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Abstract

We prove the renormalization conjecture for circle diffeomorphisms with breaks,
i.e. that the renormalizations of any two C2+α-smooth circle diffeomorphisms with
a break point, with the same irrational rotation number and the same size of the
break, approach each other exponentially fast in the C2-topology. As a corollary,
we obtain the following rigidity result: for almost all irrational rotation numbers,
any two circle diffeomorphisms with a break, with the same rotation number and
the same size of the break, are C1-smoothly conjugate to each other.

1 Introduction and statement of the results

This paper presents the renormalization and rigidity theory for circle diffeomorphisms
with a single singular point where the derivative has a jump discontinuity. We call such
maps circle diffeomorphisms with breaks and these points the break points. Our first result
is the theorem on the exponential convergence of renormalizations for circle maps with
breaks provided that they have the same irrational rotation number and the same size
of the break, i.e. the square root of the ratio of the derivatives at the break point. More
precisely, for any given α ∈ (0, 1) and c ∈ R+\{1}, we prove the following.
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Theorem 1.1 There exists µ ∈ (0, 1), such that for every two C2+α-smooth circle diffeo-
morphisms with a break T and T̃ , with the same irrational rotation number ρ ∈ (0, 1),
and the same size of the break c, there exists C > 0, such that the renormalizations fn
and f̃n of T and T̃ , respectively, satisfy ‖fn − f̃n‖C2 ≤ Cµn, for all n ∈ N.

We emphasize that the convergence result holds for all irrational rotation numbers and
that the exponential rate of convergence is universal, i.e. independent of the maps and,
in particular, their rotation numbers, as long as the size of their breaks is the same. This
theorem is the final result in the renormalization program for circle diffeomorphisms with
a break. As we have previously shown in [15], it implies a strong rigidity statement for
such maps. Therefore, as a corollary of Theorem 1.1, we obtain

Theorem 1.2 For almost all irrational rotation numbers ρ, any two C2+α-smooth circle
maps with a break T and T̃ , with the same rotation number ρ, and the same size of the
break c, are C1-smoothly conjugate to each other.

Our main results solve the 20 year-old problem of rigidity for circle diffeomorphisms with
breaks. They can be also considered a natural extension of Herman’s theory [11], i.e.
rigidity theory for circle diffeomorphisms.

To explain how maps with breaks appear naturally in the context of one-dimensional
dynamics, we start with a rigid rotation by an angle ρ on a unit circle T1, i.e. a linear map
R : x 7→ x+ ρ. It is well known that such a map can be regarded as an interval exchange
transformation (IET) of two intervals. While in the case of an IET the intervals are
transformed by isometries, it is quite natural to consider nonlinear IETs, where the maps
acting on the intervals are assumed to be smooth and strictly monotone. In the case of
two intervals there are just two branches h1 : [0, ξ]→ [h1(0), 1] and h2 : [ξ, 1]→ [0, h2(1)],
ξ ∈ (0, 1), with the requirement h1(0) = h2(1) ∈ (0, 1). By matching the derivatives
(h1)′+(0) = (h2)′−(1), (h1)′−(ξ) = (h2)′+(ξ), we obtain a circle diffeomorphism T with a
lift whose restrictions to [0, ξ] and [ξ, 1] are given by h1 and h2 + 1, respectively. This
condition is, however, rather artificial in the setting of nonlinear IETs. Without the
derivative-matching condition one obtains a circle diffeomorphism T with two break points
at x(1)

br = 0 and x
(2)
br = ξ. Since the two break points belong to the same orbit of T ,

i.e. Tx(2)
br = x

(1)
br , one can piecewise-smoothly conjugate T to a circle map with a single

break point. A natural question to ask is when are two maps of this type smoothly, or
piecewise-smoothly, conjugate to each other. This question has been settled by the theory
presented in this paper. In a sense this theory is a one-parameter extension of Herman’s
theory where the break size c plays the role of the parameter. While in the case of circle
diffeomorphisms, corresponding to c = 1, renormalizations converge to a one-dimensional
space of linear maps with derivative 1, in the case c 6= 1, the renormalizations converge to a
two-dimensional space of fractional linear transformations with very non-trivial dynamics
on the limiting attractor. Our main results (Theorem 1.1 and Theorem 1.2) correspond to
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the non-linearizable case of nonlinear IETs of two intervals. The linearizable case of more
general IETs has recently been considered by Marmi, Moussa and Yoccoz in [26]. The
special case of cyclic permutations, which corresponds to circle maps with more than one
point of break and with the product of the sizes of breaks being equal to 1, was considered
by Chunha and Smania [4]. In their case, the renormalizations converge to piecewise-affine
(linear) maps, rather than fractional linear ones. Our result above (Theorem 1.2) is so
far the only result in the general non-affine case.

In the above construction of a nonlinear IET, we respected the special role of the
interval [0, 1], which is not very natural on the circle. In general, the restriction of the
lift H of such a circle homeomorphism to [0, 1] is given by H1 : [0, ξ] → [H1(0),H1(ξ)],
H2 : [ξ, 1]→ [H1(ξ),H1(0)+1] and the corresponding circle map will have two break points
x

(1)
br = 0 and x(2)

br = ξ which do not necessarily belong to the same orbit. Renormalization
and rigidity theory for such maps is currently an open problem.

In the remaining part of this introduction, we provide more details about our results
in the historical context of renormalization and rigidity theory in circle dynamics and
explain the main difficulty of the problem that we solved. The development of renor-
malization methods in dynamics started with the work of Feigenbaum [7, 8] and Coullet
and Tresser [6], on metric universality in period-doubling bifurcations in one-parameter
families of one-dimensional maps. It has soon become clear that the universal properties
of the dynamics of one-dimensional systems can be understood by studying an associated
infinite-dimensional dynamical system: a renormalization operator R acting on a func-
tional space of the original systems. Typically, the action of the renormalization operator
separates the systems into different universality classes, according to their approach to
different attractors. As shown by continuous efforts of Sullivan [30], McMullen [27] and
Lyubich [24], this Feigenbaum-Coullet-Tresser universality follows from the existence of
a hyperbolic fixed point on a space of such maps, with one unstable direction. The
theory was extended to infinitely renormalizable unimodal maps of other combinatorial
types. The idea of renormalization originally came from statistical mechanics, where it
provided an explanation for critical phenomena, by classifying systems into different uni-
versality classes, according to their scaling limits and corresponding critical exponents.
In dynamics, apart from providing an explanation for the universality of infinitely renor-
malizable unimodal maps, renormalization methods have also led to advances in rigidity
theory [4, 5, 13–19, 29], complex dynamics [27, 30], KAM (Kolmogorov-Arnol’d-Moser)
theory [20–22], break-up of invariant tori [1, 25], and the reducibility of cocycles and
skew-product flows [3, 23].

In circle dynamics, the behavior of renormalizations plays a crucial role in proving
global rigidity results. Rigidity is the phenomenon of smooth conjugacy between any
two maps within a topological equivalence class. The first rigidity result concerned cir-
cle diffeomorphisms. For sufficiently-smooth diffeomorphisms, the topological equivalence
classes are defined uniquely by a rotation number (Denjoy’s lemma). Arnol’d proved the
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first local rigidity result [2], i.e. that every analytic circle diffeomorphism with a Diophan-
tine rotation number, sufficiently close to the rigid rotation, is C1-smoothly conjugate to
it. He also conjectured that the claim holds true if the assumption of closeness to a rotation
is removed. This global rigidity result was proved by Herman [11] (see also [12,17,29,32]).
One can show that the renormalizations of any two C2+α-smooth circle diffeomorphisms
with the same irrational rotation number approach each other exponentially fast. This
result implies rigidity, i.e. C1-smooth conjugacy between them, only under an additional
assumption that the rotation number is Diophantine. The action of the renormalization
operator can also be considered on a larger space, involving not only circle diffeomor-
phisms but also circle diffeomorphisms with a singular point where the derivative vanishes
(critical circle maps) or has jump discontinuity (circle maps with a break). It has been
conjectured that the renormalizations of any two C2+α-smooth circle maps in that space,
with the same irrational rotation number and the same type of singularity, approach each
other exponentially fast. Despite serious efforts, in the case of critical circle maps this
conjecture is still open. In the analytic category, an analogous claim is indeed true, as
was proved by de Faria and de Melo [9,10], for bounded-type irrational rotation numbers,
and extended to all irrational rotation numbers by Yampolsky [31]. The type of singu-
larity in the case of critical circle maps is characterized by the order of the critical point.
For analytic critical circle maps the result holds for all odd-integer orders of the critical
point. It is expected, however, that the renormalization conjecture holds for all orders of
the critical point (not necessarily integers). For C2+α-smooth critical circle maps, it was
shown by Khanin and Teplinsky [16] that a proof of the renormalization conjecture would
imply robust rigidity, i.e. rigidity for all irrational rotation numbers.

