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Abstract

We introduce a new method to study bifurcations of KAM tori with fixed
Diophantine frequency. This is based on Singularity Theory of critical points of a
real-valued function that we call potential. The potential is constructed in such a
way that nondegenerate critical points of the potential correspond to twist invariant
tori (i.e. with nondegenerate torsion) and degenerate critical points of the potential
correspond to non-twist invariant tori. Hence bifurcating points correspond to non-
twist tori. Invariant tori are classified using the classification of critical points of
the potential as provided by Singularity Theory. We show that, under general
conditions, this classification is robust. Our construction is developed for general
Hamiltonian systems and general exact symplectic forms. It is applicable to both
the close-to-integrable case and the ‘far from integrable’ case where a bifurcation
of invariant tori has been detected (e.g. numerically). In the close-to-integrable
case, our method applies to any finitely determinate singularity of the frequency
map for the integrable system.
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CHAPTER 1

Introduction

1.1. Main contribution

The celebrated Kolmogorov-Arnold-Moser (KAM) Theory [3, 37, 47] estab-
lishes the persistence under perturbation of quasi-periodic solutions, with suffi-
ciently irrational frequency, of Hamiltonian systems. Geometrically, quasi-periodic
motions for Hamiltonian systems are invariant tori. Maximal dimensional invariant
tori bearing quasi-periodic motion are known as KAM tori. We refer the reader
to [19] for a tutorial on KAM Theory and to [17] for a very clear exposition of Kol-
mogorov’s Theorem [37]. KAM results require a nondegeneracy condition. In its
simplest form the nondegeneracy condition is known as twist condition. In action-
angle variables, this requires the frequency map (as function of the action) to be
a local diffeomorphism. Persistence of a Cantor set of KAM tori has been proved
under the very weak Rüssmann nondegenerate condition [16, 56, 58, 60, 72].

Recently, there has been considerable interest in studying the persistence of tori
with fixed frequency, where twist condition is violated but nevertheless, the system
depends on sufficient parameters that control the frequencies. The parameters of
the Hamiltonian correspond to characteristics of the system that can be tuned by
the designer to obtain the desired effect of the system. For example [2, 23, 24], in
the design of plasma confinement devices, it has been heuristically argued that non-
twist invariant tori are very efficient barriers for the undesired effect of transport.
Similar considerations have appeared in mixing of fluids [20, 21, 59]. An important
assumption is that the persistent tori must have a prescribed, fixed frequency. KAM
results under the Rüssmann condition do not give information of the persistence of
a torus with prescribed frequency. Indeed, it is known [63] that under the Rüssmann
condition, the set of the persistent frequencies is, in general, different from the set of
the unperturbed frequencies. This happens, for example, when the given frequency
lies in the boundary of the image of the frequency map or when the perturbed tori
become nondegenerate.

In this monograph we give a new methodology for the study of bifurcations of
KAM tori with fixed Diophantine frequency vector. It turns out that bifurcating
tori are non-twist. Our method is developed for general Hamiltonian systems, hence
the notion of non-twist has an extended meaning. Our formulation generalizes the
usual one which is given for integrable systems or by means of the Birkhoff Normal
Form (BNF). In both the integrable and the BNF cases a torus is twist if and only
if its torsion is non-degenerate. In the integrable case, the torsion is the derivative
of the frequency map at the corresponding action. In the BNF case, the torsion is
provided by the first order terms of the BNF. We formulate a concept of torsion
of a torus which is intrinsic, in the sense that it only depends on the geometric
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2 1. INTRODUCTION

properties of the torus and of the system. Then, by a twist torus we mean a torus
with nondegenerate torsion.

The method presented here is based on the construction of a real-valued func-
tion, that we call the potential, in such a way that critical points of the potential
correspond to invariant tori with fixed frequency. This leads to a natural classifica-
tion of invariant tori based the application of Singularity Theory to the potential.
An important feature of this classification is that, under rather general conditions,
a torus is degenerate if and only if it is non-twist. Hence, a torus that is degenerate
in our terminology has a degenerate BNF. Moreover, the classification obtained
with our method is persistent under small perturbations of the system.

We also prove that, given a parametric family of Hamiltonian systems, there
is a (local) bijection between the bifurcation diagram of the critical points of the
parametric potential and the bifurcation diagram of invariant tori for the parametric
family.

Our methodology does not requires either the computation of the BNF or the
existence of an invariant torus. This is useful on predicting the breakdown of tori
in a fold bifurcation.

Our methodology is stated in an a-posteriori context: the close-to-integrability
assumption has been replaced by the assumption of the existence of an approxi-
mate solution of the invariance equation, with sufficient accuracy, satisfying some
transversality conditions. Hence, our methodology is suitable for validating nu-
merical computations in cases in which bifurcations of invariant tori are observed
numerically, but the system is far from integrable. Moreover, our methodology
leads to efficient numerical algorithms to compute both the potential and invariant
tori. It is applicable to models where the symplectic structure is not the standard
one. It is also suitable to compute tori that are not necessarily graphs of the angle
variable e.g. meandering tori [64]. We plan to discuss the implementation of these
algorithms in a future work.

In the close-to-integrable case, our method enables us to obtain persistence of
an invariant torus, with fixed frequency, in both twist and non-twist cases (includ-
ing small-twist and Rüssmann). Moreover, if the frequency map of the integrable
system has a finitely determined singularity, then the perturbed torus is of the same
class as the unperturbed one (under the classification obtained by applying Singu-
larity Theory to the potential). Finite-determined singularities for the frequency
include the classical twist case and the seven elementary catastrophes (see Table 1
in Appendix B).

The simplest situation in which one has a non-twist torus is the integrable area
preserving map with frequency map ω̂(y) = ω + y2:

f0(x, y) =

(

x+ ω̂(y)
y

)

.

The first simple observation is that the f0-invariant non-twist torus

Z0 =

(

θ
0

)

satisfies the Rüssmann condition (see [58, 60]). Indeed, ∂2ω̂(y)
∂y2 generates R. In this

case, ω is in the boundary of the image of the frequency map ω̂(y), and the non-
twist torus with frequency ω can be destroyed easily. Indeed, there is a smooth
function δ(ε), with δ(0) = 0, such that ω̂(y) + δ(ε) does not lie in the image of



1.2. METHODOLOGY 3

the frequency map for any y in the domain of ω̂ and ε 6= 0. Then, for any ε 6= 0,
the integrable map with frequency map ω̂(y) + δ(ε) does not have an invariant
torus with frequency ω. Hence, to study the bifurcations of Z0 we need unfolding
parameters.

The second observation is that Z0 corresponds to the degenerate critical point

p = 0 of the scalar function A(p) = p3

3 and that the unfolding of this singularity is

the one-dimensional parameter family of functions: A(µ, p) = µp+ p3

3 .
Then, a natural way to do the bifurcation analysis of Z0 is to embed f0 in

the parametric family fµ of integrable symplectomorphisms, with frequency map
ω̂(µ, y) = ω + ∇yA(µ, y). It is clear that there are either two, one or zero fµ-
invariant tori with frequency ω, depending on whether µ < 0, µ = 0 or µ > 0.
Hence, the non-twist torus Z0 is a fold torus.

The method introduced here generalizes the above bifurcation analysis for KAM
invariant tori and enables us to show that under small perturbations degenerate
tori persist and the persistent torus has the same degeneracy type. In the present
example, this means that, for sufficiently small perturbations of fµ, the perturbed
system will have a bifurcation diagram similar to that in Figure 1.

µ = 0

µ > 0

µ < 0

p

∇pA(µ, p)

Figure 1. The graph shows ∇pA(µ, p) = µ + p2. The values
of (µ, p) at which ∇pA(µ, p) = 0 correspond to invariant tori for
the integrable symplectomorphism with frequency map ω̂(µ, y) =
ω + y2 + µ.

Our results for the close-to-integrable case generalize the results in [22, 23].
In [22] an approach similar to that taken here is used to study the fold singularity
in the standard non-twist family. In [23], using different techniques, the fold and
the cusp were studied for the case of two degrees of freedom.

1.2. Methodology

Our strategy follows three main stages. The first one consists on a KAM
result based on the automatic reducibility of KAM invariant tori. We add external
parameters in such a way that the infinite-dimensional problem of finding invariant
tori, with fixed Diophantine frequency, is reduced to the finite dimensional problem
of finding zeros of a smooth function (similar ideas can be found in [48, 51, 62, 73]).
In the second stage, the latter problem is transformed to a problem of finding critical
points of a smooth real-valued function that we call potential. This is achieved by
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using the geometrical properties of symplectomorphisms and Lagrangian tori. The
third stage consists on applying Singularity Theory to the potential.

Our methodology is developed by using classical and new techniques in Sym-
plectic Geometry and parametric KAM theory. An important ingredient in our
geometric constructions is the primitive function of a given Hamiltonian system
[29]. The primitive function is a geometric object that depends only on the system
and on the symplectic structure. It should be noticed that the primitive functions
and the generating functions are different objects. One difference is that the domain
of the primitive function is the domain of the given system (not mixed variables).
Hence, the use of the primitive function does not requires the application of the
Implicit Function Theorem. This, among other things, makes the primitive func-
tion suitable for the study of non-twist tori where generating functions may fail to
exist. More properties of the primitive function will be discussed throughout the
paper. Another important geometrical ingredient is a generalization of symplectic
deformations and moment maps, also developed here. Roughly, a symplectic de-
formation is a parametric family of Hamiltonian systems and its moment map is a
vector of ‘Hamiltonians’ corresponding to the vector field given by the variation of
the family with respect to the parameter.

For the KAM part, we prove a parametric KAM Theorem that may be of
independent interest. It is known that KAM procedures involve several non-geo-
metrical steps (e.g. solving small divisor equations, Fourier series). It has been
found convenient [51, 57, 54] to add extra parameters so that the KAM step can
proceed always by adjusting the parameters. Then, at the end, one just solves the
finite dimensional problem of setting the artificial parameters to zero. As noted
in [62, 63, 73] this has the advantage that it separates the analytic steps from
the nondegeneracy condition. The final nondegeneracy condition amounts to the
nondegeneracy conditions of a finite dimensional version of the Implicit Function
Theorem. This is especially useful in degenerate problems. The procedure of adding
parameters at the iterative step is stable from the analytic point of view and leads
to very efficient proofs of KAM results under the Rüssmann non-degeneracy con-
ditions [61]. These considerations on the parameter are important when we want
to validate numerical computations and when the considered families are far-from-
integrable. In our applications of our parametric KAM Theorem, we use different
types of parameters playing different roles with the geometry and with the analysis
of the problem:

• For technical reasons, we find it convenient to introduce some parameters
which change the exactness properties of the symplectomorphisms. We
call these parameters dummy because at the end of the KAM procedure
– but not in the intermediate steps – they will vanish. The reason for
this is that if a symplectomorphism has an invariant torus, then it has
to be exact. The use of dummy parameters yields a generalization of the
Translated Curve Theorem in [57, 54].

• To obtain a nondegeneracy condition that is weaker than the twist con-
dition, we introduce some parameters that we call modifying parameters
because they generalize the Moser’s modifying terms in [51]. The modi-
fying parameters are introduced in such a way that invariant tori are ob-
tained by setting the modifying parameters equal to zero. We show that
the modifying parameter, as a function of the momentum of the torus, is
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the gradient of a real-valued function, which we call the potential. Hence,
invariant tori correspond to critical points of the potential.

• In addition to the above parameters, there are other parameters on which
the systems may depend, and we call them the intrinsic parameters. In-
trinsic parameters include unfolding and perturbation parameters. We
show that the potential depends smoothly on the intrinsic parameters.
We introduce unfolding parameters in such a way that properties, similar
to those for degenerate critical points of functions [5, 25], are satisfied.
Namely, degenerate (non-twist) tori, with fixed frequency, are persistent
and the persistent torus has the same type of degeneracy as the unper-
turbed one.

We consider both the maps and the vector field cases. The tori considered
here are of maximal dimension. The KAM results in this paper are formulated
and proved for functions depending analytically on the phase space variable and
smoothly on the parameter. These KAM results also hold for functions with smooth
dependence on both the phase space variable and the parameter (with some loss of
derivatives). However, because this involves many technical details, this case is not
included here.

1.3. Outline of the monograph

For ease of reading, here we briefly describe the content of this monograph.
Figure 2 contains a map of the main sections.

Chapter 2 contains the setting of the monograph. Most of the notation used
throughout the monograph is established in Section 2.1. Basic concepts on Symplec-
tic Geometry are reviewed in Section 2.2. In Section 2.3, the concept of symplectic
deformation and moment map are introduced. These will play a key role in the
definition of the potential and are not standard in the literature. Section 2.4 re-
views some basic definitions of spaces of analytic functions and the solvability of
the ‘one-bite’ small divisors equations.

This monograph contains three main parts. Part 1 contains the geometrical
properties of KAM invariant tori. Part 2 contains parametric KAM results based
on reducibility of Lagrangian invariant tori. The KAM results given here are stated
and proved in the analytic category. In Part 3 our geometric and KAM results are
combined with Singularity Theory to develop a new method to study bifurcations
of KAM invariant tori.

Part 1. Chapter 3 contains geometrical properties of a KAM torus. In Section
3.1, it is proved that any torus which is invariant for a symplectomorphism, with
dynamics an ergodic rotation, is Lagrangian and moreover the linear dynamics
around the torus has a block-triangular form, with the identity on the diagonal.
This property is known as automatic reducibility. These results are available in
the literature, in a less general setting [34]. In Section 3.2 we give a geometric
definition of the torsion of a torus with respect to a symplectomorphism and a
given frequency vector. This leads to an intrinsic definition of twist tori.

Chapter 4 contains our main geometrical construction. First, we introduce
the definition of an invariant fibered Lagrangian deformation (FLD) with frequency
ω. Roughly, given a smooth family of symplectomorphism gλ, with s-dimensional
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parameter λ, a g-invariant FLD with frequency ω is a smooth family {K(p) =
(λ(p),Kp)}p∈D of parameters λ(p) and tori Kp that satisfy the invariance equation:

gλ(p) ◦Kp = Kp ◦ Rω,

where ω is fixed and Rω : T
n → T

n is the rigid rotation: Rω(θ) = θ + ω. Then,
using the primitive function and the moment map, we define the potential and the
momentum of K with respect to g and ω. We show that both the momentum and
the potential are invariant under canonical changes of coordinates. In Theorem
4.7, under certain general conditions, it is shown that λ(p) is the gradient of the
potential. Theorem 4.8 gives a relation between the Hessian of the potential of K
and the torsion of Kp.

Part 2. In Chapter 5 we discuss the nondegeneracy conditions involved in
KAM procedures based on the automatic reducibility and with fix frequency. First,
in Section 5.1 it is proved that, in the analytic category, approximately invariant
tori, with Diophantine frequency, are approximately Lagrangian and approximately
reducible. Quantitative estimates are provided. Then, in Section 5.2 we describe
and motivate the use of external parameters (dummy and modifying) on performing
a step of the iterative procedure. It is shown that it is always possible to introduce
a modifying parameter in such a way that an iterative KAM procedure can be
performed (even in the non-twist case).

Chapter 6 contains our most general parametric KAM result, Theorem 6.2.
Given a Λ-parametric family of real-analytic Hamiltonian systems, we provide suf-
ficient conditions for the existence and local uniqueness of Lagrangian tori K(ζ)
and parameters Λ(ζ), depending smoothly on an external parameter ζ, in such a
way that for each value of the parameter ζ, K(ζ) is invariant for the system in
the family corresponding to Λ(ξ), the frequency is fixed and Diophantine. This
result and the method used to prove it are different from the parametric KAM re-
sults in [11, 10], where a Whitney smooth Diophantine family of persistent tori is
proved for systems that are close-to-integrable. The close-to-integrable hypothesis
has been replaced by the assumption of the existence of a torus that solves ap-
proximately the invariance equation with sufficiently small error as satisfying some
transversality conditions. Our KAM procedure computes the Fourier coefficients
of tori that better approximate solutions of the invariance equation. Hence, the
original coordinate system is not changed in the procedure.

Chapter 7 contains a Transformed Torus Theorem, Theorem 7.4. This is a
result on the existence and local uniqueness of invariant FLD with fixed Diophantine
frequency. Briefly, given a smooth family of symplectomorphism fµ, depending on
an intrinsic parameter µ, dummy and modifying parameters are introduced by
embedding the family fµ into a smooth family f(µ,σ,λ) in such a way that f(µ,σ,λ) is
exact if and only if σ = 0 and f(µ,0,0) = fµ. The dummy parameter is σ ∈ Σ ⊂ R

n

and the modifying parameter is λ ∈ Λ ⊂ R
s, with 0 ≤ s ≤ n. Theorem 7.4

gives sufficient conditions for the existence and the local uniqueness of a f -invariant
parametric FLD with fixed Diophantine frequency ω. Theorem 7.4 is stated in a-
posteriori context : the main hypothesis is the existence of parameters µ0, λ0 and a
torus K0 such that K0 is approximately f(µ0,0,λ0)-invariant, with frequency ω, and
satisfies a nondegeneracy condition. This nondegeneracy condition depends on the
way the modifying parameters are introduced. For close-to-integrable systems, it
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is always possible to introduce modifying parameters in such a way that any torus,
invariant for the integrable system, satisfies the our non-degeneracy condition. We
show that Theorem 7.4 yields a generalization of the Translated Curve Theorem
in [57, 54]. Under suitable choice of the parameters, Theorem 7.4 is a consequence
of Theorem 6.2.

Part 3. In Chapter 8 we develop the Singularity Theory for KAM tori. Sec-
tion 8.1 contains a method to characterize invariant tori as critical points of the
potential. Briefly, given fµ, a smooth family of symplectomorphism, and K∗ an
fµ∗

-invariant torus with Diophantine frequency ω, we show that it is always pos-
sible to introduce modifying parameters, λ, in such a way that the nondegeneracy
condition in the Transformed Tori Theorem (Theorem 7.4) holds. The dimension
of the modifying parameter is determined by the dimension of the kernel of the
torsion of K∗. Then, the Transformed Tori Theorem guarantees the existence and
local uniqueness of an f -invariant FLD with frequency ω, K. We combine the re-
sults in Section 4.1 with Singularity Theory to classify invariant tori in terms of
the classification of critical points of the potential of K, as provided by Singularity
Theory. We prove the robustness of this classification. We also show that there
is a local one-to-one correspondence between the bifurcation diagram obtained us-
ing the critical points of the potential and the bifurcation diagram obtained using
invariant tori.

In Chapter 9 we apply the results of Chapter 8 to close-to-integrable systems.
For completeness in Section 9.1 we consider the integrable case. In Section 9.2 we
obtain persistence of an invariant torus with fixed frequency in both the twist and
the non-twist cases, including small twist. The bifurcation theory of non-twist tori
is described in Section 9.3. In Section 9.4 we show that it is always possible to
introduce modifying parameters in such a way that the potential of the BNF and
the potential are close.

Appendices. Our results and methods are developed in full detail for sym-
plectic maps. The corresponding results for Hamiltonian vector fields are discussed
briefly in Appendix A. A brief summary on Singularity Theory is included in
Appendix B.
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Reducibility of invariant tori
(Chapter 3)

Nondegeneracy conditions on KAM procedures
(Chapter 5)

Parametric KAM Theorem
(Chapter 6)

Existence of invariant FLD
(Chapter 7)

Potential for invariant FLD
(Chapter 4)

Singularity Theory for invariant tori
(Chapter 8)

Persistence of invariant tori for
close-to-integrable systems

(Section 9.2)

Non-twist tori for
close-to-integrable systems

(Section 9.3)

The BNF and the potential
(Section 9.4)
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Figure 2. Map of the main sections of the monograph



CHAPTER 2

Preliminaries

Here we review some standard definitions and results in Symplectic Geometry
and KAM theory. The concepts of symplectic deformation and moment map are
introduced. These will be important in our geometric constructions.

2.1. Elementary notations

This section contains some notation and definitions that are standard in the
literature. As usual, N, Z, R and C denote the sets of non-negative integer, integer,
real and complex numbers, respectively. R

m×d and C
m×d denote the spaces of m×d

matrices with components in R and C, respectively. Let T
n = R

n/Zn denote the
n-dimensional torus with covering space R

n. The n-dimensional complex torus is
defined by T

n
C

= C
n/Zn, with covering space C

n. The standard annulus T
n×R

n is
denoted by A

n.
An annulus is a subset A ⊂ A

n that is diffeomorphic to T
n×U , with U ⊂ R

n

a connected open set. The covering of an annulus A is denoted by Ã ⊂ R
n×R

n

and the coordinates on A (and Ã) are denoted by z = (z1, . . . , z2n) = (x, y), with
x = (x1, . . . , xn) and y = (y1, . . . , yn).

We will use the notations πi(z) = zi, πx(z) = zx = x and πy(z) = zy = y for the
projections. For a matrix P ∈ C

2n×d, we use the notation P x = πxP = (In On)P
and P y = πyP = (On In)P , where In and On are the n×n identity and zero
matrices, respectively. The n×d zero matrix is represented by On×d.

By a diffeomorphism between two manifolds we mean a diffeomorphic immer-
sion. By embedding we mean a smooth injective immersion. Following standard
practice, smooth means Cℓ, with ℓ sufficiently large. The precise value of ℓ can be
ascertained by looking at the arguments in detail.

A function u : R
n → R is 1-periodic if u(θ + e) = u(θ) for all θ ∈ R

n and
e ∈ Z

n. A function u : T
n → R is a 1-periodic function u : R

n → R. Similarly, a
function g : Ã → R is 1-periodic in x if g(x + e, y) = g(x, y) for all x ∈ R

n and

e ∈ Z
n. A function g : A → R is viewed as a function g : Ã → R that is 1-periodic

in x.
The average of a continuous function u : T

n → R is 〈u〉 =
∫

Tn
u(θ) dθ. The

notation 〈·〉 extends component-wise to vector and matrix valued continuous func-
tions.

A rigid rotation on T
n with rotation vector ω ∈ R

n is the function Rω : T
n →

T
n given by Rω(θ) = θ+ω. The rotation Rω is ergodic if ω is rationally independent,

i.e. k⊤ω /∈ Z for all k ∈ Z
n \ {0}.

We use the following notation for derivation. A sub-index in the derivatives is
included indicating the variables with respect to which one is taking derivatives.

9
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For example, if f is defined on (t, z) ∈ R
d×A

Dtf(t, z) =

(

∂f

∂t1
(t, z) · · ·

∂f

∂td
(t, z)

)

,

Dzf(t, z) =

(

∂f

∂z1
(t, z) · · ·

∂f

∂z2n
(t, z)

)

.

2.2. Geometric preliminaries

Here we review basic concepts in Symplectic Geometry [8, 15, 35, 46, 69].
From now on, A ⊂ A

n is assumed to be an annulus.

2.2.1. Symplectic structures.

Definition 2.1. A symplectic form on A is a closed, nondegenerate differential
2-form ω on A. If ω is exact, i.e. ω = dα, the 1-form α is called an action form
of ω.

Definition 2.2. Let A be endowed with the symplectic form ω. An almost
complex structure on A, compatible with ω, is a linear symplectomorphism J :
TA → TA which is anti-involutive (i.e. J2 = −I), and such that the 2-form
g(u, v) = −ω(u,Jv) induces a Riemannian metric on A. (ω,J , g) is called a
compatible triple on A.

Using local coordinates, if α(z) =
∑2n

i=1 ai(z) dzi denotes the 1-form αz, where
a : A → R

2n is 1-periodic in x. Then, the matrix representation of the 2-form
ωz = dαz is

(2.1) Ω(z) = Dza(z)
⊤ − Dza(z).

The nondegeneracy of ωz is equivalent to det Ω(z) 6= 0. If J(z) is the matrix
representation of Jz and G(z) is the positive-definite symmetric matrix giving gz

on TzA ≃ R
2n, then ω, J and g are related as follows:

Ω⊤ = −Ω, J2 = −I2n, G
⊤ = G,

Ω = J⊤ΩJ = GJ = −J⊤G, G = J⊤GJ = −ΩJ = J⊤Ω .

With the above notation we say that (Ω = Da⊤ − Da, J,G) is the coordinate
representation of the compatible triple (ω = dα,J , g).

The prototype example of a compatible tripe is the following. Let ω0 be the
standard symplectic structure on the standard annulus A

n: ω0 =
∑n

i=1 dyi ∧ dxi.

An action form for ω0 is α0 =
∑d

i=1 yi dxi. The Euclidean metric g0 induces a
compatible almost complex structure J0. The matrix representations of α0, ω0,
J0 and g0 are, respectively,

(2.2) a0(z) =

(

y
0

)

, Ω0 = J0 =

(

On −In
In On

)

, G0 =

(

In On

On In

)

.

Remark 2.3. Throughout this paper we assume that A is an annulus endowed
with a compatible triple (ω = α,J , g). This can always be obtained so that this
is not loss of generality. However, it simplifies the exposition of the results in this
paper.
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2.2.2. Symplectomorphisms and local primitive functions. From now
on, A,A′ ⊂ A

n are assumed to be annuli endowed with the compatible triples (ω =
dα,J , g) and (ω′ = dα′,J ′, g′), respectively. Let (Ω, a, J,G) and (Ω′, a′, J ′, G′) be
the corresponding coordinate representation.

Definition 2.4. A diffeomorphism f : A0 → A′ is a symplectomorphism if
f∗ω′ = ω. Let Symp(A0,A

′) denote the set of symplectomorphisms f :A0 →A′

that are homotopic to the identity, i.e. f(x, y) − (x, 0) is 1-periodic in x.

Definition 2.5. A symplectomorphism f :A0→A′ is exact if there is a smooth
function Sf :A0→R, called primitive function of f , such that f∗α′−α = dSf . Let
Sympe(A0,A

′) denote the set of exact symplectomorphisms that are homotopic to
the identity.

In coordinates, the symplectic and the exact symplectic properties of a diffeo-
morphism f are equivalent to, respectively:

(2.3) Dzf(z)⊤ Ω′(f(z)) Dzf(z) = Ω(z), ∀ z ∈ A0,

(2.4) DzS
f(z) = a′(f(z))⊤Dzf(z) − a(z)⊤, ∀ z ∈ A0.

Remark 2.6. The primitive function Sf of an exact symplectomorphism f is
unique up to addition of constants. Moreover, Sf is the primitive function of g ◦ f ,
for any diffeomorphism, g : A′ → A′, preserving the action form α′, i.e. g∗α′ = α′.
See [29, 32, 33] for more properties of primitive functions.

Remark 2.7. Primitive functions play a key role in our geometric constructions
and they should be not confused with generating functions. One important differ-
ence is that primitive functions are intrinsic geometric objects, whereas generating
functions are defined through local coordinates. Moreover, primitive functions are
not defined in mixed variables. These, among other reasons, make the primitive
functions suitable to study non-twist tori. Consider for example, the integrable
symplectomorphism on A

n

f(x, y) =

(

x+ y2

y

)

.

Then, Sf(x, y) = 2
3y

3 and a Lagrangian generating function in the variables (x, x̄)

is given by 2
3 (x− x̄)3/2, which is defined for x̄ > x.

The objects introduced above lift to corresponding objects on the covering
manifolds Ã and Ã′. If it does not lead to confusion, we will abuse notation and
use the same letters to denote the objects in the covering manifold. From Poincaré
Lemma, the lift of any symplectomorphism f : A0 → A′ is exact (in the covering

spaces Ã and Ã′). We will refer to the primitive function S̃f : Ã0 → R of the lift

of f as the local primitive function of f . Since S̃f satisfies

(2.5) DzS̃
f(z) = a′(f(z))⊤Dzf(z) − a(z)⊤, ∀ z ∈ Ã0

and f(x, y) − (x, 0) is 1-periodic in x, then all the partial derivatives of S̃f are 1-

periodic in x. Then, S̃f can be written as follows:

(2.6) S̃f(z) = x⊤Cf + Sf(z),

where Sf : A0 → R is 1-periodic in x and Cf ∈ R
n is a constant vector. Cf ∈ R

n

is known as the Calabi invariant of f [6, 14] (see also §3 in [40]). It is clear that
f is exact symplectic if and only if Cf = 0.
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Remark 2.8. The local primitive function and the Calabi invariant satisfy

S̃f◦g = S̃f ◦ g + S̃g,(2.7)

Cf◦g = Cf + Cg.(2.8)

2.2.3. Embedding of tori. We consider n-dimensional tori embedded in
A0 ⊂ A. We do not assume that the tori are graphs of functions over the an-
gle.

Definition 2.9. Let Emb(Tn,A0) denote the set of embeddings K : T
n → A0

that are homotopic to the zero section, i.e. the components of K(θ) − (θ, 0) are 1-
periodic.

Definition 2.10. The averaged action of K ∈ Emb(Tn,A0) is given by

(2.9) CK =
〈

a(K(θ))⊤DθK(θ)
〉⊤

∈ R
n.

Remark 2.11. Given f ∈ Symp(A0,A), Cf◦K−CK is the net flux of f through
K ∈ Emb(Tn,A0). It is easy to verify that

Cf◦K − CK = Cf .

For this reason, the Calabi invariant of f is often referred to as the net flux [6, 19].

Given K ∈ Emb(Tn,A0), the geometric structures ω and g on A pull-back
to the corresponding structures on K = K(Tn), via K∗ω and K∗g, whose matrix
representations at a point K(θ) ∈ K are, respectively,

Ω
K

(θ) = DθK(θ)⊤ Ω(K(θ)) DθK(θ),(2.10)

G
K

(θ) = DθK(θ)⊤ G(K(θ)) DθK(θ).(2.11)

K∗g is a Riemannian structure on K, and hence G
K

(θ) is symmetric and positive-
definite.

Definition 2.12. K ∈ Emb(Tn,A0) is Lagrangian ifK∗ω = 0. Let Lag(Tn,A0) ⊂
Emb(Tn,A0) denote the set of Lagrangian tori.

From Poincaré Lemma, the lift of K ∈ Lag(Tn,A0) pull-backs the one form α

into an exact form (in R
n):

(2.12) K∗α = d S̃K .

The function S̃K : R
n → R will be called local primitive function of the Lagrangian

torus K. Using that K is homotopic to the zero section, one shows that S̃K can be
written as follows:

(2.13) S̃K(θ) = θ⊤CK + SK(θ),

where SK : T
n → R is 1-periodic and CK is the averaged action of K, given by

(2.9). The local primitive function of a Lagrangian torus is unique up to addition
of constants.

Remark 2.13. Let K ∈ Lag(Tn,A0) and let ψ : T
n → T

n be a homotopic to
the identity diffeomorphism, then

CK◦ψ = CK .

In particular, the averaged action CK is independent of the parameterization of
the Lagrangian torus K = K(Tn). Moreover, CK depends only on K and the
cohomology class of the action form α.
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2.2.4. Hamiltonian vector fields. The notion of vector field preserving the
symplectic form is reviewed here.

Definition 2.14. A local Hamiltonian function on A is a function h̃ : Ã → R

of the form

h̃(z) = −x⊤Ch̃ + h(z),

where h : A → R is 1-periodic in x and Ch̃ ∈ R
n is a constant, which we call

infinitesimal Calabi invariant of h̃.

A local Hamiltonian function induces a local Hamiltonian vector field (or local
symplectic vector field) Xh̃ on A such that

iXh̃ω = −dh̃,

where i denotes the contraction of a form with a vector. In coordinates:

Xh̃(z) = Ω(z)−1∇zh̃(z) .

Notice that Xh̃(z) is 1-periodic in x. If Ch̃ = 0, we say that h̃ = h is a (global)
Hamiltonian function, and that Xh(z) is a (global) Hamiltonian vector field.

The infinitesimal primitive function, corresponding to a local Hamiltonian func-
tion h̃ is defined as follows:

Sh̃(z) = a(z)⊤Xh̃(z) − h(z).

Definition 2.14 extends in a natural way to the non-autonomous case (time-de-
pendent). The evolution operator Φt,t0(z) of a time-dependent (local) Hamiltonian

function h̃t(z), that satisfies

∂Φt,t0

∂t
(z) = Xh̃t

◦ Φt,t0(z)

and Φt0,t0(z) = z is symplectic. The local primitive function of Φt,t0 is

S̃t,t0(z) =

∫ t

t0

(α(Xh̃s
) − h̃s) ◦ Φs,t0(z) ds .

The Hamiltonian is global if and only if Φt,t0(z) is exact symplectic, for all t.

2.3. Symplectic deformations and moment maps

Here we establish the definition and main properties of the generator and the
moment map of a smooth family of symplectomorphisms. These form the basis for
our geometric constructions. Roughly, the generator gives the variation of the fam-
ily as the parameter moves and the moment map is the ‘Hamiltonian’ corresponding
to this variation.

Let us start by making precise the meaning of symplectic deformation.

