtain the GCIP
formulated in the section 2. In this case, the transmission condition (6.6) follows
from the radiation condition lim,_,o, u(z,s) = 0 and n(z) = 1 for z > 1. Tt follows
from [24] that for a sufficiently smooth refraction coefficient n(x) the problem (6.4)-
(6.6) has a unique solution. Therefore, the inverse problem of frequency sounding can
be reformulated as follows.

Let the function u(x, s) be the solution of the problem (6.4)-(6.6) that corresponds
to n(z), but uy(0,s) is unknown. Instead, an approzimation B(s),s € [s,5],58 > 0 of
u4(0, s) and the real number § > 0 are given, such that ||uz(0,s) — ©(s)|1,s5 < 0.
Find an approzimation of n(x) in (0,1).

Rellve Parmitity
Rellve Permtiy
Relolive Permitiy

F1G. 6.3. Reconstructions of the relative electrical permittivity of a single low-contrast (left),
mid-conrast (middle) and high-contrast (right) land mine in the air. The results of reconstruction
are shown by asterisks (without refinement) or by bullets (with refinement). The original distribution
is shown by a solid line.

To generate the frequency sounding data B(s), we first simulated numerically the
data for a given n(x). To provide a high accuracy of reconstruction, we represented
the solution of the problem (6.4)-(6.6) in the form u = u, 4+, where u, = e~ 5% is its
solution for n(x) = 1. Thus we solved numerically the boundary value problem

(6.7) TUge(z,8) — *n?(2)u(x, s) = —se*7(1 —n?(x)), z€(0,1), s¢<][s,3],
(6.8) u(0,s) =0,
(6.9) w.(1,s)+su(l,s)=0.

The second-order finite-difference analogue of this problem was numerically solved by
a stable version of the elimination method (see [19]). Note that since the solution
of this difference problem approximates the solution of the problem (6.7)-(6.9), the
function B(s) approximates (0, s). The level of error of this approximation depends
on several factors, such as smoothness of the refraction coefficient, grid, CPU, etc. In
the numerical experiments, we utilized the uniform grids containing from 64 to 100
nodes, and the refraction coefficient was assumed to be either smooth or piecewise-
constant. Under such conditions, it was estimated from comparison with the model
refraction coefficients that the level & varied approximately from 5-107% (if n(x) is
smooth) to 5-10~* (if n(z) is piecewise-constant).
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F1G. 6.4. Reconstructions of the relative electrical permittivity of the model clutter without
(asterisks) and with (bullets) refinement. The original distribution is shown by a solid line.

Since v =7 — x/s and ¢ = § + x/s%, where

In (@ + e %)

6:
52

+ T and q = 0,7,
s
the two-point problem for the function § has the form
(6.10)  Guol(@, 5) +25(5V0 — 1)7, (2, 5) = F(Us32,5), x€(0,1), s¢€ls57],
(6.11)  g(0,s) =0,
(6.12)  g,(1,5) =0,

where F(v,;x,s) = —20,(sv; — 1). The boundary data is given by

(6.13) 7,(2,0) = B(s) = 0, (W) .

In computing, the operator d, is understood in the sense of differentiating an interpo-
lating cubic spline of @(s). We emphasize that the nonlinear problem (6.10)-(6.13) has
two unknowns (7, q), and it looks similar to the problem (2.13) - (2.15). Therefore,
we applied the algorithm described in the section 3. Indeed, to start the iterative
process, we let 70 (z, 5) = Pory (), where Dggyr() is the solution of the problem

(6.14) Pex =0, x € (0,1),
(6.15) p(0) = p(1) =0,
(6.16) p=(0) = —54(3)

obtained by the method of quasi-reversibility. Suppose that after k iterates the ap-
proximation 7*)(z, s) is obtained. Then solving the problem (6.10)-(6.12) with the
boundary data (s) by the quasi-reversibility method as described in the section 3,
we obtained the corresponding approximation ¥ (z,s). Given both these approxi-
mations, we updated the refraction coeflicient as follows.

niﬂ(x) =14+ (Gk(:r) — 25" Hy(z) + S*H]%(ZL')) ,

where

He(w) = — / 78 (2, )dv + 50 (2, 5),
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*

Gi(o) = - [ A )iy +o(,5).