In this paper, we prove the renormalization conjecture for circle maps with a break. It
has been known for more than two decades, that the renormalizations of circle maps with
a break approach a family of fractional linear transformations [19]. Though significant
progress has been made in understanding the dynamics of the renormalization operator
on the space of fractional linear transformations [18], any analysis beyond this subset [13,
18] has so far been restricted to those rotation numbers for which one has a bounded
geometry, i.e. the case where nearby elements of the dynamical partitions of the circle are
of comparable length. Consequently, in this case, the longest elements of the dynamical
partitions cannot decrease faster than exponentially (with the renormalization step). This
bounded geometry is also characteristic of the case of critical circle maps. The main
difficulty of the problem at hand is that one really needs to deal with unbounded geometry.
For circle maps with a break, the longest intervals of the dynamical partitions of the circle
can decrease at an arbitrary rate. Nevertheless, as we prove in this paper, all such maps
with the same irrational rotation number and the same size of the break belong to the
same universality class.

In spite of full universality, the problem of unbounded geometry prevents one from
obtaining robust rigidity, in the case of circle maps with a break. Indeed, as we proved
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in [14], if the largest elements of dynamical partitions decrease sufficiently rapidly, one
can find examples of circle maps with a break of the same size, in the same topological
conjugacy class, for which no conjugacy is even Lipschitz continuous. Nevertheless, The-
orem 1.1 indeed implies rigidity for almost all irrational rotation numbers (Theorem 1.2).
For those rotation numbers, the geometry is super-exponentially bounded, i.e. the log-
arithms of the ratios of the nearby elements of dynamical partition are bounded by an
exponential function.

The paper is organized as follows. In Section 2, we define the renormalizations of
circle maps and provide basic definitions and earlier results that we use. In Section 3, we
prove general estimates of the renormalization parameters, including the parameter an
(the ratio of the lengths of successive renormalization segments). In Section 4, we define
the strings of renormalizations with large an tails, and obtain a result on the closeness of
renormalizations in the tail to fractional linear maps with the same (associated) rotation
number. In Section 5, we show that renormalizations with small parameters an are also
close to fractional linear maps with the same rotation number. In Section 6, we prove
an almost commuting property of the renormalization operator and a projection opera-
tor onto the space of fractional linear transformations. Finally, in Section 7, we prove
Theorem 1.1.

2 Preliminaries

2.1 Renormalization of commuting pairs

For every orientation-preserving homeomorphism T of the circle T1 = R\Z there is a
unique rotation number ρ = limn→∞ T n(x)/n mod 1, where T is a lift of T to R. If
ρ ∈ (0, 1) is irrational, it can be expressed uniquely as an infinite continued fraction
expansion

ρ = [k1, k2, k3, . . . ] =
1

k1 + 1
k2+ 1

k3+...

, (2.1)

where kn ∈ N. Conversely, every infinite sequence of partial quotients kn defines uniquely
an irrational number ρ as the limit of the sequence of rational convergents pn/qn =
[k1, k2, . . . , kn]. The denominators satisfy the recursion relation qn+1 = kn+1qn + qn−1,
with q0 = 1 and q−1 = 0.

To define the renormalizations, we start with a marked point x0 ∈ T1, and consider
the marked trajectory xi = T ix0, with i ≥ 0. The subsequence xqn , n ≥ 0, indexed by the
denominators of the sequence of rational convergents of the rotation number ρ, will be
called the sequence of dynamical convergents. We define xq−1 = x0−1. The combinatorial
equivalence of all circle homeomorphisms with the same irrational rotation number implies
that the order of the dynamical convergents of T is the same as the order of the dynamical



6 Renormalization and rigidity theory

convergents for the rigid rotation Rρ. The well-known arithmetic properties of the rational
convergents now imply that dynamical convergents alternate their order in the following
way:

xq−1 < xq1 < xq3 < · · · < x0 < · · · < xq2 < xq0 . (2.2)

The intervals [xqn , x0], for n odd, and [x0, xqn ], for n even, will be denoted by ∆
(n)
0 , and

called the n-th renormalization segments. The n-th renormalization segment associated
to the marked point xi will be denoted by ∆

(n)
i . The intervals ∆

(n−1)
i = T i(∆

(n−1)
0 ), for

i = 0, . . . , qn−1 and ∆
(n)
i = T i(∆

(n)
0 ), for i = 0, . . . , qn−1−1, cover the whole circle without

overlapping except at end points and, thus, form the n-th dynamical partition Pn of the
circle. The first return map on the interval ∆

(n−1)
0 ∪ ∆

(n)
0 is given by T qn restricted to

∆
(n−1)
0 and T qn−1 restricted to ∆

(n)
0 . The n-th renormalization of an orientation-preserving

homeomorphism T of the circle T1, with a rotation number ρ = [k1, k2, k3, . . . ], with
respect to the marked point x0 ∈ T1, is given by a pair of functions (fn, gn), obtained by
rescaling the first return map, i.e.

fn = τn ◦ T qn ◦ τ−1
n , gn = τn ◦ T qn−1 ◦ τ−1

n . (2.3)

Here, τn is the affine change of coordinates that maps xqn−1 to −1 and x0 to 0. Thus,
fn : [−1, 0]→ R, and gn : [0, an]→ R, where an = τn(xqn). The sequence of renormaliza-
tions (fn, gn) can also be generated by the action of a renormalization operator on a space
of commuting pairs. Renormalization of commuting pairs was first introduced in [28]. A
commuting pair is a pair (f, g) of two real-valued, continuous and strictly-increasing func-
tions f and g, with f(0) ≥ 0 and g(0) ≤ 0, defined on [g(0), 0] and [0, f(0)], respectively,
satisfying f(g(0)) = g(f(0)). If g(0) = −1, the commuting pair is called normalized.
If (f, g) is a commuting pair with g(0) < 0, then (f, g) = (τ ◦ f ◦ τ−1, τ ◦ g ◦ τ−1)
with τ(z) = −z/g(0) is a normalized commuting pair. A commuting pair is non-
degenerate if f(0) > 0. For a normalized, non-degenerate pair (f, g), we define the height
k ∈ N0 = N ∪ {0} by the condition fk(−1) ≤ 0 < fk+1(−1). On a set of renormaliz-
able commuting pairs, i.e. commuting pairs with finite and nonzero height, we define a
renormalization operator as R(f, g) = (fk ◦ g, f). Pairs which are not renormalizable are
called non-renormalizable.

A pair (f, g) is called infinitely-renormalizable if Rn(f, g) is renormalizable for all
n ∈ N0. Clearly, if the rotation number of T is irrational, then R(fn, gn) = (fn+1, gn+1),
for all n ∈ N0. Here, (f0, g0) = (T |[−1,0], I), where T |[−1,0] is the restriction of a lift T of
T satisfying T (0) ∈ (0, 1] to [−1, 0] and I is the identity defined at 0 only.