Definition 2.15. Let Ξ ⊂ R
m be open. A symplectic deformation with base

Ξ is a smooth function g : Ξ×A0 → A′ inducing a family of symplectomorphisms:

g : Ξ −→ Symp(A0,A
′)

t −→ gt.

where gt(z) = g(t, z).
A Hamiltonian deformation is a symplectic deformation g such that gt is exact,

for all t ∈ Ξ.
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In what follows we define some geometric objects, naturally related to symplec-
tic deformations.

Definition 2.16. Given a symplectic deformation g : Ξ×A0 → A′, the local
primitive function of g is a smooth function S̃g : Ξ×Ã0,→ R such that, for each
t ∈ Ξ, the function S̃g

t
(z) = S̃g(t, z), is the local primitive function of gt: S̃

g

t
= S̃gt .

The Calabi invariant of g is a smooth function Cg : Ξ → R such that Cg(t) is
the Calabi invariant of gt: Cg(t) = Cgt .

For each t ∈ Ξ, write S̃g
t

as follows:

(2.14) S̃g
t
(z) = Cg(t)⊤x+ Sg

t
(z),

where Sg : Ξ×Ã0 → R is 1-periodic in x. If g is a Hamiltonian deformation Sg is
called primitive function of g.

Let us now define the generator and the moment map of a symplectic deforma-
tion.

Definition 2.17. Let g : Ξ×A0 → A′ be a symplectic deformation with base Ξ
and let S̃g : Ξ×Ã0 → R the local primitive function of g. Assume that A′

0 ⊆ gt(A0),
for all t ∈ Ξ.

i) The generator of g is the function Gg : Ξ×Ã′
0 → R

2n×m defined by

Gg(t, z) = Dtg(t, g
−1
t

(z)).

ii) The local moment map of g is the function M̃ g : Ξ×Ã′
0 → R

m defined by

M̃ g(t, z)⊤ = a′(z)⊤Gg(t, z) − DtS̃
g(t, g−1

t
(z)).

For each t ∈ Ξ, Gg
t

: Ã′
0 → R

2n×m and M̃ g

t
: Ã0 → R

m are defined by M̃ g

t
(z) =

M̃ g(t, z) and G
g
t
(z) = Gg(t, z), respectively.

If gt is exact for all t ∈ Ξ, then M̃ g is denoted by M g and called the moment
map of g.

Remark 2.18. Let g, S̃g and M̃ g be as in Definition 2.17 and write S̃g as in
(2.14). Then,

M̃ g(t, z) = M g(t, z) − DtC
g(t)⊤x,

where M g(t, z)⊤ = a′(z)⊤Gg(t, z) − DtS
g(t, g−1

t
(z)) is 1-periodic in x.

In the symplectic geometry literature [15, 28, 27] the definition of moment
map is slightly different from that given in Definition 2.17. If A = A′, ω = ω′

and the symplectic deformation is also a Hamiltonian deformation such that its
generator is independent of t (autonomous case), then our definition coincides with
that given in [15]. Our definition is motivated by the following result.

Lemma 2.19. Let g and M̃ g be as in Definition 2.17. Then the following equality
holds:

Gg(t, z) = Ω′(z)−1DzM̃
g(t, z)⊤.

Proof. From Definition 2.16 we have, for all t ∈ Ξ and all z ∈ A0,

(g∗tα′)(z) = α(z) + d S̃g
t
(z).

This implies, for i = 1, . . . ,m,

Dti
DzS

g(t, z) = (Dza
′(gt(z))Dti

g(t, z))
⊤

Dzg(t, z)

+a′(gt(z))
⊤ Dti

Dzg(t, z).
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This and the definition of M̃ g (see Definition 2.17) imply for i = 1, . . . ,m and
j = 1, . . . 2n

Dzj M̃
g

i (t, z) = Dti
g(t, g−1

t
(z))⊤

(

−Dzja
′(z)⊤ + Dzja

′(z)
)

.

Performing straightforward computations and using equality (2.1) one obtains:

Dtg(t, z)
⊤Ω′(gt(z)) = −DzM̃

g(t, gt(z)).

�

Remark 2.20. If ω′ = ω, the functions Gg and M̃ g in Definition 2.17 have
a natural geometrical meaning. For i = 1, . . . ,m, let (Gg

t
)i and (M̃ g

t
)i be the i-th

column of Gg
t

and the i-th coordinate of M̃ g

t
, respectively. Lemma 2.19 says that

(M̃ g

t
)i is a local Hamiltonian of the vector field (Gg

t
)i:

i(Gg
t
)iω = −d(M̃ g

t
)i.

Lemma 2.21. Let g : Ξ×A′
0 → A and f : Ξ×A0 → A be two smooth symplectic

deformations, with base Ξ ⊂ R
m, such that gt(A

′
0) = A0, for all t ∈ Ξ. Then the

following holds:

a) If h : Ξ×A′
0 → A is defined by ht = ft ◦ gt then

M̃ h

t = M̃ f

t
+ M̃ g

t
◦ f−1

t
.

b) If h : Ξ×A0 → A′ is defined by ht = g−1
t

then

M̃ h

t = −M̃ g

t
◦ gt.

c) If h : Ξ×A′
0 → A′ is defined by ht = g−1

t
◦ ft ◦ gt then

M̃ h

t = M̃ g

t
◦ f−1

t
◦ gt + M̃ f

t
◦ gt − M̃ g

t
◦ gt.

Proof. From Definition 2.17, Part a) is a re-phrasing of (2.7) and the other
ones follow from a). �

2.4. Analytic preliminaries

To deal with small divisors equations, we work with Banach spaces of real-
analytic functions with control on derivatives in complex neighborhoods of the real
domains. Here we introduce these spaces.

2.4.1. Spaces of real-analytic functions. A complex strip of T
n of width

ρ > 0 is defined by:

T
n
ρ = {θ ∈ T

n
C : |Im θi| < ρ, i = 1, . . . , n} .

A function defined on T
n is real-analytic if that can be holomorphically extended

to a complex strip T
n
ρ .

Definition 2.22. Given r ∈ N and ρ > 0, let A(Tn
ρ , C

r) denote the set of
holomorphic functions u : T

n
ρ → C such that u(Tn) ⊂ R and such that all its

partial derivatives up to order r can be continuously extended on the boundary of
T

n
ρ . Endow A(Tn

ρ , C
r) with the norm

‖u‖ρ,Cr = sup
k≤r

sup
θ∈Tnρ

∣

∣Dku(θ)
∣

∣ ,

where
∣

∣Dku(θ)
∣

∣ denotes the supremum norm of the components of Dku(θ). We also
use the notation ‖u‖ρ,C0 = ‖u‖ρ.



16 2. PRELIMINARIES

A complex strip of an annulus A is a complex connected open neighborhood
B ⊂ T

n
C
×C

n of A such that A = B ∩ A
n. A function defined on an annulus is real-

analytic if it can be holomorphically extended to a complex strip of the annulus.

Definition 2.23. Given r ∈ N and B, a complex strip of A, let A(B, Cr)
denote the set of bounded holomorphic functions u : B → C such that u(A) ⊂ R

and such that all the partial derivatives up to order r can be continuously extended
to B̄. Endow A(B, Cr) with the norm

‖u‖B,Cr = sup
k≤r

sup
z∈B

∣

∣Dku(z)
∣

∣ ,

where
∣

∣Dku(z)
∣

∣ denotes the supremum norm of the components of Dku(z). We also
use the notation ‖u‖B = ‖u‖B,C0 .

The sets A(Tn
ρ , C

r), A(B, Cr), endowed with the corresponding norms, are Ba-
nach spaces. Definitions 2.22 and 2.23 extend component-wise to vector or matrix-
valued functions, or in general for tensor functions, the norm is defined by taking
the maximum of the norms of the components.

2.4.2. Real-analytic symplectomorphisms and real-analytic param-
eterizations of tori. Assume that the exact symplectic form ω = dα has an
holomorphic extension to the complex strip B of A.

Definition 2.24. Given r ∈ N, ρ > 0 and B0 ⊂ B, a complex strip of an
annulus A0 ⊂ A, let Emb(Tn

ρ ,B0, C
r) denote the set of holomorphic embeddings

K : T
n
ρ → B0 such that:

a) closure(K(Tn
ρ )) ⊂ B0;

b) The components of K(θ) − (θ, 0) are in A(Tn
ρ , C

r);
c) If r ≥ 1, the components of the inverse of G

K
(given in (2.11)) are in

A(Tn
ρ , C

r−1).

Emb(Tn
ρ ,B0, C

r) is endowed with the distance ‖K1 −K2‖ρ,Cr .

Definition 2.25. Given r ∈ N and B0 ⊂ B, a complex strip of A0 ⊂ A, let
Symp(B0,B, C

r) denote the set of holomorphic maps f : B0 → B such that

a) The components of f(x, y) − (x, 0) are in A(B0, C
r);

b) f∗ω = ω.

Symp(B0,B, C
r) is endowed with the distance ‖f1 − f2‖B0,Cr .

2.5. One-bite small divisors equations

Here we review the standard results for the ‘one-bite’ small divisors equations.
Given ω ∈ R

n, define the linear operator Lω as follows:

(2.15) Lω u = u− u ◦ Rω .

The analytic core of KAM techniques is the following small divisors equation:

(2.16) Lωu = v − 〈v〉 ,

where v is smooth and known and u has to be determined. Note that, given v, if
u(0) is fixed then (2.16) determines the dense set {u(tω) : t ∈ Z}.
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Remark 2.26. Let v : T
n → R be a continuous function and assume that Rω

is an ergodic rotation. Then, if there exists a continuous zero-average solution of
equation (2.16), this is unique and will be denoted by Rωv. All the solutions of
(2.16) differ by a constant.

It is well-known that a sufficient condition for the solvability of the small divi-
sors equation (2.16) is that ω satisfies a Diophantine property defined below.

Definition 2.27. Given γ > 0 and τ ≥ n, ω ∈ R
n is a Diophantine frequency

vector of type (γ, τ) if and only if
∣

∣k⊤ω −m
∣

∣ ≥ γ |k|− τ
1 , ∀k ∈ Z

n \ {0}, m ∈ Z,

where |k|1 =
∑n

i=1 |ki|. The set of n-dimensional Diophantine frequencies of type
(γ, τ) is denoted by Dn(γ, τ).

Equation (2.16) can be solved in the smooth category, as stated in the following
result. For a proof see e.g [19, 55].

Lemma 2.28. Let ω ∈ Dn(γ, τ), for some γ > 0 and τ ≥ n. Let ℓ ∈ R be not
an integer be such that ℓ − τ > 0 is not an integer. Then, for any Cℓ-function
v : T

n → R, there exists a unique Cℓ−τ -function, u : T
n → R with zero-average

satisfying (2.16).

If ℓ and ℓ−τ are integers, then Lemma 2.28 holds in the so-called Λℓ spaces [65,
74]. In the analytic category, we have the following well-known result, for a proof
see [19, 55].

Lemma 2.29 (Rüssmann estimates). Let ω ∈ Dn(γ, τ), for some γ > 0 and
τ ≥ n. There exists a positive constant cR, depending only on n and τ , such that
for any v ∈ A(Tn

ρ , C
0), with ρ > 0, there exists a unique zero-average solution u of

(2.16), denoted by u = Rωv. Moreover, u ∈ A(Tn
ρ−δ, C

0) for any 0 < δ < ρ, and

(2.17) ‖u‖ρ−δ ≤ cRγ
−1δ−τ ‖v‖ρ .

From Lemma 2.29, it is clear that Rω : A(Tn
ρ , C

0) → A(Tn
ρ−δ, C

0) is a contin-
uous linear operator. Moreover, the following equalities hold:

Rω Lω u = u− 〈u〉 ,(2.18)

Lω Rω v = v − 〈v〉 .(2.19)

Furthermore, performing some computations and using (2.15) one shows

Lω(u v)(θ) = u(θ + ω)Lωv(θ) + Lωu(θ) v(θ).(2.20)

Equations (2.19) and (2.20) imply

Lω(RωuRωv)(θ) = Rωu(θ + ω)(v(θ) − 〈v〉) + (u(θ) − 〈u〉)Rωv,

from which we have

〈Rωu(θ + ω) v(θ) + u(θ)Rωv(θ) 〉 = 0.(2.21)

The above definitions for Lω and Rω extend component-wise to vector and matrix-
valued functions. These extensions also satisfy Lemma 2.28, Lemma 2.29 and equal-
ities (2.18), (2.19) and (2.21). We will refer to Lω as the one-bite cohomology
operator and to as the one-bite solver operator
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CHAPTER 3

Geometric properties of an invariant torus

Let A0 ⊂ A be annuli in A
n, let (ω = dα,J , g) be a compatible triple on A,

with coordinate representation (Ω, α, J,G).

3.1. Automatic reducibility

Let f ∈ Symp(A0,A) be given. It is well-known that the existence of an f -
invariant torus, K ∈ Emb(Tn,A0), such that the internal dynamics of K(Tn) is an
ergodic rotation, has important geometrical and dynamical consequences. These
are stated in Lemma 3.1. In particular, f is exact symplectic andK Lagrangian [34]
(see also §8 in [40]). Moreover, the linearized dynamics around the torus is upper-
triangular. This is sometimes referred to as ‘automatic reducibility’. These geomet-
rical arguments are depicted in Figure 1 (from [18]) for the two dimensional case.

Figure 1. If K is f -invariant, then u(θ) = DK(θ) spans the
tangent space of K(Tn) at K(θ), and the symplectic conjugate
v(θ) spans a complementary space.

Lemma 3.1. Let f ∈ Symp(A0,A). Assume that K ∈ Emb(Tn,A0) is f-
invariant and that the dynamics in K = K(Tn) is the ergodic rotation Rω(θ) = θ+ω:

(3.1) f ◦K −K ◦ Rω = 0.

Then the following hold.

a) f is exact symplectic.
b) K is Lagrangian.

21
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c) Define L
K
, N

K
: T

n → R
2n×n by

L
K

(θ) = DθK(θ),(3.2)

N
K

(θ) = J(K(θ)) DθK(θ) G
K

(θ)−1,(3.3)

where G
K

is given in (2.11). Let M
K

: T
n → R

2n×2n be obtained by
juxtaposing the 2n×n matrices in (3.2) and (3.3):

(3.4) M
K

(θ) =
(

L
K

(θ) N
K

(θ)
)

.

Then, the vector bundle morphism induced by M
K
:

M
K

: T
n×R

2n −→ TKA0

(θ, ξ) −→ (K(θ),M
K

(θ)ξ)

is an isomorphism such that M∗
K

ω = ω0. In particular,

(3.5) M
K

(θ)−1 = −Ω0 MK
(θ)⊤ Ω(K(θ)).

d) Transformation by M
K

reduces the linearized dynamics Dzf ◦ K to a
block-triangular matrix:

(3.6) M
K

(θ + ω)−1Dzf(K(θ))M
K

(θ) =

(

In T
(f,K)

(θ)
On In

)

where T
(f,K)

is the symmetric n×n matrix defined by

(3.7) T
(f,K)

(θ) = N
K

(θ + ω)⊤ Ω(K(θ + ω)) Dzf(K(θ)) N
K

(θ) .

Proof. Taking derivatives of both sides of the invariance equation (3.1) we
have:

(3.8) Dzf(K(θ)) DθK(θ) = DθK(θ + ω) .

Let S̃f(z) = x⊤Cf + Sf(x) be the local primitive function of f . To prove Part
a) it is sufficient to prove that the Calabi invariant of f , Cf , is zero. Using that
Kx(θ) − θ is 1-periodic, and equalities (2.5), (2.6),(3.1) and (3.8) we have

(Cf)⊤ =
〈

Dθ((C
f)⊤Kx + Sf ◦K)(θ)

〉

=
〈

Dθ(S̃
f ◦K)(θ)

〉

=
〈(

a(f(K(θ)))⊤Dzf(K(θ)) − a(K(θ))⊤
)

DθK(θ)
〉

=
〈

a(K(θ + ω))⊤DθK(θ + ω) − a(K(θ))⊤DθK(θ)
〉

,

= 0.

Let Ω
K

(θ) be given by (2.10). Using (2.3), (3.1) and (3.8), it is easy to show
that Ω

K
(θ+ω) = Ω

K
(θ), for all θ ∈ T

n. The ergodicity of Rω implies that Ω
K

(θ) =
〈Ω

K
〉 is constant. Moreover, since K∗ω = d(K∗α), we have that 〈Ω

K
〉 = 0. In

more algebraic terms, the components of Ω
K

(θ) are sums of derivatives of periodic
functions:

(Ω
K

(θ))i,j =
2n
∑

m=1

(

∂θi (am(K(θ))) ∂θjKm(θ) − ∂θj (am(K(θ))) ∂θiKm(θ)
)

.

From which one obtains 0 = 〈Ω
K
〉 = Ω

K
. This proves Part b).

Let N be the bundle generated by the column vectors of N
K

. Then, the La-
grangianity of K = K(Tn) implies that the sub-bundles TK and N are g-orthogonal:
L
K

(θ)⊤G(K(θ))N
K

(θ) ≡ 0. Moreover, it is clear that the column vectors of L
K



3.2. GEOMETRIC DEFINITION OF NON-TWIST TORI 23

span the tangent bundle TK. Hence, N is a normal bundle complementary to TK
and M is a bundle isomorphism such that M∗ω = ω0. This proves c).

From the f∗-invariance of the tangent bundle TK (see (3.8)) we obtain that

(3.9) M
K

(θ + ω)−1Dzf(K(θ))M
K

(θ)

is a block-triangular matrix with the identity In in the top-left corner. Since
M∗

K
ω = ω0, the cocycle (3.9) is ω0-symplectic, obtaining the special form (3.6)

and the symmetry of T
(f,K)

(θ). Formula (3.7) follows easily. �

Several observations are in order concerning Lemma 3.1.

Remark 3.2. If in Lemma 3.1 the ergodicity condition does not hold, the f -
invariant torus K may be not Lagrangian. For an example see [34].

Remark 3.3. Part c) in Lemma 3.1 is an infinitesimal version of the celebrated
Weinstein Lagrangian Neighborhood Theorem [69] (see also Chapter 8 in [15]).

Remark 3.4. GivenK ∈ Lag(Tn,A0), there are several ways one can construct
a normal bundle N , complementary to the tangent TK(Tn) one. In this paper, we
choose the normal bundle spanned by the column vector of N

K
, given in (3.3).

When f depends on parameters, this choice of N yields to smooth dependence of
N with respect to parameters.

Remark 3.5. A statement similar to Lemma 3.1, concerning the automatic
reducibility, can be found in [18] with a different M

K
. The main difference is that

the transformation M
K

defined here is symplectic, and consequently the matrix
T

(f,K)
is symmetric. This is not necessarily the case with the transformation M

K

taken in [18]. The formulation adopted here simplifies some computations and
provides insight on the geometric properties of invariant tori.

Remark 3.6. In Lemma 5.2 it is shown that, if f is real-analytic, ω is Dio-
phantine and K is a real-analytic approximately f -invariant torus, with error
e = f ◦K −K ◦Rω, then equalities (3.5) and (3.6) hold up to some terms that can
be bounded by the norm of the error e.

3.2. Geometric definition of non-twist tori

Here we define non-twist tori using the geometric properties of embedding
of tori. The definition given here coincides with the usual one in the close-to-
integrable case or that using the BNF. To motivate our definition, we notice that
the components of matrix T

(f,K)
(θ), given in (3.7), are the symplectic areas between

the column vectors of N
K

(θ + ω) and the column vectors of Dzf(K(θ))N
K

(θ). If
N is the normal bundle generated by the column vectors of N

K
, then, N

K
(θ + ω)

spans NK(θ+ω) and Dzf(K(θ))N
K

(θ) is the push-forward of the vectors spanning

the normal bundle NK(θ). Hence, the matrix
〈

T
(f,K)

〉

measures how much the
normal bundle N is twisted in average when applying the push-forward f∗.

Definition 3.7. Let f ∈ Symp(A0,A), ω ∈ R
n and K : T

n → A0. The torsion
of K with respect to f and ω is the n×n-matrix given by

T̄
(f,K)

=
〈

T
(f,K)

〉

,

where T
(f,K)

is as in (3.7).

If T̄
(f,K)

is invertible, we say that K is twist with respect to f and ω. Otherwise
we say that K is non-twist with respect to f and ω.
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Example 3.8. Assume that A
n is endowed with the standard symplectic form

ω0. Let U ⊂ R
n be open and simply connected. Let f0 : T

n×U → A
n be the

integrable symplectomorphism with frequency map ω̂(y) = ω + ∇yA(y):

f0(x, y) =

(

x+ ω̂(y)
y

)

.

Then, a direct computation shows that, for any p ∈ U , the torsion of the torus

Zp(θ) =

(

θ
p

)

, with respect to f0 and ω, is T̄
(f,Z)

(p) = Dyω̂(y) Hence, Definition

3.7 extends the usual definition of torsion for integrable systems.

Definition 3.7 will be used for both invariant and approximately invariant tori.

3.3. Intrinsic character of the reducibility and of the torsion

Let f ∈ Symp(A0,A), ω ∈ R
n and K ∈ Emb(Tn,A0). Assume that K is f -

invariant with frequency ω and that Rω is an ergodic rotation. The automatic
reducibility of K = K(Tn) is provided by the following two intrinsic geometric
properties:

R1) The tangent bundle of K, TK, is f∗-invariant and there exists a smooth
function L′

K
: T

n → R
2n×n such that:

a) the column vectors of L′
K

(θ) span TK(θ)K;
b) Df(K(θ))L′

K
(θ) = L′

K
(θ + ω).

R2) There exist a Lagrangian bundle N ′, complementary to TK, and a smooth
function N ′

K
: T

n → R
2n×n such that:

a) the columns vectors of N ′
K

(θ) span NK(θ);

b) the transformation M ′
K

: T
n×R

2n → TKA induced by the matrix

M ′
K

(θ) =
(

L′
K

(θ) N ′
K

(θ)
)

takes the symplectic form ω into the standard form ω0.

Indeed, Property R1 guarantees the block-triangular form, with the identity In in
the top-left corner, of

M ′
K

(θ + ω)−1Dzf(K(θ))M ′
K

(θ)

and Property R2 gives:

(3.10) M ′
K

(θ + ω)−1Dzf(K(θ))M ′
K

(θ) =

(

In T ′
(f,K)

(θ)

On In

)

,

where

T ′
(f,K)

(θ) = N ′
K

(θ + ω)⊤ Ω(K(θ + ω)) Dzf(K(θ)) N ′
K

(θ) .

Part c) in Lemma 3.1 shows that R1 and R2 hold if one chooses L′
K

= L
K

and N ′
K

= N
K

, given in (3.2) and (3.3), respectively. Even if other choices would
also work, this simplifies some computations and some quantitative estimates in
our constructions.

The following result gives a characterization of all possible matrices L′
K

and
N ′
K

satisfying R1 and R2 in terms of the matrices L
K

and N
K

in (3.2) and (3.3).

Proposition 3.9. Let f ∈ Symp(A0,A) be given. Assume that K ∈ Emb(Tn,A0)
is f-invariant with internal dynamics the ergodic rotation Rω. The smooth func-
tions L′

K
: T

n → R
2n×n and N ′

K
: T

n → R
2n×n satisfy R1 and R2 if and only if
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there is an invertible matrix A ∈ R
n×n and a function U : T

n → R
n×n such that,

for all θ ∈ T
n, U(θ) is symmetric and

L′
K

(θ) = L
K

(θ)A,

N ′
K

(θ) = L
K

(θ)U(θ)A−⊤ +N
K

(θ)A−⊤.

Moreover, if

(3.11) M ′
K

(θ) = M
K

(θ)

(

In U(θ)
On In

)(

A On

On A−⊤

)

,

then

M ′
K

(θ + ω)−1Dzf(K(θ))M ′
K

(θ) =

(

In T ′
(f,K)

(θ)

On In

)

,

where

(3.12) T ′
(f,K)

(θ) = A−1
(

U(θ) − U(θ + ω) + T
(f,K)

(θ)
)

A−⊤.

Proof. Straightforward. �

A consequence of Proposition 3.9 is that, under certain regularity conditions,
the dynamics around an invariant torus can be reduced to an block-triangular
matrix with constant coefficients.

Proposition 3.10. Let f ∈ Symp(A0,A) be given. Assume that K ∈ Emb(Tn,A0)
is f-invariant with internal dynamics the rotation Rω. Also assume that ω is Dio-
phantine and T

(f,K)
is sufficiently smooth in such a way that RωT(f,K)

is smooth,

being Rω the one-bite solver operator (see Section 2.5). Let M ′
K

be given by (3.11),
with U(θ) = −RωT(f,K)

(θ). Then,

M ′
K

(θ + ω)−1Dzf(K(θ))M ′
K

(θ) =

(

In A−1
〈

T
(f,K)

〉

A−⊤

On In

)

.

In particular, since T
(f,K)

is symmetric, there is A ∈ R
n×n is such that:

A−1
〈

T
(f,K)

〉

A−⊤ = diag(t1, . . . , tn).

Then, the dynamics of Dzf ◦K is reducible to
(

In diag(t1, . . . , tn)
On In

)

.

Proof. Straightforward. �

The torsion of an invariant torus with rationally independent frequency (see
Definition 3.7) is intrinsic in the following sense.

Proposition 3.11. Let f ∈ Symp(A0,A), K ∈ Emb(Tn,A0) and ω ∈ R
n be as

in Proposition 3.10. If L′
K

and N ′
K

satisfy R1 and R2, then the symmetric matrices
T

(f,K)
and T ′

(f,K)
defined in (3.7) and (3.3), respectively, satisfy

〈

T ′
(f,K)

〉

= A−1
〈

T
(f,K)

〉

A−⊤,

where A ∈ R
n×n is invertible. Hence, the torsion of K with respect to f and ω is

defined up to congruence of matrices.

Proof. This follows from equality (3.12). �
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Remark 3.12. Given f , K and ω as in Proposition 3.11, Sylvester’s law of
inertia and Proposition 3.11 imply that the number of positive/negative/zero eigen-
values of T̄

(f,K)
are invariants of K, f and ω.



CHAPTER 4

Geometric properties of fibered Lagrangian

deformations

In this chapter we introduce the potential for families of parameters and tori
that satisfy certain conditions (specified in Definition 4.1). We show the properties
of the potential that will enables us to connect Singularity and KAM theories.

4.1. The potential of a fibered Lagrangian deformation

Let us first introduce the objects for which we will associate a potential.

Definition 4.1. Let D,Λ ⊂ R
s be open.

i) A Lagrangian deformation with base D is a smooth functionK : D×T
n −→

A0 such that, for each p ∈ D, Kp ≡ K(p, ·) ∈ Lag(Tn,A0).
ii) A fibered Lagrangian deformation (FLD) with base sets D and Λ is a

smooth bundle map

K : D×T
n −→ Λ×A0

(p, θ) −→ (λ(p),Kp(θ)),

such that, for each p ∈ D, Kp ∈ Lag(Tn,A0) and λ : D → Λ is the base
parameter map.

iii) Let ω ∈ R
n and let g : Λ ×A0 → A be a Hamiltonian deformation with

base Λ. A FLD K = (λ,K) : D×T
n → Λ×A0 is g-invariant with frequency

ω if for any p ∈ D, Kp is gλ(p)-invariant with frequency ω:

gλ(p) ◦Kp −Kp ◦ Rω = 0.

We remark that in the Definition 4.1 the dimensions of D and Λ are the same.

Remark 4.2. A FLD, K = (λ,K) : D×T
n → Λ×A0, induces a family of

parameter-torus couples as follows:

(4.1)
D −→ Λ×Lag(Tn,A0)
p −→ (λ(p),Kp).

Since there will not be risk of confusion, the function in (4.1) will also be denoted
by K.

Definition 4.3. Let D,Λ ⊂ R
s open. Let g : Λ×A0 → A be a Hamiltonian

deformation, and let M g and Sg be, respectively, the moment map and the primitive
function of g. Let K : D×T

n → Λ×A0 be a FLD. The momentum and the potential
of K with respect to g are the functions M g,K : D → R

s and V g,K : D → R defined
respectively by:

M g,K(p) = 〈M g(λ(p),K(p, θ))〉 ,

V g,K(p) = −M g,K(p)⊤λ(p) −
〈

Sg
(

λ(p), g−1
λ(p)(K(p, θ))

)〉

.

27
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We say that K is parameterized by the momentum parameter if, for any p ∈ D, the
following holds:

M g,K(p) = p.

If g,K are fixed, we will not include them in the notation.

Remark 4.4. If the momentum of K with respect to g is a diffeomorphism, then
K can be re-parameterized by the momentum parameter. Indeed if p′ = M g,K(p)
and K′(p′, θ) = K

(

(M g,K)−1(p′), θ
)

, then

M g,K′

(p′) = p′.

Remark 4.5. If K = (K,λ) : D×T
n → Λ×A0 is a g-invariant FLD, with

frequency ω, then the potential of K satisfies

V g,K(p) = −M g,K(p)⊤λ(p) − 〈Sg (λ(p),K(p, θ)) 〉 .

The momentum and the potential of invariant FLD do not change under canon-
ical changes of the phase space variable. This is the content of the following result.

Proposition 4.6. Let D,Λ ⊂ R
s be open and let ω ∈ R

n be fixed. Let g :
Λ×A0 → A and K = (λ,K) : D×T

n → Λ×A0 be, respectively, a Hamiltonian
deformation and a g-invariant FLD, with frequency ω. Let ϕ : Λ×A′ → A be
a Hamiltonian deformation such that ϕλ(A′

0) = A0, for all λ ∈ Λ. Define g′ :
Λ×A′

0 → A′ and K′ : D×T
n → Λ×A′

0 by

g′(λ, z) = ϕ−1
λ (gλ(ϕλ(z))) and K′(p, θ) = (λ(p), ϕ−1

λ(p)(Kp(θ))).

Then,

M g′,K′

= M g,K, and V g′,K′

= V g,K.

Proof. Consider the Lagrangian deformation K ′ : D×T
n → A′

0, given by
K ′(p, θ)) = ϕ−1

λ(p)(K(p, θ)). Performing direct computations and using equality

(2.7) and Lemma 2.21 one verifies that the following equalities hold for any p ∈ D:
〈

M g′(λ(p),K ′(p, θ)))
〉

= 〈M g(λ(p),K(p, θ))〉 ,
〈

Sg
′

(λ(p),K ′(p, θ)))
〉

= 〈Sg(λ(p),K(p, θ))〉 .

Proposition 4.6 follows from Definition 4.3 and Remark 4.5. �

The following result motivates the name potential for V g,K. It will enable
us to reduce the infinite-dimensional problem of finding invariant tori for a sym-
plectomorphism in the finite-dimensional problem of finding critical points of the
potential.

Theorem 4.7. Let D,Λ ⊂ R
s be open. Let g : Λ×A0 → A be a Hamiltonian

deformation and ω ∈ R
n. Let K = (λ,K) : D×T

n → Λ×A0 be a FLD. Assume that
K is g-invariant with frequency ω and that it is parameterized by the momentum
parameter p. Then, the following equality holds:

(4.2) λ(p) = −∇pV
g,K(p) .

Hence, for any λ∗ ∈ Λ fixed and any p∗ ∈ D, the torus Kp∗ is gλ∗
-invariant with

frequency ω if and only if p∗ is a critical point of the real-valued function given by
V g,K(p) + p⊤λ∗ .
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Proof. Taking derivatives with respect to p of both sides of the invariance
equation:

(4.3) g(λ(p),K(p, θ)) = K(p, θ + ω),

we have:

(4.4) Dzg(λ(p),K(p, θ))DpK(p, θ) + Dλg(λ(p),K(p, θ))Dpλ(p) = DpK(p, θ + ω).

Performing direct computations and using equalities (4.3) and (4.4) and g∗λα =
α + dSgλ one obtains:

Dp 〈Sg(λ(p),K(p, θ)) 〉 =

= 〈DzS
g(λ(p),K(p, θ))DpK(p, θ) + DλS

g(λ(p),K(p, θ))) Dpλ(p) 〉

=
〈

DλS
g(λ(p),K(p, θ)) − a(g(λ(p),K(p, θ)))⊤Dλg(λ(p),K(p, θ))

〉

Dpλ(p)

= −〈M g(λ(p),K(p, θ)) 〉⊤ Dpλ(p),

where M g is the moment map of g. Then, using Definition 4.3 and Remark 4.5, we
obtain

∇pV
g,K(p) = −DpM

g,K(p)⊤λ(p) = −λ(p),

where we have used that p is the momentum parameter. �

The following result relates the torsion of Kp with the Hessian of the potential
of K. From now on we use the following convention: if R is defined on D×T

n, with
D ⊂ R

s, then Rp denotes the function defined on T
n by Rp(θ) = R(p, θ).