In the numerical experiments the integrals were approximated by a quadrature for-
mula. It should also be mentioned that although from a theoretical standpoint, the
parameter s* can be chosen arbitrarily, in the numerical experiments it was chosen to
provide the best accuracy of reconstruction of some benchmark refraction coefficients.
The function 7(x,s) at 5 was updated as follows. We first solve numerically the two-

5.0

(]
Y
¥

4.5

4.0

3.5

Relative Permittivity
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2.0

P L L L B B

o
o
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Fi1G. 6.5. Reconstructions of the relative electrical permittivity of a low-contrast land mine
embedded in clutter at x = 0.2 without (asterisks) and with (bullets) refinement. The original
distribution is shown by a solid line.

point problem (6.7) - (6.9) with the (k+1)th successive approximation ng1(z) of the
refraction coefficient. Let *+t1)(z,5) be such a solution. Then the updated function
v(x,s) and its two derivatives were computed as

In (@*+1)(z,3) + exp (—37))

Tt (. 5) = d
v (xﬂ 8) - §2 + gv
—(k+1) =\  =,—sT 1
v&"’*l)(x,?) = = _u;v . (:r,_s) se N
52 (@*)(2,3) + exp (—32)) 3
2
gz — T M@ eFe ( wOE) se
“ 7 32 (@F+)(2,3) + exp (—3z)) 5 (@ (z,3) + exp (—32)) |

Once the inequality

||0wﬂn;\ (078) - G(s)HLz(QE) < 0

was fulfilled, the iterative process was terminated. The approximate solution ng_,, ()
was refined as follows. We defined the function

(6.17) akston) (2, 5,) = ug(z, s, ) exp [s2TF=t) (2, 5,)]
and minimized the functional
(6.18) Jx(n) = [, (z, 5.) —wFr) (, 5.)[|7, 0.1y + Mn(@) = g, (@135 001)-

Since the functional Jy(n) is strictly convex, the Powell method with the initial ap-
proximation 7 (x) was used to find its minimizer.
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F1G. 6.6. Reconstructions of the relative electrical permittivity of the model clutter without
refinement (bullets). The original distribution is shown by a solid line.

1750

1700

1650

1600

Sound Speed[m/s]

1550

1500

1450 1 1
50 100
Depth[m]

o
o
o

F1G. 6.7. Resulls of recovering the sound speed profile from the data obtained on the see surface:
reconstructions without (asterisks) and with (bullets) refinement. The original sound speed profile
is shown by the solid line.

6.1.1. Numerical results: electromagnetic frequency sounding. We sim-
ulated electromagnetic frequency sounding of dry layered soil, which is usually per-
formed by ground penetrating radars for the purpose of land mine detection and
classification. We assumed that the relative magnetic permeability and electrical per-
mittivity of the background media are equal to 1, and n(z) = \/e(z)/ey. The realistic
values of n(x) (see, e.g., [32]) were used in the numerical experiments. The distribu-
tion of the relative electrical permittivity of a subsurface land mine was simulated by
a Gaussian curve. Figure 5.1 shows the typical boundary data ®(s) generated by this
mine embedded in the homogeneous background (air) with £ = 1. In Figure 6.1 it
is shown the effect of refinement of e, (z) via fitting the interior data in comparison
with refinement via fitting the boundary data. In this experiment, the non-perturbed
frequency sounding data was used, and the regularization parameter A\ providing the
best accuracy was chosen 3.6 - 1073,

To demonstrate the robustness of the proposed algorithm, we simulated the per-
turbed data by adding the normally distributed noise to @(s)

¢(s) = @(s) +R,
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where R is the normally distributed pseudo-random vector with mean zero and stan-
dard deviation of 1, and ~y is the model standard deviation chosen as

[l

V= e€rmr

IR

where € = || —5||/||7]|- The perturbed data is shown in Figure 5.1. Figure 6.2 shows
the mean relative electrical permittivity obtained from samples containing twenty
five realization of the pseudo-random vector R. Since robustness of the proposed
algorithm was also confirmed in all other numerical experiemnts, we limit our next
demonstrations by the results of recovering the material properties from the noiseless
data. Since the land mines may be filled with the different explosives and they may