For normalized pairs (f, g) such that f(−1) < 0, we define a rotation number ρ(f, g) ∈
[0, 1], by substituting its consecutive heights for partial quotients in the continued fraction
expansion ρ(f, g) = [k1, k2, . . . ], where kn is the height of Rn−1(f, g) (the symbol "∞"
is the terminator of the sequence). On the set of rotation numbers, the renormalization
operator acts as Gauss map: G[k1, k2, . . . ] = [k2, . . . ], i.e. ρ(R(f, g)) = Gρ(f, g).
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2.2 Definitions and earlier results for circle diffeomorphisms with
breaks

In this paper, we consider renormalizations of C2+α-smooth circle diffeomorphisms with
breaks, for α ∈ (0, 1), i.e. homeomorphisms T : T1 → T1 for which there exists a point
xbr ∈ T1 such that: (i) T is C2+α smooth on T1\{xbr}; (ii) infx 6=xbr T

′(x) > 0; and (iii)
there exist one-sided derivatives T ′−(xbr) 6= T ′+(xbr). We refer to xbr as the break point and

c =

√
T ′−(xbr)

T ′+(xbr)
6= 1, (2.4)

as the size of the break. In the case of circle diffeomorphisms with a break, we will use
the break point xbr as the marked point x0. One can verify that renormalizations of circle
diffeomorphisms with a break of size c satisfy the condition c2

n = f ′n(0)g′n(fn(0))
g′n(0)f ′n(−1)

, where cn = c

if n is even, cn = c−1 if n is odd.

We refer to commuting pairs (f, g) satisfying c =
√

f ′(0)g′(f(0))
g′(0)f ′(−1)

∈ R+\{1} as the com-
muting pairs with break of size c. For the renormalization operator acting on commuting
pairs (f, g) with breaks of the size c, we sometimes write Rc instead of R. Notice that
the renormalization operator maps renormalizable commuting pairs with break of size c
to commuting pairs with break of size c−1.

It is well known that renormalization maps fn and gn for circle diffeomorphisms with a
break of size c ∈ R+\{1} approach, exponentially fast, two particular families of fractional
linear transformations

Fan,vn,cn(z) =
an + cnz

1− vnz
, Gan,vn,cn(z) =

−cn + z

cn − cn−1−vn
an

z
, (2.5)

with

an =
|∆(n)

0 |
|∆(n−1)

0 |
, vn =

cn − an − bn
bn

, bn =
|∆(n−1)

0 | − |∆(n)
qn−1|

|∆(n−1)
0 |

. (2.6)

We will often abbreviate the notation by writing Fn = Fan,vn,cn and Gn = Gan,vn,cn . The
derivatives of these maps are given by

F ′a,v,c(z) =
c+ av

(1− vz)2
, G′a,v,c(z) =

c(1− c−1−v
a

)

(c− c−1−v
a

z)2
. (2.7)

It is easy to see that V = VarT1 lnT ′ < ∞. It follows that the map T satisfies the
Denjoy’s lemma [19], which implies that | ln(T qn)′(x)| ≤ V , for all x ∈ T1. In particular,
we have

(A) | ln f ′n(x)| ≤ V , for all x ∈ [−1, 0] (at the end points, both the left and right
derivatives are considered).
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The following estimates have been proved in [19]. For every C2+α-smooth, α > 0, circle
diffeomorphism T with a break of size c, there exist constants C > 0 and λ ∈ (0, 1), such
that, for all n ∈ N, we have

(B) ‖fn − Fan,vn,cn‖C2 ≤ Cλn, ‖gn −Gan,vn,cn‖C1 ≤ Cλn,

(C) |an + bnMn − cn| ≤ Cλn, and

(D) |Mn+1 − cn+1(1 + an+1an(Mn − 1))| ≤ Cλn, where

Mn = exp

(−1)n
∫

∆
(n−1)
0

(T qn)′′(z)

2(T qn)′(z)
dz

 = exp

(−1)n
qn−1∑
i=0

∫
∆

(n−1)
i

T ′′(z)

2T ′(z)
dz

 .

(2.8)

Property (B) is a statement about the approach of renormalization maps to fractional
linear transformations. Property (C) is a consequence of the commutation relation of the
maps fn and gn. Property (D) provides a relation between nonlinearities of the maps fn
and fn+1.

We also define

Nn = exp

(−1)n
qn−1−1∑
i=0

∫
∆

(n)
i

T ′′(z)

2T ′(z)
dz

 . (2.9)

Clearly, MnNn = exp
(

(−1)n
∫
S1

T ′′(z)
2T ′(z)

dz
)

= c(−1)n = cn.

For a normalized commuting pair (f, g) with positive height, we define, as in [18], the
canonical lift Hf,g(w) : R 7→ R, satisfying Hf,g(w + 1) = Hf,g(w) + 1, and

Hf,g(w) =

{
H

(1)
f,g (w), w ∈ [−1, φ (f−1(0))) ,

1 +H
(2)
f,g (w), w ∈ [φ (f−1(0)) , 0) ,

(2.10)

where
H

(1)
f,g (w) = φ ◦ f ◦ φ−1, H

(2)
f,g (w) = φ ◦ g ◦ f ◦ φ−1, (2.11)

and φ : [−1, f(0)]→ R is the fractional linear transformation that maps (−1, 0, f(0)) into
(−1, 0, 1), i.e.

φ(z) =
(f(0) + 1)z

2f(0) + (f(0)− 1)z
. (2.12)

The derivative of the latter coordinate transformation is given by

φ′(z) =
2f(0)(f(0) + 1)

(2f(0) + (f(0)− 1)z)2
. (2.13)
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Notice that the canonical lift Hf,g of a commuting pair with a break of size c has, in
general, two break points. Nevertheless, they belong to the same orbit and the product
of the sizes of their breaks is equal to c.

We will identify each point (a, v) ∈ R2 with the corresponding pair of fractional linear
maps (Fa,v,c, Ga,v,c), whenever the latter is well-defined. The following sets play an impor-
tant role in the renormalization of commuting pairs of fractional linear transformations.
We define

Dc = {(a, v) : 1/2 ≤ v

c− 1
< 1,

c(c− v − 1)

v
≤ a ≤ c} , (2.14)

and Ďc = Dc ∩ {(a, v) : a > (c − 1)2/4v}, if c > 1, and Ďc = Dc ∩ {(a, v) : v >
a(c − 1)2/4c + c − 1}, if c < 1. Some of the estimates for the renormalizations of pairs
of fractional linear transformations by Khanin and Teplinsky [18] are important for us.
It was shown therein that the renormalization operator maps all infinitely renormalizable
pairs in Ďc into Ď1/c. Moreover, these sets are absorbing areas for the dynamics of the
renormalization operator on a space of commuting pairs of fractional linear maps, i.e.
each infinitely renormalizable commuting pair of fractional linear maps eventually falls
inside these sets, under the action of the renormalization operator R. The set of points
in {(a, v) : 0 < a ≤ c, a + v − c + 1 > 0} ⊃ Ďc with the same irrational rotation number
ρ ∈ (0, 1) is a continuous curve a = γρ,c(v), v > −1, such that the slope of any secant
line, in the (v, a) coordinate system, belongs to the interval (−1, 0). We will refer to this
slope as the slope of the curve γρ,c. Furthermore, for c > 1 and all irrational ρ ∈ (0, 1),
all curves γρ,c lie above the hyperbola a = (c−1)2

4v
.

We end this section with some comments about the notation. We write An = Θ(Bn),
if there exits a constant K1 > 0, such that K−1

1 Bn ≤ An ≤ K1Bn, for all n. We write
An = O(Bn), if there exists a constant K2 ∈ R, such that −K2Bn ≤ An ≤ K2Bn, for
all n.

3 A priori estimates of the renormalization parameters

Proposition 3.1 Mn = vn + 1 +O(λn) and lnMn = O(1), for all n ∈ N.

It follows from (A) that f ′n(z) = (T qn)′(τ−1
n (z)) is bounded both from above and below

by positive constants. The same is true for F ′n(z) = f ′n(z) +O(λn), for sufficiently large
n. In particular, this implies vn ≥ −1, for sufficiently large n, as the opposite inequality
would lead to F ′n(0) = cn+anvn < cn−an = (vn+1)bn < 0. Since f ′n(0)

f ′n(−1)
= F ′n(0)+O(λn)

F ′n(−1)+O(λn)
=

(1 + vn)2 + O(λn), 1 + vn is also bounded from above and below by positive constants.
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The first claim follows from the identity

Mn = exp

1

2

x0∫
xqn−1

(ln(T qn)′(z))′ dz

 =

√
(T qn)′(0)

(T qn)′(−1)
=

√
f ′n(0)

f ′n(−1)
. (3.1)

The second claim follows from (2.8), the fact that T ′ is bounded from below by a positive
constant and the fact that T ′′ is bounded.