Theorem 4.8. Let D,Λ ⊂ R
s, ω ∈ R

n, g : Λ×A0 → A and K = (λ,K) :
D×T

n → Λ×A0 be as in Theorem 4.7. Let CK, L
K
, N

K
, M

K
and T

(f,K)
be given

by (2.9), (3.2), (3.3), (3.4) and (3.7), respectively. For (p, θ) ∈ D×T
n, take C (p) =

CKp , L(p, θ) = L
Kp

(θ), N(p, θ) = N
Kp

(θ), M(p, θ) = M
Kp

(θ), T (p, θ) = T
(gλ(p),Kp)

and T̄(p) = 〈T (p, θ)〉.
Let M g be the moment map of g. Define Bg : D×T

n → R
2n×s by

(4.5) Bg(p, θ) = (DzM
g(λ(p),K(p, θ + ω))M(p, θ + ω)J0)

⊤
.

Assume that ω ∈ Dn(γ, τ), for some γ > 0 and τ ≥ n and that, for any p ∈ D,
Tp(θ) = T (p, θ) and Bg

p(θ) = Bg(p, θ) are sufficiently smooth so that RωTp and
RωB

g
p are smooth, being Rω the one-bite solver operator (see Section 2.5). Define

W (p) = 〈DzM
g(λ(p),K(p, θ)) (N(p, θ) − L(p, θ)RωT (p, θ)) 〉⊤ .

Then, the following equality holds:

(4.6) T̄(p)DpC (p) = W (p)Hessp V
g,K(p).

In particular, for any λ∗ ∈ Λ fixed, if Kp∗
is a gλ∗

-invariant torus with frequency
ω, with p∗ ∈ D, and the matrices DpC

K(p∗) and W (p∗) are invertible, then the co-
rank of T̄(p∗) equals the co-rank of p∗ as a critical point of V g,K(p) + p⊤λ∗. That
is,

dim ker T̄(p∗) = dim ker HesspV
g,K(p∗).

Proof. Lemma 3.1 implies

(4.7) M(p, θ + ω)−1Dzg(λ(p),K(p, θ))M(p, θ) =

(

In T (p, θ)
On In

)

.
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From Lemma 2.19 and equalities (3.5) and (4.3) we obtain

(4.8) M(p, θ + ω)−1Dλg(λ(p),K(p, θ)) = Bg(p, θ),

Define ξ : D×T
n → R

2n×s by

ξ(p, θ) = M(p, θ)−1DpK(p, θ)

and let Lω and Rω be as in Section 2.5. Then, using equalities (4.4), (4.7) and
(4.8) we have that the following equality holds:

(4.9) (Lω + T̂p)ξp +Bg
p Dpλ(p) = O2n×s,

where

T̂p(θ) =

(

On Tp(θ)
On On

)

.

Applying Rω on both sides of (4.9) and use (2.18) to get

(4.10) ξp = (I2n −RωT̂p) 〈ξp〉 − Rω(Bg
p − T̂p RωB

g
p )Dpλ(p).

Equality (4.9) also implies

(4.11)
〈

T̂p ξp +Bg
p Dpλ(p)

〉

= O2n×s.

Combining (4.10) and (4.11) one obtains
〈

T̂p

〉

〈ξp〉 = −
〈

Bg
p − T̂p RωB

g
p

〉

Dpλ(p),

which is equivalent to

T̄(p)
〈

ξy
p

〉

=
〈

Bg,x
p

− Tp RωB
g,y
p

〉

HesspV
g,K(p),(4.12)

On×s =
〈

Bg,y
p

〉

HesspV
g,K(p),(4.13)

where we have used (4.2) and P x = πxP =
(

In On

)

P and P y = πyP =
(

On In
)

P , for P ∈ R
2n×m. Note that equation (4.13) can also be obtained using

that M g is 1-periodic in x:

(4.14)
〈

Bg,y
p

〉

= −〈Dθ (M g(λ(p),K(p, θ))〉⊤ = On×s.

Moreover, since Kp is gλ(p)-invariant with frequency ω, we have that the torsion

matrix T̄(p) is symmetric. Then, using (2.21), (4.5) and (4.12) we have

T̄(p)
〈

ξy
p

〉

=
〈

Bg,x
p

+ (RωTp ◦ Rω)Bg,y
p

〉

HesspV
g,K(p)

= 〈 (DzM
g ◦ K)(Np − LpRωTp )〉⊤ HesspV

g,K(p).

Finally, using (2.1), (2.12) and (2.13) one obtains

DpC (p) = Dp

〈

Dza(K(p, θ))⊤DθK(θ)
〉⊤

= −
〈

DθK(p, θ)⊤Ω(K(p, θ))DpK(p, θ)
〉

=
〈

ξy
p

〉

.

This finishes the proof of Theorem 4.8. �

Remark 4.9. The matrices T̄p and HesspV
g,Φ(p) in (4.6) are symmetric. More-

over, the terms involved in the equality (4.6) have the following meaning.

i) HesspV
g,Φ(p) is the variation of λ(p) as p moves.

ii) Dp C (p) is the variation of the averaged action of Kp as p moves.



4.1. THE POTENTIAL OF A FIBERED LAGRANGIAN DEFORMATION 31

iii) Let N ′
p the normal bundle spanned by the column vectors of N ′

p = Np −

LpRωTp. Then, T̄(p) measures how much N ′
p is twisted in average when

applying the push-forward (gλ(p))∗.
iv) W (p) is the averaged action of DzG ◦ K on N ′

p.

The invertibility of DpC (p) means that the averaged action of Kp changes
when p changes. This depends only on the Lagrangian deformation K : D×T

n →
A0 and on the symplectic form ω (it is independent of the action form α). The
invertibility of W (p) is a transversality condition of the family Kp with respect to
the deformation g. Indeed, from Lemma 2.19 we have

W (p) =
〈

DzG(λ(p),K(p, θ))N ′
p(θ)

〉⊤

=
〈

N ′
p(θ + ω)⊤Ω(K(p, θ + ω))Dλg(λ(p),K(p, θ))

〉

Then, W (p) is invertible if N ′
p is ‘transversal’ to g.

4.1.1. Intrinsic character the relation between the torsion and the
potential. Let Λ,D ⊂ R

s be open, let g : Λ×A0 → A be a Hamiltonian deformation
and let K = (λ,K) : D×T

n → Λ×A0 be a g-invariant FLD with frequency ω ∈ R
n.

Assume that the rotation Rω is ergodic and that K is parameterized by the moment
parameter. Then, the relation between the torsion of Kp, with respect to gλ(p) and
ω, and the Hessian of the potential, given in equality (4.6), is an intrinsic property
of g and K, in the following sense.

Proposition 4.10. Assume the hypotheses of Theorem 4.8 hold. Then, equality
(4.6) does not depend on the choice of the symplectic vector bundle map that reduces
the linearized dynamics Dzgλ(p)◦Kp into an block-triangular form, with the identity
on the diagonal.

Proof. From Proposition 3.9 we have that any symplectic vector bundle map
that reduces Dzgλ(p) ◦Kp has the following form:

M ′
p(θ) = M

p
(θ)

(

In Up(θ)
On In

)(

Ap On

On A−⊤
p

)

,

where Ap is an n×n invertible matrix which is independent of θ, and Up : T
n → R

n×n

is smooth and such that Up(θ) is symmetric, for all θ ∈ T
n. Define

B
′g
p (θ) =

(

DzM
g(λ(p),K(p, θ + ω))M ′

p(θ + ω)J0

)⊤
,

T ′
p(θ) = A−1

p (Lω Up + Tp)A
−⊤
p ,

T̂ ′
p(θ) =

(

On T ′
p(θ)

On On

)

,

ξ′p(θ) = M ′
p(θ)

−1DpK(p, θ) ,

where Lω is given in (2.15). Following the same steps we did in the proof of Theorem
4.8 one shows that the following equality holds:

(4.15)
〈

T̂ ′
p

〉

〈

ξ′p
〉

= −
〈

B
′g
p − T̂ ′

p Rω B
′g
p

〉

Dpλ(p) .

Now, performing some computations and using (2.21) and (4.14) one shows that
the following equality holds:

〈

B
′g
p − T̂ ′

p Rω B
′g
p

〉

=

(

A−1
p On

On A⊤
p

)

〈

Bg
p − T̂p Rω B

g
p

〉

,
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Then, equality (4.15) is equivalent to:
〈

T̂p

〉

〈(

In −Up

On In

)

ξp

〉

= −
〈

Bg
p − T̂p RωB

g
p

〉

Dpλ(p),

which is equivalent to (4.6). �

4.2. A parametric version of the potential

For future reference, we establish here Theorem 4.11, a parametric version of
theorems 4.7 and 4.8. This will enable us to apply Singularity Theory to study
non-twist tori. Theorem 4.11 can be proved in a similar way theorems 4.7 and 4.8
were proved.

Let U×Λ ⊂ R
k×R

s be open and let g : U×Λ×A0 → A be a Hamiltonian
deformation, with base U×Λ. We say that gµ(λ, z) = g(µ, λ, z) is a µ-parametric
family of Hamiltonian deformations with base Λ. Let M g be the moment map of
g, then for each µ ∈ U , the moment map of gµ is given by

πλM
g(µ, λ, z) =

(

Os×k Is
)

M g(µ, λ, z)

= a(z)⊤Dλg(µ, λ, g
−1
(µ,λ)(z)) − DλS̃

g(µ, λ, g−1
(µ,λ)(z)).

We call πλM
g(µ, ·, ·) the µ-parametric family of moment maps of the µ-parametric

family of Hamiltonian deformations gµ.
Let U0 ⊂ U , D ⊂ R

s be open. A parametric FLD with base sets D and Λ and
parameter µ ∈ U0 is a smooth function

K : U0×D×T
n −→ Λ×A0

(µ, p, θ) −→ (λ(µ, p),K(µ, p, θ)) ,

such that for any µ ∈ U0 fixed, Kµ(p, θ) = K(µ, p, θ) is a FLD with base sets D
and Λ.

Theorem 4.11. Let D,Λ ⊂ R
s and U ⊂ R

k be open and let ω ∈ R
n Let

g : U×Λ×A0 → A be a Hamiltonian deformation, with base U×Λ and moment
map M g. Assume that K = (λ,K) : U0×D×T

n → Λ×A0 is a parametric family of
FLD, with base sets D and Λ and parameter µ ∈ U0 ⊂ U , such that:

g(µ,λ(µ,p)) ◦K(µ,p) −K(µ,p) ◦ Rω = 0,(4.16)

M g,K,λ(µ, p) = p,(4.17)

where M g,K,λ : U0×D → R
s is the µ-parametric family of momenta with respect to

λ:

(4.18) M g,K,λ(µ, p) = πλ 〈M g(µ, λ(µ, p),K(µ, p, θ)〉 .

Then the following hold.

a) The parametric potential V g,K : U0×D → R, defined by

(4.19) V g,K(µ, p) = − p⊤λ(µ, p) − 〈Sg (µ, λ(µ, p),K(µ, p, θ)) 〉 ,

satisfies

λ(µ, p) = −∇pV
g,K(µ, p) .

b) For any λ∗ ∈ Λ, µ∗ ∈ U0 and p∗ ∈ D, the torus K(µ∗,p∗) is g(µ∗,λ∗)-invari-
ant with frequency ω if and only if p∗ is a critical point of V g,K(µ∗, p) +
p⊤λ∗.
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c) Let CK, L
K
, N

K
, M

K
and T

(f,K)
be given by (2.9), (3.2), (3.3), (3.4) and

(3.7), respectively. For (µ, p, θ) ∈ U0×D×T
n, take C (µ, p) = CK(µ,p) ,

L(µ, p, θ) = L
K(µ,p)

(θ), N(µ, p, θ) = N
K(µ,p)

(θ), M(µ, p, θ) = M
K(µ,p)

,

T (µ, p, θ) = T
(g(µ,λ(µ,p)),K(µ,p))

, T̄(µ, p) = 〈T (µ, p, θ)〉. Let M g be the mo-

ment map of g. Define

Bg,λ(µ, p, θ) = (DzπλM
g(µ, λ(µ, p),K(µ, p, θ + ω))M(µ, p, θ + ω)J0)

⊤
,

Assume that ω ∈ Dn(γ, τ), for some γ > 0 and τ ≥ n and let Rω be the
one-bite solver operator (see Section 2.5). Assume that for any p ∈ D,

T(µ,p)(θ) = T (µ, p, θ) and Bg,λ
(µ,p)(θ) = Bg,λ(µ, p, θ) are sufficiently smooth

so that RωT(µ,p) and RωB
g,λ
(µ,p) are smooth, being Rω the one-bite solver

operator (see Section 2.5). Define

W (µ, p)= 〈DzπλM
g(µ, λ(µ, p),K(µ, p, θ))N(µ, p, θ) 〉⊤

− 〈DzπλM
g(µ, λ(µ, p),K(µ, p, θ))L(µ, p, θ)RωT (µ, p, θ)〉⊤ .

(4.20)

Then, the following equality holds:

T̄(µ, p)DpC (µ, p) = W (µ, p)Hessp V
g,K(µ, p) .

d) For any λ∗ ∈ Λ, µ∗ ∈ U0 and p∗ ∈ D, if K(µ∗,p∗) is a g(µ∗,λ∗)-invariant
torus with frequency ω and DpC

K(µ∗, p∗) and W (µ∗, p∗) are invertible,
then the co-rank of T̄(µ∗, p∗) equals the co-rank of p∗ as a critical point
of the function V g,K(µ∗, p) + p⊤λ∗, i.e.

dim ker T̄(µ∗, p∗) = dim ker HesspV
g,K(µ∗, p∗).

With the obvious modifications, a parametric version of Proposition 4.10 holds.





Part 2

Parametric KAM results





CHAPTER 5

Nondegeneracy on a KAM procedure with fixed

frequency

Here we formulate a nondegeneracy condition that guarantees the construction
of an iterative procedure to find invariant tori with fixed Diophantine frequency.
This nondegeneracy condition is more general than the usual twist condition. In the
standard KAM results, the nondegeneracy condition is chosen in such a way that,
in an iterative procedure, the small divisors equations can be solved by adjusting
the average of the tori. In parametric KAM results, the averages can be adjusted
either by adjusting the parameters or by adjusting the average of the tori. If one
requires to keep fix the average of the tori, the nondegeneracy condition relies on
adjusting the parameters. Similar, but somewhat different ideas appear in [62, 73].

Throughout this chapter, A0 ⊂ A are assumed to be annuli endowed with
the compatible triple (ω = dα,J , g) with coordinate representation (Ω = Da⊤ −
Da, α, J,G). ω = dα.

5.1. Approximate reducibility of approximately invariant tori

Here we show that the properties of invariant tori for symplectomorphisms
stated in Lemma 3.1 are slightly modified when the torus is only approximately
invariant. We also provide explicit estimates.

The following well-known Cauchy estimate (see e.g. [74]) will be used.

Lemma 5.1 (Cauchy estimate). There exists a positive constant c, depending
only on n, such that for all ρ > 0 and 0 < δ < ρ, if η ∈ Cω(Tn

ρ ) then Dθη ∈
Cω(Tn

ρ−δ), and

‖Dθ η‖ρ−δ ≤ c δ−1 ‖η‖ρ .

Let A ⊂ A be an annulus endowed with the compatible triple (ω = dα,J , g),
which is assumed to be real-analytic, i.e. holomorphic in a complex strip B of
A. Assume that the C1-norms on B of the components of a, Ω, Ω−1, J , G, G−1

are bounded by a positive constant denoted by csymp. A0 ⊂ A is an annulus and
B0 ⊂ B is a complex strip of A0. The following is the main result of this section.

Lemma 5.2. Let f ∈ Symp(B0,B, C
2) and K ∈ Emb(Tn

ρ ,B0, C
1), for some ρ >

0 such that γρτ < 1. Assume that K is approximately f-invariant with frequency
ω and error given by:

(5.1) e = f ◦K −K ◦ Rω .

Then, there is a constant κ, depending on n, τ , csymp and polynomially on ‖Dzf(K(θ))‖ρ,

‖DθK‖ρ and
∥

∥

∥(GK
)
−1
∥

∥

∥

ρ
, such that for any 0 < δ < ρ/2 fixed, the following prop-

erties hold.

37
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a) The Calabi invariant of f , Cf , satisfies

|Cf | ≤ κ ρ−1 ‖e‖ρ .

b) K = K(Tn) is approximately Lagrangian in the sense that the matrix
Ω
K

= DθK(θ)⊤Ω(K(θ))DθK(θ) satisfies

‖Ω
K
‖ρ−2δ ≤ κ γ−1δ−(τ+1) ‖e‖ρ .

c) The matrix M
K
, defined by (3.4), is approximately symplectic in the sense

that the matrix defined by

Rs
K

(θ) = M
K

(θ)⊤Ω(K(θ))M
K

(θ) − Ω0

satisfies
∥

∥Rs
K

∥

∥

ρ−2δ
≤ κ γ−1 δ−(τ+1) ‖e‖ρ .

d) The linearized dynamics Dzf ◦K is approximately reducible, in the sense
that the matrix

Rr
(f,K)

(θ) = − Ω0MK
(θ + ω)⊤Ω(K(θ + ω))Dzf(K(θ))M

K
(θ)

−

(

In T
(f,K)

(θ)
On In

)

,

with T
(f,K)

defined in (3.7), satisfies
∥

∥

∥
Rr

(f,K)

∥

∥

∥

ρ−2δ
≤ κ γ−1δ−(τ+1) ‖e‖ρ .

e) If the error e is sufficiently small such that

κ γ−1δ−(τ+1) ‖e‖ρ < 1 ,

then for any θ ∈ T
n
ρ−2δ, M(θ) is invertible and

Ri
K

(θ) = M
K

(θ)−1 + Ω0MK
(θ)⊤Ω(K(θ))

with
∥

∥Ri
K

∥

∥

ρ−2δ
≤ κ γ−1δ−(τ+1) ‖e‖ρ .

Proof. Taking derivatives in (5.1) we have:

(5.2) Dθe(θ) = Dzf(K(θ))DθK(θ) − DθK(θ + ω) .

Let S̃f(z) = x⊤Cf + Sf(x) be the local primitive function of f . Part a) follows by
using Cauchy estimates (Lemma 5.1) and the following equality:

(Cf)⊤ =
〈

(a(f(K(θ))) − a(K(θ + ω)))
⊤

DθK(θ + ω))
〉

+

+
〈

a(f(K(θ)))⊤Dθe(θ)
〉

,

which is obtained using (5.2).
To prove Part b), first notice that 〈ΩK〉 = 0 (see the proof of Lemma 3.1).

Next, let Lω be as in Lemma 2.29, then we have

LωΩ
K

(θ) = DθK(θ + ω)⊤∆Ω(θ)DθK(θ + ω)

+ DθK(θ + ω)⊤Ω(f(K(θ)))Dθe(θ)

+ Dθe(θ)
⊤Ω(f(K(θ)))Dzf(K(θ))DθK(θ) ,

where
∆Ω(θ) = Ω(f(K(θ))) − Ω(K(θ + ω)) .
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Moreover, using the Mean Value Theorem we have

‖∆Ω(θ)‖ρ ≤ c ‖DzΩ‖B ‖e‖ρ ,(5.3)

where c depends only on n. Par b) of Lemma 5.2 follows from the above observa-
tions, Lemma 2.29 and Cauchy estimates (Lemma 5.1).

Performing straightforward computations one shows that

Rs
K

(θ) =

(

Ω
K

(θ) On

On G
K

(θ)−1Ω
K

(θ)G
K

(θ)−1

)

,

from which Part c) follows.
Part d) is proved by computing the four (n×n)-block components of

−J0MK
(θ + ω)⊤Ω(K(θ + ω))Dzf(K(θ))M

K
(θ) ,

which are:

N
K

(θ + ω)⊤Ω(K(θ + ω))Dzf(K(θ))L
K

(θ) = In+

+N
K

(θ + ω)⊤Ω(K(θ + ω))Dθe(θ),

N
K

(θ + ω)⊤Ω(K(θ + ω))Dzf(K(θ))N
K

(θ) = T
K

(θ) ,

−L
K

(θ + ω)⊤Ω(K(θ + ω))Dzf(K(θ))L
K

(θ) = On+

− Ω
K

(θ + ω) − L
K

(θ + ω)⊤Ω(K(θ + ω))Dθe(θ) ,

−L
K

(θ + ω)⊤Ω(K(θ + ω))Dzf(K(θ))N
K

(θ) = In+

+ L
K

(θ + ω)⊤∆Ω(θ)Dzf(K(θ))N
K

(θ)+

− Dθe(θ)
⊤Ω(f(K(θ)))Dzf(K(θ))N

K
(θ) ,

where ∆Ω satisfies (5.3) and L
K

and N
K

are defined by (3.2) and (3.3), respectively.
Now, if ‖e‖ρ is sufficiently small such that

∥

∥Ω0R
s
K

∥

∥

ρ−2δ
< 1/(2n), then for any

θ ∈ T
n
ρ−2δ , Ω0 +Rs

K
(θ) = M

K
(θ)⊤Ω(K(θ))M

K
(θ) is invertible and moreover

∥

∥(Ω0 +Rs
K

)−1
∥

∥

ρ−2δ
< 2 .

Hence, M
K

(θ) is also invertible. Moreover, simple computations involving the Neu-
mann series show that

Ri
K

(θ) = Ω0R
s
K

(θ)(Ω0 +Rs
K

(θ))−1M
K

(θ)⊤Ω(K(θ)) .

�

5.2. Dummy and modifying parameters

Let f ∈ Symp(A0,A) and ω ∈ Dn(γ, τ) be fixed. A torus K ∈ Emb(Tn,A0)
is f -invariant with frequency ω if and only if the following functional equation is
satisfied:

(5.4) f ◦K = K ◦ Rω .

Under the hypotheses of Lemma 5.2, an iterative procedure to find solutions (5.4)
can be constructed if the linear equation

(5.5) (Lω + T̂
(f,K)

) ξ = η
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can be solved, where Lωu = u− u ◦ Rω and

T̂
(f,K)

(θ) =

(

On T
(f,K)

On On

)

,

with T
(f,K)

defined in (3.7).
For shake of clearness and to reduce the amount of technical details, all the

functions considered here are assumed to be sufficiently smooth so that Rω, the
one-bite solver operator (see Section 2.5), applies as many times as needed. Under
this assumption, the equation (5.5) has a solution if and only if there is a ξy

0 ∈ R
n

such that the following hold:

T̄
(f,K)

ξy
0 =

〈

ηx + (Rω T(f,K)
◦ Rω) ηy

〉

,(5.6)

0 = 〈 ηy 〉 ,(5.7)

where we have used (2.21) and (5.5) to obtain (5.6). Moreover, if η and ξy
0 satisfy

(5.6) and (5.7), then for any ξx
0 ∈ R

n, the function ξ : T
n → R

2n defined by

(5.8) ξ = (I2n −RωT̂(f,K)
) ξ0 + Rω(η − T̂

(f,K)
Rω η) ,

with ξ0 =

(

ξx
0

ξy
0

)

∈ R
2n, satisfies equality (5.5). Conversely, any solution of (5.5)

can be written as in (5.8), for some ξ0 ∈ R
2n and ξy

0 a solution of (5.6).

The uniqueness of the solutions of (5.5) depends on the kernel of Lω + T̂
(f,K)

.

It is clear that a smooth function ξ : T
n → R

2n is in the kernel of Lω + T̂
(f,K)

if

and only if there are ξx
0 ∈ R

n and ξy
0 ∈ ker T̄

(f,K)
such that

ξ = (I2n −RωT̂(f,K)
) ξ0.

Hence, the dimension of the kernel of Lω+T̂
(f,K)

is n+dim ker T̄
(f,K)

, where T̄
(f,K)

=
〈

T
(f,K)

〉

is the torsion of K with respect to f and ω.

The n-dimensional part of the kernel of Lω +T̂
(f,K)

is due to the non-uniqueness

of the parameterizations of invariant tori (if K is a solution of (5.4), then for any
θ0 ∈ R

n, K ◦ Rθ0
is also a solution of (5.4)). The n-dimensional part of the kernel

of Lω + T̂
(f,K)

can be determined by fixing the initial phase of the torus. That is,

look for solutions of (5.4) satisfying the following n-dimensional constraint:

(5.9) 〈Kx(θ) − θ〉 = 0 .

Under the hypotheses of Lemma 5.2, an iterative procedure to solve equations
(5.4) and (5.9) depends on the solvability properties of (5.5) with the following n-
dimensional constraint

(5.10) πx 〈MK
(θ) ξ(θ)〉 = 0 ,

where M
K

is defined in (3.4) and πxP =
(

In On

)

P , for P ∈ R
2n×m.

Hence if η : T
n → R

2n is sufficiently smooth, the linear equations (5.5) and
(5.10) have a solution if and only if the following 3n×2n-dimensional linear system
has a solution ξ0 ∈ R

2n:

(5.11)





On T̄
(f,K)

On On

In πx

〈

N
K
− L

K
RωT(f,K)

〉



 ξ0 = b ,
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where

(5.12) b =











〈

ηx + (Rω T(f,K)
◦ Rω) ηy

〉

〈ηy〉

−πx

〈

M
K
Rω

(

η − T̂
(f,K)

Rωη
)〉











,

and L
K

and N
K

are given in (3.2) and (3.3), respectively. Moreover, the solutions
are of the form (5.8).

Summarizing, the existence of solutions of (5.5) and (5.10) is guaranteed by
the smoothness of η and T

(f,K)
and the existence of a solution of (5.11). Moreover,

the uniqueness of the solutions of (5.5) and (5.10) depends only on the uniqueness
of the solutions of (5.11), i.e. on the kernel of the torsion T̄

(f,K)
.

In an iterative procedure to solve the non-linear equations (5.4) and (5.9), the
right hand part of (5.5) takes the following form:

(5.13) η(θ) = J0MK
(θ + ω)⊤Ω(K(θ + ω))e(θ),

where e(θ) = f(K(θ)) −K(θ + ω). A sufficient condition to perform a step of the
iterative procedure is:

(5.14) πy

〈

J0MK
(θ + ω)⊤Ω(K(θ + ω))e(θ)

〉

= 0.

In [18] it was proved that if f is exact symplectic, then the left hand side of (5.14)
has norm of quadratic order with respect to the error e(θ). Then, using the twist
condition, an iterative procedure to solve (5.4) was constructed solving at each step
a modified linear equation of the following form:

(Lω + T̂
(f,K)

) ξ = η −

(

0
〈ηy〉

)

.

Here we adopt a different technique. First, we embed the non-linear equation (5.4)
into a family of equations by introducing a parameter σ ∈ R

n (dummy parameter)
such that, at the iterative procedure, σ adjusts the average of the term ηx and at
the end (but not at the intermediate steps) it is equal to zero. To obtain the later
property, we use the fact that the existence of an f -invariant torus, with dynamics
an ergodic rotation, implies the exactness of f (Lemma 3.1). Hence, the parameter
σ is introduced in such a way that the Calabi invariant of f is changed. Second,
rather than assuming that the torsion T̄

(f,K)
is invertible (twist condition), we fix

s ∈ N with 0 ≤ s ≤ n and introduce a parameter λ ∈ R
s (modifying parameter) in

such a way that, at the iterative procedure, λ controls the possible degeneracies of
T̄

(f,K)
and at the end f -invariant tori with frequency ω are obtained making λ = 0.

Let us make precise these definitions.

Definition 5.3. Let A1 ⊆ A be an annulus and let Λ ⊂ R
s be an open

neighborhood of 0, with 0 ≤ s ≤ n. A modifying deformation with base Λ is a
symplectic deformation h : Λ×A1 → A, such that:

i) Ch(λ) = 0, for all λ ∈ Λ;
ii) h0 = id and Sh0 = 0;
iii) hλ ◦K = K for some K ∈ Emb(Tn,A0) if and only if λ = 0.

Definition 5.4. Let A2 ⊂ A0 be an annulus and let Σ ⊂ R
n be an open

neighborhood of 0. A dummy deformation with base Σ is a symplectic deformation
d : Σ×A2 → A, such that:
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i) Cd(σ) = σ, for all σ ∈ Σ;
ii) d0 = id and Sd0 = 0.

Example 5.5. An example of a modifying deformation, hλ, is the time-1 flow
of the Hamiltonian vector field Ω(z)−1∇z

(

λ⊤y
)

. It is not difficult to check that
the moment map of h satisfies M h(0, z) = y.

If the symplectic structure is the standard one, the symplectomorphisms hλ are
translations in the x-direction. In this case, the moment map is autonomous (i.e.
independent of λ) and M h(λ, z) = y.

Example 5.6. An example of a dummy deformation, dσ, is the time-1 flow
of the symplectic vector field Ω(z)−1∇z

(

−σ⊤x
)

. Notice that dx1, . . . ,dxn are the
generators of the first cohomology group of the annulus, whose elements are of the
form σ1dx1 + · · ·+σndxn (see Proposition 2.5a in [40]). If the symplectic structure
is the standard one, the symplectomorphisms dσ are translations in the y-direction.
Then, the parameter σ can be viewed as a generalization of the translation in the
translated curve technique [9, 57, 73].

Remark 5.7. A dummy parameter changes the Calabi invariant of (hλ ◦ f).
For Cdσ (σ) = σ, Ch(λ) = 0 imply

C(dσ◦hλ◦f) = σ + Cf .

If f is assumed to be exact, then dσ ◦ hλ ◦ f is exact if and only if σ = 0. In such a
case, from Lemma 3.1, we have that the only elements of the family dσ ◦hλ ◦f that
might have invariant tori are those for which σ = 0. This is the reason for which σ
is called ‘dummy parameter’.

Remark 5.8. The torus K ∈ Emb(Tn,A0) is (hλ∗
◦f)-invariant with frequency

ω, if and only if

(5.15) f ◦K = h−1
λ∗

◦K ◦ Rω .

Hence, K can be viewed as an h−1
λ∗

-transformed torus for f . Moreover, K is f -
invariant with frequency ω if and only if λ∗ = 0. This property is achieved by
condition (iii) in Definition 5.3.

Lemma 5.9. Let U ⊂ R
k and Λ ⊂ R

s be open, with 0 ∈ Λ and 0 ≤ s ≤ n.
Let f : U×A0 → A be a Hamiltonian deformation such that fµ(A0) ⊂ A1 for all
µ ∈ U and let h : Λ×A1 → A be a modifying family. Then, the moment map of
g(µ,λ) = hλ ◦ fµ , satisfies

(5.16) M g(µ, λ, z) =

(

M f(µ, h−1
λ (z))

M h(λ, z)

)

,

where M f is the moment map of f and M h is the moment map of h.

Proof. This follows from Definition 2.17 and Lemma 2.21. �

Let h : Λ×A → A and d : Σ×A → A be, respectively, a modifying deformation
and dummy deformation. To find solutions of (5.4) and (5.9), we find sufficient
conditions guaranteeing the existence of solutions of the following modified non-
linear equations:

dσ ◦ hλ ◦ f ◦K −K ◦ Rω = 0 ,(5.17)

〈Kx(θ) − θ〉 = 0 ,(5.18)
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where the unknown are the parameters σ and λ and the embedding K : T
n → A0.

To simplify notation let

f(σ, λ, z) = (dσ ◦ hλ ◦ f)(z),

Let M̃ f , M h, M̃ d be the (local) moment maps of, respectively, f , h and d. It is easy
to verify that the following equality holds:

(5.19) M̃ f(σ, λ, z) =

(

M̃ d
σ

M h

λ ◦ d−1
σ

)

.

We now find sufficient conditions that guarantee an iterative procedure to solve
(5.17)-(5.18) can be constructed. We study the solvability of the linearized equa-
tions around an approximate solution. Let K : T

n → A0 be smooth and let σ ∈ Σ
and λ ∈ Λ be such that (σ, λ,K) is an approximate solution of (5.17)-(5.18).

Let T
(σ,λ,K)

: T
n → R

n×n, T̂
(σ,λ,K)

: T
n → R

2n×2n, B
(σ,λ,K)

: T
n → R

2n×(n+s) be
given by, respectively:

T
(σ,λ,K)

(θ) = N
K

(θ + ω)⊤ Ω(K(θ + ω)) Dzf(σ, λ,K(θ)) N
K

(θ),

T̂
(σ,λ,K)

(θ) =

(

On T
(σ,λ,K)

(θ)
On On

)

,

(5.20) Bf

(σ,λ,K)
(θ) =

(

DzM̃
f(σ, λ,K(θ + ω))M

K
(θ + ω)J0

)⊤
.

Under the hypotheses of Lemma 5.2 we have that the change of variables ∆K =
M

K
ξ transforms, up to quadratic errors, Dzf(σ, λ,K(θ)) into an block-triangular

system. That is the norm of

M
K

(θ + ω)−1Dzf(σ, λ,K(θ))M
K

(θ) − (In + T̂
(σ,λ

(θ))

is quadratic with respect to the norm of the error

(5.21) e(σ,λ,K)(θ) = f(σ, λ,K(θ)) −K(θ + ω).

