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Abstract

A numerical method for an inverse problem for an elliptic equation with the running
source at multiple positions is presented. The so-called “approximate global conver-
gence” property of this method is proved for the discrete case. The performance of the
algorithm is verified on experimental data for Diffusion Optical Tomography. Direct
applications are in near-infrared laser imaging technology for stroke detection in brains
of small animals.
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1 Introduction

We consider a Coefficient Inverse Problem (CIP) for a partial differential equation (PDE)
- the diffusion model with the unknown potential. The boundary data for this CIP, which
model measurements, are originated by a point source running along a part of a straight line.
This PDE governs light propagation in a diffusive medium, such as, e.g. biological tissue,
smog, etc.. Thus, our CIP is one of problems of Diffusion Optical Tomography (DOT).
We are interested in applications of DOT to the detection of stroke in small animals using
measurements of near infrared light originated by lasers. Hence, the above point source is
the light source in our case. The motivation of imaging of small animals comes from the
idea that it might be a model case for the future stroke detection in humans via DOT. We
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Experiments for an elliptic inverse problem

apply our numerical method to a set of experimental data for a phantom medium modeling
the mouse’s brain. Although this algorithm was developed in earlier publications [18,22-24]
of this group, its experimental verification is new.

As to our numerical method, we introduce a new concept of the “approximate global
convergence” property. In the previous publication [18] of this group about this method the
approximate global convergence property was established in the continuos case. Compared
with [18], the main new analytical result here is that we establish this property for the
more realistic discrete case. In the convergence analysis of [18] the Schauder theorem [16]
was applied for C2+α−solutions of certain elliptic equations arising in our method. Now,
however, since we consider the discrete case, we use the Lax-Milgram theorem. Here and
below Cm+α are Hölder spaces [16], where m ≥ 0 is an integer and α ∈ (0, 1).

CIPs are both nonlinear and ill-posed. These two factors cause very serious challenges
in their numerical treatments. Indeed, corresponding least squares Tikhonov regularization
functionals usually suffer from multiple local minima and ravines. As a result, conventional
numerical methods for CIPs are locally convergent ones, see, e.g. [4,5] and references cited
there. To have a guaranteed convergence to a true solution, a locally convergent algorithm
should start from a point which is located in a small neighborhood of this solution. However,
it is a rare case in applications when such a point is known. The main reason why our method
avoids local minima is that it uses the structure of the underlying PDE operator and does
not use a least squares functional.

By one of fundamental concepts of the theory of Ill-Posed Problems, one should assume
the existence of an exact solution of such a problem for the case of an “ideal” noiseless data
[25]. Although this solution is never known and is never achieved in practice (because of the
noise in the real data), the regularization theory says that one needs to construct a good
approximation for it [25]. We assume that a CIP has an exact solution for noiseless data
and also assume that such a solution is unique.

It follows from the above discussion that it is important to develop such a numerical
method which would have a rigorous guarantee of providing a point in a small neighborhood
of that exact solution without any a priori knowledge of this neighborhood. Because of the
above mentioned very serious difficulties of the goal of the development of such algorithms,
it is unlikely that such a numerical method would not rely on some approximations. This is
the reason why the notion of the approximate global convergence property was introduced in
the recent work [20]. It is desirable to verify an approximately globally convergent numerical
method on computationally simulated data, which was done in [18,22-24]. In this paper
we make the next step: verify this method on experimental data. Regardless on some
approximations we have here, the main point is that our numerical method does not rely on
any a priori knowledge of a small neighborhood of the exact solution.

In [7-10,19,20] a similar numerical method for CIPs for a hyperbolic PDE was developed.
The main difference of the technique of [7-10,19,20] with the current one is in the truncation
of a certain integral. In [7-10,19,20] it was truncated at a high value s > 0 of the parameter
s > 0 of the Laplace transform of the solution of the underlying hyperbolic PDE. Indeed, in
the hyperbolic case the truncated residual of that integral, which we call the “tail function”,
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is O (1/s), as s → ∞, i.e. this residual is automatically small in this case. Being different
from the hyperbolic case, in the elliptic PDE with the running source, s > 0 represents
the distance to the source. Because of this, the tail function is not automatically small in
our case. Thus, a special effort to ensure this smallness was undertaken in [18], and this is
repeated in the current publication. It was shown numerically in [18] that this special effort
indeed improves the quality of the reconstruction, compare Figures 2b and 2c in [18].

Because of the above mentioned substantial challenges, the topic of the development of
non-locally convergent numerical methods for CIPs is currently in its infancy. As to such
methods for CIPs for elliptic PDEs, we refer to, e.g. publications [2,12,17,21] and references
cited there. These publications are concerned with the Dirichlet-to-Neumann map (DN). We
are not using the DN here.

The rest of this paper is arranged as follows. In section 2 we pose both forward and inverse
problems and study some properties of the solution of the forward problem. In section 3
we present our numerical method. In section 4 we conduct the convergence analysis. In
section 5 we discuss the numerical implementation of our method. In section 6 we describe
the experiment. In section 7 we outline our procedure of processing of experimental data.
In section 8 we present reconstruction results. We briefly summarize results in section 9.

2 Statement of the Problem

Our experimental data were collected at the boundary of a 2-D cross-section of the 3-D
domain of interest. Hence, we have imaged this cross-section only and have ignored the
dependence on the third variable. This is very similar with imaging from experimental data
of [17], where images of a 2-D cross-section of a real human chest and heart beats were
obtained using a non-local reconstruction algorithm of electrical impedance tomography.
Because of this, we work here only with the 2-D mathematical model.

2.1 Mathematical definition of the Inverse Problem

Below x = (x, z) ∈ R2 and Ω ⊂ R2 is a convex bounded domain. The boundary of this
domain ∂Ω ∈ C3 in our analysis. In numerical studies ∂Ω is piecewise smooth. Indeed, it is
well known that there are always some discrepancies between the analysis and computational
studies of numerical methods. Consider the following elliptic equation in R2 with the solution
vanishing at infinity,

∆u− a (x) u = −δ (x− x0) ,x,x0 ∈ R2, (2.1)

lim
|x|→∞

u (x,x0) = 0. (2.2)

Inverse Problem. Let k = const. > 0. Suppose that in (2.1) the coefficient a (x)
satisfies the following conditions

a ∈ C1
(
R2

)
, a (x) ≥ k2 and a (x) = k2 for x ∈ R2�Ω. (2.3)
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Let L ⊂ (
R2�Ω

)
be a straight line and Γ ⊂ L be an unbounded and connected subset of L.

Determine the function a (x) inside of the domain Ω, assuming that the constant k is given
and also that the following function ϕ (x,x0) is given

u (x,x0) = ϕ (x,x0) ,∀ (x,x0) ∈ ∂Ω× Γ. (2.4)

We assume that sources {x0} are located outside of the domain of interest Ω because
this is the case of our measurements and because we do not want to work with singularities
in our numerical method. As to the smoothness of the coefficient a (x), we impose in (2.3)
a ∈ C1 (R2) rather than a ∈ Cα (R2) to shorten a certain part of the proof of Theorem 2.1.

Remark 2.1. The authors are unaware about a uniqueness theorem for this Inverse
Problem. Nevertheless, because of applications, it makes sense to develop numerical methods
for this problem, assuming that uniqueness holds. Therefore, following the above mentioned
concept for ill-posed problems (section 1), we assume everywhere below that there exists the
unique exact solution a∗ (x) of this problem for the “ideal” noiseless exact data ϕ∗ (x,x0) in
(2.4), and the function a∗ (x) satisfies conditions (2.3).

The CIP (2.1)-(2.4) has an application in imaging using light propagation in a diffuse
medium, such as biological tissues. Since the modulated frequency equals zero in our case,
then this is the so-called continuous-wave (CW) light. The coefficient a (x) = 3 (µ′sµa) (x) ,
where µ′s (x) is the reduced scattering coefficient and µa (x) is the absorption coefficient of
the medium [3,4]. In the case of our particular interest in stroke detections in brains of small
animals, the area of an early stroke can be modeled as a small sharp inclusion in an otherwise
slowly fluctuating background. Usually the inclusion/ background contrast aincl/ab ≥ 2.
Therefore our focus is on the reconstruction of both locations of sharp small inclusions and
the values of the coefficient a (x) inside of them, rather than on the reconstruction of slow
changing background functions.