Proposition 3.2 There exists ε > 0 such that, for n sufficiently large, if cn > 1, then
an ∈ (ε, cn −Θ(an+1)); if cn < 1, then an ∈ (0, cn − ε);

Proof. It follows from Proposition 3.1 that cn − an = (vn + 1)bn = Θ(bn) and, in
particular, an is bounded. In the case cn > 1, assume that an is very small. Due to
(B), for sufficiently large n, f ′n(0) is close to F ′n(0) = cn + anvn, which is close to cn > 1.
Also, f ′′n(z) is close to F ′′n (z) = 2vn

cn+anvn
(1−vnz)3 , which is bounded due to Proposition 3.1. This

implies that fn(z) = z at some point z ∈ [−1, 0], close to 0, which contradicts the fact
that the rotation number of T is irrational.

In the case cn < 1, assume that cn − an is very small. Then, bn must be very small.
Furthermore, since from the definitions an+1an ≤ bn, and since an+1 > ε, for sufficiently
large n, we obtain that an must be very small, which contradicts cn−an being small. QED

Corollary 3.3 There exists δ > 0, such that, for sufficiently large n, an+1an < 1− δ.

Proof. It follows directly from Proposition 3.2, and the fact that cncn+1 = 1. QED

Proposition 3.4 vn = cn − 1 +O(an), for all n ∈ N0.

Proof. Since bn = 1 − anf
′
n−1(ζ), for some ζ ∈ (−anan−1, 0), using property (B), the

explicit form of the derivative (2.7), and the fact that F ′′n is bounded, we obtain

bn = 1− an(cn−1 + an−1vn−1 +O(λn) +O(anan−1)). (3.2)

For small an, directly from the definition (2.6) of vn, we further have

vn = (cn − an)(1 +O(an))− 1 = cn − 1 +O(an). (3.3)

Since an is bounded, this proves the claim. QED

Proposition 3.5 Let c ∈ R+\{1}. There exist a universal constant λ ∈ (0, 1), such that
the estimates (B), (C) and (D) hold true for every C2+α-smooth circle map T with a break
of size c, and every n ∈ N.
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Proof. There exist a universal constant V̄ > 0, such that for every C2+α-smooth circle
map T with a break of size c the following holds. There exists N0 ∈ N, such that for
all n ≥ N0, we have |f ′n| ≤ V̄ . This follows from Proposition 3.1 and Proposition 3.2,
using property (B). It follows from [29] (see Lemma 2 therein) that there is a universal

constant λ = (1 + e−V̄ )−1/2, such that |∆
(n+2)
0 |
|∆(n)

0 |
≤ λ2, for n ≥ N0. This implies that the

estimates (B), (C) and (D) are valid with the same λ for every such map T , with some
C > 0 (depending on T ), for every n ∈ N. QED

4 Strings of renormalizations with large an tails

We define a string of renormalizations (or simply a string) to be a (finite or infinite)
sequence fn with n ∈ [n1, n2 − 1], n1 ∈ N ∪ {0} and n2 ∈ N ∪ {∞}. We call n2 − n1,
the length of the string. It can be finite or infinite. We choose some positive σ < ε from
Proposition 3.2, and assume that the strings have tails with (relatively) large an, i.e. for
all n ∈ [n1 + 1, n2 − 1], we have an > σλn1− , for some λ1− ∈ (λ, 1). Each finite string ends
with cn2 < 1 and an2 ≤ σλn2

1+ , for some λ1+ ∈ [λ1− , 1). We consider two types of strings:
(i) an initial string, starting at some n1 = n0 ∈ N0, and (ii) an ordinary string, starting
at some n1 ∈ N with an1 ≤ σλn1

1+. If λ1+ > λ1− , there is certain freedom in the choice
of strings within the renormalization sequence fn. We will use this freedom later on. We
assume that the initial string is sufficiently long so that the estimates of the previous
section are already valid. Notice that the initial string can be made arbitrary long by
taking σ sufficiently small and that for an ordinary string we have an1 ≤ σ < ε and thus
cn1 < 1.

The objective of this section is to show that, with an exponentially small (in n) change
of the parameter an of the fractional linear map Fan,vn,cn , one can obtain a fractional linear
map with the same rotation number as (fn, gn), for sufficiently large n, in the initial string
and for all integer n ∈ [n1 + 1, n2 − 1], in an ordinary string.

Proposition 4.1 There exists ε1 > 0, such that vn
cn−1

∈ (ε1, 1 − Θ(λn1−)), for sufficiently
large n, in the initial string, and for all n ∈ [n1 + 2, n2 − 1] in an ordinary string.
In an ordinary string, we also have vn1

cn1−1
∈ (1 − Θ(λn1+), 1 + Θ(λn1

1+)) and vn1+1

cn1+1−1
∈

(1−Θ(λn1+), 1 + Θ(λn1)).

Proof. It follows from (D) and Proposition 3.1 that

vn+1 = cn+1(1 + vnanan+1)− 1 +O(λn). (4.1)

Applying this estimate recursively, first for vn+2 and then for vn+1, we obtain
vn+2

cn+2 − 1
= an+2an+1an+1an

vn
cn − 1

+ (1− an+2an+1) +O(λn), (4.2)
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since cn+2 = cn. It is now easy to see from Corollary 3.3 that if vn
cn−1

is negative, in two
steps it will increases by a positive constant; once it becomes positive, it will stay larger
than a positive constant that can be chosen arbitrarily close to δ. This proves the desired
lower bound for sufficiently large n in the initial string, if the string is long enough. For an
ordinary string, it follows directly from Proposition 3.4 that vn1

cn1−1
= 1 +O(λn1

1+). Identity
(4.1) implies vn1+1

cn1+1−1
= 1 − Θ(an1) + O(λn1). The recursion relation (4.2) leads to the

desired lower bound for the remaining n in the string.
By rewriting the equality (4.2) as

1− vn+2

cn+2 − 1
= an+2an+1

[
an+1an

(
1− vn

cn − 1

)
+ (1− an+1an)

]
+O(λn), (4.3)

we see that, for sufficiently large n in the initial string, we have 1 − vn
cn−1

> Θ(λn1−). If
for some n ∈ N0, 1 − vn

cn−1
< −δ, it will increase in two steps by an amount larger than

a positive constant and, thus, in a finite number of steps, it will become positive. Once
it is positive, it will remain positive for all larger n belonging to the same even or odd
subsequence. This proves the desired upper bound for sufficiently large n in the initial
string. For an ordinary string, the above estimates on vn

cn−1
, for n = n1 and n = n1 + 1,

and the recursive relation (4.3) imply the desired upper bounds. QED

Proposition 4.2 For sufficiently large n in the initial string and for all n ∈ [n1, n2 − 1]
in an ordinary string, we have

an+1 ≥
cn+1(cn+1 − vn+1 − 1)

vn+1

+O(λn). (4.4)

Proof. It follows directly from (4.1) that
vn+1 + 1− cn+1

an+1

= cn+1vnan +
1

an+1

O(λn), (4.5)

and, thus,
cn+1 − vn+1 − 1

an+1

− vn+1

cn+1

= cn − 1− vnan(an+1 + cn+1) +
1

an+1

O(λn). (4.6)

We further have

|vn|an(cn+1 + an+1) ≤
∣∣∣∣vnbn + vn

an
cn

∣∣∣∣ =

∣∣∣∣vn cn − an1 + vn
+ vn

an
cn

∣∣∣∣ . (4.7)

For vn
cn−1

∈ (0, 1], the right-hand side of (4.7) is smaller or equal to |cn− 1|, since it is the
absolute value of an increasing function of vn, which takes the value cn− 1 at vn = cn− 1.
Thus, if cn > 1, we have

cn+1 − vn+1 − 1

an+1

− vn+1

cn+1

≥ 1

an+1

O(λn), (4.8)
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and, since vn+1 is bounded from above by a negative constant, by Proposition 4.1, we
have (4.4). If cn < 1, then one gets the same inequality (4.4) for sufficiently large n in
the initial string and for n > n1 in an ordinary string. For n = n1 in an ordinary string,
we obtain (4.4) (without the error term) directly from (4.6), using the fact that vn and
an are bounded, as follows from Proposition 3.1 and Proposition 3.2. QED

Proposition 4.3 The point (an, vn) belongs to the O(λn)-neighborhood of Ďcn, for suffi-
ciently large n in the initial string and for all n ∈ [n1 + 1, n2 − 1] in an ordinary string.
If cn > 1, then vn

cn−1
∈ (1

2
−Θ(λn), 1 + Θ(λn)). If cn < 1, then vn

cn−1
∈ (1

2
+ ε2, 1−Θ(λn1−)),

for some ε2 > 0.