Moreover, using Lemma 5.2 and Lemma 2.19 one obtains that the norm of

M
K

(θ + ω)−1D(σ,λ)f(σ, λ,K) −Bf

(σ,λ,K)
(θ)

is also quadratic with respect to the norm of the error e(σ,λ,K) in (5.21). Explicit
estimates can be easily derived from the estimates given in Lemma 5.2. Hence, an
iterative procedure to solve (5.17)-(5.18) depends on the solvability properties of
the following linear equations:

(Lω + T̂
(σ,λ,K)

) ξ +Bf

(σ,λ,K)
δ = η,(5.22)

πx 〈MK
ξ 〉 = 0,(5.23)

where δ = (δσ, δλ) ∈ R
n+s.

Applying Rω in (5.22) and using equality (2.18) we have:

ξ = ξ0 −Rω(T̂ ξ) −RωB
f δ + Rωη

= ξ0 −Rω(T̂ (ξ0 −Rω(T̂ ξ) −RωB
f δ + Rωη )) −RωB

f δ + Rωη

= (I −RωT̂ )ξ0 −Rω(Bf − T̂ RωB
f ) δ + Rω(η − T̂Rωη),

where ξ0 = 〈ξ〉. For typographic simplicity we do not include in the notation the
dependence on (σ, λ,K). Hence, any solution of (5.22) is of the following form:

(5.24) ξ = (I −RωT̂ )ξ0 −Rω(Bf − T̂ RωB
f ) δ + Rω(η − T̂Rωη).
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Moreover, a direct computation shows that (ξ, δ) in (5.24) is a solution of
(5.22)-(5.23) if and only if the following linear system has a solution (compare with
(5.11)):

(5.25)





On T̄ Q13 Q14

On On Q23 Q24

In Q32 Q33 Q34





(

ξ0
δ

)

= b,

where b is given in (5.12),

T̄ = 〈T 〉 ,(5.26)

Q32 = πx 〈N − LRωT 〉 ,(5.27)
(

Q13 Q14

)

=
〈

Bf ,x − T Rω B
f ,y
〉

,(5.28)
(

Q23 Q24

)

=
〈

Bf ,y
〉

,(5.29)
(

Q33 Q34

)

= −πx

〈

M
K
Rω(Bf − T̂RωB

f )
〉

.(5.30)

Let us now show that indeed equation (5.25) determines the increment of the
parameter, δ = (δσ, δλ) ∈ R

n+s, in such a way that δσ controls 〈ηy〉 and δλ deals
with the possible degeneracies of T̄(σ, λ,K). Write the local primitive function of
f(σ,λ) as follows (see Remark 2.18):

M̃ f(σ, λ, z) = M f(σ, λ, z) − D(σ,λ)C
f(σ, λ)⊤x,

with M f(σ, λ, z) 1-periodic in x. Then using (5.20) and (5.29) obtains
(

Q23(σ, λ,K) Q24(σ, λ,K)
)

= −
〈

DzM̃
f(σ, λ,K(θ))L

K
(θ)
〉

= −
〈

DθM̃
f(σ, λ,K(θ))

〉

= −〈DθM
f(σ, λ,K(θ)) 〉 + D(σ,λ)C

f(σ, λ)

=
(

In On×s

)

.

Hence, the linear system (5.25) is equivalent to

(5.31)





On T̄ Q13 Q14

On On In On×s

In Q32 Q33 Q34





(

ξ0
δ

)

= b ,

which determines δσ = 〈ηy〉 ∈ R
n. Moreover, thanks to δλ, the solvability of (5.31)

does not relies only on the invertibility of the torsion T̄
(σ,λ,K)

(twist condition).

To overcome the under-determination of (5.31) we impose to the solutions
(σ, λ,K) of (5.17)-(5.18) an s-dimensional constraint. The constraint that is useful
for our proposals is the following

(5.32) 〈M h(λ,K)〉 = p ,

where p ∈ R
s is given and M h is the moment map of h. The constraint (5.32)

enables us to obtain parametric families of FLD, parameterized by the momentum
(see Section 4.1). Equation (5.32) adds the following s-dimensional equation to
(5.22)-(5.23)

(5.33)
〈

DzM
h(λ,K)M

K
ξ + DλM

h(λ,K) δλ
〉

= p− 〈M h(λ,K)〉 .

Define

(5.34) U
(σ,λ,K)

= DzM
h(λ,K)M

K
Rω(Bf

(σ,λ,K)
− T̂(σ,λ,K)RωB

f

(σ,λ,K)
) .
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Using (5.24), (5.31) and (5.34) one verifies that the linear equations (5.22), (5.23)
and (5.33) has a solution if and only if the following linear system has a solution

(5.35)









On T̄ Q13 Q14

On On In On×s

In Q32 Q33 Q34

Q41 Q42 Q43 Q44

















ξx
0

ξy
0

δσ

δλ









= c

where

Q41 = 〈DzM
h(λ,K(θ))L

K
(θ) 〉 ,(5.36)

Q42 =
〈

DzM
h(λ,K(θ))(N

K
(θ) − L

K
(θ)RωT(σ,λ,K)(θ))

〉

,(5.37)

Q43 = −
〈

U
(σ,λ,K)

(θ)
〉

(

In
Os×n

)

,(5.38)

Q44 = 〈DλM
h(λ,K(θ))〉 −

〈

U
(σ,λ,K)

(θ)
〉

(

On×s

Is

)

,(5.39)

c =

(

b

p− 〈M h(λ,K)〉 −
〈

DzM
h(λ,K)M

K
(η − T̂

(σ,λ,K)
Rωη)

〉

)

,

with b given by (5.12).
Notice that, since M h(λ, z) is 1-periodic in x we have:

(5.40) Q41 = 〈Dθ(M
h

λ ◦K)〉 = Os×n .

Hence, the existence and uniqueness of solutions of the linear equation (5.35) is
guaranteed by the invertibility of the following (n+s)×(n+s)-dimensional matrix.

(5.41)

(

T̄
(σ,λ,K)

Q14(σ, λ,K)
Q42(σ, λ,K) Q44(σ, λ,K)

)

,

with T̄, Q14, Q42 and Q44 given in (5.26), (5.28), (5.37) and (5.39), respectively.

To find a solution of (5.4) we find p-parametric family (λ(p),Kp) of solutions
of (5.17), (5.18) and (5.32). Then, solve the finite dimensional equation λ(p) = 0.
In several cases (e.g. the close-to-integrable case), it is possible to start with a
torus K that is approximately invariant for hλ ◦ f , for some λ ∈ Λ. In this case,
an iterative procedure can be performed if the the matrix in (5.41) is invertible at
(0, λ,K). We now analyze the form of the matrix in (5.41) in the case that σ = 0.
First, from (5.19) and (5.20) we have:

Bf

(σ,λ,K)
(θ)

(

On×s

Is

)

=

(DzM
h(λ, d−1

σ (K(θ + ω)))Dzd
−1
σ (K(θ + ω))M

K
(θ + ω)J0 )⊤ ,

(5.42)

Define

(5.43) Bh
(λ,K)

(θ) = (DzM
h(λ,K(θ + ω))M

K
(θ + ω)J0)

⊤.

Then, since d0 is the identity we have:

(5.44) Bf

(0,λ,K)
(θ)

(

On×s

Is

)

= Bh
(λ,K)

(θ).
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From (5.34), (5.39), (5.43) and (5.44) we have

Q44(0, λ,K) = 〈DλM
h(λ,K(θ))〉 −

〈

(Bh,x
(λ,K)

◦ R−ω)⊤RωB
h,y
(λ,K)

〉

+
〈

(Bh,y
(λ,K)

◦ R−ω)⊤Rω(Bh,x
(λ,K)

− T
(0,λ,K)

Rω B
h,y
(λ,K)

)
〉

.

Moreover, using (2.21), (5.28), (5.43) and (5.44) one obtains

Q14(0, λ,K) =
〈

Bh,x
(λ,K)

− T
(0,λ,K)

RωB
h,y
(λ,K)

〉

=
〈

Bh,x
(λ,K)

◦ R−ω + (RωT(0,λ,K)
)Bh,y

(λ,K)
◦ R−ω

〉

=
〈

DzM
h(λ,K(θ))(N

K
(θ) − L

K
(θ)RωT(0,λ,K)

(θ)⊤ )
〉⊤

.

(5.45)

Remark 5.10. In particular, if (0, λ,K) is a solution of (5.17), (5.18) and
(5.32), then T

(0,λ,K)
is symmetric and hence

Q14(0, λ,K) = Q42(0, λ,K)⊤.

From the above discussion, we have that the invertibility of the matrix in
(5.41) at (0, λ,K) depends on the torsion of K and on the choice of the modifying
family h. Concretely, it depends on the properties of T̄

(0,λ,K)
, DλM

h(λ,K(θ)),

DzM
h(λ,K(θ))N

K
(θ) and DzM

h(λ,K(θ))L
K

(θ).

Remark 5.11. If the modifying deformation h is such that its moment map
M h is autonomous (i.e. independent of λ), and

Bh,y
(λ,K)

(θ) = DzM
h (K(θ))L

K
(θ) = Os×n .

Then the matrix in (5.41) takes the following form at (0, λ,K):
(

T̄
(0,λ,K)

(θ) 〈DzM
h(K(θ))N

K
(θ)〉⊤

〈DzM
h(K(θ))N

K
(θ)〉 Os×s

)

.

Hence, if s = n and 〈DzM
h(K(θ))N

K
(θ)〉 is invertible, then matrix in (5.41) is

also invertible.

Given an approximate solution of (5.4), it is natural to ask whether it is pos-
sible to find a modifying deformation h in such a way that the matrix in (5.41)
is invertible at (0, 0,K). Another question is about the minimum dimension of
the modifying parameter λ. In the following result we show that given a solution
of (5.4), K, it is possible to find a modifying deformation h in such a way that the
matrix in (5.41) is invertible at (0, 0,K). Moreover, minimum dimension of λ is the
dimension of the kernel of the torsion of K, with respect to f and ω.

Proposition 5.12. Let f ∈ Symp(A0,A), ω ∈ Dn(γ, τ) and K ∈ Emb(Tn,A0).
Let T̄

f,K
be torsion of K with respect to f and ω. Fix s ∈ N with dim ker T̄

(f,K)
≤

s ≤ n. Assume that K is f-invariant with frequency ω. Then, there is an open set
Λ ⊂ R

s with 0 ∈ Λ and a modifying deformation h with base Λ ⊂ R
s, such that the

matrix in (5.41) is invertible at (0, 0,K).

Proof. Since K is f -invariant with frequency ω, from Lemma 3.1 we have
that K(Tn) is Lagrangian and T̄

(0,0,K)
is symmetric . Then, there is an invertible

matrix A ∈ R
n×n, such that

T̄
(0,0,K)

= Adiag
(

t1 . . . tn
)

A⊤
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where ts+1, . . . , tn are different from zero.
Since the column vectors of N

K
(θ) generates a Lagrangian bundle, comple-

mentary to the tangent bundle TK(Tn), Weinstein’s Theorem [41, 69] guarantees
the existence of a tubular neighborhood AK of K(Tn) and a symplectomorphism
ϕ : AK → A

n satisfying the following properties:

i) ϕ∗ω0 = ω;

ii) ϕ(K(θ)) = K0(θ) =

(

θ
0

)

;

iii) Dzϕ(K(θ))L
K

(θ) = L0(θ) =

(

In
On

)

;

iv) Dzϕ(K(θ))N
K

(θ) = N0(θ) =

(

On

In

)

.

Define the modifying deformation h0 : R
s×A

n → A
n as follows:

(5.46) h0(λ, z)⊤ =

(

x+AIn×s λ
y

)

,

where In×s is the (n×s) matrix such that (In×s)ij = 0 if i 6= j and (In×s)ii = 1. It

is easy to check that the moment map of h0 is M h0
(z) = Is×nA

⊤ y and that the
following equalities hold:

DzM
h0

(K0(θ))N
0(θ) = Is×nA

⊤(5.47)

DzM
h0

(K0(θ))L
0(θ) = Os×n .(5.48)

Define a modifying deformation on the (possibly shrunken) tubular neighborhood
AK ⊂ A0 with base a (small) neighborhood of 0 ∈ R

s, Λ, h : Λ×AK → A, as
follows:

(5.49) hλ = ϕ−1 ◦ h0
λ ◦ ϕ .

Then from Part c) of Lemma 2.21, the moment map of h is M h = M h0
◦ϕ. In par-

ticular, M h is independent of λ and moreover from (5.47), (5.48) and the properties
of ϕ one obtains:

DzM
h(K(θ))N

K
(θ) = DzM

h0
(ϕ(K(θ)))Dzϕ(K(θ))N

K
(θ) = Is×nA

⊤ ,

DzM
h(K(θ))L

K
(θ) = DzM

h0
(ϕ(K(θ)))Dzϕ(K(θ))L

K
(θ) = Os×n.

Then, it is easy to verify that the matrices in (5.45), (5.36) and (5.39) take the
following equalities hold:

Q14(0, 0,K) = AIn×s ,

Q42(0, 0,K) = Is×nA
⊤

Q44(0, 0,K) = Os×s .

Hence, the matrix in (5.41) at (0, 0,K) takes the following form:
(

A On×s

On×s Is

)(

diag(t1, . . . tn) In×s

Is×n Os×s

)(

A⊤ On×s

On×s Is

)

.

This finishes the proof of Proposition 5.12. �





CHAPTER 6

A parametric KAM theorem

The main contribution of this chapter is Theorem 6.2. This is a KAM result
stated and proved in a general setting. It will be used in Chapter 7 to prove existence
of FLD, where the parameters Λ and ζ used here will have different components
playing different roles.

Throughout this chapter, we assume that A ⊂ A is an annulus endowed with
the compatible triple (ω = dα,J , g), which is assumed to be real-analytic, i.e.
holomorphic in a complex strip B of A. More concretely, we assume that the C1-
norms on B of the components of a, Ω, Ω−1, J , G, G−1 are bounded by a positive
constant denoted by csymp. A0 ⊂ A is an annulus and B0 ⊂ B is a complex strip of
A0.

Let Ξ ⊂ R
m be open, with m ≥ n. Let Cr(Ξ,Symp(B0,B, C2)) denote the set

of symplectic deformations with base Ξ, f : Ξ×A0 → A, such that, f is Cr with
respect to t ∈ Ξ and, ft ∈ Symp(B0,B, C

2).
Given f ∈ Cr

(

Ξ,Symp(B0,B, C2)
)

and ω ∈ Dn(γ, τ), we aim to find for ζ ∈
D ⊂ R

m a parameter t(ζ) ∈ R
m and an embeddingKζ ∈ Emb(Tn

ρ ,B0, C
1) such that

Kζ is ft(ζ)-invariant with dynamics the rigid rotation Rω. Since we are interested
in obtaining solutions (t(ζ),Kζ) that are smooth in ζ, we impose extra-conditions
(as many as the dimension of t) to obtain local uniqueness.

6.1. Functional equations and nondegeneracy condition

Let Z ∈ Cr(Ξ×Emb(Tn
ρ ,B0, C

0),Rm) be a Cr functional. Define the error
function operator

F : R
m×Ξ×Emb(Tn

ρ ,B0, C
0) −→ (A(Tn

ρ , C
0))2n×R

m

as follows

(6.1) F(ζ; t,K) =

(

e(t;K)
ν(ζ; t,K)

)

=

(

ft ◦K −K ◦ Rω

Z(t,K) − ζ

)

.

Theorem 6.2 can be viewed as Generalized Implicit Function Theorem for the fol-
lowing non-linear functional equation:

(6.2) F(ζ; t,K) = 0 ,

where ζ ∈ D is given and the unknown is (t,K). The main assumption is the ex-
istence of an approximate solution (ζ0; t0,K0), with sufficiently small error, which
satisfies a nondegeneracy condition. To rigorously state our parametric KAM the-
orem, we first make explicit such a nondegeneracy condition.

Let (t,K) ∈ Ξ×Emb(Tn
ρ ,B0, C

1) be given and let L
K

and N
K

be defined by
(3.2) and (3.3), respectively. Let

(6.3) T
(t,K)

(θ) = N
K

(θ + ω)⊤ Ω(K(θ + ω)) Dzf(t,K(θ)) N
K

(θ) ,

49
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(6.4) T̂
(t,K)

(θ) =

(

On T
(t,K)

(θ)
On On

)

,

and

(6.5) B
(t,K)

(θ) = (DzM
f(t,K(θ + ω))M

K
(θ + ω)J0)

⊤
,

where M f is the local moment map of f . Motivated by Section 5.2 we introduce
the following general nondegeneracy condition.

Definition 6.1. Let Rω be the one-bite solver operator (see Section 2.5). A
pair (t,K) ∈ Ξ×Emb(Tn

ρ ,B0, C
1) is nondegenerate with respect to F , given in

(6.1), if the following (2n+m)×(2n+m) matrix is invertible:

(6.6) Q
(t,K)

=





〈

T̂
〉 〈

B−T̂RωB
〉

DKZ
[

M
K

(I−RωT̂ )
]

DtZ−DKZ
[

M
K
Rω(B−T̂RωB)

]



 ,

where for typographical simplicity we have not written the dependence on (t,K)
of and DKZ and DtZ are evaluated at (t,K).

6.2. Statement of the parametric KAM theorem

Many of our estimates will involve some quantities that depend in a polynomial
way on specific positive numbers, associated to a given (t,K) ∈ Ξ×Emb(Tn

ρ ,B0, C
1).

To reduce the length our statements we will collect them in a vector as follows:

(6.7) nρ(t,K) =
(

‖DθK‖ρ ,
∥

∥G−1
K

∥

∥

ρ
,
∣

∣

∣Q−1
(t,K)

∣

∣

∣ ,
∥

∥D(t,K)F(t,K)
∥

∥

Rm×(A(Tnρ ,C0))2n

)

,

where G
K

, F and Q
(t,K)

are defined in (2.11), (6.1) and (6.6), respectively.

Theorem 6.2. Let ω ∈ Dn(γ, τ), for some γ > 0 and τ ≥ n. Let m ≥
n > 0, r ≥ 2 be fixed integer numbers. Let Ξ ⊂ R

m be open and let f ∈
Cr(Ξ,Symp(B0,B, C

2)). Let ρ0 > 0 be fixed and such that γ ρτ
0 < 1. Let F be

defined by (6.1), with Z ∈ Cr(Ξ×Emb(Tn
ρ0/2,B0, C

0),Rm). Assume that there

exists positive constants β0 ≤ β1 ≤ · · · ≤ βr such that for ζ ∈ Ξ fixed and any
ρ ∈ [ρ0/2, ρ0] and for k = 0, . . . , r

(6.8) sup
(t,K)∈Ξ×Emb(Tnρ ,B0,C0)

∣

∣

∣Dk
(t,K)F(ζ; t,K)

∣

∣

∣

Rm×(A(Tnρ ,C0))2n
≤ βk .

Let (ζ0; t0,K0) ∈ R
m×Ξ×Emb(Tn

ρ0
,B0, C

1) be given and such that the matrix
Q

(t0,K0)
, defined in (6.6), is invertible. Then, the following statements hold.

a) Existence of a solution: There exists a positive constant κ, depending
on n, τ , m, csymp, β2, and polynomially on the components of nρ0

(t0,K0)
(see (6.7)), such that if

κ γ−4 δ−4τ
0

(

1 + γ−2ρ0
−2τ
)2

‖F(ζ0; t0,K0)‖ρ0
< c0,

where

c0 = min
[

dist (t0, ∂ Ξ) , dist
(

K0

(

T
n
ρ0

)

, ∂B0

)

, 1
]

,

and 0 < δ0 < ρ0/12 is fixed, then there exists (tζ0
,Kζ0

) ∈ Ξ×Emb(Tn
ρ0−6 δ0

,B0, C
1)

such that Q
(tζ0

,Kζ0
)

is invertible,

|tζ0
− t0| ≤ κγ−2 ρ0

−2τ ‖F(ζ0; t0,K0)‖ρ0
,

‖Kζ0
−K0‖ρ0−6δ0

≤ κγ−2 δ−2τ
0

(

1 + γ−2ρ0
−2τ
)

‖F(ζ0; t0,K0)‖ρ0
,



6.3. PROOF OF THE PARAMETRIC KAM THEOREM 51

and

F(ζ0; tζ0
,Kζ0

) = 0 ,

that is Kζ0
is an fζ0

-invariant torus with frequency ω.
b) Local uniqueness: Let (t1,K1) ∈ Ξ×Emb(Tn

ρ0
,B0, C

1). Assume that

F(ζ0; ti,Ki) = 0, for i = 0, 1.

Then there exists a constant κ̂, depending on n, τ , m, csymp, β2 and
polynomially on the components of nρ0

(t0,K0) (see (6.7)), such that if

κ̂ γ−2δ−2τ
0

(

1 + γ−2ρ0
−2τ
)

‖(t0,K0) − (t1,K1)‖ρ0
< 1,

with 0 < δ0 < ρ0/8 fixed, then (t1,K1) = (t0,K0).
c) Smooth dependency on ζ of the solutions: Assume that

F(ζ0; t0,K0) = 0 .

Then, there exist D ⊂ R
m a small open neighborhood of ζ0, and a locally

unique Cr-function

Φ : D −→ Ξ×Emb(Tn
ρ0−22δ0

,B0, C
1)

ζ −→ Φ(ζ) = (t(ζ),Kζ) ,

with 0 < δ0 < ρ0/44, such that Φ(ζ0) = (t0,K0) and, for all ζ ∈ D,
Q(ζ) = Q

(t(ζ),Kζ)
is invertible and

F(ζ; t(ζ),Kζ) = 0 .

6.3. Proof of the parametric KAM Theorem

Theorem 6.2 is proved following a standard KAM scheme. The main ingredient
is the fact that real-analytic tori, that are approximately invariant for a real-an-
alytic symplectomorphism and Diophantine frequency, are also approximately La-
grangian. Therefore, the linear dynamics around them is approximately reducible.
A proof of this property and explicit estimates are given in Lemma 5.2.

It is known [50, 57, 74] that to construct a rapidly convergent method to find
solutions of a non-linear problem, it is sufficient to guarantee the approximate solv-
ability of the corresponding linearized equations, with tame bounds. In Section
6.3.1 we show that approximate solvability of the linearized equations, correspond-
ing to (6.2), is guaranteed by the approximate reducibility and the change of the
parameters. In Section 6.3.2 we show that the sufficient conditions needed to find an
approximate solution of the linearized equations are open on Ξ×Emb(Tn

ρ ,B0, C
1),

for all ρ0/2 < ρ ≤ ρ0. Parts a), b) and c) of Theorem 6.2 are proved in sections
6.3.3, 6.3.4, and 6.3.5, respectively.

Our estimates depend on certain quantities that will be specified in the state-
ment of the results. To reduce the amount of notation we will use the same letter
κ to denote a generic constant, whose definition will vary from statement to state-
ment.
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6.3.1. Linearized equations. Throughout this section ζ ∈ R
m and ρ ∈

(ρ0/2, ρ0) are assumed to be fixed. The pair (t,K) ∈ Ξ×Emb(Tn
ρ ,B0, C

1) is assumed
to be a fixed approximate solution of (6.2). The linear operator corresponding to
(6.1), at (t,K), is

(6.9) D(t,K)F(ζ; t,K)

(

∆t

∆K

)

=

(

(Dzft ◦K)∆K − ∆K ◦ Rω + (Dtft ◦K)∆t

DKZ(t,K)∆K + DtZ(t,K)∆t

)

.

Lemma 6.3 (Approximate solution). Let ω ∈ Dn(γ, τ), for some γ > 0 and

τ ≥ n. Let G
K
, M

K
, T

(t,K)
, T̂

(t,K)
and B

(t,K)
be defined in (2.11), (3.4), (6.3),

(6.4), (6.5), respectively. Let e(t,K) be given by

e(t,K) = ft ◦K −K ◦ Rω .

Let ν ∈ R
m and ϕ ∈ (A(Tn

ρ , C
0))2n be given, define

(6.10) ϕ̂(θ) = −J0MK
(θ + ω)⊤Ω(K(θ + ω))ϕ(θ) .

Assume that Q
(t,K)

, defined in (6.6), is invertible, and let (ξ0,∆t) ∈ R
2n×R

m

be the unique solution of the following linear equation:

(6.11) Q
(t,K)

(

ξ0
∆t

)

= −





〈

ϕ̂− T̂
(t,K)

Rω ϕ̂
〉

ν − DKZ(t,K)
[

M
K
Rω( ϕ̂− T̂

(t,K)
Rω ϕ̂)

]



 .

Define ∆K = M
K
ξ, where

(6.12)

ξ = (I2n −RωT̂(t,K)
)ξ0 −Rω(B

(t,K)
− T̂

(t,K)
RωB(t,K)

)∆t −Rω(ϕ̂− T̂
(t,K)

Rω ϕ̂) .

Then, there exists a constant, depending on n, τ , m, csymp, β2 and polynomially
on the components of nρ(t,K) (see (6.7)) such that the following hold.

a) ∆K ∈ (A(Tn
ρ−2δ, C

0))2n, for any 0 < δ < ρ/2. Moreover,

|∆t| ≤ κ γ−2ρ−2τ ‖(ϕ, ν)‖ρ ,(6.13)

‖∆K‖ρ−2δ ≤ κ γ−2δ−2τ
(

1 + γ−2ρ−2τ
)

‖(ϕ, ν)‖ρ .(6.14)

b) If ‖e(t,K)‖ρ is sufficiently small, such that matrix M
K

is invertible on

T
n
ρ−2δ, then the following estimate holds:

∥

∥

∥

∥

D(t,K)F(ζ; t,K)

(

∆t

∆K

)

+

(

ϕ
ν

)∥

∥

∥

∥

ρ−2δ

≤

≤ κ γ−3δ−(3τ+1)
(

1 + γ−2ρ−2τ
)

‖e(t,K)‖ρ ‖(ϕ, ν)‖ρ .

Proof. First notice that if ϕ ∈ (A(Tn
ρ , C

0))2n, then from (6.10), we have that

ϕ̂ ∈ (A(Tn
ρ , C

0))2n. Then Lemma 2.29 and equality (6.12) imply ξ ∈ (A(Tn
ρ−2δ, C

0))2n.

From Lemma 2.29 and equality (6.10) we have that there is a constant κ, depending
on n, τ , csymp and polynomially on ‖DθK‖ρ, ‖Dzft(K(θ))‖ρ and

∥

∥(G
K

)−1
∥

∥

ρ
, such

that for any 0 < δ < ρ the following estimates hold:

(6.15)

‖Rω ϕ̂‖ρ−δ ≤ κ γ−1 δ−τ ‖ϕ‖ρ ,

∥

∥

∥Rω

(

ϕ̂− T̂
(t,K)

Rωϕ̂
)∥

∥

∥

ρ−2δ
≤ κ γ−2 δ−2τ ‖ϕ‖ρ .
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Equality (6.11) and estimates in (6.15) imply the existence of a constant κ, depend-
ing on n, m, τ , csymp and polynomially on the components of nρ(t,K) (see (6.7))
such that the following estimate holds:

(6.16) |(ξ0,∆t)| ≤ κ (1 + γ−2 ρ−2τ ) ‖(ϕ, ν)‖ρ .

From which (6.13) follows. Moreover, using again Lemma 2.29, we have the follow-
ing estimates

∥

∥

∥I2n −RωT̂(t,K)

∥

∥

∥

ρ−δ
≤ κ γ−1δ−τ ,(6.17)

and
∥

∥

∥Rω(B
(t,K)

− T̂
(t,K)

RωB(t,K)
)
∥

∥

∥

ρ−2δ
≤ κ γ−2δ−2τ .(6.18)

Equality (6.12) and estimates (6.16), (6.17) and (6.18) yield:

(6.19) ‖ξ‖ρ−2δ ≤ κ γ−2δ−2τ
(

1 + γ−2 ρ−2τ
)

‖(ϕ, ν)‖ρ .

This proves estimate (6.14). This finishes the proof of Part a). We now prove Part
b). Performing some computations, applying Lω to (6.11) and using (2.19) and
(6.12) one verifies that the following equalities hold:

(I2n + T̂
(t,K)

) ξ − ξ ◦ Rω +B
(t,K)

∆t + ϕ̂ = 0,

DKZ(t,K) [M
K
ξ] + DtZ(t,K) ∆t + ν = 0 ,

where T̂
(t,K)

and B
(t,K)

are given in (6.3) and (6.5), respectively. Next, from parts

d) and e) of Lemma 5.2 we have

M
K

(θ + ω)−1Dzf(t,K(θ))M
K

(θ) = (I2n + T̂
(t,K)

(θ))

+ Rr
(ft,K)

(θ)

+Ri
K

(θ + ω)Dzf(t,K(θ))M
K

(θ).

From Lemma 2.19 and Part e) of Lemma 5.2 we have

M
K

(θ + ω)−1Dtf(t,K(θ)) = B
(t,K)

(θ) +Ri
K

(θ + ω)Dtf(t,K(θ))

+ J0MK
(θ + ω)⊤

(

DzM̃
f(t,K(θ + ω)) − DzM̃

f(t, ft(K(θ))
)⊤

− J0MK
(θ + ω)⊤ (Ω(K(θ + ω)) − Ω(ft(K(θ))) Dtf(t,K(θ)).

Hence,

D(t,K)e(t,K)

(

∆t

∆K

)

+ ϕ = M
K

(θ + ω)Ri
K

(θ + ω)ϕ

+M
K

(θ + ω)
[

M
K

(θ + ω)−1Dzf(t,K(θ))M
K

(θ) − (I2n + T̂
(t,K)

)
]

ξ

+M
K

(θ + ω)
[

M
K

(θ + ω)−1Dtf(t,K(θ)) −B
(t,K)

(θ)
]

∆t.

The proof is finished using the estimates in Lemma 5.2. �

Remark 6.4. If, in Lemma 6.3, e(t,K) ≡ 0, then, from the uniqueness of the
solutions of (6.11), we have that the linear equation

(6.20) D(t,K)F(ζ; t,K)

(

∆t

∆K

)

+

(

ϕ
ν

)

= 0 ,

has a unique solution (∆K = M
K
ξ,∆t) where ξ is given in (6.12).
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Remark 6.5. In the terminology of [68, 74], Part b) of Lemma 6.3 means
that D(t,K)F(ζ; t,K) has an approximate right inverse and Remark 6.4 says that
D(t,K)F(ζ; t,K) has an approximate left inverse.

6.3.2. Sufficient conditions for iteration of the iterative step. Given
(t,K) ∈ Ξ×Emb(Tn

ρ ,B0, C
1), an approximate solution of (6.2), with ρ0/2 < ρ ≤ ρ0,

Lemma 6.3 provides a method to find a new one (t + ∆t,K + ∆K). To to iterate
this procedure, we use the following result.

Lemma 6.6. Assume that (t,K) ∈ Ξ×Emb(Tn
ρ ,B0, C

1), for some ρ0/2 <

ρ ≤ ρ0. Let (∆t,∆K) ∈ R
m × (A(Tn

ρ1
, C1))2n, for some ρ0/2 < ρ1 < ρ, with

‖∆K‖ρ1,C1 ≤ 1. Let Q
(t,K)

be defined in (6.6) and assume that it is invertible.
Then, there exists a constant κ, depending on n, m, τ , csymp, β2 and polynomially
on the components of nρ(t,K) (see (6.7)), such that if

(6.21) κ γ−2ρ−2τ
1 ‖(∆t,∆K)‖ρ1,C1 < min(dist(t, ∂Ξ),dist(K(Tn

ρ ), ∂B0), 1) .

Then t1 = t + ∆t ∈ Ξ, K1 = K + ∆K ∈ Emb(Tn
ρ1
,B0, C

1) and Q
(t1,K1)

is also
invertible. Moreover, the following estimates hold:

(6.22)
∥

∥(G
K

)−1 − (G
K1

)−1
∥

∥

ρ1
≤ κ ‖∆K‖ρ1,C1 ,

(6.23)
∣

∣

∣(Q(t,K)
)−1 − (Q

(t1,K1)
)−1
∣

∣

∣ ≤ κ γ−2ρ−2τ
1 ‖(∆t,∆K)‖ρ1,C1 .

Proof. To prove that K1 = K + ∆K ∈ Emb(Tn
ρ1
,B0, C

1) it is sufficient to

verify that G
K1

= DθK1(θ)
⊤G(K1(θ))DθK1(θ) is invertible. It is easy to prove

that ∆KG = G
K
−G

K1
satisfies

(6.24) ‖∆KG‖ρ1
≤ κ ‖∆K‖ρ1,C1 ,

where κ is a constant depending on n, τ , csymp and polynomially on ‖DθK‖ρ

and ‖DθK1‖ρ1
. Notice that, since the dependence of κ in (6.24) on ‖DθK1‖ρ1

is

polynomial and ‖∆K‖ρ1,C1 is bounded by 1, κ can be considered as a constant

depending on n, τ , csymp and polynomially on ‖DθK‖ρ.