2.2 Some Properties of the Solution of the Forward Problem (2.1),
(2.2)

2.2.1 Existence and uniqueness

We now prove existence and uniqueness of the solution of the forward problem (2.1), (2.2).
This result does not follow directly from classical results for elliptic PDEs [16], since they
are formulated for bounded domains. For brevity we consider only the case x0 /∈ Ω, since
this is the case of our Inverse Problem. Let Kp (z) , z ∈ R, p ≥ 0 be the Macdonald function.
It is well known [1] that for y ∈ R

Kp (y) =

√
π√
2y

e−y

(
1 + O

(
1

y

))
, y →∞. (2.5)

Theorem 2.1. Let Ω ⊂ R2 be a convex bounded domain with the boundary ∂Ω ∈ C3.
Assume that the coefficient a (x) satisfies conditions (2.3). Then for each source position
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x0 ∈ R2�Ω there exists unique solution u (x,x0) of the problem (2.1), (2.2) such that

u (x,x0) =
1

2π
K0 (k |x− x0|) + û (x,x0) := u0 (x− x0) + û (x,x0) , (2.6)

where the function u0 is the fundamental solution of equation (2.1) with a (x) ≡ k2, the
function û satisfies (2.2), û ∈ H2 (R2) and û ∈ C2+α (R2) . In addition, u (x,x0) > 0,∀x ∈ Ω.

Proof. We use the Laplace transform of fundamental solutions of some parabolic equa-
tions. Consider solutions of the following two parabolic Cauchy problems

vt = ∆v − (
a (x)− k2

)
v, (x, t) ∈ R2 × (0,∞) , (2.7)

v (x, 0) = δ (x− x0) ; (2.8)

v0t = ∆v0, (x, t) ∈ R2 × (0,∞) , (2.9)

v0 (x, 0) = δ (x− x0) . (2.10)

It is well known that

v0 (x, t) =
1

4πt
exp

(
−|x− x0|2

4t

)
. (2.11)

Let L be the operator of the following version of the Laplace transform,

(Lf) (p) =

∞∫

0

f (t) exp
(−p2t

)
dt, p > 0, (2.12)

for all appropriate functions f . Using (2.11), we obtain that the integral (2.12) for f := v0

converges absolutely for all p > 0, as long as x 6= x0. Next, formula (29) in section 4.5 of the
table of the Laplace transform of the book [6] implies that for p := k

(Lv0) (k) =
1

2π
K0 (k |x− x0|) = u0 (x− x0) ,x 6= x0. (2.13)

Consider now the function ṽ = v0 − v. By (2.7)-(2.10)

(
k2 − a (x)

)
v = ∆ṽ − ṽt, (x, t) ∈ R2 × (0,∞) , (2.14)

ṽ (x, 0) = 0. (2.15)

Theorem 11 of Chapter 2 of the book [15] ensures that the fundamental solution of a general
parabolic equation with “good” coefficients is positive. Hence, v (x, t) > 0 for t > 0. Further
(2.3) implies that (k2 − a (x)) v ≤ 0. It follows from (2.14), (2.15) and Theorem 9 of Chapter
2 of [15] (about positive solutions of the Cauchy problem for parabolic PDEs) that ṽ =
v0 − v ≥ 0. This implies that

v0 ≥ v > 0. (2.16)

Thus, since the integral (2.12) converges absolutely for f := v0, p := k, then it also converges
absolutely for f := v, p := k.
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If we formally apply the operator L at p := k to equation (2.7) with the initial condition
(2.8), then we obtain equation (2.1), although condition (2.2) would be still questionable.
Let

(Lv) (k) := v (x,x0) . (2.17)

By (2.16) v (x,x0) > 0. Hence, it follows from the above that in order to show that the
function v (x,x0) satisfies condition (2.1), we need to show that the integral (2.12) converges
absolutely for p := k when the function f in (2.12) is replaced with either of derivatives
vt, vxx, vzz. In addition, we need to show that v satisfies (2.2). It follows from (2.3), (2.7)
and (2.8) that

v (x, t) = v0 (x,x0, t)−
t∫

0

∫

Ω

1

4π (t− τ)
exp

(
− |x− ξ|2

4 (t− τ)

)
(
a (ξ)− k2

)
v (ξ, τ) dξdτ . (2.18)

First, we estimate derivatives vx, vz. Since they are estimated similarly, consider vx only. Let
|a| ≤ M for a constant M > 0. By (2.18)

vx (x, t) = v0x (x,x0, t) +

t∫

0

∫

Ω

(x−ξ1)

8π (t− τ)2 exp

(
− |x− ξ|2

4 (t− τ)

)
(
a (ξ)− k2

)
v (ξ, τ) dξdτ .

(2.19)
Using (2.16) and (2.19), we obtain

|vx| ≤ |v0x|+
(
M + k2

) t∫

0

∫

Ω

|x− ξ|
8π (t− τ)2 exp

(
− |x− ξ|2

4 (t− τ)

)
v0 (ξ, τ) dξdτ . (2.20)

Since x0 /∈ Ω, then it follows from (2.11) that the function v0 (ξ, τ) is bounded together with
its derivatives for (ξ, τ) ∈ Ω× [0,∞) . The integral (2.20) has a weak singularity at the point
(ξ, τ) = (x, t) , which can be proven in a standard way (see, e.g. [15]): first, one needs to
change variables in (2.20) to polar coordinates (r, ϕ), r = |x− ξ| . Next, one should change
variables as (r, τ) ⇔ (

z := r/
(
2
√

t− τ
)
, τ

)
. We obtain from formula (29) in section 4.5 of

the table of the Laplace transform of the book [6] that

L

[
|x− ξ|

8π (t− τ)2 exp

(
− |x− ξ|2

4 (t− τ)

)]
(k) =

k

2π
K1 (k |x− ξ|) . (2.21)

Hence, by (2.20), (2.21) and the convolution theorem

∞∫

0

|vx| e−k2tdt ≤ k

2π
K1 (k |x− x0|) +

(Mk + k3)

2π

∫

Ω

K1 (k |x− ξ|) K0 (k |ξ − x0|) dξ. (2.22)
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It is well known that for y → 0, y > 0 the following asymptotic behavior takes place

K1 (y) =
1

y
(1 + O (y)) , K0 (y) = − ln y + K̂0 (y) , (2.23)

where the function K̂0 (y) is bounded at y → 0, y > 0. Hence, the integral in (2.22) has a weak
singularity at the point {ξ = x}. Hence, using (2.5) and (2.17)-(2.23), we obtain v (x,x0) ∈
L2 (R2), [v (x,x0)− u0 (x− x0)] ∈ C1 (R2) and functions |v| , |vx| , |vz| decay exponentially
as |x| → ∞. Hence (2.2) is in place.

Consider now the second derivative vxx. Using the integration by parts in (2.19), we
obtain

vx (x, t) = v0x (x,x0, t) +

t∫

0

∫

Ω

1

4π (t− τ)
exp

(
− |x− ξ|2

4 (t− τ)

)
∂ξ1

[(
a (ξ)− k2

)
v (ξ, τ)

]
dξdτ .

Hence,

vxx (x, t) = v0xx (x,x0, t)+

t∫

0

∫

Ω

(x− ξ1)

8π (t− τ)2 exp

(
− |x− ξ|2

4 (t− τ)

)
∂ξ1

[(
a (ξ)− k2

)
v (ξ, τ)

]
dξdτ .

And similarly for vzz, vxz. Hence, similarly with the above we obtain that [v (x,x0)− u0 (x− x0)] ∈
C2 (R2) and functions |vxx| , |vxz| , |vzz| decay exponentially as |x| → ∞. Next,

(Lvt) (k) = lim
m→∞

m∫

0

vte
−k2tdt = lim

m→∞
v (x,m) e−k2m − δ (x− x0) + k2 lim

m→∞

m∫

0

ve−k2tdt.

It follows from (2.11) and (2.16) that the first limit here equals zero and the second limit is
(Lv) (k) . Therefore, the function v (x,x0) satisfies (2.1), (2.2).