Proof. It follows from Proposition 3.2, Proposition 4.1 and Proposition 4.2 that, if cn > 1,
then we have vn

cn−1
∈ (1

2
−Θ(λn), 1 + Θ(λn)). If cn < 1, then vn

cn−1
∈ (1

2
+ ε2, 1−Θ(λn1−)).

Together with Proposition 3.2 and Proposition 4.2, these estimates show that (an, vn)
belongs to O(λn)-neighborhood of Dcn (defined by (2.14)), for sufficiently large n in the
initial string and all n ∈ [n1 + 1, n2 − 1] in an ordinary string.

Let cn > 1. Since the rotation number is irrational, using (B), for all z ∈ [−1, 0], we
have

z < fn(z) ≤ Fn(z) +O(λn). (4.9)

In particular, for some z0 = − cn−1
2vn

+O(λn) ∈ (−1, 0), we obtain

Fn(z0)− z0 =
2

cn + 1

(
an −

(cn − 1)2

4vn

)
+O(λn) ≥ O(λn), (4.10)

and, thus,

an −
(cn − 1)2

4vn
≥ O(λn). (4.11)

This inequality, together with (4.1), implies

vn+1 + 1− cn+1

cn+1an+1

≥ (cn − 1)2

4
+

1

an+1

O(λn) =
(cn+1 − 1)2

4(cn+1)2
+

1

an+1

O(λn). (4.12)

The estimates (4.11) and (4.12) show that, for sufficiently large n in the initial string
and for all n ∈ [n1 + 1, n2 − 1] in an ordinary string, (an, vn), in fact, belongs to O(λn)-
neighborhood of Ďcn . QED

Proposition 4.4 For sufficiently large n in the initial string and for all n ∈ [n1+1, n2−1],
we have vn + an + 1− cn > Θ(an).
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Proof. If cn > 1, then it follows from Proposition 3.2, Proposition 4.2 and Proposition 4.3
that

an + vn + 1− cn ≥ an − an
vn
cn
−O(λn) > Θ(an). (4.13)

If cn < 1, then it follows from Proposition 4.1 that

an + vn + 1− cn > an + Θ(λn1−) > an. (4.14)

QED

Proposition 4.5 There exists a constant C1 > 1, such that for sufficiently large n, and
every z in the domain of the corresponding function, we have

C−1
1 < F ′n(z), G′n(z) < C1, C−1

1 an < φ′n(z) <
C1

an
. (4.15)

Proof. The bounds on F ′n and G′n follow from properties (A) and (B), as shown at the
beginning of the proof of Proposition 3.1. The bound on φ′n is obvious. QED

Proposition 4.6 There exists C2 > 0, such that |Hfn,gn(w) − HFn,Gn(w)| ≤ C2

an
λn, for

sufficiently large n and all w ∈ R.

Proof. Since fn and Fn are monotonically increasing, f−1
n (0) and F−1

n (0) are defined
uniquely. Furthermore, it follows from the fact that the rotation number of (fn, gn) is
irrational, Proposition 3.1 and Proposition 3.2 that f−1

n (0), F−1
n (0) ∈ (−1, 0). Notice that,

since fn(0) = Fn(0), φ is the same for (fn, gn) and (Fn, Gn). On [−1,min{φ(F−1
n (0)), φ(f−1

n (0))}),
using property (B), we have

|Hfn,gn(w)−HFn,Gn(w)| = |φ ◦ fn ◦ φ−1(w)− φ ◦ Fn ◦ φ−1(w)|

= φ′(ζ)|fn ◦ φ−1(w)− Fn ◦ φ−1(w)| ≤ C1

an
Cλn,

(4.16)

where ζ is a point between fn◦φ−1(w) and Fn◦φ−1(w). On [max{φ(F−1
n (0)), φ(f−1

n (0))}, 0),
we have

|Hfn,gn(w)−HFn,Gn(w)| = |φ ◦ gn ◦ fn ◦ φ−1(w)− φ ◦Gn ◦ Fn ◦ φ−1(w)|
= φ′(ζ1)|gn ◦ fn ◦ φ−1(w)−Gn ◦ Fn ◦ φ−1(w)|
≤ φ′(ζ1)

(
G′n(ζ2)|fn ◦ φ−1(w)− Fn ◦ φ−1(w)|

+ |(gn −Gn) ◦ fn ◦ φ−1(w)|
)
≤ C1

an
(C1 + 1)Cλn.

(4.17)

Here, ζ1 is a point between gn◦fn◦φ−1(w) and Gn◦Fn◦φ−1(w), and ζ2 is a point between
fn ◦ φ−1(w) and Fn ◦ φ−1(w).
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Figure 1: Regions Ďc (shaded) and Φε
c (trapezoid) for 0 < c < 1 (left) and c > 1 (right).

Since the functions Hfn,gn and HFn,Gn are continuous and monotonically increasing,
and since Hfn,gn(φ(f−1

n (0))) = 0 and HFn,Gn(φ(F−1
n (0))) = 0, we obtain a similar estimate

|Hfn,gn(w)−HFn,Gn(w)| ≤ C1

an
(C1 + 2)Cλn, (4.18)

in the interval [min{φ(F−1
n (0)), φ(f−1

n (0))},max{φ(F−1
n (0)), φ(f−1

n (0))}]. Thus, on the
whole interval [−1, 0], we have the desired estimate, and the claim follows. QED

Let ε ≥ 0 and ς > 0 be given. If c > 1, we define

Φε
c =

{
(a, v) : ε < a < c,

1

2
− ςλn < v

c− 1
< 1 + ςλn, v + a+ 1− c > ε

}
. (4.19)

If c < 1, we define

Φε
c =

{
(a, v) : ελn1− < a < c− ε, 1

2
+ ε <

v

c− 1
< 1− ελn1−

}
. (4.20)

Proposition 3.2, Proposition 4.3, and Proposition 4.4 show that there exist ε > 0 and
ς > 0 such that, for sufficiently large n in the initial string and for all n ∈ [n1 + 1, n2 − 1]
in an ordinary string (an, vn) belongs to Φε

cn . In the following, we assume that ε and ς
have been chosen such that this is the case. We abbreviate the notation Hn = HFn,Gn .
The value that Hn takes at point w will be denoted by Hn(w; an, vn), when necessary to
specify the parameters of Fn and Gn.

Proposition 4.7 There exists µcn,ε > 0 such that, for any (an, vn) ∈ Φε
cn, we have

∂H
(i)
n (w;an,vn)
∂an

≥ µcn,εa
5
n, for i = 1, 2.
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Proof. To abbreviate the notation, let us write a, v, c instead of an, vn, cn, respectively.
A direct calculation gives us that ∂H

(1)
n

∂a
= −4wP1(w)/Q2

1(w), for w ∈ [−1,− a+1
2c+1−a ],

where P1(w) = −(2vc + 2ac + v + va2 − 2c2)w + 2ac + a2v − v + 2c and Q1(w) =
−(a + 1)2 + w(−1 + 4va + a2 − 2ac + 2c). Clearly, the denominator Q2

1(w) is bounded
and, thus, −4w/Q2

1(w) is bounded from below be a positive constant. Since P1(−1) =
2a(c+ av) + 2c(v+ a− c+ 1) > Θ(a), P1(− a+1

2c+1−a) = 2(c+ 1)(a+ 1)(c+ av)/(2c+ 1− a)
is bounded from below by a positive constant, and P1 is linear in w, we can conclude that
on the whole interval P1(w) > Θ(a) and, thus, the claim is proved for i = 1.