Hence, if G
K

is invertible and ‖∆K‖ρ1,C1 is sufficiently small, then (using Neu-

mann series) G
K1

is invertible and the estimate (6.22) holds.
Notice that the operator Rω in Section 2.5 is linear and bounded. Moreover,

from (6.8) we obtain the following inequalities:

‖DKZ(t,K) − DKZ(t1,K1)‖ ≤ β2 ‖(∆t,∆K)‖ρ1
,

‖DtZ(t,K) − DtZ(t1,K1)‖ ≤ β2 ‖(∆t,∆K)‖ρ1
.

Next, using the definition of Q(t,K) in (6.6) and performing some computations one
shows that there is a constant κ, depending on n, τ , csymp, β2 and polynomially on
the components of nρ(t,K) (see (6.7)), and ‖∆K‖ρ1,C1 such that

(6.25) |∆KQ | ≤ κ γ−2ρ−2τ
1 ‖(∆t,∆K)‖ρ1,C1

where

∆KQ = Q
(t,K)

−Q
(t1,K1)

.

Using the fact that ‖∆K‖ρ1,C1 is bounded by 1, we can make the constant κ in

(6.25) independent of ‖∆K‖ρ1,C1 .
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Using Neumann series we have that ifQ
(t,K)

is invertible and the norm ‖(∆t,∆K)‖ρ1,C1

is sufficiently small, then Q
(t1,K1)

= Q
(t,K)

− ∆KQ is invertible and moreover

(Q
(t1,K1)

)−1 =(Q
(t,K)

)−1+

+
(

I2n+m − (Q
(t,K)

)−1∆KQ
)−1

(Q
(t,K)

)−1∆KQ(Q
(t,K)

)−1 ,

this and estimate (6.25) imply (6.23). �

6.3.3. Proof of the existence of a solution of (6.2). In this section we
prove of Part a) of Theorem 6.2. Using Lemma 6.3, Lemma 6.6 we show that a
Newton-like step produces an error which is quadratic with respect to the previous
one. The proof of the convergence of the Newton-like method is standard in the
literature (see e.g. [18, 74]). Throughout this section ζ0 ∈ R

m is assumed to be
fixed.

The initial approximate solution (ζ0; t0,K0) provides the zero-step of the it-
erative procedure. Moreover, we recall that the matrix Q

(t0,K0)
is assumed to be

invertible.
Assume that for i ≥ 0, (ζ0; ti,Ki) is an approximate solution of (6.2), with

(ti,Ki) ∈ Ξ×Emb(Tn
ρi ,B0, C

1) satisfying the hypothesis of Lemma 6.3. Then,
Lemma 6.3 implies the existence of an approximate solution (∆ti,∆K i) of the lin-
earized equations:

(6.26) D(t,K)F(ζ0; ti,Ki)

(

∆ti

∆Ki

)

= −F(ζ0; ti,Ki) ,

satisfying the following estimates:

(6.27) |∆ti| ≤ γ−2κi ρ
−2τ
i ‖F(ζ0; ti,Ki)‖ρi

,

(6.28) ‖∆Ki‖ρi−2δi
≤ γ−2κi δ

−2τ
i

(

1 + γ−2ρ−2τ
i

)

‖F(ζ0; ti,Ki)‖ρi
,

(6.29) ‖D∆Ki‖ρi−3δi
≤ γ−2κi δ

−2(τ+1)
i

(

1 + γ−2ρ−2τ
i

)

‖F(ζ0; ti,Ki)‖ρi
,

where 0 < δi < ρi/3 and κi is a positive constant depending on n, τ , m, csymp and
polynomially on the components of nρi(Ki, ti) (see (6.7)).

If ‖F(ζ0; ti,Ki)‖ρi
is sufficiently small, such that (∆ti,∆K i) satisfies the quanti-

tative estimates of Lemma 6.6 (‖F(ζ0; t0,K0)‖ρ0
does), then for any 0 < δi < ρi/3,

ti+1 = ti + ∆ti ∈ Ξ, Ki+1 = Ki + ∆Ki ∈ Emb(Tn
ρi−3δi

,B0, C
1) and Q

(ti+1,Ki+1)
is

invertible.

Remark 6.7. The dependence on the iterative step of the constant κi in equa-
tions (6.27), (6.28), (6.29) relies on the polynomial dependence on the components
of nρi(ti,Ki) (see (6.7)). We control the increments (ti,∆K i) in such a way that

‖(ti − t0,Ki −K0)‖ρi,C1 < min(dist(t0, ∂Ξ),dist(K0(T
n
ρ0

), ∂B0), 1) .

Hence, κi is bounded by a uniform constant κ that depends on n, τ , m, csymp and
polynomially on the components of nρ0

(t0,K0).

To iterate this procedure it is sufficient to show that the error decreases and that
the quantitative assumptions in Lemma 6.3 are satisfied by the new approximate
solution (ti+1,Ki+1). Moreover, we need to specify a choice of the loss of domain
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at each step (i.e. δi). We follow the choices of [50, 74]. Fix 0 < δ < ρ0/12 and for
i ≥ 0 define

δi = δ 2−i, ρi+1 = ρi − 3δi .

In the following lemma we estimate the error after a step of the modified Newton
method described above.

Lemma 6.8. Let ω ∈ Dn(γ, τ), for some γ > 0 and τ ≥ n. There exists a
constant κ, depending on n, τ , m, csymp, β2 and polynomially on components of
nρ0

(t0,K0) (see (6.7)) such that

‖F(ζ0; ti+1,Ki+1)‖ρi−2δi
≤ κ γ−4 δ−4τ

i

(

1 + γ−2ρ−2τ
i

)2
‖F(ζ0; ti,Ki) ‖

2
ρi
.

Proof. This is a consequence of Taylor’s Theorem, Lemma 6.3 and Remark
6.7. �

The proof of Part a) of Theorem 6.2 is finished following standard steps in
KAM theory (c.f. [18, 74]).

6.3.4. Proof of local uniqueness. The local uniqueness of solutions of (6.2),
with ζ0 fixed, is a consequence of Remark 6.4.

Let (ζ0; t1,K1) and (ζ0; t0,K0) be as in Part b) of Theorem 6.2. Define ∆t =
t1 − t0 and ∆K = K1 −K0 then using Taylor’s Theorem we have:

F(ζ0; t1,K1) =F(ζ0; t0,K0)+

+ D(t,K)F(ζ0; t0,K0)(∆t,∆K) + R(t0,K0)(∆t,∆K)⊗2 ,

where

(6.30)
∥

∥R(t0,K0)(∆t,∆K)⊗2
∥

∥

ρ0
≤ β2 ‖(∆t,∆K)‖2

ρ0
.

Using that F(ζ0; ti,Ki) = 0 for i = 1, 2, one obtains

D(t,K)F(ζ0; t0,K0)(∆t,∆K) = −R(t0,K0)(∆t,∆K)⊗2 .

Lemma 6.3, Remark 6.4 and estimate (6.30) imply that, for any 0 < δ < ρ0/2:

(6.31) ‖(∆t,∆K)‖ρ0−2δ ≤ κ γ−2δ−2τ
(

1 + γ−2ρ−2τ
0

)

‖(∆t,∆K)‖2
ρ0
,

where κ is a constant depending on n, τ , m, csymp, β2 and polynomially on com-
ponents of nρ0

(t0,K0).
Fix 0 < δ < ρ0/8. For i ∈ N, define δi = δ 2−i and ρi+1 = ρi − 2δi. Applying

(6.31) repeatedly for j = 0, . . . , i, we have

‖(∆t,∆K)‖ρi
≤
(

22τ
)2i−(i+1) (

κ γ−2δ−2τ
(

1 + γ−2ρ−2τ
0

))2i−1
‖(∆t,∆K)‖2i

ρ0
,

for some constant κ. From which we have that if

22τκ γ−2δ−2τ
(

1 + γ−2ρ−2τ
0

)

‖(∆t,∆K)‖ρ0
< 1 ,

then (t1,K1) = (t0,K0) on T
n
ρ0−4δ. The analyticity assumption implies (t1,K1) =

(t0,K0) on T
n
ρ0

. This finishes the proof of the local uniqueness of solutions of (6.2).
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6.3.5. Proof of the smooth dependence on ζ of the solutions. Through-
out this section we assume that the hypotheses of Theorem 6.2 hold and that
(ζ0; t0,K0) is as in Part c) of Theorem 6.2. In particular, we assume that F(ζ0; t0,K0) =
0 . Here we show the existence of implicit solutions (ζ; t(ζ),Kζ) of (6.2) for ζ near
ζ0. We also show that these solutions depend smoothly on ζ. The existence of
(t(ζ),Kζ) for ζ sufficiently near to ζ0, proved in Lemma 6.9, is a consequence of
Part a) of Theorem 6.2. The smooth dependence on ζ is obtained by finding ex-
plicitly local Taylor expansions (Lemma 6.11) and applying the Converse Taylor
Theorem (see e.g. page 88 in [1]).

Lemma 6.9. For any 0 < δ < ρ0/12 there exists a neighborhood of ζ0, D0, and
a function

Φ : D0 −→ Ξ×Emb(Tn
ρ0−6δ,B0, C

1)

ζ −→ Φ(ζ) = (t(ζ),Kζ) ,

such that Φ(ζ0) = (t0,K0), F(ζ; Φ(ζ)) = 0 and Q
ζ

= Q
(t(ζ),Kζ)

is invertible for any

ζ ∈ D0. Moreover, the following estimates hold:

|t(ζ) − t0| ≤ κ γ−2 ρ−2τ
0 | ζ − ζ0| ,(6.32)

‖Kζ −K0‖ρ0−6δ ≤ κ γ−2 δ−2τ
(

1 + γ−2ρ−2τ
0

)

| ζ − ζ0| ,(6.33)

where κ is a constant, depending on n, τ , m, csymp, β2 and polynomially on the
components of nρ0

(t0,K0) (see (6.7)).

Proof. This is a consequence of parts a) and b) of Theorem 6.2. Indeed, for
ζ sufficiently close to ζ0 we have

F(ζ; t0,K0) =

(

0
ζ0 − ζ

)

,

Then, Part a) of Theorem 6.2 yields a positive constant κ, depending on n, τ , m,
csymp, β2 and polynomially on the components of nρ0

(t0,K0) (see (6.7)), such that
if

κ γ−4 δ−4τ
(

1 + γ−2ρ0
−2τ
)2

|ζ − ζ0| < c0,

where

c0 = min
[

dist (t0, ∂ Ξ) , dist
(

K0

(

T
n
ρ0

)

, ∂B0

)

, 1
]

,

then there exists (t(ζ),Kζ , ) ∈ Ξ×Emb(Tn
ρ0−6δ,B0, C

1) such that:

F(ζ; t(ζ),Kζ) = 0 ,

and such that estimates (6.32) and (6.33) hold. Next, let ζ ∈ D0 and assume that
(

t̃(ζ), K̃ζ

)

∈ Ξ×Emb(Tn
ρ0−6δ,B0, C

1) is such that

F(ζ; t̃(ζ), K̃ζ) = 0.

and such that estimates (6.32) and (6.33) hold. From the local uniqueness of the
solutions of (6.2) (see Part b) in Theorem 6.2 and estimates (6.32) and (6.33)) it

is clear that (t̃(ζ), K̃ζ) = (t(ζ),Kζ). �

Remark 6.10. Let D0 and (t(ζ),Kζ) be as Lemma 6.9. It is clear that if
0 < δ < ρ0/12 is fixed, then D0 can be chosen in such a way that, for any ζ ∈ D0,

‖Φ(ζ) − Φ(ζ0)‖ρ0−6δ,C1 < min
[

dist (t0, ∂ Ξ) , dist
(

K0

(

T
n
ρ0

)

, ∂B0

)

, 1
]

.
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Hence if a constant κ depends in a polynomial way on the components of nρ0−6δ(Kζ , t)
(see (6.7)), it can be assumed that κ depends in a polynomial way on the compo-
nents of nρ0

(K0, t0).

We now prove that the function Φ in Lemma 6.9 is smooth. For j ≥ 1, we
denote by Lj

sym(Cm,Cd) the set of symmetric continuous j-linear transformations

from (Cm)
j

to C
d. For ρ > 0, fixed, denote by Lj

sym

(

C
m, (A(Tn

ρ , C
1))2n

)

the set

of continuous j-linear transformations from (Cm)
j

to (A(Tn
ρ , C

1))2n, which can be

identified with C1
ρ(Tn, Lj

sym

(

C
m,C2n

)

). Let Kj ∈ C1(Tn
ρ , L

j
sym

(

C
m,C2n

)

) and

ζ1, . . . , ζj ∈ C
m, with ζi = (ζi

1, . . . , ζ
i
m) for i = 1, . . . , j. We use the following

notation

Kj(θ) [ζ1, ζ2, . . . , ζj ] =
∑

k=(k1,...,kj)

1≤ki≤m

Kj
k(θ) ζ1

k1
· · · ζj

kj
,

where Kj
k ∈ (A(Tn

ρ , C
1))2n. By DθK

j we mean

DθK
j(θ) [ζ1, ζ2, . . . , ζj ] =

∑

k=(k1,...,kj)

1≤ki≤m

DθK
j
k(θ) ζ1

k1
· · · ζj

kj
.

In the following lemma we use Lindstedt expansions and parts a) and b) of The-
orem 6.2 to prove that the function Φ in Lemma 6.9 have a local Taylor expansion.

The standard notation ζ⊗ j = [ζ, . . . , ζ] ∈ (Rm)
j

is used.

Lemma 6.11. Fix 0 < δ < ρ0/44 and define ρ̃0 = ρ0 − 8δ and δ0 = δ. For
j = 1, . . . , r, define δj = δ 2−j and ρ̃j = ρ̃j−1 − 4 δj−1 and ρr = ρ̃r − 6δ.

Let D0 and Φ be as in Lemma 6.9. Then, there exists an open neighborhood
D ⊆ D0 of ζ0, such that Φ : D → Ξ×Emb(Tn

ρ̃0
,B0, C

1) is continuous and for each
j = 1, . . . , r there is a continuous function

Φj : D → Lj
sym (Cm,Cm)×Lj

sym

(

C
m, (A(Tn

ρ̃j , C
1))2n

)

,

satisfying

(6.34)
∥

∥

∥Φj(ζ̃)
∥

∥

∥

ρ̃j ,C1
≤ 2(2τ+1) bj

(

κ γ−2δ−(2τ+1)(1 + γ−2ρ−2τ
0 )

)aj
,

where aj = j!
j
∑

i=1

1
i! and bj = j! − 1.

Moreover, if ζ̃ ∈ D and
∣

∣

∣ζ − ζ̃
∣

∣

∣ is sufficiently small, then Φ≤r(ζ̃; ζ) ∈ Ξ×

Emb(Tn
ρ̃r
,B0, C

1), with

(6.35) Φ≤r(ζ̃; ζ) = Φ(ζ̃) +
r
∑

j=1

1

j!
Φj(ζ̃)(ζ − ζ̃)⊗j ,

and
(6.36)

∥

∥

∥Φ(ζ) − Φ≤r(ζ̃; ζ)
∥

∥

∥

ρr
≤ κr γ

−2 δ−2τ
(

1 + γ−2ρ−2τ
0

)

∥

∥

∥Rr
F
(ζ̃; ζ)

∥

∥

∥

ρ̃r

∣

∣

∣ζ − ζ̃
∣

∣

∣

r

,

where

(6.37) lim
ζ→ζ̃

∥

∥

∥Rr
F
(ζ̃; ζ)

∥

∥

∥

ρ̃r
= 0 .
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The constants κ and κr in (6.34) and (6.36) depend on n, τ , m, csymp, βr, r,
and polynomially on the components of nρ0

(t0,K0) (see (6.7)).

Proof. First we prove the continuity of Φ. Let ζ1, ζ2 ∈ D0, then applying
Taylor Theorem to F(ζ2; Φ(ζ1)) around (ζ1; Φ(ζ1)) we obtain the following equality:

D(t,K)F(ζ1; Φ(ζ1)) (Φ(ζ2) − Φ(ζ1)) = Ψ0(ζ1, ζ2),

where
∥

∥Ψ0(ζ1, ζ2)
∥

∥

ρ0−6δ0
≤ κ |ζ1 − ζ2| ,

where κ is a constant depending on β2 (we assume that the diameter of D0 is finite).
Then Lemma 6.3 and Remark 6.4 imply

(6.38) ‖Φ(ζ1) − Φ(ζ2)‖ρ0−8δ0
≤ κ γ−2 δ−2τ

0

(

1 + γ−2ρ−2τ
0

)

|ζ1 − ζ2| ,

where κ is a constant depending on n, τ , m, csymp and polynomially on the com-
ponents of nρ0

(t0,K0) (see (6.7) and Remark 6.10). This proves the continuity of
Φ.

The transformations Φj(ζ̃) for j = 1, . . . , r and ζ̃ ∈ D0 are computed recursively
in such a way that

(6.39) D(t,K)F(ζ̃; Φ(ζ̃)) Φj(ζ̃) = −Fj(ζ̃) ,

where

(6.40) F j(ζ̃) = Dj
ζ

(

F(ζ; Φ≤(j−1)(ζ̃; ζ))
)

|ζ=ζ̃
.

with

Φ≤(j−1)(ζ̃; ζ) = Φ(ζ̃) +

j−1
∑

i=1

1

i!
Φi(ζ̃)(ζ − ζ̃)⊗ i .

This formally implies

(6.41) Dj
ζ

(

F(ζ; Φ≤r(ζ̃; ζ))
)

|ζ=ζ̃
= 0 , j = 0, . . . , r .

Equation (6.39) for j = 1 is

(6.42) D(t,K)F(ζ̃; Φ(ζ̃))Φ1(ζ̃) =

(

O2n×m

Im

)

.

Existence and uniqueness of Φ1(ζ̃) is guaranteed by Lemma 6.3 and Remark 6.4.
Moreover, the following estimates hold:

(6.43)
∥

∥

∥Φ1(ζ̃)
∥

∥

∥

ρ̃0−2δ0

≤ κ γ−2δ−2τ
0

(

1 + γ−2ρ−2τ
0

)

,

∥

∥

∥
Φ1(ζ̃)

∥

∥

∥

ρ̃0−3δ0,C1
≤ c1 ,

with

c1 = κ γ−2δ
−(2τ+1)
0

(

1 + γ−2ρ−2τ
0

)

,

where κ is a constant, depending on n, τ , m, csymp, and polynomially on the
components of nρ0

(K0, t0) (see Remark 6.10).
We now show that Φ1 : D0 → L1

sym

(

C
m, (A(Tn

ρ̃1
, C1))2n

)

×L1
sym (Cm,Cm) is

continuous. Let ζ1, ζ2 ∈ D0 then from (6.42) we have

(6.44) D(t,K)F(ζ1; Φ(ζ1))
(

Φ1(ζ1) − Φ1(ζ2)
)

= Ψ1(ζ1, ζ2) ,
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where

Ψ1(ζ1, ζ2) =
(

D(t,K)F(ζ2; Φ(ζ2)) − D(t,K)F(ζ1; Φ(ζ1))
)

Φ1(ζ2) .

Notice that from (6.43) and the smoothness of F we have

(6.45)
∥

∥Ψ1(ζ1, ζ2)
∥

∥

ρ̃0−2δ0
≤ κ γ−2δ−2τ

0

(

1 + γ−2ρ−2τ
0

)

|ζ1 − ζ2| ,

where κ is a constant depending on n, τ , m, csymp, βr and polynomially on the
components of nρ0

(K0, t0) (see Remark 6.10).
Hence, from Lemma 6.3 (see also Remark 6.4), equality (6.44) and estimate

(6.45) we have that the following estimate holds for any ζ1, ζ2 ∈ D0:
∥

∥Φ1(ζ1) − Φ1(ζ2)
∥

∥

ρ̃0−4δ0
≤ d1 |ζ1 − ζ2|

where
d1 = κ γ−4 δ−4τ

0

(

1 + γ−2ρ−2τ
0

)2
.

This proves that Φ1 is continuous on D0.

From Lemma 6.6 we have that if
∣

∣

∣
ζ − ζ̃

∣

∣

∣
is sufficiently small, then Φ≤1(ζ̃; ζ) ∈

Emb(Tn
ρ̃1
,B0, C

1)×Ξ (hence, the function F(ζ; Φ≤1(ζ̃; ζ)) is well-defined) and more-
over

Di
ζ

(

F(ζ; Φ≤1(ζ̃; ζ))
)

|ζ=ζ̃
= 0 , i = 0, 1 .

Let 2 ≤ j ≤ r, and assume that we have computed Φ1, . . . ,Φj−1 with the
following properties :

(i) there are constants 1 ≤ c1 ≤ · · · ≤ cj−1 and 1 ≤ d1 ≤ · · · ≤ dj−1 such
that for any ζ1, ζ2 ∈ D0

(6.46)
∥

∥Φi(ζ1)
∥

∥

ρ̃i,C1 ≤ ci, i = 1, . . . , j − 1 ,

(6.47)
∥

∥Φi(ζ1) − Φi(ζ2)
∥

∥

ρ̃i
≤ di |ζ1 − ζ2| , i = 1, . . . , j − 1 ,

(ii) Φ≤(j−1)(ζ̃; ζ) ∈ Emb(Tn
ρ̃j−1

,B0, C
1)×Ξ,

(iii) Di
ζ

(

F(ζ; Φ≤(j−1)(ζ̃; ζ))
)

|ζ=ζ̃
= 0 , i = 0, . . . , j − 1 .

We perform the step j, i.e. find Φj and show that it satisfies (i), (ii) and (iii)

for j. Let ζ̃ ∈ D0 be fixed. Using the chain rule (see e.g. page 87 in [1]), F j(ζ̃)

is a polynomial expression, of degree j, of Φ1(ζ̃), . . . ,Φj−1(ζ̃), whose coefficients

are linear combinations of the components of the derivatives Di
(t,K;ζ)F(ζ̃; Φ(ζ̃)) for

1 ≤ i ≤ j. Then, using (6.46) we have:

(6.48)
∥

∥

∥F j(ζ̃)
∥

∥

∥

ρ̃j−1

≤ κ (cj−1)
j
,

where κ depends on r and βr.
Now, from Lemma 6.9 we know that Qζ̃ is invertible. Then, using Lemma

6.3 and Remark 6.4 we have that there exists a unique Φj(ζ̃) = (Kj(ζ̃), tj(ζ̃)) in

Lj
sym

(

C
m, (A(Tn

ρ̃j−1−3δj−1
, C1))2n

)

×Lj
sym (Cm,Cm) such that equality (6.39) holds.

Moreover, using Lemma 6.3, Cauchy estimates and estimate (6.48) we have
∥

∥

∥Φj(ζ̃)
∥

∥

∥

ρ̃j−1−2δj−1

≤ κ γ−2δ−2τ
j−1

(

1 + γ−2ρ−2τ
0

)

(cj−1)
j
,

∥

∥

∥
Dθ K

j(ζ̃)
∥

∥

∥

ρ̃j−1−3δj−1

≤ κ γ−2δ
−(2τ+1)
j−1

(

1 + γ−2ρ−2τ
0

)

(cj−1)
j
,
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where we have used that ρ̃j−1 > ρ0/2 and κ is a constant, depending on n, τ , csymp,
β2, βr and polynomially on the components of nρ0

(K0, t0) (see Remark 6.10). To
obtain estimate (6.46) for j, we define

cj = κ γ−2δ
−(2τ+1)
j−1

(

1 + γ−2ρ−2τ
0

)

(cj−1)
j
.

This proves estimate (6.34). We now prove the continuity of Φj . From (6.39) we
have

(6.49) D(t,K)F(ζ1; Φ(ζ1))
(

Φj(ζ1) − Φj(ζ2)
)

= Ψj(ζ1, ζ2) ,

where

Ψj(ζ1, ζ2) = F j(ζ2) −Fj(ζ1)+
(

D(t,K)F(ζ2; Φ(ζ2)) − D(t,K)F(ζ1; Φ(ζ1))
)

Φj(ζ2) .

Notice that F j : D0 → Lj
sym

(

C
m, (A(Tn

ρ̃j−1
, C1))2n

)

×Lj
sym (Cm,Cm) is con-

tinuous. Indeed, F j(ζi) is a polynomial expression of Φ1(ζ̃), Φ2(ζ̃) . . . ,Φj−1(ζ̃), of
degree j, whose coefficients are linear combinations of the components of the deriva-
tives Di

(t,K;ζ)F(ζ̃; Φ(ζ̃)) for 1 ≤ i ≤ j. Moreover, Φ1, . . . ,Φj−1 are continuous on

D0. Hence, the following estimate holds:
∥

∥F j(ζ1) −Fj(ζ2)
∥

∥

ρj−1
≤ d̂j |ζ1 − ζ2| ,

where d̂j depends on n, m, βr and polynomially on d1, . . . , dj−1, c1, . . . , cj−1.
Then,

∥

∥Ψj(ζ1, ζ2)
∥

∥

ρ̃j−1−2δj−1
≤

ˆ̂
dj |ζ1 − ζ2| ,

where
ˆ̂
dj depends on n, m, βr and polynomially on d1, . . . , dj−1, c1, . . . ,cj .

Hence, using equality (6.49), Lemma 6.3 and Remark 6.4 we have, for any
ζ1, ζ2 ∈ D0,

∥

∥Φj(ζ1) − Φj(ζ2)
∥

∥

ρ̃j−1−4δj−1
≤ dj |ζ1 − ζ2| ,

with

dj =
ˆ̂
dj κ γ

−2 δ−2τ
j−1 (1 + γ−2ρ−2τ

0 ),

where κ is a constant, depending on n, m, τ , csymp, β2, βr and polynomially on the
components of nρ0

(K0, t0) (see Remark 6.10). This proves that Φj is continuous
on D0.

As a consequence of Lemma 6.6 we have that if
∣

∣

∣ζ − ζ̃
∣

∣

∣ is sufficiently small,

then Φ≤j(ζ̃; ζ) ∈ Emb(Tn
ρ̃j
,B0, C

1)×Ξ and moreover the following holds:

Di
ζ

(

F(ζ; Φ≤j(ζ̃; ζ))
)

|ζ=ζ̃
= 0 , i = 0, . . . , j .

This finishes the step j.
Iterating the above procedure, we obtain Φ1(ζ̃),. . . , Φr(ζ̃) satisfying (6.39)

and such that if Φ≤r(ζ̃; ζ) is defined by (6.35) then for
∣

∣

∣
ζ − ζ̃

∣

∣

∣
sufficiently small,

Φ≤r(ζ̃; ζ) ∈ Emb(Tn
ρ̃r
,B0, C

1)×Ξ and (6.41) holds.

We now prove (6.36). Let ζ̃ ∈ D0 be fixed. Assume that
∣

∣

∣ζ − ζ̃
∣

∣

∣ is sufficiently

small such that Φ≤r(ζ̃; ζ) ∈ Emb(Tn
ρ̃r
,B0, C

1)×Ξ. Then, by construction, Φ≤r(ζ̃; ζ)
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is an approximate solution of (6.2) with error F(ζ; Φ≤r(ζ̃; ζ)). From Taylor Theo-

rem (see e.g. page 88 in [1]) and the construction of Φ≤r(ζ̃ , ζ) we have

(6.50) F(ζ; Φ≤r(ζ̃; ζ)) = Rr
F
(ζ̃; ζ) (ζ − ζ̃)⊗r ,

where Rr
F
(ζ̃; ζ) satisfies (6.37).

Moreover, since Φ(ζ̃) = (t(ζ̃),Kζ̃) is non-degenerate with respect to (6.2) (see

Definition 6.1), Lemma 6.6 implies that, if
∣

∣

∣ζ − ζ̃
∣

∣

∣ is sufficiently small, Φ≤r(ζ̃; ζ) is

also nondegenerate. Hence, if
∣

∣

∣ζ − ζ̃
∣

∣

∣ is sufficiently small, Part a) of Theorem 6.2

yields a solution of (6.2),

Φ̂(ζ) =
(

t̂(ζ), K̂ζ

)

∈ Ξ×Emb(Tn
ρ̃r−6δ,B0, C

1),

which is nondegenerate. Moreover from (6.50) and (6.37) we have
∥

∥

∥Φ≤r(ζ̃; ζ) −Φ̂(ζ)
∥

∥

∥

ρ̃r−6δ
≤

≤ κr γ
−2 δ−2τ

(

1 + γ−2ρ−2τ
0

)

∥

∥

∥Rr
F
(ζ̃; ζ)

∥

∥

∥

ρ̃r

∣

∣

∣ζ − ζ̃
∣

∣

∣

r

,
(6.51)

where κr depends on n, τ , m, r, csymp, β2, βr and polynomially on the components
of nρ0

(t0,K0) (see Remark 6.10).
Definition (6.35) and estimates (6.38), (6.46) and (6.51) imply

∥

∥

∥Φ(ζ) − Φ̂(ζ)
∥

∥

∥

ρ̃r−6δ
≤
∥

∥

∥Φ(ζ) − Φ(ζ̃)
∥

∥

∥

ρ̃r−6δ

+
∥

∥

∥
Φ(ζ̃) − Φ≤r(ζ̃; ζ)

∥

∥

∥

ρ̃r−6δ

+
∥

∥

∥Φ≤r(ζ̃; ζ) − Φ̂(ζ)
∥

∥

∥

ρ̃r−6δ

≤ κ γ−2δ−2τ
(

1 + γ−2ρ−2τ
0

)

∣

∣

∣ζ − ζ̃
∣

∣

∣

+
r
∑

j=1

cj

∣

∣

∣
ζ − ζ̃

∣

∣

∣

j

+ κ γ−2 δ−2τ
(

1 + γ−2ρ−2τ
0

)

∣

∣

∣
ζ − ζ̃

∣

∣

∣

r

,

where we have also used (6.37).

Then, from Part b) of Theorem 6.2 we have: Φ̂(ζ) = (K̂(ζ), t̂(ζ)) = Φ(ζ), for
|ζ − ζ0| sufficiently small. Estimate (6.36) follows from (6.51). This finishes the
proof of Lemma 6.11. �

The differentiability of the function given in Lemma 6.9 is a consequence of
Lemma 6.11 and the Converse Taylor Theorem (see e.g. [38] or page 88 in [1]).
This finishes the proof of Part c) of Theorem 6.2.



CHAPTER 7

A Transformed Tori Theorem

The main result of this chapter is Theorem 7.4. This is a KAM result on the
existence of parametric FLD. More concretely, given a Hamiltonian deformation
f : U×A0 → A and s ∈ N such that 0 ≤ s ≤ n, we introduce an s-dimensional
(modifying) parameter by embedding f into a family of Hamiltonian deformations
g : U×Λ×A0 → A in such a way that g(µ,λ) = fµ if and only if λ = 0. Theorem 7.4
gives sufficient conditions for the existence of a parametric FLD K : U0×D×T

n →
Λ×A0, with base sets D and Λ and parameter µ ∈ U0, in such a way that the
hypotheses of Theorem 4.11 hold.

The parameter λ is introduced to weaken the twist condition and it can be
viewed as a generalization of the Moser’s modifying term [51]. To deal with the non-
uniqueness of the parameterization of invariant tori and for technical convenience,
we also introduce an n-dimensional parameter σ, that we call dummy. As we show
below, the dummy parameter is not relevant when working with invariant tori. For
a motivation and a detailed explanation of the role of the modifying and dummy
parameters, see Section 5.2.

Theorem 7.4 is formulated and proved in the analytic category. That is, the
symplectic deformations and the parameterizations of tori are assumed to be real-
analytic with respect to, respectively, the phase space variable and the angle vari-
able. The dependence on the parameters is assumed to be smooth. A smooth
version of Theorem 7.4 can be obtained from Theorem 7.4 and the Moser’s smooth-
ing technique [26, 49, 50, 74] but this is not done here because it involves several
technicalities.

Throughout this chapeter B0 and B are complex strips of A0 and A, respec-
tively, with B0 ⊂ B and the components of Ω, Ω−1, a, J , J−1 and G are in A(B, C2),
with C1-norms on B bounded by a positive constant denoted by csymp.