Denote û (x,x0) = v (x,x0) − u0 (x− x0) . Then it from the above that û ∈ H2 (R2) ∩
C2 (R2) ,∀x0 /∈ Ω. Furthermore, the function û decays exponentially as |x| → ∞. Using
(2.7)-(2.10), (2.13), we obtain

∆û− a (x) û =
(
a (x)− k2

)
u0, x ∈ R2. (2.24)

The right hand side of (2.24) does not have a singularity since x0 /∈ Ω and a (x) − k2 = 0
outside of the domain Ω. Hence, uniqueness of the problem (2.1), (2.2) for functions u
represented by (2.6) with û ∈ H2 (R2) can be easily obtained via a standard procedure: one
should assume the existence of two solutions w1, w2, subtract equation (2.24) for w2 from
the same equation for w1, multiply the resulting equation by (w1 − w2) and integrate over
R2 using integration by parts and the inequality a (x) ≥ k2. Since the function û ∈ C2 (R2) ,
then Lemma 6.16 of Chapter 6 of the book [16] implies that û ∈ C2+α (R2). The positivity
of the function u (x,x0) follows from (2.16). ¤
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2.2.2 The asymptotic behavior at |x0| → ∞
It follows from (2.5) and (2.6) that the asymptotic behavior of the function u0 (x− x0) is

u0 (x− x0) = w0 (|x0|)
(

1 + O

(
1

|x0|
))

, |x0| → ∞,

w0 (|x0|) =
e−k|x0|

2
√

2π |x0|
.

Denote b (x) = a (x) − k2. Then by (2.3) b (x) = 0 for x ∈ R2�Ω. Let M1 be a positive
constant. Denote

B (M1) =
{

b ∈ C1
(
R2

)
: ‖b‖C1(Ω) ≤ M1, b (x) ≥ 0, b (x) = 0 for x ∈ R2�Ω

}
.

Also, let the function p∞ (x) satisfies conditions

p∞ (x) ∈ C2+α (|x| ≤ R) ,∀R > 0, p∞ ∈ H2
(
R2

)
. (2.25)

and be the solution of the following problem

∆p∞ − k2p∞ − b (x) p∞ = b (x) ,x ∈ R2, (2.26)

lim
|x|→∞

p∞ (x) = 0. (2.27)

The uniqueness and existence of the solution of the problem (2.25)-(2.27) can be proven very
similarly with Theorem 2.1. The only difference is that one should replace δ (x− x0) with
b (x) in initial conditions (2.8), (2.10).

Lemma 2.1. 1 + p∞ > 0.
Proof. Let p̃ = 1 + p∞. Then

∆p̃− k2p̃− b (x) p̃ = −k2, lim
|x|→∞

p̃ (x) = 1. (2.28)

Consider a sufficiently large number R > 0 such that p̃ (x) ≥ 1/2 for x ∈{|x| ≥ R} . Then
the maximum principle applied to equation (2.28) for x ∈ {|x| < R} shows that p̃ (x) > 0 in
{|x| < R} . ¤

Lemma 2.2 [18]. Let the function b ∈ B (M1). Then there exists a constant M2 (M1, Ω) >
0 such that

‖ln u (x,x0)− ln w0 (|x0|)− ln (1 + p∞ (x))‖C2(Ω) ≤
M2 (M1, Ω)

|x0| ,

x0 ∈ {|x0| > 1} ∩ (
R2�Ω

)
,x ∈ Ω.
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3 The Numerical Method

Although this method was described in [18] in detail, we still need to briefly outline it in
subsections 3.1, 3.2 in order to focus on those points to which we refer in our convergence
analysis. The material of subsection 3.3 is new. Without any loss of the generality we
can set s := |x0| , assuming that only the parameter s changes when the source x0 runs
along Γ ⊂ L. Indeed, if necessary, we can put the origin on the straight line L. Denote
u (x, s) := u (x,x0) ,x ∈ Ω,x0 ∈ Γ. Since Γ∩Ω = ∅ and the point source x0 ∈ Γ, then x0 /∈ Ω.
Since by Theorem 2.1 u (x, s) > 0,∀x ∈ Ω, we can consider the function w̃ (x, s) = ln u (x, s)
for x ∈ Ω. We obtain from (2.1) and (2.4)

∆w̃ + |∇w̃|2 = a (x) in Ω, (3.1)

w̃ (x, s) = ϕ1 (x, s) ,∀ (x, s) ∈ ∂Ω× [s, s̄] , (3.2)

where ϕ1 = ln ϕ and s, s̄ are two positive numbers, which should be chosen in numerical
experiments.

3.1 The integral differential equation

We now “eliminate” the coefficient a (x) from equation (3.1) via the differentiation with
respect to s. However, to make sure that the resulting the so-called “tail function” is small,
we use the above mentioned (Introduction) special effort of the paper [18]. Namely, we divide
(3.1) by sp, p > 0. In principle, any number p > 0 can be used. But since in computations we
took p = 2, both here and in [18], then we use below only p = 2, for the sake of definiteness.
Denote w (x, s) = w̃ (x, s) /s2. Next, let q (x, s) := ∂sw (x, s) = ∂s (s−2 ln u (x, s)) , for
s ∈ [s, s]. Then

w (x, s) = −
s̄∫

s

q (x, τ) dτ + T (x) ,x ∈ Ω, s ∈ [s, s] , (3.3)

where T (x) is the so-called “tail function”. The exact expression for this function is of
course T (x) = w (x, s). However, since the function w (x, s) is unknown, we will use an
approximation for the tail function, see subsection 5.2 as well as [18]. By the Tikhonov
concept for ill-posed problems [25], one should have some a priori information about the
solution of an ill-posed problem. Thus, we can assume the knowledge of a constant M1 > 0
such that the function a (x)− k2 = b (x) ∈ B (M1). Hence, it follows from Lemma 2.2 that

T (x, s) =
ln w0 (s)

s2 +
ln (1 + p∞ (x))

s2 +
g (x, s)

s3 , x ∈ Ω, ∀s > 1,

∇T (x, s) =
∇p∞ (x)

s2 (1 + p∞ (x))
+

1

s3∇g (x, s) , x ∈ Ω, ∀s > 1, (3.4)

‖g (x, s)‖C1(Ω) ≤ M2 (M1, Ω) , ∀s > 1, ∀b ∈ B (M1) ,
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where the number M2 (M1, Ω) is independent on s. Differentiating (3.1) with respect to s,
we obtain the following nonlinear integral differential equation for the function q [18]

∆q − 2

s

s̄∫

s

∆q (x, τ) dτ − 2s2∇q

s̄∫

s

Oq (x, τ) dτ (3.5)

+4s


−

s̄∫

s

Oq (x, τ) dτ + OT




2

+ 2s2OT∇q = −2

s
∆T.

In addition, (3.2) implies that

q (x, s) = ψ (x, s) , ∀ (x, s) ∈ ∂Ω× [s, s̄] , (3.6)

ψ (x, s) = ∂s

(
s−2 ln ϕ (x, s)

)
. (3.7)

If we approximate well both functions q and T together with their derivatives up to the
second order, then we can also approximate well the target coefficient a (x) via backwards
calculations, see (3.16), (3.17). Therefore, the main questions now is: How to approximate
well both functions q and T using (3.3), (3.5), (3.6)? The problem (3.5), (3.6) is nonlinear.
In addition, both functions q and T are unknown here. The reason why we can approximate
both functions q and T is that we treat them differently: while we approximate q using an
“inner” process based on equation (3.5), we approximate T separately via an “outer process”.

3.2 Layer stripping with respect to the source position

In this subsection we present a layer stripping procedure with respect to s for approximating
the function q, assuming that the function T is known. We approximate the function q (x, s)
as a piecewise constant function with respect to the source position s. We assume that there
exists a partition s = sN < sN−1 < . . . < s1 < s0 = s̄, si−1 − si = h of the interval [s, s̄] with
a sufficiently small grid step size h such that

q (x, s) = qn (x) for s ∈ [sn, sn−1) , n ≥ 1; q0 :≡ 0. (3.8)

Hence,
s̄∫

s

q (x, s) ds = (sn−1 − s) qn (x) + h

n−1∑
j=0

qj (x) .