Similarly, we can find ∂H
(2)
n

∂a
= 2P2(w)/Q2

2(w), for w ∈ [− a+1
2c+1−a , 0], where P2(w) =

4a2c(c+ 1)v2w2 + (2c2a2 + 2c2 + 2a4c−4c3a2 +a2 +a4 + c−23 + 7a2c−2ca)vw2 + c(4a3c+
c−6a2c2−2c2−3ca2 +1−3a2 +2a3 +6ac)w2−2(c+1)(a2−1)(a2 + c)vw−2c(c+1)(a2−
1)(2a− c+ 1)w+ (a+ 1)2(a2 + c)v+ c(a+ 1)2(2a− c+ 1), and Q2(w) = −(a+ 1)(a2−ac+
a+ c) + (3a2c−a+a3 + 4c2a− c)w−2a(a+ 1)v+ 2a(1 + c)(a−1)vw. As the denominator
Q2

2(w) is bounded, the term 2/Q2
1(w) is bounded from below be a positive constant. We

also have P2(− a+1
2c+1−a) = 4ca(1+c)(1+a)2(v+a+1−c)(c+av)/(2c+1−a)2 > Θ(a2) and

P2(0) = (a+1)2(a(c+av)+c(v+a+1−c)) > Θ(a). Furthermore, since the derivative ∂P2(w)
∂w

is bounded, there exists ε3 > 0 such that, for every w ∈ [−ε3a3/2, 0], we have P2(w) >
Θ(a). In order to provide a lower bound on P2(w) in the interval [− a+1

2c+1−a ,−ε3a
3/2),

notice first that P2(w)/w2 is a quadratic polynomial in 1/w, which has minimum at point
1/w = (1 + c)(a − 1)/(a + 1), outside our interval of interest (−∞,−2c+1−a

a+1
]. Therefore,

within this interval, it reaches the global minimum at point 1/wmin = −2c+1−a
a+1

. Finally, for
w ∈ [− a+1

2c+1−a ,−ε3a
3/2), we have P2(w) ≥ ε23a

3P2(wmin)/w2
min ≥ Θ(a5), since P2(wmin) >

Θ(a2). QED

The rotation number ρ(an, vn) of the fractional linear pair (an, vn) does not necessarily
equal ρn = ρ(fn, gn). For that reason, we define the projection operator P from the space
of all commuting pairs (fn, gn) with well-defined rotation number to Ďcn , as P(fn, gn) =
(a∗n, v

∗
n), where (a∗n, v

∗
n) = (γρn,cn(vn), vn) if (γρn,cn(vn), vn) ∈ Ďcn , or let (a∗n, v

∗
n) be the

closest to (an, vn) intersection point of the curve a = γρn,cn(v) with the boundary of Ďcn .
Since this projection is determined uniquely by fn, and the rotation number ρn, and since
we will always have in mind the n-th renormalizations of a particular circle map T , we
will write Pfn = (a∗n, v

∗
n).

Proposition 4.8 Let λ1− >
6
√
λ. Then, |γρn,cn(vn)− an| < Θ((λ/λ6

1−)n), for sufficiently
large n in the initial string and for all n ∈ [n1 + 1, n2 − 1] in an ordinary string.

Proof. We assume that an > γρn,cn(vn). In the opposite case, the proof is similar and
even simpler. It follows from Proposition 4.6 that, for all w ∈ [−1, 0], we have

Hfn,gn(w) ≥ Hn(w; an, vn)− C2

an
λn. (4.21)
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Since (an, vn) ∈ Φε
cn , for large enough n in the initial string and for n1 < n < n2 in an

ordinary string, at least half of the segment [γρn,cn(vn), an]× {vn} lies inside Φ
ε/2
cn . More-

over, that is the segment [ân, an]×{vn}, for some ân ∈ [γρn,cn(vn), an]. To see this, notice
that (γρn,cn(vn), vn) belongs to Φ0

cn and that the distance between the bottom boundaries
of the regions Φε

cn and Φ0
cn ⊃ Φε

cn , in the direction of coordinate a, is proportional to ε.
Using Proposition 4.7, we find

Hfn,gn(w) ≥ Hn(w; γρn,cn(vn), vn) + µcn,ε/2
a6
n − â6

n

6
− C2

an
λn. (4.22)

If µcn,ε/2
a6n−â6n

6
− C2

an
λn > 0, then Hfn,gn(w) > Hn(w; γρn,cn(vn), vn) for all w ∈ [−1, 0]. This

gives that the rotation number ρ(fn, gn) > ρ(γρn,cn(vn), vn), while, in fact, they are equal.
Thus,

a6
n − â6

n ≤
6C2λ

n

anµcn,ε/2
≤ 6C2λ

n

σλn1− min{µc,ε/2, µc−1,ε/2}
. (4.23)

The claim follows since an − γρn,cn(vn) ≤ 2(an − ân) ≤ 2(a6
n − â6

n)/a5
n. QED

Lemma 4.9 If λ1− >
6
√
λ, then a∗n − an = O((λ/λ6

1−)n) and v∗n − vn = O((λ/λ6
1−)n), for

sufficiently large n in the initial string and for all n ∈ [n1 + 1, n2 − 1] in an ordinary
string.

Proof. The claim follows from the definition of the projection operator P , Proposi-
tion 4.3 and Proposition 4.8. Just notice that the slope of the curves a = cn(cn−v−1)

v
and

a = 4cn(v+1−cn)
(cn−1)2

inside of Ďcn are bounded away from the interval (−1, 0) and thus their
intersection with γρn,cn is transversal. QED

On the set of commuting pairs (F,G) in Φε
cn , we consider two sets of coordinates (a, v)

and (x, y), where

(x, y) = U(a, v) =

(
av,

v + 1− c
ca

)
. (4.24)

The coordinates x and y can be viewed as independent indicators of nonlinearity of F
and G. To see this, notice that if we perform a linear scaling z = at, the map Fa,v,c(z)
is transformed into Fc(t) = 1+ct

1−xt . Similarly, by simple inversion z = −t, Ga,v,c(z) is
transformed into Gc(t) = 1+t/c

1−yt . The following corollary follows directly from Lemma 4.9.

Corollary 4.10 If λ1− >
8
√
λ, then y∗n− yn = O((λ/λ8

1−)n), for sufficiently large n in the
initial string and for all n ∈ [n1 + 1, n2 − 1] in an ordinary string.

Proposition 4.11 ([18]) For any (x, y) ∈ Ďc, Rc(x, y) = (x′, y′) with y′ = x.
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5 Renormalizations with small an
In this section we consider the case when cn < 1, since in the opposite case an is bounded
from below by a positive constant due to Proposition 3.2.

Lemma 5.1 Let λ2 ∈ (λ1+ , 1). For sufficiently small σ > 0 and sufficiently large n ∈ N,
if an ≤ σλn1+, then a∗n − an = O(λn2 ) and v∗n − vn = O(λn2 ). Also, Pfn = (a∗n, v

∗
n) and

Rcn−1Pfn−1 = (ān, v̄n) are O(λn2 )-close, as points in Ďcn.

Proof. It follows from [14] (see Proposition 3.2 and Proposition 3.4 therein) that for every
κ > 0 there exists a constant C3 > 0 such that for sufficiently large n ∈ N and sufficiently
large kn+1 (σ > 0 sufficiently small), we have γ−(χ+κ)kn+1

1 ≤ C3an ≤ C3σλ
n
1+ , where

γ1 = (fn)′+(−1), γ2 = (fn)′−(0), χ = ln γ2
ln γ2+ln γ−1

1

and, thus, kn+1 >
n lnλ−1

1+
−ln(C3σ)

(χ+κ) ln γ1
. Since the

map fn is exponentially close to a fractional linear Fan,vn,cn , in the C2-topology, due to
(B), and vn = cn−1+O(an) is, due to our assumption on an, exponentially close to cn−1,
it follows that γ1 and γ2 are exponentially close to c−1

n and cn, respectively. Consider now
an arbitrary fractional linear map Fa′n,v′n,cn , with the same height kn+1 as fn, and with
corresponding derivatives γ′1 and γ′2, at −1 and 0, respectively. Let χ′ =

ln γ′2
ln γ′2+ln(γ′1)−1 .