1740

*
OX*

1720

k3
g
T B

1700

H_H_H
§
Y
*

Sound Speed[m/s]

*%0q®
1680 *Om
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G
el

F1G. 6.8. Results of recovering the sound speed profile from the data obtained on the see floor:
reconstructions without (asterisks) and with (bullets) refinement. The original sound speed profile
is shown by the solid line.

be covered by either metallic or plastic materials, their averaged relative electrical
permittivity may range from 2 to 25 or more units. Figure 6.3 shows the results of
reconstruction for the different contrasts. In all such cases, the effect of refinement
was significant.

In practice, even a near subsurface, where land mines are usually embedded in,
is not homogeneous. This may be due to variations of sand and clay porosity, water
saturation, presence of abris, etc. These inhomogeneities lead to unwanted variations
in GPR signals that are referred to the clutter. We simulated the model clutter con-
taining a continuously inhomogeneous layer with the relative electrical permittivity
ranging from 2.4 to 4.75. Such a variation is typical, for instance, for a mixture of
sand and clay with the variable porosity and water saturation. The results of recon-
structions of the model clutter are shown in Figure 6.4. Also, we investigated how the
presence of clutter affects reconstruction of the relative electrical permittivity of land
mines. The results of reconstructions are shown in Figures 6.5 and 6.6. Clearly, the
presence of clutter affects significantly the quality of quantitative imaging. Specifi-
cally, the higher the contrast the lower the quality, though a near surface land mine
may still be detected and classified. Furthermore, we observed that refinement by
fitting the interior data did not lead to a significant improvement if a low contrast
land mine is embedded in clutter. In case of a high contrast land mine in clutter,
refinement was not even possible.
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6.1.2. Results of numerical experiments: acoustic frequency sounding.
Also, we simulated acoustic frequency sounding of layered marine environments. In
these cases, n(z) = ¢p/c(z), where ¢(z) is the sound speed profile, and ¢y is the
reference sound speed. In the numerical experiments, we used the values of parameters
typical for the shallow waters and water-saturated sediments (see, e.g., [18]). To
simulate the sound speed profile in the water column, we used the simplified Wilson’s
formula [31]

c(z) = 1449+4.6T(2)—0.055T(2)2+0.0003T (2)? = (1.39—0.12T(2))(S(2)—35)+0.017z,

where T'(z) = 20 — 3z is the temperature (Celcius), z is the depth (m), and S(z) =
34 + 7z is the salinity (psu). The sound speed profile in the sea floor sediments
was simulated by a piecewise-constant average compressional wave speed in the range
from 1685 to 1710 m/s. Inversion was performed for the dimensionless parameter s
ranging from 1 to 10 on a grid containing 64 nodes. Figure 6.7 shows the results
of inversion from the surface of the water column. Although the proposed algorithm
performed nicely for the water column, it did not allow for obtaining the fine structure
of sediments. The results of inversion from the sea floor are shown in Figure 6.8. In
this case, the refinement was resulted in a good reconstructed image, though the
accuracy of reconstruction was diminished as we advanced into the sediment layer.
The influence of perturbations in the data on the accuracy of reconstruction was very
similar to the case of electromagnetic frequency sounding,.

6.2. The Slichter-Langer-Tikhonov (SLT) inverse model of electrical
prospecting. Recovering the subsurface conductivity in a horizontally stratified
Earth from the observed surface potential was originated by Slichter [20] and Langer
[13]. In [27] Tikhonov established the uniqueness result for their formulation. In
[17] the SLT inverse model, as well as the logarithmic derivative of the conductiv-
ity function and Hankel transform was used to justify the local strict convexity and
smoothness of the residual functional. In this section we apply the proposed algorithm
for the SLT inverse problem.

Assume that the upper-half space is filled with a conductive medium, such that
0 = o(z) > const. > 0, and there exists a thin layer (—¢,0),e > 0, such that its
conductivity is constant and equals to o(0) = 1. The lower half-space z < —¢ is
supposed to be filled with a dielectric. Introduce the cylindrical coordinates (r, z) and
consider a point-like current electrode placed at the point (rg,zp) := (0,20),20 €
(—¢,0). Because of the cylindrical symmetry, the voltage potential V (r, z) generated
by this current satisfies the following conditions.