Let ψn (x) be the average of the function ψ (x) over the interval (sn, sn−1). Then we ap-
proximate the boundary condition (3.6) as a piecewise constant function with respect to
s,

qn (x) = ψn (x) ,x ∈ ∂Ω. (3.9)

10
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Using (3.8), integrate equation (3.5) with respect to s ∈ [sn, sn−1). We obtain for n ≥ 1

∆qn + A2,n

(
h

n−1∑
j=0

Oqj − OT

)
Oqn =

A1,n (Oqn)2 + A3,nh
n−1∑
j=1

∆qj + A4,n

(
h

n−1∑
j=0

Oqj − OT

)2

− A3,n∆T,

(3.10)

where Ak,n, k = 1, ..., 4 are certain numbers, see [18] for exact formulas for them. Assume
that

s > 1, h ∈ (0, 1) and
h

s
<

1

2
. (3.11)

Given (3.11), the following estimates hold [18]

|A1,n| ≤ 2s2h, (3.12)

max
i=2,3,4

(|Ai,n|) ≤ 8s2 for s > 1. (3.13)

The estimate (3.12) tells one that the nonlinearity A1,n (Oqn)2 in equation (3.10) can be
mitigated via decreasing the grid step size h. Thus, we assume below that h is so small that
the number 2s̄2h is negligible. Hence, we approximately set

A1,n (Oqn)2 := 0. (3.14)

In fact, our previous numerical experience of [18,23] tells us that the term A1,n (Oqn)2 provides
a very small influence on reconstruction results. The approximation (3.14) enables us to solve
only linear elliptic Dirichlet boundary value problem (3.9), (3.10) for each qn. We point out
that, assuming (3.14), we do not linearize the original problem. Indeed, the nonlinearity is
manifested in products ∇qj∇pn in (3.21). Denote

q (x) = (q0, q1, ..., qN) (x) . (3.15)

As soon as the vector function q (x) is computed, we reconstruct approximations for functions
w̃ (x, sN) , a (x) via (see (3.1), (3.3) and (3.8))

w̃ (x, sN) = −s2
Nh

N∑
j=0

qj (x) + s2
NT (x) , (3.16)

a (x) = ∆w̃ (x, sN) + |Ow̃ (x, sN)|2 . (3.17)

3.3 Weak formulation of the Dirichlet boundary value problem
(3.9), (3.10) with the assumption (3.14)

We now formulate the Dirichlet boundary value problem (3.9), (3.10) with the approximation
(3.14) in the weak form. We need this formulation for our convergence analysis in section 4.
Assume that there exists functions Ψn such that

Ψn ∈ H2 (Ω) and Ψn|∂Ω = ψn (x) , n ∈ [1, N ] . (3.18)

11
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Denote H1
0 (Ω) = {u ∈ H1 (Ω) : u |∂Ω= 0} . There exists a constant C1 = C1 (Ω) = const. ≥ 1

such that
‖u‖L2(Ω) ≤ C1 ‖∇u‖H1(Ω) , ∀u ∈ H1

0 (Ω) . (3.19)

Assuming that (3.14) is valid, denote fn the last 2 terms on the right hand side of the
resulting equation (3.10),

fn (x) = A4,n

(
h

n−1∑
j=0

Oqj − OT

)2

− A3,n∆T. (3.20)

Consider the function pn = qn −Ψn. Then (3.9), (3.10), (3.14) and (3.18) imply that

∆pn + A2,n

(
h

n−1∑
j=0

Oqj − OT

)
Opn =

−
[
∆Ψn + A2,n

(
h

n−1∑
j=0

Oqj − OT

)
OΨn

]
+ A3,nh

n−1∑
j=0

∆qj + fn, (3.21)

pn |∂Ω= 0.

Multiply both sides of equation (3.21) by an arbitrary function η ∈ H1
0 (Ω) and integrate

over Ω using integration by parts. We obtain

∫

Ω

∇pn∇ηdx− A2,n

∫

Ω

(
h

n−1∑
j=0

Oqj − OT

)
Opn · ηdx

= −
∫

Ω

{
∇Ψn∇η +

[
A2,n

(
h

n−1∑
j=0

Oqj − OT

)
OΨn + fn

]
η

}
dx (3.22)

+A3,n

∫

Ω

h

n−1∑
j=0

∇qj∇ηdx, ∀η ∈ H1
0 (Ω) .

Hence, the function qn ∈ H1 (Ω) is a weak solution of the problem (3.9), (3.10) with the
approximation (3.14) if and only if the function pn = (qn −Ψn) ∈ H1

0 (Ω) satisfies the
integral identity (3.22). The question about existence and uniqueness of the weak solution
of the problem (3.22) is addressed in Theorem 4.1. This question is addressed only within
the framework of our convergence analysis, since this is sufficient for our goal.

Assuming that conditions (3.18) hold for n = 1, . . . , N, we now describe our algorithm of
sequential solutions of boundary value problems (3.9), (3.10) with the approximation (3.14)
for n = 1, . . . , N , assuming that an approximation T (x) for the tail function is found (see
subsection 5.2 for the latter). Recall that q0 = 0. Hence, we have:

12
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Step n ∈ [1, N ]. Suppose that functions q1, . . . , qn−1 are computed. On this step we find
the weak solution of the Dirichlet boundary problem (3.9), (3.10) with the approximation
(3.14) for the function qn via the FEM with triangular finite elements.

Step N + 1. After functions q1, . . . , qN are computed, the function a (x) is reconstructed
using a certain analog of (3.16), (3.17) at n := N , i.e., for the lowest value of s := sN = s as
described in subsection 5.1.

Remark 3.1. If working only with weak solutions of the problem (3.22), we would not
be able to estimate products OqjOpn, which are present in (3.22) due to the nonlinearity of
the original equation (3.5). This is the reason why we need to assume that each function pn

is a linear combination of a finite number m of finite elements and the number m should have
an upper bound, see (4.16). Indeed, all norms in a finite dimensional space are equivalent.
There is nothing unusual that the number of finite elements should not be too large. Indeed,
this number is quite often serves as a regularization parameter in ill-posed problems, see,
e.g. [20] for a similar conclusion.

4 Convergence Analysis

By Remark 2.1 we should assume the existence and uniqueness of an “ideal” exact solution
a∗ (x) of our inverse problem for an “ideal” noiseless exact data ϕ∗ (x,x0) in (2.4). Next, in
accordance with the regularization theory, one should assume the presence of an error in the
data of the level ζ and construct an approximate solution for this case. Here ζ > 0 is a small
parameter.

4.1 Approximate global convergence

Definition 4.1 (approximate global convergence) [20]. Consider a nonlinear ill-posed prob-
lem. Suppose that a certain approximate mathematical model M is proposed to solve this
problem numerically. Assume that, within the framework of the model M, this problem has
unique exact solution x∗ ∈ B for the noiseless data y∗. Here B is an appropriate Banach
space with the norm ‖·‖B . Consider an iterative numerical method for solving that problem.

Suppose that this method produces a sequence of points {xn}K
n=1 ⊂ B, K ∈ [1,∞) . Let the

number θ ∈ (0, 1) . We call this numerical method approximately globally convergent of the
level θ in the norm of the space B, or shortly globally convergent, if, within the framework
of the model M, a theorem is proven, which claims that, without any knowledge of a suffi-
ciently small neighborhood of x∗, there exists a number K ∈ [1, K) such that the following
inequality is valid

‖xn − x∗‖B

‖xn‖B

≤ θ, ∀n ≥ K. (4.1)

Suppose that iterations are stopped at a certain number k ≥ K. Then the point xk is denoted
xk := xglob and is called the approximate solution resulting from this method.

13
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Since Definition 4.1 represents a new concept, it is worthwhile to have some discussion of
it. We present this discussion in this subsection. A similar discussion can be found in [20].

First, since the approximate mathematical model M is involved in Definition 4.1, then it
is reasonable to somehow verify this model. This verification can be done via computational
testing for simulated data, which was actually done in [18,22-24], although without Definition
4.1. In addition, it is also desirable to verify the model M on experimental data, which is
done here.

Second, the main reason for Definition 4.1 is a substantial challenge in the goal of con-
structing such numerical method for a CIP, which would provide a good approximation for
the exact solution without an advanced knowledge of a small neighborhood of this solution
(section 1). It is precisely because of this challenge that we use the approximate mathemati-
cal model M . Indeed, it is highly unlikely that the goal of constructing such algorithms would
be achieved without some approximations. It is important that as soon as the model M is
constructed, one should rigorously guarantee the achievement of that good approximation
within the framework of this model.