Using once more Proposition 3.2 and Proposition 3.4 of [14], we find that for every κ′ > 0
and σ > 0 sufficiently small

a′n ≤ C4(γ′1)−(χ′−κ′)kn+1 ≤ C4(γ′1)
− 1

ln γ1

χ′−κ′
χ+κ (n lnλ−1

1+
−ln(C3σ)) = C4e

ln γ′1
ln γ1

χ′−κ′
χ+κ ln(C3σλn

1+
), (5.1)

for some C4 > 0. By choosing σ > 0 small enough, we can make γ′1 and γ′2 arbitrarily
close to c−1

n and cn, respectively, and thus ln γ′1
ln γ1

χ′−κ′
χ+κ can be made arbitrarily close to 1.

Therefore, for every λ2 > λ1+ , there exists C5 > 0, such that

a′n ≤ C4 (C3σλ
n
1+)

ln γ′1
ln γ1

χ′−κ′
χ+κ ≤ C5λ

n
2 . (5.2)

In particular, this is true for a′n = a∗n, i.e. the first component of Pfn, and the first
component of Rcn−1Pfn−1. The estimates on the second components follow from the fact
that these two points belong to Ďcn . QED

6 Renormalization and projection operators

On the set of commuting pairs in Φε
c ∪ Ďc, we consider two metrics: the standard metric

d((a, v), (ã, ṽ)) = |a− ã|+ |v − ṽ|. (6.1)
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and the metric
dc((x, y), (x̃, ỹ)) = |x− x̃|+ |y − ỹ|. (6.2)

Here, the parameters (a, v) and (x, y) correspond to a pair (F,G), and (ã, ṽ) and (x̃, ỹ)

correspond to (F̃ , G̃).

Proposition 6.1 Let λ1− > 8
√
λ and λ2 > λ/λ8

1−. For sufficiently large n in the ini-
tial string, and for all n in an ordinary string, such that n1 ≤ n < n2 − 1, we have
dcn+1(Pfn+1,RcnPfn) = O(λn2 ).

Proof. Let Rcn(a∗n, v
∗
n) = (ān+1, v̄n+1). It follows directly from (4.1) that yn+1 = xn +

O((λ/λ1−)n), for sufficiently large n in the initial string and for n1 ≤ n < n2 − 1 in
an ordinary string. It follows from Proposition 4.11 and Lemma 4.9 that ȳn+1 = x∗n =
xn +O((λ/λ6

1−)n), for sufficiently large n in the initial string and for n1 < n ≤ n2 − 1 in
an ordinary string. Lemma 5.1 gives us ȳn1+1 = x∗n1

= xn1 +O(λn1
2 ). Therefore, we obtain

ȳn+1 − yn+1 = O(λn2 ), for sufficiently large n in the initial string and for all n such that
n1 ≤ n < n2−1 in an ordinary string. Using Corollary 4.10, we find ȳn+1−y∗n+1 = O(λn2 ),
also for sufficiently large n in the initial string and for all n such that n1 ≤ n < n2 − 1 in
an ordinary string.

Recall that the slope of the curve γρn+1,cn+1 lies in the interval (−1, 0). On the other
hand, the slopes of the curves y = ȳn+1 and y = y∗n+1, in the (v, a) plane, lie outside of
this interval. In what follows, we will show this claim for the first of these curves only, as
the same argument applies to the second curve. Notice first that these curves are straight
lines a = v+1−cn+1

cn+1ȳn+1
and a = v+1−cn+1

cn+1y∗n+1
with slopes da

dv
= (cn+1ȳn+1)−1 and da

dv
= (cn+1y

∗
n+1)−1,

respectively. Since (ān+1, v̄n+1) ∈ Ďcn+1 , it follows directly from the definition of Ďcn+1

that ∣∣∣∣dadv
∣∣∣∣ =

∣∣∣∣ ān+1

v̄n+1 + 1− cn+1

∣∣∣∣ ≥ ∣∣∣∣cn+1

v̄n+1

∣∣∣∣ ≥ 1

|cn − 1|
. (6.3)

If cn > 1, then da
dv

> 0 and, thus, the slope of the line y = ȳn+1 lies in the interval
[ 1
cn−1

,∞) (in fact, it is in [ 1
cn−1

, 4c
(cn−1)2

)). If cn < 1, then da
dv
< 0 and, thus, the slope of

this line belongs to the interval (−∞, 1
cn−1

]. In both cases, the slope of the line y = ȳn+1

is bounded away from the interval (−1, 0). The same can be said about the line y = y∗n+1.
Hence, the intersections of these lines with the curve γρn+1,cn+1 are uniformly transversal,
i.e. the (positive) angles between these lines and the curve, are greater than some positive
constant. Therefore, the distance of the intersection points of these lines with the curve
γρn+1,cn+1 , i.e. d((ān+1, v̄n+1), (a∗n+1, v

∗
n+1)), is bounded from above by the (positive) angle

between these lines, and, thus, d((ān+1, v̄n+1), (a∗n+1, v
∗
n+1)) < Θ(|ȳn+1−y∗n+1|). The latter

estimate follows from the formula tan θ̄− tan θ∗ = sin(θ̄−θ∗)
cos θ̄ cos θ∗

, where θ̄ and θ∗ are the angles
between the v axis the lines perpendicular to y = ȳn+1 and y = y∗n+1, respectively. Finally,
for sufficiently large n in the initial string and for all n such that n1 ≤ n < n2 − 1 in an
ordinary string, we obtain x̄n+1 − x∗n+1 = O(λn2 ). QED
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7 Convergence of renormalizations

On the set of renormalizable commuting pairs in Ďc, with the same irrational rotation
number, the renormalization operator is Lipschitz and the two-step renormalization op-
erator is a contraction, in the metric dc.

Proposition 7.1 ([18]) For every positive c 6= 1, there exist constants B and β ∈ (0, 1)
such that for any two points (a, v) and (ã, ṽ) in Ďc\{(0, c− 1)}, with the same irrational
rotation number, and corresponding coordinates (x, y) and (x̃, ỹ), respectively, we have

d 1
c
(Rc(x̃, ỹ),Rc(x, y)) ≤ Bdc((x̃, ỹ), (x, y)) (7.1)

and
dc(R 1

c
◦ Rc(x̃, ỹ),R 1

c
◦ Rc(x, y)) ≤ βdc((x̃, ỹ), (x, y)). (7.2)

On the other hand, the C2-norm of the distance of fractional linear maps is easily
controlled by their distance in the d metric.

Proposition 7.2 There exists C6 > 0 such that, if min{ṽ, v} > −1 + ε4 for some ε4 > 0,
we have

‖Fã,ṽ,c − Fa,v,c‖C2 ≤ C6(|ã− a|+ |ṽ − v|). (7.3)

Proof. Since
Fã,ṽ,c − Fa,v,c =

ã− a
1− ṽz

+
(a+ cz)(ṽ − v)z

(1− vz)(1− ṽz)
, (7.4)

(1− vz) and (1− ṽz) are bounded away from zero on [−1, 0], and all other variables are
bounded, the claim follows. QED

The following proposition provides a relation between the metrics.