7.1. Nondegeneracy condition

Since Theorem 7.4 involves a KAM procedure, a nondegeneracy condition is
need. The nondegeneracy condition imposed here is motivated in Section 5.2. Let
U ⊂ R

k, Λ ⊂ R
s and Σ ⊂ R

n be open, with 0 ≤ s ≤ n. Assume that f : U×A0 → A
is a Hamiltonian deformation, h : Λ×A1 → A is a modifying family and d : Σ×A2 →
A is a dummy family, such that fµ(A0) ⊂ A1 and hλ(A1) ⊂ A2 for all µ ∈ U and
all λ ∈ Λ. Define m = n+s+k, Ξ = U×Σ×Λ ⊂ R

m, t = (µ, σ, λ) and f : Ξ×A0 → A
be defined by

f(t, z) = (dσ ◦ hλ ◦ fµ)(z) .
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Let K ∈ Emb(Tn,A0) and let L
K

and N
K

be given by (3.2) and (3.3), respectively.
Let M h be the moment map of h, we use the following notation:

T
(t,K)

(θ) = N
K

(θ + ω)⊤ Ω(K(θ + ω)) Dzf(t,K(θ))N
K

(θ),

Bh
(λ,K)

(θ) = (DzM
h(λ,K(θ + ω))M

K
(θ + ω)J0)

⊤
.

Let Rω be the one-bite solver operator (see Section 2.5). assume that RωT(t,K)
and

RωB
h
(λ,K)

are smooth. Define

T̄
(t,K)

=
〈

T
(t,K)

(θ)
〉

,

P 12
(t,K)

=
〈

DzM
h(λ,K(θ))

(

N
K

(θ) − L
K

(θ)RωT(t,K)
(θ)⊤

)〉⊤
,

P 21
(t,K)

=
〈

DzM
h(λ,K(θ))

(

N
K

(θ) − L
K

(θ)RωT(t,K)
(θ)
)〉

,

P 22
(t,K)

= 〈DλM
h (λ,K(θ))〉 +

〈

(RωB
h,x
(λ,K)

(θ))⊤Bh,y
(λ,K)

(θ)
〉

−
〈

(RωB
h,y
(λ,K)

(θ))⊤Bh,x
(λ,K)

(θ)
〉

+
〈

(RωB
h,y
(λ,K)

(θ))⊤T
(t,K)

(θ)RωB
h,y
(λ,K)

(θ)
〉

,

and

(7.1) P
(t,K)

=





T̄
(t,K)

P 12
(t,K)

P 21
(t,K)

P 22
(t,K)



 .

Definition 7.1. The pair (λ∗,K∗) is h-nondegenerate with respect to fµ∗
and

ω, if the (n + s)×(n + s) matrix P
(t∗,K∗)

is invertible, with t∗ = (µ∗, 0, λ∗, ) and

P
(t,K)

, defined in (7.1).

Remark 7.2. In Definition 7.1 the dummy parameters are not involved because
d0 is the identity. Moreover, it is always possible to introduce a modifying parameter
in such a way that any integrable system is nondegenerate in the sense of Definition
7.1.

Remark 7.3. If s = 0, the only modifying deformation is the family with the
identity as its unique element. In such a case, a torus K∗ is nondegenerate with
respect to fµ∗

and ω, in the sense of Definition 7.1, if and only if K∗ is twist with
respect to fµ∗

and ω (see Definition 3.7). Moreover, if s > 0 the nondegeneracy con-
dition in Definition 7.1 is weaker than the standard twist condition (see Appendix
5.2).

7.2. Statement of the Transformed Tori Theorem

The following result is the KAM part of our method to study bifurcations of
invariant tori.

Theorem 7.4. Let ω ∈ Dn(γ, τ), for some γ > 0 and τ ≥ n. Let k, s ∈ N

and r ∈ R be such that 0 ≤ s ≤ n and r ≥ 2. Let U ⊂ R
k, Λ ⊂ R

s and Σ ⊂ R
n

be open, with 0 ∈ Λ and 0 ∈ Σ. Assume that f : U×A0 → A is a Hamiltonian
deformation, h : Λ×A1 → A is a modifying family and d : Σ×A2 → A is a dummy
family, such that fµ(A0) ⊂ A1 and hλ(A1) ⊂ A0 for all µ ∈ U and all λ ∈ Λ. Take
m = n+ s+ k, Ξ = U×Σ×Λ ⊂ R

m and t = (µ, σ, λ). Let f : Ξ×A0 → A be defined
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by f(t, z) = (dσ ◦ hλ ◦ fµ)(z) . Assume that, for any t ∈ Ξ, ft ∈ Symp(B0,B, C2)
and moreover for i = 0, . . . , r

βi = max

(

sup
(t,z)∈Ξ×B0

∣

∣

∣Di
(t,z)f(t, z)

∣

∣

∣ , sup
(λ,z)∈Λ×B

∣

∣

∣Di
(λ,z)M

h(λ, z)
∣

∣

∣

)

<∞ .

Let ρ0 > 0 be fixed and such that γρτ
0 < 1. Assume that (λ0,K0) ∈ Λ×Emb(Tn

ρ0
,B0, C

1)
is h-nondegenerate with respect to fµ0

and ω, with µ0 ∈ U fixed (see Definition 7.1).
Define

p0 = 〈M h (λ0,K0(θ))) 〉 .

Then there exists a positive constant κ, depending on r, τ , csymp, β2 and polyno-

mially on ‖DθK0‖ρ0
,
∥

∥

∥

(

G
K0

)−1
∥

∥

∥

ρ0

, and
∣

∣

∣
(P

((µ0,0,λ0),K0)
)−1
∣

∣

∣
such that if

κ γ−4 δ−4τ
0

(

1 + γ−2ρ0
−2τ
)2

‖hλ0
◦ fµ0

◦K0 −K0 ◦ Rω‖ρ0
< c0,

where
c0 = min

(

dist
(

K0

(

T
n
ρ0

)

, ∂B0

)

, dist ((0, 0, µ0), ∂Ξ) , 1
)

,

and 0 < δ0 < ρ0/44 is fixed, then there exist U0×D ⊂ U×R
s an open neighborhood

of (µ0, p0) and a Cr-smooth function

K : U0×D×T
n −→ Λ×A0

(µ, p, θ) −→ (λ(µ, p),K(µ, p, θ)) ,

such that the following hold:

a) For any µ ∈ U0, Kµ(p, θ) = K(µ, p, θ) is a parametric FLD with base sets
D and Λ such that:

hλ(µ,p) ◦ fµ ◦K(µ,p) −K(µ,p) ◦ Rω = 0,

〈Kx(µ, p, θ) − θ〉 = 0,

〈M h(λ(µ, p),K(µ, p, θ))〉 = p .

b) For any (µ, p) ∈ U0×D, K(µ,p) ∈ Emb(Tn
ρ0−22δ0

,B0, C
1) and

|λ(µ, p) − λ(µ0, p0)| ≤ κ γ−2 ρ−2τ
0 | (µ, p) − (µ0, p0)| ,

∥

∥K(µ,p) −K(µ0,p0)

∥

∥

ρ0−22δ0
≤ κ γ−2 δ−2τ

0

(

1 + γ−2ρ−2τ
0

)

| (µ, p) − (µ0, p0)| .

c) If (λ0,K0) is (hλ0
◦ fµ0

)-invariant with frequency ω, then

K(µ0, p0) = (λ0,K0).

Moreover, K is locally unique in the sense that if there is

K′ : U ′
0×D′×T

n −→ Λ×A0

(µ, p, θ) −→ (λ′(µ, p),K ′(µ, p, θ)) ,

satisfying the same properties as K, then K′(µ, p, θ) = K(µ, p, θ) for all θ ∈ T
n and

(µ, p) in a neighborhood of (µ0, p0), contained in (U ′
0×D′) ∩ (U0×D).

Notice that, in Theorem 7.4, K depends on the modifying deformation h. For
notational simplicity this dependence is not included in the notation.

Remark 7.5. If s = 0, Theorem 7.4 is a KAM result under twist condition (see
Remark 7.3). In this case, the use of a dummy deformation gives a generalization
of the Translated Curve Theorem of [9, 19, 57] as follows.

Let g ∈ Symp(B0,B, C
2), not necessarily exact. Assume that the following

hold.



66 7. A TRANSFORMED TORI THEOREM

i) g(B0) ⊂ B′
0 ⊂ B, with B0 a complex strip of an annulus A′

0 ⊂ A.
ii) There exists ϕ ∈ SympC2(B′

0,B) such that Cϕ = −Cg (i.e. ϕ ◦ g is exact
symplectic);

iii) K0 ∈ Emb(Tn
ρ0
,B0, C

1) is an approximately (ϕ ◦ g)-invariant twist torus
with frequency ω ∈ Dn(γ, τ);

iv) d is a dummy deformation with base Σ such that (dσ◦ϕ◦g) ∈ Symp(B0,B, C
2)

for all σ ∈ Σ;
v) (dσ ◦ϕ ◦ g), K0, ρ0, δ0 and ω satisfy the hypotheses of Theorem 7.4 (with

s = 0).

Then, Theorem 7.4 guarantees the existence of K∗ ∈ Emb(Tn
ρ0−6δ0

,B0, C
1) satisfy-

ing the following equations:

ϕ(g(K∗(θ))) = K∗(θ + ω),

〈Kx
∗ (θ) − θ〉 = 0 .

That is, g maps K∗(T
n) into ϕ−1(K∗(T

n)). In particular, if A = T
n×U , with

U ⊂ R
n open and simply connected, is endowed with the standard symplectic form

ω0 and ϕ is a translation in the y-direction on the standard annulus, then K∗(T
n)

is a translated torus for g.

7.3. Proof of the Transformed Tori Theorem

Here we show that the Transformed Tori Theorem (Theorem 7.4) is a conse-
quence of general parametric result, Theorem 6.2. We apply Theorem 6.2 to the
following equation

(7.2) F(ζ; t,K) = 0 ,

where ζ = (µ, q, p) ∈ U×R
n×R

s, t = (µ, σ, λ) and

(7.3) F(ζ; t,K) =

(

ft ◦K −K ◦ Rω

Z(t,K) − ζ

)

,

with

(7.4) Z(t,K) =





µ
〈Kx(θ) − θ〉
〈M h (λ,K) 〉



 .

Without loss of generality, we assume that 〈Kx
0 (θ) − θ〉 = 0. Then, if t0 =

(µ0, 0, λ0), and ζ0 = (µ0, 0, p0), (ζ0; t0,K0) is an approximate solution of (7.2).
Let us verify that (ζ0; t0,K0) satisfies the nondegeneracy condition in Theorem 6.2.

Lemma 7.6. Let ω ∈ Dn(γ, τ), for some γ > 0 and σ ≥ n. The pair (λ0,K0) ∈
Λ×Emb(Tn

ρ ,B0, C
1) is h-nondegenerate with respect to fµ0

and ω (see Definition
7.1) if and only if ((µ0, 0, λ0),K0) is nondegenerate with respect to the functional
(7.3) (see Definition 6.1).

Proof. This follows substituting our case in Definition 6.1. We just need to
observe that if Z is given by (7.4), then

DtZ(t,K)δ =





Ik Ok×n Ok×s

On×k On×n On×s

Os×k Os×n 〈DλM
h(λ,K(θ)) 〉



 δ,
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and

DKZ(t,K) [∆K ] =







Ok×1

〈∆K
x 〉

〈DzM
h(λ,K(θ))∆K 〉






.

In particular, using that M h is 1-periodic in x we have:

DKZ(t,K) [L
K

] =





Ok×n

In
〈Dθ (M h

λ ◦K) 〉



 =





Ok×n

In
Os×n



 .

Next, let M̃ f be the local moment map of f and take

Bf

(t,K)
(θ) =

(

DzM̃
f(t,K(θ + ω))M

K
(θ + ω)J0

)⊤
.

Write M̃ f as follows (see Remark 2.18):

M̃ f(t, z) = M f(t, z) − DtC
f(t)⊤x

with M f(t, z) 1-periodic on x. Then, since Cf(t) = σ, we have
〈

Bf ,y
(t,K)

(θ)⊤
〉

= DtC
f(t) =

(

On×k In On×s

)

Hence, in our case, the matrix of Definition 6.1 takes the following form

(7.5)













On

〈

T
(t,K)

〉

Q15 Q13 Q14

On On On×k In On×s

Ok×n Ok×n Ik Ok×n Ok×s

In Q32 Q35 Q33 Q34

Os×n Q42 Q45 Q43 Q44













.

Using equality (5.16) is easy to prove that if t = (µ0, 0, λ0), then

Q14 = P 12
(t,K)

, Q42 = P 21
(t,K)

, Q44 = P 22
(t,K)

,

where the P ij
(t,K)

s are as in Definition 7.1. This finishes the proof of Lemma 7.6. �

It is clear that, under the assumptions of Theorem 7.4, the the hypotheses of
Theorem 6.2 hold. From Theorem 6.2, there exist a neighborhood of ζ0 = (µ0, 0, p0),
U0×D1×D ⊂ U×R

n×R
n, and a smooth function

ζ ∈ U0×D1×D → (t(ζ),Kζ) ∈ Ξ×Emb(Tn
ρ0−22δ0

,B0, C
1),

such that Kζ is ft(ζ)-invariant with frequency ω. Moreover, from Lemma 3.1, the
function t(ζ) is of the following form

t(ζ) = (µ, 0, λ(µ, q, p)).

Finally, the local uniqueness part of Theorem 6.2 yields, for q sufficiently small,

K(µ,q,p) = K(µ,0,p) ◦ Rq, λ(µ, q, p) = λ(µ, 0, p).

Then, by fixing q, e.g. q = 0, we obtain that the function

K(µ, 0, p, θ) = (λ(µ, 0, p),K(µ,0,p)(θ))

satisfies the properties in Theorem 7.4. The local uniqueness of K follows from
Part b) of Theorem 6.2.
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Singularity theory for KAM tori





CHAPTER 8

Bifurcation theory for KAM tori

Bifurcation theory for quasi-periodic motions is a complicated mathematical
problem that naturally arises in mathematical models depending on external pa-
rameters. An important step forward in this field has been developed in the –by
now classical– Parametric KAM Theory [10, 11, 51], which has been developed in
several contexts: dissipative, reversible, volume-preserving and Hamiltonian. This
theory provides results on quasi-periodic stability : persistence of Cantor sets of
quasi-periodic motions with Whitney regularity. Geometrically quasi-periodic mo-
tions are tori with internal dynamics an ergodic rotation. The most studied case
is the reducible one. Roughly, reducibility means that the normal dynamics –to
the invariant torus– is constant. Some contributions to the non-reducible case
are [12, 13, 30, 31, 66].

To unfold quasi-periodic motions, one of the main strategies in classical Para-
metric KAM Theory is to apply the unfolding theory for linear applications [4] to
the linearized normal dynamics. However, in the Hamiltonian context this tech-
nique can bot be used to study bifurcations of maximal dimensional invariant tori
with fixed frequency. The reason is that, in this case, the normal frequencies are
equal to zero [48]. In this chapter we develop a method to study bifurcation of
invariant tori, with fixed frequency, using Singularity Theory. Our methodology
is based on the theory developed in parts 1 and 2 of this monograph and gives
a robust way to construct bifurcation diagrams of KAM tori. It generalizes the
BNF procedure used in [23] and the available persistence results obtained using
the classical Parametric KAM Theory.

8.1. Classification of KAM invariant tori

We classify invariant tori in terms of the potential as provided by Singularity
Theory. The main results of this section are Theorem 8.5 and Theorem 8.6. Theo-
rem 8.5 is a result of robustness of the proposed classification. Theorem 8.6 relates
the bifurcation set of the potential with the bifurcation set of invariant tori.

Throughout Section 8.1 we make the following assumptions.

i) ω ∈ R
n is fixed and Rω is ergodic;

ii) U ⊂ R
k is open, f : U ×A0 → A is a Hamiltonian deformation, with

fµ(A0) ⊂ A1 for all µ ∈ U ;
iii) K∗ ∈ Emb(Tn,A0) is fµ∗

-invariant with frequency ω;
iv) s ∈ N is fixed and such that dim ker T̄

(fµ∗ ,K∗)
≤ s ≤ n, with T̄

(fµ∗ ,K∗)
=

〈

T
(fµ∗ ,K∗)

〉

, the torsion of K∗ with respect to fµ∗
and ω;

v) Λ ⊂ R
s is open, with 0 ∈ Λ, and h : Λ×A1 → A is a modifying deformation

with moment map M h and let p∗ = 〈M h(0,K∗)〉.

We classify invariant tori that satisfy the properties in the following definition.

71
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Definition 8.1. We say that K∗ is h-deformable, with respect to f and ω, if
there exist an open neighborhood of (µ∗, p∗), U0×D ⊂ U×R

s, and a locally unique
parametric FLD

K : U0×D×T
n −→ Λ×A0

(µ, p, θ) −→ (λ(µ, p),K(µ, p, θ)) ,

with base sets D and λ and parameter µ ∈ U0, such that K(µ∗, p∗) = (0,K∗) and

hλ(µ,p) ◦ fµ ◦K(µ,p) −K(µ,p) ◦ Rω = 0 ,

〈Kx(µ, p, θ)〉 = 0,

〈M h(λ(µ, p),K(µ, p, θ))〉 = p .

K is called µ-parametric FLD of K∗ with respect to h, f and ω.

Remark 8.2. In Proposition 5.12 it is shown that it is always possible to define
the modifying deformation h in such a way that (0,K∗) is h-nondegenerate with
respect to fµ∗

and ω. Hence, under the regularity conditions of Theorem 7.4, it is
always possible to define h in such a way that K∗ is h-deformable with respect to
f and ω.

Using Lemma 5.9, it is easy to verify that if K∗ is h-deformable with respect
to f and ω, then the µ-parametric FLD of K∗ with respect to h, f and ω, satisfies
the hypotheses of Theorem 4.11. To emphasize the dependence on h and since K
is locally unique, the parametric potential of K, given in (4.19), will be denoted by
V h,f,K∗ . Let Sh and Sf be the primitive functions of h and f , respectively. It is
clear that

(8.1) V h,f,K∗(µ, p) = −p⊤λ(µ, p) −
〈

Shλ(µ,p) ◦ fµ ◦K(µ,p)

〉

−
〈

Sfµ ◦K(µ,p)

〉

.

The functions V h,f,K∗ and V h,f,K∗(µ∗, ·) will be called, respectively, the µ-parametric
potential K∗ with respect to h, f and ω and the potential of K∗ with respect to h,
fµ∗

and ω.

Definition 8.3. We say that K∗ is of class Υ, with respect to h, fµ∗
and ω, if

the germ of V h,f,K∗(µ∗, ·) at p∗ is of class Υ, under R+-equivalence (see Definition
B.5).

The classification of K∗ given in Definition 8.3 is invariant under canonical
change of variables in the following sense.

Proposition 8.4. Canonical changes of variables on both f and h do not
change the parametric potential (8.1). That is, if ϕ : A′ → A is an exact symplec-
tomorphism; and h′, f ′ and K ′ are given by

h′λ(z) = ϕ−1 ◦ hλ ◦ ϕ(z),

f ′µ(z) = ϕ−1 ◦ fµ ◦ ϕ(z),

K ′
∗(θ) = ϕ−1(K∗(θ)).

Then, the following equality holds:

V h′,f′,K′
∗ = V h,f,K∗ .

Proof. This follows from Proposition 4.6. �

Summarizing, to classify of K∗ we perform the following steps:
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Step 1. Fix s ∈ N such that dim ker T̄
(fµ∗ ,K∗)

≤ s ≤ n. Choose a modifying family

h : Λ×A1 → A in such a way that K∗ is h-deformable with respect to f
and ω;

Step 2 Apply Theorem 7.4 to find the FLD of K∗ with respect to h, f and ω;
Step 3 Use Singularity Theory and Theorem 4.11 to classify the critical point p∗

of V h,f,K∗ .

In the following result we give sufficient conditions that guarantee the persis-
tence of an fµ∗

-invariant torus, with fixed frequency ω, in such a way that the
persistent torus is of the same class of the unperturbed one.

Theorem 8.5. Let r ≥ 2, ω ∈ Dn(γ, τ) and let E ⊂ R
d be a neighborhood of

zero and U ⊂ R
k be open. Let f : U×A0 → A g : E×U×A0 → A Hamiltonian

deformations, such that g(0,µ) = fµ. Let h : Λ×A1 → A and d : Σ×A2 → A be,
a modifying and a dummy deformation, respectively, with Λ ⊂ R

s and Σ ⊂ R
n.

Assume that for all (ε, µ, σ, λ) ∈ E×U×Σ×Λ

dσ ◦ hλ ◦ g(ε,µ) ∈ Symp(B0,B, C
r).

Let ρ0 > 0 be fixed and such that γρτ
0 < 1 and µ∗ ∈ U . Assume that:

i) K∗ ∈ Emb(Tn
ρ ,B0, C

1) is an fµ∗
-invariant torus with frequency ω;

ii) (0,K∗) is h-nondegenerate with respect to fµ∗
and ω;

ii) K∗ is of class Υ with respect to h, fµ∗
and ω;

iii) the µ-parametric potential of K∗ with respect to h, f and ω, V h,f,K∗(µ, p),
is a versal unfolding of V h,f,K∗(µ∗, ·) at the singularity p∗ = 〈M h(0,K∗(θ))〉 .

Then, for any fixed ε ∈ E, with |ε| sufficiently small, there exist (µε, pε), close to
(µ∗, p∗), and Kε ∈ Emb(Tn

ρ/2,B0, C
1) such that:

a) Kε is a g(ε,µε)-invariant torus, with frequency ω, of class Υ with respect
to h, g(ε,µε) and ω;

b) let gε : U×A0 → A be the Hamiltonian deformation given by gε(µ, z) =
g(ε, µ, z), then the potential V h,gε,Kε(µ, p) is a versal unfolding of V h,gε,Kε(µε, p)
at the singularity pε.

Proof. This is a consequence of Theorem 7.4 and Mather’s Theorem on the
stability of versal unfoldings (see Theorem B.20). �

8.2. Local equivalence of Bifurcations diagrams

Assume that K∗ ∈ Emb(Tn,A0) is h-deformable, with respect to f and ω, and
let K = (λ,K) : U0×D×T

n → Λ×A0 be its µ-parametric FLD, with respect to h,
f and ω. Because of Theorem 4.11, the bifurcation of the critical points of the µ-
parametric potential V h,f,K∗(µ, ·) (given in (8.1)) determine the bifurcations of fµ-
invariant tori, with frequency ω, in the set

{K(µ,p) : (µ, p) ∈ U0×D}.

Moreover, under the hypotheses of Part d) of Theorem 4.11, degenerate critical
points of the potential correspond to tori with degenerate torsion in the family
{K(µ,p) : (µ, p) ∈ U0×D}. Hence, under the hypotheses of Part d) of Theorem
4.11, the bifurcation set obtained by using the potential is ‘locally equivalent’ to
that using the torsion. In particular, the bifurcation set is locally independent of
h, although potential in (8.1) depends on h.
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Since tori with nondegenerate torsion (twist tori) persist under small pertur-
bations, bifurcations of invariant tori, with fixed frequency, can occur only when
the torsion is degenerate. Let us introduce some definitions. Let T̄

(f,K)
be as in

Definition 3.7.

i) The bifurcation diagram of f and ω is

Diagf (ω) = {(µ,K) ∈ U×Lag(Tn,A0) : fµ ◦K = K ◦ Rω, 〈K
x(θ) − θ〉 = 0};

ii) The catastrophe set of f and ω is

Catf (ω) =
{

(µ,K) ∈ Diagf (ω) : det T̄
(fµ,K)

= 0
}

,

which is stratified into the sets

Cati
f (ω) =

{

(µ,K) ∈ Diagf (ω) : dim ker T̄
(fµ,K)

= i
}

,

with 1 ≤ i ≤ n;
iii) The bifurcation set of f and ω is

Biff (ω) = {µ ∈ U : ∃K such that (µ,K) ∈ Catf (ω)} .

which is stratified into the sets

Bifi
f (ω) =

{

µ ∈ U : ∃K such that (µ,K) ∈ Catif(ω)
}

,

with 1 ≤ i ≤ n.

An immediate consequence of Theorem 4.11 is the following result on th local
equivalence of Bifurcation diagrams.

Theorem 8.6. Let U ⊂ R
k be open and let f : U×A0 → A be a Hamiltonian

deformation, such that fµ(A0) ⊂ A1, for all µ ∈ U . Let K∗ ∈ Emb(Tn,A0) be fµ∗
-

invariant with frequency ω ∈ Dn(γ, τ). Fix s ∈ N such that dim ker T̄
(fµ∗ ,K∗)

≤ s ≤
n. Let Λ ⊂ R

s be open and let h : Λ×A1 → A be a modifying deformation with
moment map M h. Assume that K∗ is h-deformable with respect to f and ω. Let
K : U0×D×T

n → Λ×A0 be the µ-parametric FLD of K∗, with respect to h, f and
ω, and let V h,f,K∗(µ, p) be given by (8.1). Define

i) the bifurcation diagram of V h,f,K∗(µ, p) by

DiagV h,f,K∗ (ω) = {(µ, p) ∈ U0×D : ∇pV
h,f,K∗(µ, p) = 0} ;

ii) the catastrophe set of V h,f,K∗(µ, p) by

CatV h,f,K∗ (ω) = {(µ, p) ∈ DiagV h,f,K∗ (ω) : det HesspV
h,f,K∗(µ, p) = 0} ,

which is stratified into the sets

Cati
V h,f,K∗ (ω) = {(µ, p) ∈ CatV h,f,K∗ (ω) : dim ker HesspV

h,f,K∗(µ, p) = i} ;

iii) the bifurcation set of V h,f,K∗(µ, p) by

BifV h,f,K∗ (ω) = {µ ∈ U0 : ∃ p ∈ D such that (µ, p) ∈ CatV h,f,K∗ (ω)} .

which is stratified into the sets

Bifi
V h,f,K∗ (ω) =

{

µ ∈ U0 : ∃ p ∈ D such that (µ, p) ∈ Cati
V h,f,K∗ (ω)

}

.

Then for (µ, p) sufficiently close to (µ∗, p∗), we have that (µ, p) ∈ DiagV h,f,K∗ (ω), if
and only if (µ,K(µ,p)) ∈ Diagf (ω). Moreover, if (µ, p) ∈ DiagV h,f,K∗ (ω) is such that
the matrices W (µ, p) (given in (4.20)) and DpC (µ, p) (with C (µ, p) the averaged
action of K(µ,p)) are invertible, then the following holds:
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a) (µ, p) ∈ Cati
V h,f,K∗ (ω) if and only if (µ,K(µ,p)) ∈ Cati

f (ω).

b) µ ∈ Bi
V h,f,K∗

(ω) if and only if µ ∈ Bi
f (ω).

In particular, DiagV h,f,K∗ (ω), CatV h,f,K∗ (ω), BifV h,f,K∗ (ω), Cati
V h,f,K∗ (ω) and Bifi

V h,f,K∗ (ω)
is locally independent of h.





CHAPTER 9

The close-to-integrable case

Here we apply the results in Chapter 8 to symplectomorphisms that are writ-
ten as a perturbation of an integrable one and in angle-action coordinates. The
construction of the potential in the integrable case is presented in Section 9.1. Al-
though this is straightforward, it provides insight on the role of the parameters.
In Section 9.2 we discuss the persistence of invariant tori under classical nonde-
generacy conditions, including the Kolmogorov condition and applications to small
twist theorems. Section 9.3 contains the study of the non-twist case. Finally, in
Section 9.4 we discuss the singularities of the Birkhoff Normal Form (BNF) around
an invariant torus. We show that it is possible to define a modifying family in
such a way that the singularities of the potential of the torus with respect to such
modifying family is close to the BNF.

Throughout this section A
n is assumed to be endowed with the standard sym-

plectic structure ω0 = dy ∧ dx and U ⊂ R
n is assumed to be open and simply

connected.

9.1. The integrable case

Let ω ∈ R
n be fixed, and let f0 : T

n×U → A
n be the integrable symplectomor-

phism:

(9.1) f0(x, y) =

(

x+ ω + ∇yA0(y)
y

)

.

The function ω̂ : U → R
n, given by

(9.2) ω̂(y) = ω + ∇yA0(y),

is known as the frequency map of f0. Define the Hamiltonian deformation h :
R

n×A
n →A

n

(9.3) h(λ, x, y) =

(

x+ λ
y

)

.

It is easy to verify that h is a modifying deformation with base R
n and with moment

map M h(x, y) = y. Define

gλ = hλ ◦ f0,(9.4)

λ0(p) = −∇pA0(p),(9.5)

Z(p, θ) =

(

θ
p

)

.(9.6)

It is clear that the function K0 : U×T
n → R

n×(Tn×U), defined by

K0(p, θ) = (λ0(p), Z(p, θ)),

77
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is a g-invariant FLD with base sets U and R
n and frequency ω (see Definition 4.1).

A direct computation shows that the potential of K0 with respect to g and ω is
given by:

(9.7) V g,K0(p) = A0(p) .

Clearly, λ0(p) = −∇pV
g,K0(p) . Hence, Zp∗

is f0-invariant with frequency ω if and
only if p∗ is a critical point of V g,K0 = A0.

Remark 9.1. T̄(0, p) = Dp ω̂(p) is the torsion of Zp, and satisfies

T̄(0, p) = Hessp V
g,K0(p).

Hence, Zp∗
is a non-twist f0-invariant tori with frequency ω if and only if p∗ is a

degenerate critical point of V g,K0 = A0.

Remark 9.2. Let h be the modifying deformation given in (9.3) and let Zp

given in (9.6). Then, the moment map of h satisfies:

DzM
h(Z(p, θ))N

Zp
(θ) = In ,

DzM
h(Z(p, θ))L

Zp
(θ) = 0n ,

where L
Zp

(θ) =

(

In
On

)

and N
Zp

(θ) =

(

On

In

)

.

9.2. Persistence of invariant tori

Let E ⊂ R
k1 be an open neighborhood of 0. Let f : E ×T

n× U → A
n be a

Hamiltonian deformation with base E. For ε ∈ E, let fε : T
n×U → A

n be given
by fε(z) = f(ε, z). Assume that for ε = 0 the function fε is given by (9.1) and
that ω = ω̂(p0) ∈ Dn(γ, τ), for some p0 ∈ U . Without loss of generality, we assume
that p0 = 0 ∈ U . In what follows, we show that Theorem 8.5 reduces the existence
of fε-invariant tori, with frequency ω, to the problem of finding critical points of a
scalar function.

Lemma 9.3. Let h be given by (9.3). Then, for any ε ∈ E and any p ∈ U , the
pair (λ0(p), Zp), given in (9.5)-(9.6), is h-nondegenerate with respect to fε and ω
(see Definition 7.1).

Proof. Let ε ∈ E be fixed, from Remark 9.2 one obtains that, in the present
case, the matrix in (7.1) takes the following form (see Remark 7.2):

(9.8)

(

T̄(0, p) In

In On

)

,

where T̄(ε, p) = 〈Dy f
x(ε, Z(p, θ))〉 is the torsion of Zp with respect to fε and ω.

This particular form is due to the way the modifying deformation h was defined
and to the fact that the symplectic form is the standard one. �

Remark 9.4. Lemma 9.3 holds in the case that Zp is non-twist and in the case
that ε is not ‘sufficiently small’.

The following result reduces the problem of the persistence of Z0 to the problem
of finding critical points of the ε-parametric potential of Z0.
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Theorem 9.5. Let r ≥ 2 and let E ⊂ R
k1 be an open neighborhood of 0. Let

f : E×(Tn×U) → A
n be a Hamiltonian deformation. For ε ∈ E, let fε : T

n×U → A
n

be given by fε(z) = f(ε, z). Assume that there are complex strips of T
n×U and

A
n, B0 and B such that fε ∈ Symp(B0,B, Cr), for all ε ∈ E. Also assume that for

ε = 0 the function fε is given by (9.1) and that ω = ω̂(0) ∈ Dn(γ, τ).
Then the torus Z0 is h-deformable with respect to f and ω. That is, there exist

an open neighborhood of (0, 0), E0×D ⊂ E×U , and a locally unique parametric
FLD with base sets D and λ and parameter ε ∈ E0:

K : E0×D×T
n −→ R

n×(Tn×U)
(ε, p, θ) −→ K(ε, p, θ) = (λ(ε, p),K(ε, p, θ)),

such that:

hλ(ε,p) ◦ fε ◦K(ε,p) −K(ε,p) ◦ Rω = 0,

〈Kx(ε, p, θ) − θ〉 = 0,

〈Ky(ε, p, θ)〉 = p.

Take

L(ε, p, θ) = DθK(ε, p, θ),

N(ε, p, θ) = J0 DθK(ε, p, θ)(L(ε, p, θ)⊤L(ε, p, θ))−1,

T (ε, p, θ) = N(ε, p, θ + ω)⊤Ω0Dz(hλ(ε,p) ◦ fε)(K(ε, p, θ))N(ε, p, θ),

T̄(ε, p) = 〈T (ε, p, θ)〉 ,

C (ε, p)⊤ =

∫

Tn

Ky(ε, p, θ)⊤DθK
x(ε, p, θ)dθ,

W (ε, p) = 〈πy (N(ε, p, θ) − L(ε, p, θ)RωT (ε, p, θ))〉⊤ .