Third, unlike the classical convergence, this definition does not require that limn→∞ xn =
x∗. Furthermore, the total number K of iterations can be finite. We refer to page 157 of the
book [14] where it is stated that the number of iterations can be regarded as a regularization
parameter sometimes for an ill-posed problem. This lesser requirement is only due to the
difficulty in rigorous analysis only. In our computations both for simulated and experimental
data, classical convergence in the Cauchy sense was achieved.

4.2 Exact solution

Since the exact solution was defined in [18], we outline it only briefly here for the convenience
of the reader. The second reason of presenting this description here is that we need to refer
to certain formulas of this subsection in our convergence analysis. Let the function a∗ (x)
satisfying conditions (2.3) be the exact solution of our inverse problem for the noiseless data
ϕ∗ (x,x0) in (2.4). We assume that a∗ (x) is unique (Remark 2.1). We now need to introduce
functions q∗n, which are analogs of functions qn for the case a := a∗. Let the function u∗ (x, s)
be the same as the function u (x,x0) in Theorem 2.1, but for the case a (x) := a∗ (x). Denote

w∗ (x, s) = s−2 ln u∗ (x, s) , q∗ (x, s) = ∂sw
∗ (x, s) ,

T ∗ (x) = w∗ (x, s) .

The function q∗ satisfies the following analogue of equation (3.5) with the boundary condition
(3.6)

∆q∗ − 2
s

s̄∫
s

∆q∗ (x, τ) dτ − 2s2Oq∗
s̄∫
s

Oq∗ (x, τ) dτ

+4s

(
−

s̄∫
s

Oq∗ (x, τ) dτ + OT ∗
)2

+ 2s2Oq∗∇T ∗ = −2
s
∆T ∗, x ∈ Ω,

q∗ (x, s) = ψ∗ (x, s) ,∀ (x, s) ∈ ∂Ω× [s, s̄] ,

(4.2)

14
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where by (3.7) ψ∗ (x, s) = ∂s (s−2 ln u∗ (x, s)) for (x, s) ∈ ∂Ω × [s, s̄]. We call the function
q∗ (x, s) the exact solution of the equation (4.2) with the exact boundary condition ψ∗ (x, s).
By Theorem 2.1

q∗ (x, s) ∈ C2+α
(
Ω

)× C1 [s, s̄] , (4.3)

where C1 dependent on s ∈ [s, s̄] is required specifically for our method of running source
position. Although Theorem 2.1 does not claim the C2+α

(
Ω

)− smoothness of the derivative
∂su

∗ (x, s) , actually this smoothness can be derived from (2.6). We do not present this
derivation for brevity.

By one of fundamental concepts of the theory of Ill-Posed Problems mentioned in sub-
section 3.1, we can impose some a priori bounds in the solution, we assume the knowledge
of an upper bound for the function q∗. Thus we assume that we know a constant C∗ such
that

‖q∗‖C2+α(Ω)×C1[s,s̄] ≤ C∗, (4.4)

C∗ = const. ≥ 1. (4.5)

Let q∗n (x) and ψ∗n (x) be averages over the interval (sn, sn−1) of functions q∗ (x, s) and
ψ∗ (x, s) respectively. Then by (4.3)-(4.5) it is reasonable to assume that

max
n∈[1,n]

max
s∈[sn,sn−1]

(
‖q∗ (x, s)− q∗n (x)‖C2+α(Ω) + ‖ψ∗ (x, s)− ψ∗n (x)‖C(∂Ω)

)
≤ C∗h, (4.6)

Also,
q∗n (x) = ψ∗n (x) ,x ∈ ∂Ω. (4.7)

Hence, because of (4.4), it is reasonable to assume that

‖q∗n‖C2+α(Ω) ≤ C∗ . (4.8)

It follows from (4.2) that the following analogue of equation (3.10) holds

∆q∗n + A2,n

(
h

n−1∑
j=0

Oq∗j − OT ∗
)

Oq∗n (4.9)

= A3,nh

n−1∑
j=1

∆q∗j + A4,n

(
h

n−1∑
j=0

Oq∗j − OT ∗
)2

− A3,n∆T ∗ + F ∗
n (x) ,

where the error function F ∗
n (x) ∈ Cα

(
Ω

)
. This error function includes the error due to (4.6)

as well the term A1,n (Oq∗n)2 . By (3.12) and (4.4) |A1,n| (Oq∗n)2 (x) ≤ 2 (C∗)2 s2h,x ∈ Ω. Let
s > 1. By (4.5) we can re-denote C∗ := 2 (C∗)2 s2. Hence, (4.6) implies that it is reasonable
to assume that

‖F ∗
n (x)‖L2(Ω) ≤ C∗h. (4.10)
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It is convenient now to denote ϕ (x,s) := ϕ (x,x0) , where ϕ (x,x0) is the function in
(2.4). Since the function ϕ (x,s) models the measured data, we assume that it is given with
an error. This naturally produces an error in the function ψ (x, s) in (3.7). An additional
error is introduced in the averaging of functions ψ (x, s) , ψ∗ (x, s) over the interval [sn, sn−1].
Let σ > 0 be a small parameter characterizing the level of the error in the data ψ (x, s).
Hence, it is reasonable to assume that

‖ψ∗n (x)− ψn (x)‖C(∂Ω) ≤ C∗ (σ + h) , (4.11)

Remark 4.1. It should be noted that our experimental data ϕ (x,s) are naturally given
with a random noise and this function should be differentiated with respect to s, see (3.7).
Although the differentiation of the noisy data is an ill-posed problem, there exist effective
numerical regularization methods of its solution. However, since we work only with three
values of the parameter s in our experimental data (because of some limitations of our
device), we simply calculate the s derivative via the finite difference (subsection 7.2), and
this does not lead to a degradation of our reconstruction results.

4.3 Our approximate mathematical model

In this model we basically assume that the upper bound for the tail function can become
sufficiently small independently on s. In addition, since we calculate the tail function T (x, s)
separately from the function q, we assume that the function T (x, s) is given (but not the
exact tail function T ∗ (x, s)). Although the smallness of T is supported by (3.4), the inde-
pendence of that upper bound of this function from s does not follow from (3.4). Still this
is one of two assumptions of our approximate mathematical model.

Analogously, although the Huygens-Fresnel theory of optics is not supported by the
Maxwell’s system (see section 8.1 of the classical textbook [11]), the “diffraction part” of the
entire modern optical industry is based on the Huygens-Fresnel optics. More precisely, our
approximate mathematical model M consists of the following two

Assumptions:
1. We assume that the number s > 1 is sufficiently large and fixed. Also, the tail function

T (x, s) is given and tail functions T ∗ (x, s) , T (x, s) have the forms

T ∗ (x, s) =
ln w0 (s)

s2 + r∗ (x, s) , x ∈ Ω, r∗ ∈ C2
(
Ω

)
, (4.12)

T (x, s) =
ln w0 (s)

s2 + r (x, s) , x ∈ Ω, r ∈ C2
(
Ω

)
, (4.13)

‖r∗‖C2(Ω) ≤ ξ

2
, ‖r‖C2(Ω) ≤

ξ

2
, (4.14)

where ξ ∈ (0, 1) is a small parameter. Furthermore, the parameter ξ is independent on s.
2. As the unknown vector x ∈ B in Definition 4.1, we choose the vector function

q (x) = (q1, ..., qN) (x) in (3.15). In this case we will have only one iteration in Definition 4.1,
i.e. K = K = 1 in (4.1). We assume that there exists a number c∗ ∈ (0, C∗) independent on
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the step size h of the partition of the interval (s, s) such that ‖∇q∗n‖L2(Ω) ≥ c∗, n ∈ [1, N ] ,
and the number c∗ is given.

Below we verify this approximate mathematical model M on experimental data. It is for
the sake of our convergence analysis that we choose here the vector function q (x) rather than
the coefficient a (x) as our unknown function. This is because of some analytical difficulties
associated with the presentation (3.16), (3.17). Indeed, below we will actually find finite
dimensional approximations for components of the vector function q (x). Since in the most
popular case of standard piecewise linear triangular finite elements such an approximation
is a linear combination of those elements, then it will not belong to H2 (Ω) as required by
(3.16), (3.17). On the other hand, finding a (x) in the weak form of (5.1), (5.2) would require
some interpolation estimates of the differences between functions q∗n and their interpolations
via the finite dimensional subspace Gm in the next subsection. The latter has its own
“underwater rock” in terms of the convergence analysis.