Proposition 7.3 There exists K > 1, such that for any two commuting pairs (a, v) and
(ã, ṽ) in Ďc\{(0, c−1)}, on the same curve γρ,c, and with corresponding coordinates (x, y)
and (x̃, ỹ), we have

K−1d((ã, ṽ), (a, v)) ≤ dc((x̃, ỹ), (x, y)) ≤ K

aã
d((ã, ṽ), (a, v)). (7.5)

Proof. The first inequality follows from the second of the inverse relations

a =
c− 1

2cy

(
−1 +

√
1 +

4cxy

(c− 1)2

)
, v =

c− 1

2

(
1 +

√
1 +

4cxy

(c− 1)2

)
. (7.6)

The only situation when we use the fact that both (a, v) and (ã, ṽ) belong to the same
curve γρ,c is when 4cxy

(c−1)2
is close to −1. In Ďc, this is only the case when a is close to c,
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v is close to c−1
2

and, thus, y is close to 1−c
2c2

. The level sets of y in the (v, a) plane are
straight lines with slope 1

cy
, which is close to 2c

1−c . These slopes are bounded away from the
interval (−1, 0) and, thus, the intersection with γρ,c(v) is transversal. Therefore, |a − ã|
and |v − ṽ| (and, thus, |x − x̃|) are of the same order as |y − ỹ|. The second inequality
follows from direct relations (4.24). QED

Remark 1 Without the assumption that the pairs belong to the same curve γρ,c in Propo-
sition 7.3, one would have a weaker inequality d2((ã, ṽ), (a, v)) ≤ Kdc((x̃, ỹ), (x, y)).

Proposition 7.4 Let λ̃1− < λ1 < λ̃1+. Consider the sequences of renormalizations
(fn, gn) and (f̃n, g̃n), n ∈ N0, of any two circle maps T and T̃ with a break of size c
and the same irrational rotation number ρ, with corresponding parameters (an, vn) and
(ãn, ṽn), respectively. There exist C7, C8 > 0 such that for sufficiently large n ∈ N, if
an ≤ σλn1 , for some σ > 0 sufficiently small then ãn ≤ C7σλ̃

n
1+. If an > σλn1 , then

ãn > C8σλ̃
n
1−.

Proof. The proof of the first claim is similar to the proof of Lemma 5.1. The proof of
the second claim is by contrapositive. QED

Remark 2 Proposition 7.4 allows us to partition the two sequences of renormalizations
for two maps T and T̃ , with the same irrational rotation number, into finite or infinite
sequence strings Si = {fn1(i), . . . , fn2(i)−1} and S̃i = {f̃n1(i), . . . , f̃n2(i)−1}, with 1 ≤ i < N ,
N ∈ N ∪ {∞} and n2(i) = n1(i + 1), in such a way that, for each i, the lengths of the
i-th strings are the same. More precisely, starting with some n0 ∈ N, we can partition
the sequence of renormalizations for T indexed by n ≥ n0 into strings Si of lengths
n2(i) − n1(i) uniquely, by choosing σ > 0 and λ1− = λ1+ = λ1 ∈ (λ, 1). The sequence
of renormalizations for T̃ can then be partitioned into strings S̃i of the same lengths
n2(i)− n1(i), with some σ̃ = Θ(σ), λ̃1− ∈ ( 8

√
λ, λ1) and λ̃1+ ∈ (λ1, λ2).

Lemma 7.5 There exists C9 > 0 such that, for λ3 ∈ (max{β1/2, λ2}, 1) and for suffi-
ciently large n in the initial string and for every n ∈ [n1 + 1, n2−1] in an ordinary string,
we have

dcn(P f̃n,Pfn) ≤ C9λ
n
3 . (7.7)

Proof. Using the triangle inequality, we find

dcn(P f̃n,Pfn) ≤ dcn(P f̃n,Rcn−1P f̃n−1) + dcn(Pfn,Rcn−1Pfn−1)

+dcn(Rcn−1P f̃n−1,Rcn−1Pfn−1) .
(7.8)

It follows from Proposition 6.1 that, for sufficiently large n in the initial string and
for every n1 < n < n2 in an ordinary string, we have dcn(Pfn,Rcn−1Pfn−1) ≤ C10λ

n
2
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and dcn(P f̃n,Rcn−1P f̃n−1) ≤ C10λ
n
2 , for some C10 > 0, assuming that we have chosen

λ̃1− >
8
√
λ and λ̃1+ < λ2. Applying (7.8) recursively, in a string of more than two renor-

malizations, and using Proposition 7.1, we obtain

dcn(P f̃n,Pfn) ≤ 2C10λ
n
2 + dcn(Rcn−1 ◦ Rcn−2P f̃n−2,Rcn−1 ◦ Rcn−2Pfn−2)

+dcn(Rcn−1P f̃n−1,Rcn−1 ◦ Rcn−2P f̃n−2) + dcn(Rcn−1Pfn−1,Rcn−1 ◦ Rcn−2Pfn−2)

≤ 2(1 +Bλ−1
2 )C10λ

n
2 + dcn(Rcn−1 ◦ Rcn−2P f̃n−2,Rcn−1 ◦ Rcn−2Pfn−2)

≤ 2(1 +Bλ−1
2 )C10λ

n
2 + βdcn(P f̃n−2,Pfn−2).

(7.9)

By iterating the resulting inequality, we obtain

dcn(P f̃n,Pfn) ≤ 2(1 +Bλ−1
2 )C10

k−1∑
i=0

λn−2i
2 βi + βkdcn(P f̃n−2k,Pfn−2k)

≤ C11λ
n
4 + βkdcn(P f̃n−2k,Pfn−2k),

(7.10)

for some λ4 > max{β1/2, λ2} and C11 > 0. If dcn(P f̃n−2k,Pfn−2k) ≤ C9λ
n−2k
3 , n1 <

n− 2k < n < n2, for some λ3 > λ4 and C9 > 0, then dcn(P f̃n,Pfn) ≤ λn3 (C11(λ4/λ3)n +
C9(
√
β/λ3)2k) ≤ C9λ

n
3 , if C9 is large enough.

To complete the proof by induction, we need to verify that the estimates are also true
for n = n1 + 1 and n = n1 + 2, in an ordinary string. In the initial string, the initial
estimates are certainly satisfied, for some large n′1 and n′1 + 1, if C9 is chosen sufficiently
large. For an ordinary string and n = n1 + 1 (if smaller than n2), we have from (7.8) and
Proposition 6.1 that dcn(P f̃n,Pfn) ≤ 2C10λ

n
2 +dcn(Rcn−1P f̃n−1,Rcn−1Pfn−1). Using sim-

ilar reasoning as in the proof of Proposition 6.1, we find dcn(Rcn−1P f̃n−1,Rcn−1Pfn−1) ≤
C12| ¯̃yn− ȳn| = C12|x̃∗n−1−x∗n−1| ≤ C13λ

n
2 , for some C12, C13 > 0. The equality follows from

Proposition 4.11. In the last inequality, we have used Lemma 5.1 and Proposition 7.4.
For n = n1 + 2 (if smaller than n2), the claim follows from (7.8), using the estimate on
dcn1+1(P f̃n1+1,Pfn1+1), Proposition 6.1 and Proposition 7.1. QED

Proof of Theorem 1.1. Using the triangle inequality and Proposition 7.2, we find

‖f̃n − fn‖C2 ≤ ‖f̃n − P f̃n‖C2 + ‖fn − Pfn‖C2 + C6d(P f̃n,Pfn). (7.11)

For n sufficiently large belonging to the initial string and n1 < n < n2 belonging to an
ordinary string, we have ‖fn − Pfn‖C2 ≤ C14(λ/λ6

1)n, for some C14 > 0, as follows from
property (B) and Lemma 4.9. Therefore, for some C15 > 0, we have

‖f̃n − fn‖C2 ≤ C15(λ/λ6
1)n + C15(λ/λ̃6

1−)n +KC6dcn(P f̃n,Pfn). (7.12)
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Using Lemma 7.5, we obtain, from this estimate, for some C16 > 0,

‖f̃n − fn‖C2 ≤ C16λ
n
3 . (7.13)

It remains to prove the same estimate for n = n1 in every ordinary sting. For such n, this
estimate follows directly from

‖f̃n − fn‖C2 ≤ ‖f̃n − F̃n‖C2 + ‖fn − Fn‖C2 + C6d((ãn, ṽn), (an, vn)), (7.14)

using property (B), Proposition 7.4 and Proposition 3.4.
It follows from Proposition 3.5 and the estimates above that the constant µ = λ3 can

be chosen uniformly. It depends only on the size of the break, c, and does not depend on
the rotation number of the maps. QED
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