Then:

a) K(0, p, θ) = (λ0(p), Z(p, θ)), for all p ∈ D, with (λ0(p), Z(p, θ)) in (9.5)-
(9.6), respectively.

b) Let Sf be the primitive function of f , then the ε-parametric potential of
Z0, with respect to h, f and ω, V h,f,Z0 : E0×D → R, is given by

(9.9) V h,f,Z0(ε, p) = −p⊤λ(ε, p) − 〈Sfε (K(ε, p, θ))〉 .

c) The following equalities hold:

λ(ε, p) = −∇pV
h,f,Z0(ε, p),

T̄(ε, p)DpC (ε, p) = W (ε, p) Hessp V
h,f,Z0(ε, p).

Moreover,

V h,f,Z0(0, p) = A(p) ,

DpC (0, p) = In ,

W (0, p) = In .

Proof. This is a consequence of Theorem 4.11, Theorem 7.4, Lemma 9.3 and
the fact that the symplectic form is the standard one.

Indeed, let h be given by (9.3) and let d : R
n×A

n → A
n be given by

(9.10) d(σ, x, y) =

(

x
y + σ

)

.
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It is easy to verify that d is a dummy deformation with base R
n, whose local moment

map is M̃ d(x, y) = x. Let Ξ ⊂ E×R
n×R

n be open. Let f : Ξ×(Tn×U) → A
n be

defined by

(9.11) f(t, z) = (dσ ◦ hλ ◦ fε)(z).

Apply Theorem 7.4 to f , with µ = ε and initial data µ0 = 0, λ0(0) = 0 and Z0, to
obtain K. Then apply Theorem 4.11. �

Remark 9.6. As a consequence of Theorem 9.5, we have that fε-invariant tori
with frequency ω correspond to critical points of the function V h,f,Z0(ε, p):

(9.12) ∇pV
h,f,Z0(ε, p) = 0 .

Remark 9.7. Because of Lemma 9.3, for any p ∈ U , (λ(p), Zp) is h-nonde-
generate with respect to f and ω. Then, under the regularity assumptions on f
in Theorem 9.5, it is possible to show that, for each p∗ ∈ U , the torus Zp∗

is h-
deformable with respect to f and ω (see Definition 8.1). More concretely, for each
p∗ ∈ U , there exist an ε-parametric FLD of Kp∗

with respect to h, f and ω, defined
in an an open neighborhood of (0, p∗), E

p∗×Dp∗ ⊂ E×U . Hence, for D′ ⊂ U open,
there is a open set E′ ⊂ E and a locally unique smooth function

K′ : E′×D′×T
n −→ R

n×(Tn×U)
(ε, p, θ) −→ K′

ε(p, θ) = (λ′(ε, p),K ′(ε, p, θ)) ,

for any ε ∈ E′ fixed, K′
ε(p) = K′(ε, p) is a FLD with base sets D′ and R

n satisfying:

hλ′(ε,p) ◦ fε ◦K
′
(ε,p) −K ′

(ε,p) ◦ Rω = 0,

〈πxK
′(ε, p, θ) − θ〉 = 0,

〈πyK
′(ε, p, θ)〉 = p.

9.2.1. Persistence under nondegeneracy conditions. The function λ :
E0×D → R

n in Theorem 9.5 can be thought of in two ways: i) in a parametric
version, i.e. the function λε : D → R

n, given by λε(z) = λ(ε, z), is considered as a
family of functions, indexed by the parameter ε ∈ E and ii) in a perturbative way,
i.e. the function λε is viewed as a perturbation of λ0(p) = ω − ω̂(p).

In the perturbative setting, if equation (9.12) has a solution for ε = 0, then, the
existence of solutions for ε 6= 0 is guaranteed by sufficient conditions which allow to
apply a finite dimensional version of the Implicit Function Theorem. For example, if
Dpλ0(0) has full rank, the standard Implicit Function Theorem implies the existence
of a solution p(ε), which depends differentiability on ε and p(0) = 0. This sufficient
condition is equivalent to require p0 = 0 to be a nondegenerate critical point of the
potential V h,f,Z0(0, p) = A0(p). This is the classical Kolmogorov’s condition for the
KAM Theorem [37].

There are more cases when it is possible to find solutions of (9.12). For example,
it is sufficient that the image of a small neighborhood of 0 under the function λ0(p)
contains an open set around zero. This is true, in particular if T ℓ

0λ0(p), the Taylor
expansion of λ0(p) around p0 = 0, is such that T ℓ

0 (Bρ(0)) contains a ball around 0
of radius Cρℓ, with Bρ(0) the open ball with center 0 and radius ρ. This algebraic
condition on the jets of λ0 is very close to necessary [56, 61]. In terms of the
potential V h,f,Z0(ε, p), to have solutions of (9.12) it is sufficient, for example, that
0 is an isolated maximum (or minimum) of V h,f,Z0(0, p). In this case, V h,f,Z0(ε, p)
will have also critical points (although not necessarily unique). This condition can
also be checked from the jet T ℓ

0V
h,f,Z0(ε, p).
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9.2.2. Perturbation theory and small twist theorems. To determine so-
lutions of (9.12), in the perturbative setting, we have used only the information on
the unperturbed problem, i.e. on the frequency map ω̂(y) = ω + ∇yA0(y). How-
ever, in several applications it is indispensable to use also the information on the
low-order perturbative terms to conclude that (9.12) can be solved. Two impor-
tant examples of degenerate frequency maps are the Kepler problem in Celestial
Mechanics [39] and the harmonic oscillators in [52].

These are examples of the so called ‘small twist theorems’ in which the twist
condition vanishes in the unperturbed system but is generated by the perturbation.
Motivated by celestial mechanic, small twist theorems were already considered in [3,
47].

To obtain solutions of (9.12) we consider T s,ℓ
(0,0)λ(ε, p), the Taylor expansion of

λ(ε, p) in (ε, p) around (0, 0) to order s in ε and to order ℓ in p. A sufficient condition
that guarantees the existence of solutions of (9.12), for ε sufficiently small, is that

the image of a small ball around p0 = 0 under T s,ℓ
(0,0)λ(ε, p) contains a ball of radius

Cηsρℓ around 0. The jets in (ε, p) of λ(ε, p) are just the coefficients of the Lindstedt
expansions in (ε, p), of λ.

As an application, let us consider the perturbation of an isochronous integrable
system, which has a constant Diophantine frequency vector ω̂(p) = ω. This is a
highly degenerate case, indeed ω̂(p) = ω does not satisfy the Rüssmann nondegen-
eracy condition. The following result provides sufficient conditions for persistence
of invariant tori with frequency ω.

Theorem 9.8. Let ω ∈ Dn(γ, τ). Let r ≥ 2 and let E ⊂ R
k1 be an open

neighborhood of 0. Let f : E×T
n×U → A

n be a Hamiltonian deformation of the
form

(9.13) fε(x, y) =

(

x+ ω
y

)

+ εf1
ε (x, y) .

The primitive function of f can be written as Sfε = εSf,1ε . Assume that there are
complex strips of T

n×U and A
n, B0 and B, such that fε ∈ Symp(B0,B, C

r), for all
ε ∈ E, with r ≥ 2. Define

(9.14) V h,f,1(p) = −p⊤
〈

πxf
1
0 (θ, p)

〉

− 〈Sf,10 (θ, p)〉 .

Then, if p0 is a nondegenerate critical point of V h,f,1(p) and ε is sufficiently small,
then there is an fε-invariant torus with frequency ω.

Proof. Let λ(ε, p), K(ε,p) and V h,f,Z0 be as in Theorem 9.5. Notice that, since

λ(0, p) ≡ 0, we can write λ(ε, p) = ελ1
ε(p). A direct computation yields the first

order coefficient of the Lindstedt series in ε of λ(ε, p):

(9.15) λ1
0(p) =

〈

πxf
1
0 (θ, p)

〉

.

From (9.9), (9.14) and (9.15), it is clear that V h,f,Z0(ε, p) can be written as follows

V h,f,Z0(ε, p) = εV h,f,1,Z0(ε, p).

Moreover V h,f,1,Z0(0, p) = V h,f,1(p). Hence, for sufficiently small ε > 0, K(ε,p) is

fε-invariant if and only if λ1
ε(p) = −∇pV

h,f,1,Z0(ε, p) = 0. The existence of such
solutions is guaranteed by applying a perturbative argument to V h,f,1(p). �
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Remark 9.9. For fε given by (9.13), the tori K(ε,p) in the proof of Theorem
9.8 can be written as follows:

K(ε,p)(θ) = Zp(θ) + εK1
(ε,p)(θ) .

Moreover, the first order coefficient of the Lindstedt series in ε of K(ε,p) is

K1
(0,p)(θ) = −Rωf

1
0 (θ, p) ,

where Rω is as in Lemma 2.28.

9.3. Unfolding non-twist tori

Let f0 : T
n×U → A

n be the integrable system in (9.1). Let (λ0(p), Z(p, θ))
be given by (9.5)-(9.6). A natural classification of f0-invariant tori, with frequency
ω, is the classification of the corresponding critical points of A0(p) as provided by
Singularity Theory (see Remark 9.1). In particular, twist (non-twist) f0-invariant
tori correspond to non-degenerate (degenerate) critical points of A0(p). As a con-
sequence of Theorem 8.5, this classification persists under perturbations.

Assume that ω = ω̂(0) ∈ Dn(γ, τ) and that Z0 is non-twist f0-invariant, with
frequency ω. Also assume that A0(p) has a finitely determined singularity of class
Υ at p0 = 0 of co-dimension less than or equal to k. Let A(µ, p) be a versal
unfolding of the singularity of A0 at p0 = 0, with unfolding parameter µ in an
open set µ ∈ U ⊂ R

k. We consider a perturbation of the integrable system with
µ-parametric frequency map ω̂(µ, y) = ω + ∇yA(µ, y) as follows. Let E ⊂ R

k1 be
an open neighborhood of 0 and let g : E×U×(Tn×U) → A

n be a Hamiltonian
deformation with base E×U such that for all µ ∈ U and z ∈ T

n×U the following
holds:

g((0, µ), z) =

(

x+ ω + ∇yA(µ, y)
y

)

.

From the discussion in Section 9.1, it is clear that if

λ0(µ, p) = −∇pA(µ, p),

then, for any µ ∈ U , the function K(0,µ) : U×T
n → R

n×(Tn×U) given by

K(0,µ)(p, θ) = (λ0(µ, p), Z(p, θ)),

is a FLD such that

hλ0(µ,p) ◦ g(0,µ) ◦ Zp = Zp ◦ Rω.

Moreover, the corresponding potential is given by Aµ(p) = A(µ, p).
Apply Theorem 8.5 to the Hamiltonian deformation g with h and d given

in (9.3) and (9.10), respectively. Then, for any |ε0| sufficiently small and fixed,
there exists (µε0

, pε0
), close to (0, p0) = (0, 0), and Kpε0

, a g(ε0,µε0 )-invariant torus

with frequency ω, which is of class Υ. Moreover, the potential V g

h (ε, µ, p) satisfies
V g

h (0, µ, p) = A(µ, p) and V g

h (ε0, µ, p) is a versal unfolding of V g

h (ε0, µε0
, p) at pε0

.

9.4. The Birkhoff potential and the potential of an invariant torus

In some papers [20, 22, 23], the twist condition has been related to the singu-
larities of the BNF around the invariant torus.

The goal of this section is to show that, if the modifying family h is chosen in
a suitable way, then the potential of the BNF around an invariant torus and the
potential of the torus, with respect to a suitable modifying deformation, are close.
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From the theoretical point of view, given a Hamiltonian system with an invari-
ant torus, the BNF procedure provides local coordinates on which the system is
locally close-to-integrable in a neighborhood of the torus, see §9 in [40]. Hence the
results for integrable systems apply to the integrable part of the BNF. The transfor-
mations into BNF require solving repeatedly cohomological equations which leads
to the loss of the analyticity domain in the analytic case and to the loss of regularity
in the smooth case. We quote without proof an analytic version of the BNF result.

Theorem 9.10. Let A be an annulus, endowed with the symplectic form ω =
dα. Let A0 ⊂ A be an annulus, and let B0 ⊂ B be complex strips of A0 and A,
respectively. Let f ∈ Symp(B0,B, C

0) and ω ∈ Dn(γ, τ), for some γ > 0 and τ ≥ n.
Let ρ0 > 0 be fixed and such that γρτ

0 < 1. Assume that K∗ ∈ Emb(Tn
ρ0
,B0, C

1) is
an f-invariant torus, with frequency ω. Then, for any m ∈ N, there exists a tubular
neighborhood Am ⊂ K∗(T

n), and ϕm ∈ Symp(Bm,T
n
C
×C

n), with Bm a complex
strip of Am, satisfying the following properties:

a) (ϕm)∗ω0 = ω;

b) ϕm(K∗(θ)) =

(

θ
0

)

;

c) There is r > 0 and real-analytic functions ω̂m : Ur → C
n and Rm :

T
n
ρ0/2×Ur → T

n
C
×C

n, with Ur = {I ∈ C
n : |I| < r}, such that

ϕm ◦ f ◦ (ϕm)−1(θ, I) =

(

θ + ω̂m(I)
I

)

+Rm(θ, I),

with

sup
θ∈Tn

ρ0/2
,I∈Ur

∣

∣Di
IRm(θ, I)

∣

∣ ≤ κmi |I|
m+1−i

. i = 0, . . . ,m

Furthermore, the following hold:

d) ω̂m(0) = ω.
e) There is a unique real-analytic function Am : Ur → C, such that Am(0) =

0 and

ω̂m(I) = ω + ∇IA
m(I).

f) ω̂m depends only on Dj
zf|K∗(Tn), j ≤ m.

Remark 9.11. The function Am in Part b) of Theorem 9.10 is called the
Birkhoff potential of order m forK∗ with respect to f and ω. Notice that ω̂m(0) = ω

implies |Am(I)| = O(|I|2).

Lemma 9.12. A0 ⊂ A, B0 ⊂ B, ω ∈ Dn(γ, τ) and ρ0 > 0 be as in Theorem
9.10. Assume that f ∈ Symp(B0,B, C

0) and that K∗ ∈ Emb(Tn
ρ0
,B0, C

1) is f-
invariant with frequency ω. Let 1 ≤ m ∈ N be fixed and let Am ⊂ A and ϕm ∈
Symp(Am,T

n
C
×C

n) be as in Theorem 9.10. Let L
K∗

, N
K∗

and T
(f,K∗)

be given by

(3.2), (3.3) and (3.7), respectively. Then, detπy

〈

Dzϕ
m(K∗(θ))NK∗

〉

6= 0.

Proof. The first BNF step is just the computation of Weinstein coordinates
(see §9 in [40]). Then, ϕ1 satisfies

Dzϕ
1(K∗(θ))NK∗

(θ) =

(

On

In

)

,

Further steps of BNF will produce ϕm close to ϕ1. �
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The following result shows that there is a modifying deformation h such that
the potential of the torus K∗ with respect to h, f and ω is close to the potential of
the BNF around K∗.

Theorem 9.13. Let A be an annulus, endowed with the compatible triple (ω =
dα,J , g). Let A0 ⊂ A be an annulus, and let B0 ⊂ B be complex strips of A0 and
A, respectively. Let f ∈ Symp(B0,B, C

r), with r ≥ 2. Let ω ∈ Dn(γ, τ) and ρ0 > 0
be as in Theorem 9.10. Assume that K∗ ∈ Emb(Tn

ρ0
,B0, C

1) is f-invariant with
frequency ω. Let 1 ≤ m ∈ N be fixed and let Am, ϕm ∈ Symp(Am,T

n
C
×C

n) and
Am be as in Theorem 9.10. Then, there are D,Λ ⊂ R

n open neighborhoods of zero,
an annulus A1 ⊂ A and h : Λ×A1 → A, a modifying deformation with base Λ,
such that K∗ is h-deformable with respect f and ω. Moreover, the potential of K∗

with respect to h, f and ω, V h,f,K∗ : D → R, satisfies the following estimate:

(9.16) |V h,f,K∗(p) −Am(p))| ≤ κ |p|m+1
,

for some constant κ > 0.

Proof. Let ĥ : R
n×A

n → A
n be given by

ĥ(λ, θ, I) =

(

θ + λ
I

)

.

The moment map of ĥ is M ĥ(θ, I) = I. Let 0 ∈ Λ ⊂ R
n be open, let K∗(T

n) ⊂
A1 ⊂ Am be an annulus such that the composition

h(λ, z) = (ϕm)−1(ĥ(λ, ϕm(z))

is defined for (λ, z) ∈ Λ×A1. Let 0 ∈ Σ ⊂ R
n be open and let K∗(T

n) ⊂ A′
0 and

A2 ⊂ A be annuli such that f(A′
0) ⊂ A1 and hλ(A1) ⊂ A2 for all λ ∈ Λ. Let

d : Σ×A2 → A be a dummy deformation. Define f : Σ×Λ×A′
0 → A by

f(σ, λ, z) = dσ(hλ(f(z))).

Let M h be the moment map of h. Assume that B′
0 and B1 are sufficiently small

complex strips of A′
0 and A1, respectively, in such a way that the following holds,

for i = 0, . . . , r:

max

(

sup
(t,z)∈Ξ×B′

0

∣

∣

∣Di
(t,z)f(t, z)

∣

∣

∣ , sup
z ∈B1

∣

∣Di
zM

h(z)
∣

∣

)

<∞ .

Next, from Lemma 2.21, the moment map of h is given by M h = M ĥ ◦ ϕm. This
implies

〈M h(K∗(θ))〉 = 0,

〈DzM
h(K∗(θ))DθK∗(θ)〉 = On,

〈

DzM
h(K∗(θ))NK∗

(θ)
〉

= πy

〈

Dzϕ
m(K∗(θ))NK∗

(θ)
〉

.

where N
K∗

is given by (3.3). Then, the matrix in (7.1) takes the following form:




〈

T
(f,K∗)

(θ)
〉

πy

〈

Dzϕ
m(K∗(θ))NK∗

(θ)
〉⊤

πy

〈

Dzϕ
m(K∗(θ))NK∗

(θ)
〉

On×n



 .

From which and Lemma 9.12, we have that (0,K∗) is h-nondegenerate with respect
to f and ω (see Definition 7.1). Hence, Theorem 7.4, applied to f , ω, K∗ and h,
implies the existence of an open neighborhood of zero, D ⊂ R

n, and a FLD with
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base sets D and Λ (possibly smaller), K = (λ,K) : D×T
n → Λ×A0, such that

K(0, θ) = (0,K∗(θ)) and

hλ(p) ◦ f ◦Kp = Kp ◦ Rω ,
〈

Kx
p (θ) − θ

〉

= 0 ,

〈M h(K(p, θ))〉 = p .

A direct computation shows that, in the present case, the potential of K∗ with
respect to h, f and ω is

V h,f,K∗(p) = − p⊤λ(p) − 〈Sf ◦Kp 〉 −
〈

Sϕ
m
◦ (ϕm)−1 ◦Kp

〉

+
〈

Sϕ
m
◦ (ϕm)−1 ◦ h−λ(p) ◦Kp

〉

,
(9.17)

Define

g = ϕm ◦ f ◦ (ϕm)−1,

K̂p = ϕm ◦Kp.

Then, the following holds:

ĥλ(p) ◦ g ◦ K̂p = K̂p ◦ Rω ,(9.18)
〈

M ĥ(K̂p(θ))
〉

= p .(9.19)

From Proposition 8.4 we have that the potential of K̂0(θ) = Z0(θ) =

(

θ
0

)

with

respect to ĥ, g and ω satisfies

(9.20) V ĥ,g,K̂0(p) = V h,f,K∗(p),

Next, define

f̂m(θ, I) =

(

θ + ω + ∇IA
m(I)

I

)

.

Then, Zp(θ) =

(

θ
p

)

and λm(p) = −∇pA
m(p) satisfy:

ĥλm(p) ◦ f̂m ◦ Zp = Zp ◦ Rω ,(9.21)
〈

Zx
p (θ) − θ

〉

= 0 ,(9.22)
〈

M ĥ(Zp(θ))
〉

= p .(9.23)

Then, from equalities (9.18) and (9.21), Theorem 7.4 and Theorem 9.10 we have,
for |p| sufficiently small:

∥

∥

∥
K̂p − Zp

∥

∥

∥

ρ0/2
= O(|p|m+1

) ,

|λ(p) − λm(p)| = O(|p|m+1
) .

This implies

(9.24)
∣

∣V ĥ,g,K̂0(p) −Am(p)
∣

∣ ≤ κ |p|m+1
.

Estimate (9.16) follows from equality (9.20) and estimate (9.24). �





APPENDIX A

Hamiltonian vector fields

The results in this paper so far deal with the case of symplectomorphisms. A
similar theory can be developed for Hamiltonian vector fields. In this appendix, we
state and prove the main geometric and analytic properties that are required for
this development.

Throughout this appendix, we use the definitions introduced in Section 2.2.4.
We also assume that A0 ⊂ A and A′

0 ⊂ A′ are annuli in A
n, endowed with the

compatible triples (ω = dα,J , g) and (ω′ = dα′,J ′, g′), respectively. Let (Ω =
Da⊤−Da, J,G) and (Ω′ = Da′⊤−Da′, J ′, G′) be the corresponding representation,
corresponding to the triples.

A.1. One-bite small divisor equations

Let ω ∈ R
n, define the linear differential operator

(A.1) L′
ω = −

n
∑

i=1

ωi
∂

∂θi
.

The analytic core of KAM theory for Hamiltonian vector fields is the following
linear equation:

(A.2) L′
ω u = v − 〈v〉 ,

where v is given and the unknown is u. A sufficient condition on ω that guarantees
the solvability of (A.2) is the following Diophantine condition:

(A.3)
∣

∣k⊤ω
∣

∣ ≥ γ |k|−τ
1 , ∀ k ∈ N \ {0},

where γ > 0 and τ ≥ n − 1, are constants. Denote by D′
n(γ, τ) the set of ω that

satisfy (A.3) for some γ > 0 and τ ≥ n− 1.

Lemma A.1. Let ω ∈ D′
n(γ, τ), for some γ > 0 and τ ≥ n − 1. Let ℓ ∈ R be

not an integer be such that ℓ− τ > 0 is not an integer. Then, for any Cℓ-function
v : T

n → R, there exists a unique Cℓ−τ -function, u : T
n → R with zero-average

satisfying equation (A.2). We denote such a solution by u = R′
ωv.

Lemma A.2 (Rüssmann estimates). There exists a positive constant cR, de-
pending only on n and τ , such that for any v ∈ A(Tn

ρ , C
0), with ρ > 0, there

exists a unique zero-average solution u, denoted by u = R′
ωv, of equation (A.2).

Moreover, u ∈ A(Tn
ρ−δ, C

0) for any 0 < δ < ρ, and

‖u‖ρ−δ ≤ cR γ−1δ−τ ‖v‖ρ .

From Lemma A.1, it is clear that:

R′
ω L′

ω u = u− 〈u〉 ,(A.4)

L′
ω R′

ω v = v − 〈v〉 .(A.5)

87
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Moreover, the following equality holds:

(A.6) 〈(R′
ωu)v + u (R′

ωv)〉 = 0 .

The above definitions for L′
ω and R′

ω extend component-wise to vector and matrix-
valued functions. These extensions also satisfy Lemma A.2 and equalities (A.4),
(A.5) and (A.6).

A.2. Automatic reducibility of invariant tori

The following result is the vector field version of Lemma 3.1.

Lemma A.3. Let ω ∈ R
n be rationally independent. Let Xf̃ (z) = Ω(z)−1∇z f̃(z)

be a local Hamiltonian vector field with local Hamiltonian function f̃ : Ã0 → R.
Assume that K ∈ Emb(Tn,A0) is invariant for the Hamiltonian flow with internal

dynamics given by the vector field θ̇ = ω:

(A.7) Xf̃ ◦K + L′
ωK = 0 ,

Then:

a) f̃ is a (global) Hamiltonian: f̃ = f is 1-periodic in x.
b) K(Tn) is Lagrangian.
c) Let L

K
, N

K
: T

n → R
2n×n be given by

L
K

(θ) = DθK(θ),

N
K

(θ) = J(K(θ)) DθK(θ) G
K

(θ)−1,

where G
K

is given in (2.11), and let M
K

: T
n → R

2n×2n be given by

(A.8) M
K

(θ) =
(

L
K

(θ) N
K

(θ)
)

.

Then, the vector bundle morphism induced by M
K
:

M
K

: T
n×R

2n −→ TKA0

(θ, ξ) −→ (K(θ),M
K

(θ)ξ)

is an isomorphism such that M∗
K

ω = ω0. In particular,

(A.9) M
K

(θ)−1 = −Ω0 MK
(θ)⊤ Ω(K(θ)).

d) Transformation by M
K

reduces the linearized dynamics to a block-trian-
gular matrix:

(A.10) M
K

(θ)−1
(

DzXf̃ (K(θ))M
K

(θ) + L′
ωM(θ)

)

=

(

On T
(f̃,K)

(θ)

On On

)

where

(A.11) T
(f̃,K)

(θ) = N
K

(θ)⊤Ω(K(θ))
(

DzXf̃ (K(θ))N
K

(θ) + L′
ωNK

(θ)
)

,

with N
K

defined in (3.3).

Proof. Denote by Ωij(z) the (ij)-component of Ω(z). Given a vector v ∈ R
d,

vi represent the i-component of v. First, we establish some equalities used in the
proof. Equality (A.7) is equivalent to

(A.12) − Ω(K(θ))L′
ωK(θ) = ∇z f̃(K(θ)) .

Using the fact that ω is a closed form, one easily shows

(A.13)
∂Ωrs

∂zt
+
∂Ωst

∂zr
+
∂Ωtr

∂zs
= 0 .
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Using equation (A.12) one shows:
(

∂K

∂θi
(θ)

)⊤
∂

∂θj

(

∇z f̃(K(θ))
)

=

= −
2n
∑

r=1

2n
∑

t,s=1

∂Ωst

∂zr
(K(θ))

∂Kr

∂θj
(θ)

∂Ks

∂θi
(θ)L′

ωKt(θ)

−
2n
∑

t,s=1

Ωst(K(θ))
∂Ks

∂θi
(θ) L′

ω

(

∂Kt

∂θj
(θ)

)

.

(A.14)

Moreover, it is clear that

(A.15)

(

∂K

∂θi
(θ)

)⊤
∂

∂θj

(

∇z f̃(K(θ))
)

=

(

∂K

∂θj
(θ)

)⊤
∂

∂θi

(

∇z f̃(K(θ))
)

.

Next, from Ω(z)Xf̃ (z) = ∇z f̃(z) we obtain:

(A.16)
∂2f̃

∂zi∂zj
(z) =

2n
∑

s=1

[

∂Ωjs

∂zi
(z)Xf̃ s

(z) + Ωjs(z)
∂Xf̃ s

∂zi
(z)

]

.

First we prove Part rm b). Using equalities (A.13) ,(A.14), (A.15) and anti-
symmetry of Ω, one shows that the components of the matrix ΩK(θ) = DθK(θ)⊤Ω(K(θ))DθK(θ)
satisfy

(−L′
ω ΩK(θ))ij = −L′

ω

(

(

∂K

∂θi
(θ)

)⊤

Ω(K(θ))

(

∂K

∂θj
(θ)

)

)

=

n
∑

m=1

2n
∑

r,s,t=1

[

∂Ωst

∂zr
(K(θ))

∂Kr

∂θm
(θ)

∂Ks

∂θi
(θ)

∂Kt

∂θj
(θ)

−
∂Ωst

∂zr
(K(θ))

∂Kr

∂θi
(θ)

∂Kt

∂θj
(θ)

∂Ks

∂θm
(θ)

−
∂Ωst

∂zr
(K(θ))

∂Kr

∂θj
(θ)

∂Ks

∂θi
(θ)

∂Kt

∂θm
(θ)

]

ωm

= 0.

This implies L′
ωΩK(θ) = 0. Moreover, since the linear flow of θ̇ = ω is ergodic, we

have ΩK(θ) = 〈ΩK(θ)〉. In the proof of Lemma 3.1 we showed 〈ΩK(θ)〉 = 0. This
proves Partb).

We now prove Part a). Let Cf̃ ∈ R
n be the infinitesimal Calabi invariant of f̃

and let f : A0 → R be 1-periodic in x and such that (see Definition 2.14)

f̃(z) = −x⊤Cf̃ + f(z) .

From Part b) of Lemma A.3 and (A.12) we have:

(A.17) Dθ(f̃ ◦K) = 0 .

Notice that from (A.17) we have that the torus K(Tn) lies in an energy level. Part
a) Lemma A.3 follows from (A.17) and the following equality:

Cf̃ = −
〈

Dθ(f̃ ◦K)
〉⊤

.
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Part c) is a consequence of Part b) (see Lemma 3.1).
We now prove Part d). From (3.2) and (3.3) L

K
(θ) = DθK(θ) and N

K
(θ) =

J(K(θ))L
K

(θ)G
K

(θ)−1. Taking derivatives with respect to θ in (A.7) we have

(A.18) DzXf̃ (K(θ))L
K

(θ) = −L′
ωLK (θ) .

Then, performing some computations and using (A.9) and (A.18) we obtain

M(θ)−1
(

DzXf̃ (K(θ))M(θ) + L′
ωM(θ)

)

=

(

On T
(f̃,K)

(θ)

On P
(f̃,K)

(θ)

)

,

where

P
(f̃,K)

(θ) = −L
K

(θ)⊤Ω(K(θ))
(

DzXf̃ (K(θ))N
K

(θ) + L′
ωNK

(θ)
)

.

To prove that P
K

= 0 we use the following equalities:

(A.19) L
K

(θ)⊤Ω(K(θ))J(K(θ))L
K

(θ) = −G
K

(θ),

(A.20) G
K

(θ)L′
ω

(

G
K

(θ)−1
)

= − (L′
ω GK

(θ)) G
K

(θ)−1 ,

where G
K

is defined in (2.11). Using equalities (A.19) and (A.20) one shows

−L
K

(θ)⊤Ω(K(θ))L′
ωNK

(θ)G
K

(θ) = (L′
ωLK (θ))⊤Ω(K(θ))J(K(θ))L

K
(θ)

+ L
K

(θ)⊤(L′
ωΩ(K(θ)))J(K(θ))L

K
(θ)

from which we obtain:

P
K

(θ) = − L
K

(θ)⊤
[

Ω(K(θ))DzXf̃ (K(θ))

+ DzXf̃ (K(θ))⊤Ω(K(θ))

− L′
ω (Ω ◦K)(θ)

]

N
K

(θ) .

Performing some computations and using equalities (A.13) and (A.16) one shows
that the following equality holds for any i, j ∈ {1, . . . , 2n}:

(

Ω(K(θ))DzXf̃ (K(θ)) + DzXf̃ (K(θ))⊤Ω(K(θ)) − L′
ω(Ω ◦K)(θ)

)

ij

=

2n
∑

s=1

[

−
∂Ωis

∂zj
(K(θ)) +

∂Ωjs

∂zi
(K(θ)) +

∂Ωij

∂zs
(K(θ))

]

Xf̃ s
(K(θ))

= 0 .

This proves Part d) of Lemma A.3. �

Definition A.4. Let ω ∈ R
n and let Let Xf̃ (z) = Ω(z)−1∇z f̃(z) be a local

Hamiltonian vector field with local Hamiltonian function f̃ : Ã0 → R. The torsion
of K ∈ Emb(Tn,A0), with respect to Xf̃ and ω, is defined by:

T̄
(f̃,K)

=
〈

T
(f̃,K)

〉

,

where T
(f̃,K)

is given by (A.11). We say that K is twist with respect to f and ω

if T̄
(f̃,K)

is nondegenerate, otherwise we say that K is non-twist with respect to f

and ω.
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Following the proof of Lemma A.3, it can be proved that the geometrical prop-
erties of Xf̃ -invariant tori, stated in Lemma A.3, are slightly modified when the
torus is only approximately Xf̃ -invariant. The errors are controlled by the norm of

the error Xf̃ ◦K + L′
ωK = 0.

A.3. Families of Hamiltonians and moment map

Let H̃am(A0) denote the set of smooth local Hamiltonian functions on Ã0. The
vector filed version of symplectic deformations is the following.

Definition A.5. Let Ξ ⊂ R
m be open. A family of local Hamiltonians with

base Ξ is a smooth function g̃ : Ξ×Ã0 → R inducing a family of local Hamiltonian
functions:

(A.21)
Ξ −→ H̃am(Ã0)
t −→ g̃t(z) = g̃(t, z) ,

The infinitesimal Calabi invariant of g̃ is a smooth function Cg̃ : Ξ → R
n satisfying

(A.22) g̃(t, z) = −x⊤Cg̃(t) + g(t, z) ,

where g is 1-periodic in x. If Cg̃ ≡ 0, then g̃ = g is called family of (global)
Hamiltonians.