By Definition 4.1 we need to prove uniqueness of the function q∗ (x, s) .
Lemma 4.1. Assume that the tail function T ∗ (x, s) satisfying (4.12), (4.14) is given.

Then there exists a small number µ = µ (C∗, Ω, s) depending on listed parameters such that if
(s− s) ∈ (0, µ) and ξ ∈ (0, µ) , then for (x, s) ∈ Ω× (s, s) there exists at most one function
q∗ (x, s) satisfying conditions (4.2)-(4.5).

Proof. Suppose that there exist two functions q∗1, q
∗
2. Let q̃∗ = q∗1−q∗2. By (4.3) q∗1,q

∗
2, q̃

∗ ∈
C2+α

(
Ω

)× C1 [s, s̄] and by (4.2)

∆q̃∗ − 2
s

s̄∫
s

∆q̃∗ (x, τ) dτ − 2s2Oq̃∗
s̄∫
s

Oq∗1 (x, τ) dτ − 2s2Oq∗2
s̄∫
s

Oq̃∗ (x, τ) dτ

−4s
s̄∫
s

Oq̃∗ (x, τ) dτ

(
−

s̄∫
s

(∇q∗1 +∇q∗2) (x, τ) dτ + OT ∗
)

+ 2s2Oq̃∗∇T ∗ = 0,

q̃∗ (x, s) = 0,∀ (x, s) ∈ ∂Ω× [s, s̄] .

(4.15)

In particular, q̃∗ ∈ H1
0 (Ω) ,∀s ∈ [s, s̄] . Multiply both parts of equation (4.19) by q̃∗ and

integrate over Ω × (s, s̄) . Then with a constant B = B (C∗, Ω, s̄) > 0 we obtain after
standard calculations

s̄∫

s

‖q̃∗ (x, s)‖2
H1(Ω) ds ≤ Bµ

s̄∫

s

‖q̃∗ (x, s)‖2
H1(Ω) ds. ¤

4.4 The finite dimensional approximation

Since we are concerned with the discrete version of the approximate global convergence
theorem, we introduce a finite dimensional subspace Gm ⊂ H1

0 (Ω) with dim Gm = m. A
realistic example of the latter is the subspace, generated by triangular finite elements, which
are piecewise linear functions. And we indeed work with these elements when solving above
boundary value problems for functions qn (the end of subsection 3.3). We assume that
fx, fz ∈ L∞ (Ω) ,∀f ∈ Gm. Since all norms in the subspace Gm are equivalent, then there
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exists a constant Cm = Cm (Gm) such that

‖∇f‖L∞(Ω) ≤ Cm ‖∇f‖L2(Ω) , ∀f ∈ Gm, Cm ≥ 2. (4.16)

Here and below ‖∇f‖L∞(Ω) :=
(
‖fx‖2

L∞(Ω) + ‖fy‖2
L∞(Ω)

)1/2

and the same for the L2 (Ω) norm.

Since we want to approximate functions pn = qn−Ψn (subsection 3.3) on the subspace Gm of
the space H1

0 (Ω) , rather than on the entire space H1
0 (Ω), then, in principle, we would need

to introduce the error function in the weak solution identity (3.22). However, this would
only complicate the proof of Theorem 4.1, while still leaving the idea of the proof the same.
Hence, we assume below that

pn, η ∈ Gm in (3.22), n ∈ [1, N ] . (4.17)

Consider a function Ψ∗
n ∈ C2

(
Ω

)
such that

Ψ∗
n |∂Ω= ψ∗n. (4.18)

An example of this function is Ψ∗
n (x) = χ (x) q∗n (x) , where the function χ ∈ C∞ (

Ω
)
, χ (x) =

1 in a small neighborhood of ∂Ω and χ (x) = 0 outside of this neighborhood. The existence
of such functions χ is known from the Real Analysis course. It follows from (4.8) and (4.11)
that it is reasonable to assume that

‖Ψn −Ψ∗
n‖H1(Ω) ≤ C∗ (σ + h) . (4.19)

Similarly with (3.20) let

f ∗n (x) = A4,n

(
h

n−1∑
j=0

Oq∗j − OT ∗
)2

− A3,n∆T ∗. (4.20)

Denote p∗n = q∗n −Ψ∗
n. Then, using (4.9) and (4.17), we obtain similarly with (3.22)

∫

Ω

∇p∗n∇ηdx− A2,n

∫

Ω

(
h

n−1∑
j=0

Oq∗j − OT ∗
)

Op∗nηdx

= −
∫

Ω

{
∇Ψ∗

n∇η +

[
A2,n

(
h

n−1∑
j=0

Oq∗j − OT ∗
)

OΨ∗
n + f ∗n

]
η

}
dx (4.21)

+A3,nh

∫

Ω

n−1∑
j=1

∇q∗j∇ηdx−
∫

Ω

F ∗
nηdx, ∀η ∈ Gm.

We have
p∗n = p∗n + p̂∗n, q∗n = (p∗n + Ψ∗

n) + p̂∗n := q∗n + p̂∗n, n ∈ [1, N ] , (4.22)
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where functions p∗n ∈ Gm and functions p̂∗n belong to the orthogonal complement of the
subspace Gm in the space H1

0 (Ω) . Hence, q∗n − q∗n = p̂∗n. We assume that functions p∗n are
approximated so well by functions p∗n ∈ Gm that

‖q∗n − q∗n‖H1(Ω) = ‖p̂∗n‖H1(Ω) ≤ ρ, n ∈ [1, N ] , (4.23)

where ρ ∈ (0, 1) is a sufficiently small number whose specification follows from Theorem 4.1.
Note that since the number C∗ in (4.4), (4.5), (4.8) is assumed to be known, then, given
a specific type of finite elements and the number ρ, it is usually possible to choose such a
subspace Gm of those finite elements, which would guarantee the estimate (4.23). To do so,
one should use standard interpolation estimates.

Substituting (4.22) in (4.21) and moving all terms with functions p̂∗j in the error function
F ∗

n (x) , we obtain an obvious analog of the integral identity (4.21). However, unlike (4.21),
only functions q∗j and p∗n are involved in the left hand side of this identity. Since we do not
want to change notations (for brevity), we denote p∗n := p∗n, q

∗
n := q∗n and recall that q∗0 = 0.

Hence, in these new notations we have similarly with (4.17)

p∗n = q∗n −Ψ∗
n ∈ Gm, n = 1, ..., N in (4.21). (4.24)

Likewise, similarly with (4.8), it is natural to assume that in these new notations

‖∇q∗n‖L∞(Ω) ≤ C∗, ‖p∗n −Ψ∗
n‖L∞(Ω) ≤ 2C∗. (4.25)

To emphasize the dependence of the error function from the subspace Gm as well as from
the number ρ in (4.23), we replace (4.10) with the following inequality

∥∥F ∗
n,m (x)

∥∥
L2(Ω)

≤ C∗ (ρ + h + σ) . (4.26)

4.5 Approximate global convergence theorem

Let ξ, ρ, h, σ ∈ (0, 1) be parameters introduced above. Denote γ = ξ+ρ+h+σ. The parameter
γ characterizes several errors: the error in the data, the error in our approximations as well as
the magnitude of the C2

(
Ω

)
norm of the tail (see (4.12)-(4.14) for the latter). The underlying

reason of imposing the smallness assumption on the length of the interval (s, s) in Theorem
4.1 is that equations (3.21) for functions pn are actually generated by the nonlinear equation
(3.5) containing Volterra integrals. It is well known from the standard ODE course that
these equations can be investigated only on a sufficiently small interval.

The approximate global convergence property in terms of Definition 4.1 and the approx-
imate mathematical model of subsection 4.3 is proved in Theorem 4.1.