(6.19) r V) o7 H2) (0() VL), = =8 (1) 8(2 — 20),7 > 0,2 > —«,
(6.20) a(0)V,(r,—) =0,
(6.21) lim  V(r,z) =0.
r,z)|—o0

We formulate the following inverse problem.

Inverse Problem of Electrical Prospecting. Let the function V (r,z) satis-
fies the boundary value problem (6.19)-(6.21) and it is associated with the conduc-
twity o(z). However, the trace V(r,0) of V(r,z) on the surface z = 0 is unknown.

Instead, its approzimation W(r), such that |V (r,0) — ¥(r)|| < 4, is known. Given
(¥(r),d,00, L), find an approzimation of o(z) in the finite layer (0, L).
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Following [27], we first apply the zero-order Hankel (Fourier-Bessel) transform

V(Z,C) = /000 V(r, z)Jo(Cr)rdr,

to the problem (6.19)-(6.21) and introduce the new variables

(6.22) - [ ol (©)de,

Z0

x=t/T,s =o(L)(T,n(z) = o(z(2T))/o(L), where a(t) = o(z(t)) and

T = /L o M (€)dE.

Z0

Then, the problem (6.19)-(6.21) is reduced to the two-point problem

(6.23) U (2, 8) — 202 (z)u(z,s) =0, =€ (0,1), s¢€ s3],
(6.24) ug(0,5) = —6(x — x0),
(6.25) ug(1,8) +su(l,s) =0

Here, u(z,s) = V(z2(zT),s/o(L)T). We notice the similarity of this problem with
the problem (6.4)-(6.6) modelling frequency sounding of layered media. The only
difference is the surface boundary conditions (6.24), which is due to the presence of
the current electrode. This observation motivates the following reformulation of the
inverse problem.

Let the function u(x,s) be a solution of the problem (6.23)-(6.25) that corresponds
to n{x), but (0, s) is unknown. Instead, an approzimation p(s), such that ||u(0,s) —
(s)|| < d,, where 06, >0 and ¢(s) = P(s/o(L)T)

(7)) = /000 U(r)Jo(rr)rdr

is given, find an approzimation of n(z) in (0,1).

Since the SLT model (6.23)-(6.25) is similar to the frequency sounding model (6.4)-
(6.6), the specific procedure for reconstructing the conductivity is the same as de-
scribed in the section 6.1. However, since the travel time transformation (6.22) maps
a uniform grid {7}, onto a non-uniform grid {¢;},, such that

ti=0 "z)h+ti1, to=0, t,=T,

one needs to transform the reconstructed refraction coefficient back to the conductiv-
ity distribution. Let 7n; be the values of the reconstructed refraction coefficient on an
arbitrary uniform grid {#;} ,. Then, to obtain the values & of the reconstructed con-
ductivity on {z;}? ,, we interpolated the values 7;0(L) from the uniform grid {;}?
onto the non-uniform grid {¢;/7}" , corresponding to the uniform grid {z}" ,. In
this case, the "optimal” dimensionless range of the parameter s, i.e., [s,3], was chosen
as [0.01,0.1].

In case of the SLT model of electrical prospecting the refinement procedure did
not lead to the significant improvement of oy_,, (z). Therefore, Figures 6.9 and 6.10
show the results of reconstructions without refinement.
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Fia. 6.9. TInversion of the surface voltage potential (bullets). The original distribution of
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FiG. 6.10. TInversion of the surface voltage potential (bullets). The original distribution of
conductivity for the four-layer medium is shown by the solid line.

7. Conclusions. We developed a globally convergent algorithm for quantitative
imaging in frequency sounding and electrical prospecting of layered media. The con-
vergence of the algorithm was justified. Compared to the existing globally convergent
algorithms, the proposed one possesses two new features. These are the iterative
procedure for the numerical solution of an overdetrmined boundary value problem
for the second-order nonlinear differential equation and the procedure of refinement
of an approximate solution. It was demonstrated in the numerical experiments that
these novelties may improve, sometimes significantly, both the spatial and contrast
resolution of imaging.
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