We now introduce the local moment map of a family of local Hamiltonians.

Definition A.6. Given a family of local Hamiltonians g̃ : Ξ×Ã0 → R, the
corresponding family of symplectic vector fields is the function Xg̃ : Ξ×Ã0 →

Ã0×R
2n, such that, for any t ∈ Ξ, the function Xg̃t

: Ã0 → Ã0×R
2n, defined by

Xg̃t
(z) = Xg̃(t, z), is the vector field corresponding to the local Hamiltonian g̃t:

(A.23) iXg̃tω = −dg̃t,

where i denotes the interior product. Notice that for any t ∈ Ξ, Xg̃t
is 1-periodic

in x.
The infinitesimal primitive function, corresponding to g̃ is the function S g̃ :

Ξ×Ã → R defined by

S g̃(t, z) = a(z)⊤Xg̃(t, z) − g(t, z).

If g̃ = g is a family of Hamiltonians, Xg̃ = Xg is called a family of Hamiltonian
vector fields.

Given a family of local Hamiltonians with base Ξ, g̃ : Ξ×Ã0 → R, the corre-
sponding family of symplectic vector fields induces the following function

(A.24)
Ξ −→ X(A0)
t −→ Xg̃t

(z) = Xg̃(t, z) ,

where X(A0) denotes the set of symplectic vector fields on A0. Since there will be
not risk of confusion, the function in (A.24) will also be denoted by Xg̃.

Definition A.7. Let g̃ : Ξ×Ã0 → R be a smooth family of local Hamiltonians
with base Ξ and let Xg̃ be its corresponding family of symplectic vector fields.

i) The generator of g̃ is the function G g̃ : Ξ×Ã0 → R
2n×m given by

G g̃(t, z) = DtXg̃(t, z)
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ii) The local moment map of g̃ is the function M̃ g̃ : Ξ×Ã0 → R
m defined by

M̃ g̃(t, z) = Dtg̃(t, z)
⊤ .

If g̃ = g is a family Hamiltonians, then M̃ g is called the moment map and it will
be denoted by M g.

The following is the vector field version of Lemma 2.19.

Lemma A.8. Let Ξ ⊂ R
m be open. Let g̃ : Ξ×Ã0 → R be a smooth family

of local Hamiltonians with local moment map M̃ g and family of symplectic vector
fields Xg̃. Then, the following equality holds:

(A.25) DtXg̃(t, z) = Ω(z)−1DzM̃
g(t, z)⊤ .

Remark A.9. The functions Gg and M̃ g in Definition A.7 have a natural
geometrical meaning. For i = 1, . . . ,m, let (M̃ g

t
)i and (Gg

t
)i be the i-the coordinate

of M̃ g

t
and the i-the column of Gg

t
, respectively. From equality (A.25) one has that

(M̃ g

t
)i is a local Hamiltonian of the vector field (Gg

t
)i:

i(Gg
t
)iω = −d(M̃ g

t
)i .

We adopt a notational convention similar to that used for symplectic deforma-
tions. Namely, families of (local) Hamiltonians are denoted with (dashed) small
letters, the (local) moment maps with capital (dashed) letters the (local) generator
will be denoted by using (dashed) script capital letters.

For canonical changes of variables the following holds.

Lemma A.10. Let Ξ ⊂ R
m be open. Let g̃ : Ξ×Ã0 → R be a smooth family

of local Hamiltonians with local moment map M̃ g and family of symplectic vector
fields Xg̃. Let f : Ξ×A′

0 → A be a symplectic deformation, with local moment map

M̃ f and such that ft(A
′
0) = A0, for all t ∈ Ξ. Define g̃′ : Ξ×Ã′

0 → R by

g̃′t = g̃t ◦ ft .

Then, the local moment map of g̃′ is:

M̃ g′(t, z) = M̃ g(t, ft(z))) − DzM̃
f(t, ft(z))) Xf̃ (t, ft(z)) .

Proof. This is a consequence of Lemma 2.19 and Definition A.7. �

A.4. Potential and moment of an invariant FLD

In this section we state the Hamiltonian vector fields version of Theorem 4.7
and Theorem 4.8.

Definition A.11. Let D,Λ ⊂ R
s be open and let g : Λ×A0 → R be a smooth

family of Hamiltonians and let Xg : Λ×A0 → Ã0×R
2n be the corresponding family

of Hamiltonian vector fields. A FLD base sets D and Λ, is a smooth bundle map

K : D×T
n −→ Λ×A0

(p, θ) −→ (λ(p),K(p, θ)) ,

such that, for each p ∈ D, Kp ∈ Lag(Tn,A0). K is Xg-invariant with frequency ω if
for any p ∈ D, Kp is Xgλ(p)-invariant with frequency ω:

Xgλ(p)
◦Kp + L′

ωKp = 0 .
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Let K : D×T
n → Λ×A0 be a smooth FLD with base sets D and Λ. As in the

maps case, we have that the momentum and potential of K with respect to Xg are
defined, respectively, by:

(A.26) M g,K(p) = 〈M g (λ(p),K(p, θ))〉 ,

(A.27) V g,K(p) = −M g,K(p)⊤λ(p) − 〈Sg (λ(p),K(p, θ)) 〉 .

where M g is the moment map of g. Moreover, K is parameterized by the momentum
parameter if the following equality holds for all p ∈ D:

M g,K(p) = p ,

where M g is the moment map of g.
An important property of the momentum and of the potential of a Xg-invariant

FLD is that they are invariant under canonical changes of the phase space variable.
This is the content of the following result.

Proposition A.12. Let D,Λ ⊂ R
s be open and let g : Λ×A0 → R be a smooth

family of Hamiltonians, with base Λ. Assume that K = (λ,K) : D×T
n → Λ×A0

is a smooth Xg-invariant FLD with frequency ω and base sets D and Λ. Let ϕ :
Λ×A′ → ×A0 be a smooth Hamiltonian deformation such that, for any λ ∈ Λ,
ϕλ(A′

0) = A0. Define g′ : Λ×A′
0 → R and K by

g′λ = gλ ◦ ϕλ and K′(p, θ) = (λ(p), ϕ−1
λ(p)(K(p, θ)) ).

Then
M g′,K′

= M g,K, and V g′,K′

= V g,K.

Proof. Performing straightforward computations one shows that the following
equalities hold:

〈

M f′(t0,K
′
0(θ)))

〉

= 〈M f(t0,K0(θ))〉 ,
〈

Sf
′

(t0,K
′
0(θ)))

〉

= 〈Sf(t0,K0(θ))〉 ,

from which Proposition A.12 follows. �

The following is the vector field version of Theorem 4.7.

Theorem A.13. Let ω ∈ R
n, D,Λ ⊂ R

s. Let

K : D×T
n −→ Λ×A0

(p, θ) −→ (λ(p),K(p, θ))

be a smooth FLD with base sets D and Λ. Let g : Λ×A0 → R be a smooth family
of Hamiltonians, with base Λ. Assume that K is Xg-invariant with frequency ω and
that it is parameterized by the momentum parameter p. Then the following equality
holds:

λ(p) = −∇pV
g,K(p) .

The following is the vector field version of Theorem 4.8

Theorem A.14. Let D,Λ ⊂ R
s, ω ∈ R

n, K : D×T
n → Λ×A0 and g : Λ×A0 → R

be as in Theorem A.13. Let CK, L
K
N
K

and M
K

be given by (2.9), (3.2), (3.3)
and (3.4), respectively. For (p, θ) ∈ D×T

n, take C (p) = CKp L(p, θ) = L
Kp

(θ),

N(p, θ) = N
Kp

(θ), M(p, θ) = M
Kp

(θ) and

T (p, θ) = N(p, θ)⊤Ω(K(p, θ))
(

DzXgλ(p)(K(p, θ))N(p, θ) + L′
ωN(p, θ)

)

.
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Let M g be the moment map of g. Define

Bg(p, θ) = (DzM
g(λ(p),K(p, θ + ω))M(p, θ + ω)J0)

⊤
.

Assume that ω ∈ Dn(γ, τ), for some γ > 0 and τ ≥ n and that, for any p ∈ D,
Tp(θ) = T (p, θ) and Bg

p(θ) = Bg(p, θ) are sufficiently smooth so that R′
ωTp and

R′
ωB

g
p are smooth, with Rω as in Lemma A.1. Then, T̄ : D → R

n×n, given by

T̄(p) = 〈T (p, θ)〉, satisfies the following equality:

T̄(p)DpC (p) = W (p)Hessp V
g,K(p) ,

where
W (p) =

〈

DzM
g(λ(p, θ))

(

N(p, θ) − L(p, θ)R′
ωT (p, θ)⊤

) 〉⊤
.

Corollary A.15. Assume that the hypotheses of Theorem A.13 hold. Then,
for any λ∗ ∈ Λ fixed, the following holds:

a) for any p∗ ∈ D, Kp∗ is an Xgλ∗
-invariant tori with frequency ω if and only

if p∗ is a critical point of V g,K(p) + p⊤λ∗;
b) if Kp∗ is Xgλ∗

-invariant, with frequency ω, and the matrices in Theorem

A.13, W1(p∗) and W2(p∗), are invertible, then the co-rank of 〈Tp∗
〉 equals

the co-rank of p∗ as a critical point of V g,K(p) + p⊤λ∗. That is,

dim ker 〈Tp∗
〉 = dim ker HesspV

g,K(p).

A.5. Transformed Tori Theorem

Here we discuss the main ingredients to formulate the vector field version of
the results in Chapter 7.

This is the vector field version of the geometrical functions introduced in defi-
nition 5.3 and 5.4.

Definition A.16. Let Λ ⊂ R
s be an open neighborhood of 0, with 0 ≤ s ≤ n.

A modifying deformation of vector fields is a family of Hamiltonian vector fields
Xh : Λ×Ã → Ã×R

2n, with Hamiltonians h : Λ×Ã → Ã, such that:

i) Xh0 ≡ 0;
ii) Ch(λ) = 0, for all λ ∈ Λ;
iii) Xhλ ◦K = K for some K ∈ Emb(Tn,A0) if and only if λ = 0.

Definition A.17. Let Σ ⊂ R
n be an open neighborhood of 0. A dummy

deformation of vector fields is a family of symplectic vector fields Xd̃ : Σ×Ã →

Ã×R
2n, with Hamiltonians d̃ : Σ×A → A, such that:

i) Xd̃0
≡ 0;

ii) Cd(σ) = σ, for all σ ∈ Σ.

Example A.18. The family of vector fields corresponding to the family of
Hamiltonians h(λ, x, y) = λ⊤y is an example of modifying deformation of vector
fields. The moment map of h is H(x, y) = y. If the symplectic structure is the

standard one, then Xh(λ, z) =

(

λ
0

)

.

Example A.19. The family of vector fields corresponding to the family of
Hamiltonians d̃(σ, x, y) = −σ⊤x is an example of dummy deformation of vector

fields. The local moment map of d̃ is d̃(z) = −x. If the symplectic structure is the

standard one, then Xd̃(σ, z) =

(

0
σ

)

.
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Given an open set U ⊂ R
k and a smooth family of Hamiltonians, f : U×A0 →

A, we embed the corresponding family of vector fields Xf in a smooth family of
symplectic vector fields by introducing modifying and dummy parameters as follows.
Let Λ ⊂ R

s, with 0 ≤ s ≤ n, and Σ ⊂ R
n be open neighborhoods of the origin. Let

Xh : Λ×A → A×R
2n and Xd̃ : Σ×A → A×R

2n be a family of, respectively, modifying
and dummy vector fields with smooth families (local) Hamiltonians h : Λ×A → A

and d̃ : Σ×A → A, respectively. Define Ξ = U×Σ×Λ, t = (µ, σ, λ) and the family

of local Hamiltonians with base Ξ, f̃ : Ξ×A0 → A,

f̃t = d̃σ + hλ + fµ .

The family of vector fields X
f̃

: Ξ×A0 → A×R
2n satisfies

X
f̃ (µ,0,0)

= Xf µ, ∀µ ∈ U .

Remark A.20. Since Cd̃(σ) = σ, Ch(λ) = 0 and Cf(µ) = 0 we have

Cf̃(µ, σ, λ) = σ.

Then f̃t is (global) Hamiltonian function if and only if σ = 0. Hence, from Lemma
A.3 we have that the only elements of the family {X

f̃ t
}t∈Ξ that might have invariant

tori are those for which σ = 0.

The nondegeneracy condition for the vector field version of Theorem 7.4 goes
as follows. Let K ∈ Emb(Tn,A) and let L

K
and N

K
be given by (3.2) and (3.3),

respectively. Let H : Ã2×Σ → R
s be the moment map of h. We use the following

notation:

T
(t,K)

(θ) = N
K

(θ)⊤Ω(K(θ))(DzXf̃ t
(K(θ))N

K
(θ) + L′

ωNK
(θ)) ,

Bh
(λ,K)

(θ) = (DzH(λ,K(θ))M
K

(θ)J0)
⊤

Let R′
ω be as in Lemma A.1, define

T̄
(t,K)

=
〈

T
(t,K)

(θ)
〉

P 12
(t,K)

(θ) =
〈

Bh,x
(λ,K)

(θ) − T
(t,K)

(θ)R′
ωB

h,y
(λ,K)

(θ)
〉

,

P 21
(t,K)

(θ) =
〈

Bh,x
(λ,K)

(θ)⊤ +Bh,y
(λ,K)

(θ)⊤R′
ωT(t,K)

(θ)
〉

P 22
(t,K)

(θ) = 〈DλH (λ,K(θ)))〉 −
〈

Bh,x
(λ,K)

(θ)⊤R′
ωB

h,y
(λ,K)

(θ)
〉

+
〈

Bh,y
(λ,K)

(θ)⊤R′
ω

(

Bh,x
(λ,K)

(θ) − T
(t,K)

(θ)R′
ωB

h,y
(λ,K)

(θ)
)〉

.

Define

(A.28) P
(t,K)

=





T̄
(t,K)

P 12
(t,K)

P 21
(t,K)

P 22
(t,K)



 .

Definition A.21. We say that (λ0,K) is Xh-nondegenerate with respect to
Xf µ0

and ω, if the ((n+ s)×(n+ s))-dimensional matrix P
(t0,K)

has maximal range,

with t0 = (µ0, 0, λ0) and P
(t,K)

, defined in (A.28).

Remark A.22. If s = 0 then the only modifying deformation of vector fields is
Xh ≡ 0, and K is nondegenerate with respect to fµ0

and ω, in the sense of Definition

A.21, if and only if K is twist with respect to Xf µ0
and ω, i.e. the torsion

〈

T
(t0,K)

〉

is invertible.
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A vector field version of Theorem 7.4 can be obtained from the vector field
version of Theorem 6.2, discussed in Section A.6.

A.6. A parametric KAM Theorem

Here we sketch the procedure to obtain the vector field version of the para-
metric KAM result, Theorem 6.2. It is also possible to obtain a rigorous proof by
considering the time-1 map and applying the corresponding result for symplecto-
morphisms.

Let m ≥ n and let Ξ ⊂ R
m be open. Let f̃ : Ξ×Ã0 → R be a smooth family of

local Hamiltonians and let Xf̃ : Ξ×Ã0 → A×R
2n be the corresponding family of local

Hamiltonian vector fields. Let B0 ⊂ B be complex strips of A0 and A, respectively.
Assume that for any t ∈ Ξ, Xf̃ t

is real-analytic on a complex neighborhood of A0.

Let Z : R
m×Ξ×Emb(Tn

ρ ,B0, C
0) → R

m be a Cr-functional. Define

(A.29) F(ζ; t,K) =

(

e(t,K)
ν(ζ; t,K)

)(

Xf̃ t
◦K + L′

ωK

Z(t,K) − ζ

)

,

with L′
ω given in (A.1).

As in the symplectomorphisms case, a KAM procedure to solve the following
non-linear equation

(A.30) F(ζ; t,K) = 0

depends on the solvability properties of the corresponding linearized equation:

(DzXf̃ t
◦K) ∆K + L′

ω ∆K + (DtXf̃ t
◦K) ∆t = ϕ,(A.31)

DKZ(t,K)∆K + DtZ(t,K) ∆t = ν.(A.32)

Using lemmas A.3 and A.8 one obtains.

Lemma A.23. Let ω ∈ R
n be rationally independent. Let K ∈ Emb(T,A0) and

let M
K

be defined by (A.8). Let M f is the moment map of f and define

T
(t,K)

(θ) = N
K

(θ)⊤Ω(K(θ))
(

DzXf t
(K(θ))N

K
(θ) + L′

ωNK
(θ)
)

,

Bf
(t,K)

(θ) = (DzFt(K(θ))M
K

(θ)J0 )⊤.

Assume that K is Xf t
-invariant with frequency ω and let ∆K = M

K
ξ. Then, the

system (A.31), (A.32) is equivalent to

(T̂
(t,K)

+ L′
ω) ξ +Bf

(t,K)
∆t = η,(A.33)

DKZ(t,K) [M
K
ξ] + DtZ(t,K) ∆t = ν,(A.34)

where

(A.35) T̂
(t,K)

(θ) =

(

On T
(t,K)

(θ)
On On

)

,

and

(A.36) η(θ) = −J0MK
(θ)⊤Ω(K(θ))ϕ(θ).

For an approximate solution (ζ; t,K) of (A.30), the change of variables ∆K =
M

K
ξ reduces the system (A.31), (A.32) to the linear system (A.33), (A.34) except

for some terms that can be estimated by the norm of the error e = Xf̃ t
◦K+L′

ωK.

The proof of this is not included here because it is very similar to the proof of the
corresponding result for symplectomorphisms (see Lemma 5.2).
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Remark A.24. Notice the similitude between the linear systems (A.33) and
(5.22).

The linear system (A.33), (A.34) has a solution provided a nondegeneracy con-
dition is satisfied. In what follows we describe this. Using (A.4) and (A.33) one
shows that any solution of (A.33) has the following form:

(A.37) ξ = (I2n −R′
ωT̂ )ξ0 −R′

ω(B − T̂R′
ωB)∆t + R′

ω(η − T̂R′
ωη),

where for typographical simplicity we have not written the dependence on (t,K). A
direct computation shows that (ξ,∆t) in (A.37) is a solution of (A.33) and (A.34)
if and only if the constant (ξ0,∆t) ∈ R

2n×R
m satisfies the following (2n + m)-

dimensional linear system:

Q
(t,K)

(

ξ0
∆t

)

=





〈

η − T̂ R′
ω η
〉

ν − DKZ(t,K)
[

M
K
Rω(η − T̂ R′

ωη)
]



 ,

with

Q
(t,K)

=





〈

T̂
〉 〈

B−T̂R′
ωB
〉

DKZ
[

M
K

(I2n−R′
ωT̂ )

]

DtZ−DKZ
[

M
K
R′

ω(B−T̂R′
ωB)

]



 ,

where for typographical simplicity we have not written the dependence on (t,K)

of T̂ and B and DKZ and DtZ are evaluated at (t,K).
The statement and the proof of the vector field version of Theorem 6.2 can be

obtained from the above discussion.





APPENDIX B

Elements of singularity theory

Singularity Theory, started by Poincaré and continued by Whitney, Thom,
Mather, Arnold, etc, is nowadays a flourishing area of Mathematics. Here we
briefly review the definitions and results on Singularity theory used in this paper.
We are interested in the Singularity Theory for critical points of parametric families
of functions. For more complete expositions of the subject see [5, 25, 36, 53] and
[42, 43, 44, 45, 67, 70, 71].

The study of local properties of critical points of parametric families of functions
and the stability of these properties is performed in the space of C∞-functions.
Similar theory can be developed for finitely differentiable functions.

Let us start with some definitions.

Definition B.1. Given two mappings f1 : U1 → R
m and f2 : U2 → R

m, write
f1 ∼x0

f2 if there exists a neighborhood of x0 such that U ⊂ U1 and U ⊂ U2 and
f1
∣

∣

U
= f2

∣

∣

U
. The equivalence class of f at x0 is denoted by [f ]x0

and called map-
germ at x0 and its members are called representatives of the map-germ. The point
x0 is called the source of the map-germ, and y0 = f(x0) is called the target of the
map-germ.

Notice that the target of a map-germ does not depend on the representative.
If it does not lead to confusion, we refer to f as a map-germ at x0.

Denote by Fx0
(n,m) the set of C∞ map-germs from R

n to R
m at x0 ∈ R

n.
The notations [f ] = [f ]0 and F(n,m) = F0(n,m) are also used. The composition
of two map-germs, [f ] and [g], is defined by the composition of two representatives
[f ] ◦ [g] = [f ◦ g].

Definition B.2. A map-germ [G]x0
∈ F(n, n) is invertible if detDxG(x0) 6= 0,

for any representative G.

We are interested in the case m = 1. Write ex0
(n) = Fx0

(n, 1) and e(n) =
F(n, 1).

Remark B.3. ex0
(n) is a commutative and associative real algebra with unit

element (the germ of the constant function 1). Moreover, ex0
(n) is a local algebra:

it has a unique maximal ideal,

mx0
(n) = {[f ]x0

∈ ex0
(n) | f(x0) = 0}.

Lemma B.4. Let k be a positive integer, then

mx0
(n)k = {[f ]x0

∈ ex0
(n) : Djf(x0) = 0, j = 0, . . . k − 1 }.

From Hadamard’s Lemma, m(n) = m0(n) is generated by the germs of the
coordinate functions x1, x2, . . . xn.

99



100 B. ELEMENTS OF SINGULARITY THEORY

There are several equivalence relations under which one can classify germs of
smooth mappings. We consider here the so-called R+-equivalence relation of germs
of smooth real-valued functions.

Definition B.5. Two germs [f1]x1
∈ ex1

(n) and [f2]x2
∈ ex2

(n) are R+-equiv-
alent (or right equivalent or just equivalent) if and only if there exist an invertible
germ [G]x1

∈ Fx1
(n, n) with G(x1) = x2 such that

(B.1) f1 = f2 ◦G+ c,

where c = f1(x1) − f2(x2) (in suitable neighborhoods of the source points).

Definition B.6. A germ [f ]x0
∈ ex0

(n) is stable at x0 (or locally stable) if
there is a neighborhood of the representative f : U ⊂ R

n → R in C∞(U,R) such
that any germ [g]x0

∈ ex0
(n) with representative g in this neighborhood, is R+-

equivalent to [f ]x0
.

By a change of variables, the classification of germs of smooth real-valued func-
tions, under R+-equivalence, can be reduced to the study the behavior of jets. To
formalize these ideas we need the following definitions.

Definition B.7. Let k ∈ N. Two germs [f ]x0
, [g]x0

∈ ex0
(n) are k-equivalent

(at x0) if they have a contact of order k at x0:

f(x) − g(x) = o(|x− x0|
k
).

The k-equivalence class in ex0
(n) of a germ [f ]x0

is called the k-jet of f at the
point x0, and it is denoted by jk

x0
f .

The k-jet can be identified with the Taylor polynomial of f at the point x0 of
degree k.

Definition B.8. A germ [f ]x0
∈ ex0

(n) is k-determined (or it is determined
by its k-jet) if and only if any k-equivalent germ is also R+-equivalent. We also say
that the k-jet of [f ]x0

, jk
x0
f is sufficient.

A germ [f ]x0
is finitely determined if and only if is k-determined for some k ∈ N.

A first classification of critical points is the following.

Definition B.9. The germ [f ]x0
∈ ex0

(n) is regular if the source point x0 is a
regular point, i.e. Df(x0) 6= 0. Otherwise the germ is called singular.

Remark B.10. The class of regular germs is formed by submersive germs.
Moreover, any regular germ is R+-equivalent to the germ at zero of the projection
map: (x1, . . . , xn) −→ x1. In particular, any regular germ at x0 is 1-determined.

In what follows, we consider the problem of classifying singular germs in mx0
(n)2.

Definition B.11. A singular germ [f ]x0
∈ mx0

(n)2 is nondegenerate if and
only if the source point is a nondegenerate critical point of f : det D2f(x0) 6= 0.
Otherwise [f ]x0

is a degenerate singular germ. The dimension of the kernel of
D2f(x0) is the co-rank of the critical point.

The following Morse Lemma classify all the nondegenerate singular germs.

Theorem B.12 (Morse lemma). A nondegenerate singular germ [f ]x0
∈ mx0

(n)2

is R+-equivalent to a nondegenerate quadratic germ at 0

(x1, . . . , xn) → x2
1 + · · · + x2

s − x2
s+1 − · · · − x2

n,
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where s is the signature (i.e. the number of positive eigenvalues) of D2f(x0). More-
over, the singularity is stable.

Nondegenerate singular germs, also known as Morse germs, are classified by
the signature. In particular, given a germ at a nondegenerate critical point x0, all
the germs with the same 2-jet at zero, are R+-equivalent.

A simple indicator of the degree of degeneracy of degenerate singular germs is
the co-rank of the critical point.

Theorem B.13 (Parametric Morse Lemma). A singular germ [f ]x0
∈ mx0

(n)2

of co-rank k (i.e. k = dim ker D2f(x0)) is equivalent to a germ at 0 of the form

(x1, . . . , xn) → fd(x1, . . . , xk) + fm(xk+1, . . . , xn),

where fd is a degenerate singular germ such that all the second derivatives vanish
at 0 (i.e. fd ∈ m(k)3), and fm is a Morse germ at 0 (i.e. fm ∈ m(n − k)2 with
det D2fm(0) 6= 0).

The Parametric Morse Lemma is also known as Morse-Bott Lemma, a proof
can be found in [7].

Now, we introduce another important indicator of the degeneracy of a singular
germ.

Definition B.14. Given a singular germ [f ]x0
∈ mx0

(n)2, its gradient ideal,
at the point x0, is the ideal generated by the (germs of the) partial derivatives of
f at x0:

I∇f,x0
=

〈

[

∂f

∂x1

]

x0

, . . . ,

[

∂f

∂xn

]

x0

〉

The local algebra of the singular germ is Qf,x0
= mx0

(n)/I∇f,x0
, and its dimension

is referred to as the co-dimension of the singular germ: codx0
(f) = dimQf,x0

.

In some references, the definition of the local algebra is Qf,x0
= ex0

(n)/I∇f,x0
,

and its dimension is the multiplicity, mulx0
(f). It is clear that codx0

(f) = mulx0
(f)−

1.
The co-dimension of a Morse germ is 0. In a certain sense, tractable singularities

are those that have finite co-dimension. In such a case, by abuse of language, a
basis of the local algebra Qf,x0

is a finite set {ϕi}c
i=1 of germs in mx0

(n)2 whose
projections with respect to the gradient ideal I∇f,x0

in Qf,x0
form a basis.

For singularities with finite co-dimension, a ‘basis’ of the local algebra Qf,x0

is a finite set {ϕi}
c
i=1 of germs in mx0

(n)2 whose projections with respect to the
gradient ideal I∇f,x0

in Qf,x0
form a basis.

The following theorem summarizes some results on the classification of finitely
determined singularities, due to Mather and Tougeron. Roughly speaking, it states
that the classification of critical points can be reduced to a finite dimensional prob-
lem, in the case that the germ is k-determined (see Definition B.8), for a sufficiently
large k.

Theorem B.15. a) At a singular germ f ∈ mx0
(n)2, either codx0

(f) is
finite and f is finitely determined or codx0

(f) is infinite and f is not
finitely determined.

b) A singular germ f ∈ mx0
(n)2 is finitely determined if and only if

mx0
(n)k ⊂ I∇f,x0
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for some k ∈ N.
c) A sufficient condition for f ∈ mx0

(n)2 to be k-determined is that

mx0
(n)k+1 ⊂ mx0

(n)2I∇f,x0

Morse Lemma ensures that generic real-valued functions have only nondegen-
erate critical points. Degenerate critical points of a germ can be decomposed into
a nondegenerate one under a suitable perturbation. However, when considering
parametric families of functions, critical points may persist under perturbation. A
simple but illuminating example is the family x3 +µx, depending on the parameter
µ. For µ = 0, the point x0 = 0 is a degenerate critical point of x3. For µ < 0, there
are two nondegenerate critical points, and for µ > 0 there are no critical points. It
is a result in Singularity Theory that any family of functions sufficiently close to
x3 + µx, will have a degenerate critical point for some value of the parameter close
to zero (with the same class of equivalence as the original one).

Definition B.16. An unfolding of co-dimension r of a germ [f ]x0
∈ ex0

(n) is
a germ [F ](x0,0) ∈ e(x0,0)(n+ r) such that F (x, 0) = f(x) (locally).

An unfolding Fµ can be thought of as µ-parametric deformation of f with
F0 = f . The dimension of µ (the number of parameters) is the co-dimension of the
unfolding.

Definition B.17. Some point sets associated to an unfolding are:

• The Bifurcation diagram:

MF = {(x, µ) | DxF (x, µ) = 0}.

• The catastrophe set :

CatF = {(x, µ) ∈MF | det D2
xF (x, µ) = 0}.

• The bifurcation set :

BifF = {µ | ∃x : (x, µ) ∈ CF }.

To study the stability of unfoldings we introduce the following topological clas-
sification of unfoldings.

Definition B.18. Let [F ] ∈ e(x0,0)(n + r) and [F ′] ∈ e(x0,0)(n + r′) be two
unfoldings of the germ [f ] ∈ ex0

(n), with parameters µ and µ′, respectively.
A morphism from [F ′] to [F ] is a triple ([G](x0,0), [θ], [c]) such that:

(i) [G](x0,0) ∈ F(x0,0)(n+ r′, n) is an unfolding of the identity map in R
n,

(ii) [θ] ∈ F0(r
′, r) is a map-germ of the parameters with θ(0) = 0 and

(iii) [c] ∈ e0(r
′) is a translation with c(0) = 0, such that F ′ = F ◦ (G, θ ◦πµ′)+

c ◦ πµ′ , equivalently:

F ′(x, µ′) = F (G(x, µ′), θ(µ′)) + c(µ′),
G(x, 0) = x, θ(0) = 0, c(0) = 0.

If r = r′ and the fibered germ [G, θ] is invertible on F(x0,0)(n+r, n+r), we say that
F ′ and F are equivalent (or isomorphic). It is also said that F ′ is induced from F .

Informally, Definition B.18 states that two unfoldings are isomorphic if one can
be transformed to the other using changes of variables in both the states and in the
parameters.
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We recall that, given a topological space S with an equivalence relation ∼,
an element x ∈ S is stable (with respect to ∼) if its equivalence class contains a
neighborhood of x.

We are interested in studying the stability of unfoldings under the topological
equivalence relation given in Definition B.18. A more algebraic classification is the
given in the following definition.

Definition B.19. An unfolding F of f is versal if any other unfolding F ′ of
f is induced from F . A versal unfolding of minimal co-dimension is said to be
universal.

The fundamental result, due to Mather, states that versality gives rise to topo-
logical stability. Mather also established that finitely determined germs have versal
unfoldings.

Theorem B.20. a) A singular germ f ∈ mx0
(n)2 has a versal unfolding

if and only if it is finitely determined, which is equivalent to have finite
co-dimension.

b) Versal unfoldings of a germ are stable (even though the germ is not).
c) If F is a universal unfolding of f , of co-dimension c, then c = codx0

f .
All universal unfoldings are isomorphic.

An algorithm to construct universal unfolding of singular germs with finite co-
dimension c is the following:

• Construct a basis ϕ1, . . . , ϕc ∈ mx0
(n) of the local algebra Qf,x0

;
• A universal deformation is

F (x, µ) = f(x) +

c
∑

j=1

µjϕj(x) .

The proofs of Theorem B.20 use the geometric notion of transversality of un-
foldings, which is equivalent to versality. (Thom Theorem on transversality, finite
determinacy, etc. ) As an application of this theory, the following results classifies
all singular germs of co-dimension ≤ 4.

Theorem B.21. Let f ∈ m(n)2 be a singular germ at 0, with co-dimension
1 ≤ c ≤ 4. Then, f is 6-determined.

Moreover, up to changes of sign and the addition of a nondegenerate quadratic
form, f is right equivalent to one of the seven germs at 0 described in Table 1.

The seven singularities described in Theorem B.21 are known as elementary
catastrophes. They appear generically in families of 4 parameters.
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Table 1. Elementary Catastrophes

germ codim universal unfolding popular name

x3 1 x3 + ux fold
x4 2 x4 + ux2 + vx cusp
x5 3 x5 + ux3 + vx2 + wx swallow-tail
x3 + y3 3 x3 + y3 + wxy − ux− uy hyperbolic umbilic
x3 − xy2 3 x3 − xy2 + w(x2 + y2) − ux− vy elliptic umbilic
x6 4 x6 + tx4 + ux3 + vx2 + wx butterfly
x2y + y4 4 x2y + y4 + wx2 + ty2 − ux− vy parabolic umbilic
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