Theorem 4.1. Let Ω ⊂ R2 be a convex bounded domain with the boundary ∂Ω ∈ C3.
Let A (Ω) be the area of the domain Ω. Asssume that A (Ω) ≥ 1 and denote C1 = C1 (Ω) =
C0 (Ω)

√
A (Ω) ≥ 1, where C0 (Ω) ≥ 1 is the constant in (3.19). Let s ≥ 1. Assume that the

function q∗ (x, s) satisfying (4.2), (4.3) exists and also that conditions (3.14), (4.4)-(4.8),
(4.17)-(4.19), (4.21)-(4.26) and Assumptions 1,2 hold. Denote M = 90s2C0C

∗, β = s − s.
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Let Cm ≥ 1 be the constant in (4.16). Assume that β, ξ ∈ (0, µ) , where the parameter µ
was introduced in Lemma 4.1. In addition, let

β ≤ 1

M + C∗ =
1

90s2C1C∗ + C∗ , (4.27)

γ ≤ 1

90s2C1Cm

. (4.28)

Then for each n ∈ [1, N ] there exists unique solution pn of the problem (3.22) satisfying
(4.17). Let qn = pn + Ψn. Then the following estimates hold

‖Oqn − Oq∗n‖L2(Ω) ≤ (M + C∗) γ, ∀n ∈ [1, N ] (4.29)

‖∇qn‖L∞(Ω) ≤ 2C∗, ∀n ∈ [1, N ] . (4.30)

In addition, let in (4.23) the number ρ ∈ (0, c∗/2) and

γ <
1

M

(
c∗

2
− ρ

)
, γ <

c∗

2MN
, (4.31)

where c∗ > 0 is the constant of Assumption 2. Then (4.29) implies that

‖Oq − Oq∗‖L2(Ω)

‖Oq‖L2(Ω)

≤ 2MN

c∗
γ := θ, θ ∈ (0, 1) , (4.32)

where q∗ (x) = (q∗1, ..., q
∗
N) (x) .

Remarks 4.2.
1. Estimate (4.32) means the approximate global convergence of the level θ (Definition

4.1) within the framework of our approximate mathematical model of subsection 4.3.
2. Although the number M depends on C1, C

∗, it is convenient to incorporate C∗ in M
in (4.27) and (4.29). Indeed, it follows from (4.43) that otherwise we would need to assume
that M depends from the number N of functions qn. On the other hand, since Nh = β and
h is a part of the parameter γ, then the dependence of M from N would cause additional
difficulties in the proof below.

Proof. In this proof we use estimates (3.13) for numbers A2,n, A3,n, A4,n without further
mentioning. Also, we use in this proof without further mentioning the following inequalities

‖v‖L2(Ω) ≤
√

A (Ω) ‖v‖L∞(Ω) ≤ C1 ‖v‖L∞(Ω) , ∀v ∈ L∞ (Ω) .

Since β, ξ ∈ (0, µ) , then Lemma 4.1 implies that the function q∗ is unique. Denote

q̃n (x) = qn (x)− q∗n (x) , p̃n (x) = pn (x)− p∗n (x) , f̃n (x) = fn (x)− f ∗n (x) ,

T̃ (x) = T (x)− T ∗ (x) , Ψ̃n (x) = Ψn (x)−Ψ∗
n (x) .

Since q0 = 0, then estimates (4.29), (4.30) and (4.32) are valid for n = 0. Let n ∈ [1, N ] .
Assume that these estimates are valid for functions qj, j ∈ [0, n− 1] and prove them for j = n.
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For all numbers a1, a2, b1, b2 ∈ R we have a1b1−a2b2 = a1b̃+ãb2, where ã = a1−a2, b̃ = b1−b2.
Subtract (4.21) from (3.22) and set in the resulting equality η := p̃n. Then

‖∇p̃n‖2
L2(Ω) − A2,n

∫

Ω

(
h

n−1∑
j=0

Oqj − OT

)
Op̃np̃ndx

= A2,n

∫

Ω

(
h

n−1∑
j=0

Oq̃j − OT̃

)
O (p∗n −Ψ∗

n) p̃ndx (4.33)

+

∫

Ω

−∇Ψ̃n∇p̃ndx− A2,n

∫

Ω

(
h

n−1∑
j=0

Oqj − OT

)
OΨ̃np̃ndx

−
∫

Ω

f̃np̃ndx+A3,n

∫

Ω

h

n−1∑
j=0

Oq̃j∇p̃ndx+

∫

Ω

F ∗
n,mp̃ndx.

Let lhs be the left hand side of (4.35). We now estimate lhs from the below using (3.13),
(3.19), (4.14) as well as estimates (4.29) and (4.30) for functions qj, j ∈ [0, n− 1] . We have

lhs ≥ ‖∇p̃n‖2
L2(Ω) − 8s2C1 (2βC∗ + γ) ‖∇p̃n‖2

L2(Ω) . (4.34)

Since Cm ≥ 2, then by (4.27) and (4.28)

8s2C1 (2βC∗ + γ) =
(
16s2C1C

∗β + 8s2C1

)
<

1

3
.

Hence, (4.34) implies that

lhs ≥ 2

3
‖∇p̃n‖2

L2(Ω) . (4.35)

We now estimate term-by-term the right hand side rhs of (4.33) from the above. We
now estimate term-by-term the right hand side of (4.35) from the above. Without further
mentioning, we use below in this proof (3.13), (3.19), (4.14), (4.19), (4.25)-(4.28), as well as
estimates (4.29) and (4.30) for functions qj, j ∈ [0, n− 1] . In addition, we Cauchy-Schwarz
inequality “with ε”, which is ab ≥ −εa2/2− b2/ (2ε) ,∀a, b ∈ R,∀ε > 0.

First,

A2,n

∣∣∣∣∣∣

∫

Ω

(
h

n−1∑
j=0

Oq̃j − OT̃

)
O (p∗n −Ψ∗

n) p̃ndx

∣∣∣∣∣∣

≤ 16s2C∗
∥∥∥∥∥h

n−1∑
j=0

Oq̃j − OT̃

∥∥∥∥∥
L2(Ω)

‖p̃n‖L2(Ω)

≤ 16s2C∗ (β (M + C∗) + 1) γC1 ‖∇p̃n‖L2(Ω) ≤ 32s2C∗γC1 ‖∇p̃n‖L2(Ω)
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≤ 16

ε
s4 (C∗)2 + 16ε (C1)

2 ‖∇p̃n‖2
L2(Ω) .

Thus,

A2,n

∣∣∣∣∣∣

∫

Ω

(
h

n−1∑
j=0

Oq̃j − OT̃

)
O (p∗n −Ψ∗

n) p̃ndx

∣∣∣∣∣∣
≤ 16

ε
s4 (C∗)2 + 16ε (C1)

2 ‖∇p̃n‖2
L2(Ω) . (4.36)

We now estimate from the above the third line of (4.33),

∣∣∣∣∣∣

∫

Ω

∇Ψ̃n∇p̃ndx + A2,n

∫

Ω

(
h

n−1∑
j=0

Oqj − OT

)
OΨ̃np̃ndx

∣∣∣∣∣∣

≤
∥∥∥∇Ψ̃n

∥∥∥
L2(Ω)

‖∇p̃n‖L2(Ω) + 8s2 (2C∗β + γ) C1

∥∥∥∇Ψ̃n

∥∥∥
L2(Ω)

‖∇p̃n‖L2(Ω)

≤ [
C∗ + 16s2C∗β + 8s2γ

]
γC1 ‖∇p̃n‖L2(Ω) .

Since by (4.5) C∗ ≥ 1, then (4.27) and (4.28) imply [C∗ + 16s2C∗β + 8s2γ] ≤ 2C∗. Thus,

∣∣∣∣∣∣

∫

Ω

∇Ψ̃n∇p̃ndx + A2,n

∫

Ω

(
h

n−1∑
j=0

Oqj − OT

)
OΨ̃np̃ndx

∣∣∣∣∣∣
(4.37)

≤ 2

ε
(C∗)2 γ2 +

ε

2
(C1)

2 ‖∇p̃n‖2
L2(Ω) .

Next, using (3.20) and (4.20), we similarly obtain

∣∣∣∣∣∣

∫

Ω

f̃np̃ndx

∣∣∣∣∣∣
≤ 2

ε
γ2 +

ε

2
C2

1 ‖∇p̃n‖2
L2(Ω) . (4.38)

Next,

A3,n

∣∣∣∣∣∣

∫

Ω

h

n−1∑
j=0

Oq̃j∇p̃ndx

∣∣∣∣∣∣
≤ 8s2

∥∥∥∥∥h

n−1∑
j=0

Oq̃j

∥∥∥∥∥
L2(Ω)

‖∇p̃n‖L2(Ω)

≤ 8s2β (M + C∗) γ ‖∇p̃n‖L2(Ω) ≤
4

ε
s4γ2 +

ε

2
‖∇p̃n‖2

L2(Ω) .

Thus,

A3,n

∣∣∣∣∣∣

∫

Ω

h
n−1∑
j=0

Oq̃j∇p̃ndx

∣∣∣∣∣∣
≤ 4

ε
s4γ2 +

ε

2
‖∇p̃n‖2

L2(Ω) . (4.39)

22



Experiments for an elliptic inverse problem

Finally ∣∣∣∣∣∣

∫

Ω

F ∗
n,mp̃ndx

∣∣∣∣∣∣
≤ (C∗)2

2ε
γ2 +

ε

2
C2

1ε ‖∇p̃n‖2
L2(Ω) . (4.40)

Let rhs be the right hand side of (4.33). Summing up estimates (4.36)-(4.40) and keeping
in mind that s, C1, C

∗ ≥ 1, we obtain

rhs ≤ 24s4 (C∗)2

ε
γ2 + 20C2

1ε ‖∇p̃n‖2
L2(Ω) . (4.41)

Choose ε = (60C2
1)
−1

. Substituting this in (4.41) and then comparing with (4.35), we obtain

‖∇p̃n‖L2(Ω) ≤ 66s2C1C
∗γ < Mγ. (4.42)

Thus, (4.42) and Lax-Milgram theorem imply that there exists unique weak solution p̃n ∈ Gm

of the problem (3.22) satisfying (4.17). Since q̃n = p̃n + Ψ̃n, then (4.19) and (4.42) imply
that

‖∇q̃n‖L2(Ω) ≤ Mγ + C∗γ = (M + C∗) γ. (4.43)

The latter establishes (4.27). Next, by (4.16) and (4.28) ‖∇q̃n‖L∞(Ω) ≤ MCmγ ≤ C∗. Hence,

‖∇qn‖L∞(Ω) = ‖∇q∗n +∇q̃n‖L∞(Ω) ≤ 2C∗,

which establishes (4.28). Recall now that our functions q∗n, which were used in this proof
above, are actually functions q∗n, which were introduced in (4.22), and the error estimate
(4.23) holds. Hence, using (4.29) and the first inequality (4.31), we obtain

‖∇qn‖L2(Ω) = ‖(∇qn −∇q∗n) + (∇q∗n −∇q∗n) +∇q∗n‖L2(Ω)

≥ ‖∇q∗n‖L2(Ω) − ‖∇qn −∇q∗n‖L2(Ω) − ‖∇q∗n −∇q∗n‖L2(Ω)

≥ c∗ −Mγ − ρ ≥ c∗

2
.

Thus, ‖∇qn‖L2(Ω) ≥ c∗/2. Next, using the latter inequality (4.29) and (4.31), we obtain

‖∇q −∇q∗‖L2(Ω)

‖∇q‖L2(Ω)

≤ N maxn ‖∇qn −∇q∗n‖L2(Ω)

minn ‖∇qn‖L2(Ω)

≤ 2MN

c∗
γ, (4.44)

2MN

c∗
γ : = θ ∈ (0, 1) . (4.45)

Estimates (4.44) and (4.45) imply (4.32). ¤
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5 Numerical Implementation

Since this implementation was described in detail in [18], we outline it only briefly here for
the convenience of the reader. As to the functions qn, we have sequentially calculated them
via the FEM solving Dirichlet boundary value problems (3.9), (3.10) with the assumption
(3.14). As it was mentioned in the end of subsection 3.3, we have used standard triangular
finite elements. Two important questions which are discussed in this section are about
approximating the function a (x) and the tail function T (x).

5.1 Approximation of the function a (x)

We reconstruct the target coefficient a (x) via backwards calculations as follows. First, we
reconstruct the function w̃ (x, sN) by (3.16). In principle we can reconstruct the target
coefficient a (x) from (3.17). However, because our finite elements to calculate functions qj

in (3.16) are piecewise linear ones, it is numerically unstable to calculate second derivatives in
(3.17). Hence, we first reconstruct an approximation for the function u (x, sN) as u (x, sN) =
exp [w̃ (x, sN)]. Next, since in (2.1) the source x0 /∈ Ω, we use equation (2.1) in the weak
form as

−
∫

Ω

∇uOηpdx =

∫

Ω

auηpdx, (5.1)

where the test function ηp (x) , p ∈ [1, P ] is a quadratic finite element of a computational
mesh with the boundary condition ηp (x) |∂Ω = 0. The number P is finite and depends on
the mesh we choose. Equalities (5.1) lead to a linear algebraic system which we solve. Since
this formulation is complex but standard, it is omitted here. Interested readers can see [13].
Finally, we let

a (x) = max
(
a (x) , k2

)
. (5.2)

5.2 Construction of the tail function

The above construction of functions qn depends on the tail function T. In this subsection
we state briefly our heuristic procedure of approximating the tail function, see [18,22,23] for
details. This procedure consists of two stages. First, we find a first guess for the tail using
the asymptotic behavior of the solution of the problem (2.1), (2.2) as |x0| → ∞ (Lemma
2.2), as well as boundary measurements. On the second stage we refine the tail.

We display in Fig. 1 the boundary data collection scheme in our experiment. We have
used six locations of the light sources, see Fig. 1a. Sources number 1,2 and 3 are the ones
which model the source x0 running along the straight line L, see (2.4). The distance between
these sources was six (6) millimeters. Each light source means drilling a small hole in the
phantom to fix the source position. It was impossible to place more sources in a phantom of
this size that mimics actual mouse head. So, since the data for the functions qn are obtained
via the differentiation with respect to the source position, we have used only two functions
q1, q2. Fortunately, it was sufficient for our goal of imaging of abnormalities to use only
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(a) (b)

Figure 1: The schematic diagrams of inverse problem domain and light source locations. (a)
Illustrates a layout of the inverse problem setting in 2-D. The circular disk Ω corresponds
to a horizontal cross-section of the hemisphere part of phantom (the supposed “mouse head”
in animal experiments), The computational domain Ω1 is a rectangle containing Ω inside, 6
light sources are located outside of the computational domain. Because of limitations of our
device, we use only three locations of the light source along one line (number 1,2,3) to model
the source x0 running along the straight line L. Light sources numbered 1,4,5,and 6 are used
to construct an approximation for the tail function. (b) Depicts the computational domain
Ω1 = {(x, z), |x| < 5.83, |z| < 5.83} (unit:mm) and its rectangular meshes for tail functions
and inverse calculations for Globally Convergent method in this paper. Actual mesh is much
dense than these displayed. The diagram is not scaled to actual sizes

two functions q1, q2. Sources 1,4,5,6 (Fig. 1a) were used to approximate the tail function as
described below. We construct that approximation in the domain Ω1 depicted on Fig. 1b.
This domain is (units in millimeters)

Ω1 := {x = (x, z) : x1 = −5.83 < x < x2 = 5.83, z1 = −5.83 < z < z2 = 5.83} . (5.3)

5.2.1 The first stage of approximating the tail

Since this stage essentially relies on positions of sources 1,4,5,6, it makes sense to describe
this stage in detail here, although it was also described in [18]. The light sources are placed
as far as possible from the domain Ω1, so that the asymptotic approximations of solutions
are applicable. Denote the position of the light source number j as s(j). First, consider the
light source number 1. Denote

S(1) := S(1)
(
x, z, s(1)

)
=

∣∣(x, z)− s(1))
∣∣ . (5.4)

25



Experiments for an elliptic inverse problem

Using (2.5), Theorem 2.1 and Lemma 2.2, we obtain for the function w̃ = ln u

w̃
(
x, z, s(1)

)
= −kS(1) − ln

(
2
√

2π
)
− 1

2
ln S(1) + p∞ (x, z) + O

(
1

S(1)

)
, S(1) →∞. (5.5)

Since by (5.3) w̃
(
x, z1, s

(1)
)

= ϕ
(
x, s(1)

)
,x ∈ ∂Ω ∩ {z = z1} , we use (5.5) to approximate

the unknown function p∞ (x, z1) as

p∞ (x, z1) = w̃
(
x, z1, s

(1)
)

+ kS
(
x, z1, s

(1)
)

+
1

2
ln

(
π

2S (x, z1, s(1))

)
. (5.6)

Formula (5.6) gives the value of p∞ (x, z1) only at z = z1. Since Ω1 is a square, we set
the first guess for the tail as the one which is obtained from (5.6) by simply extending the
values at z = z1 to the entire domain of Ω1,

w̃
(
x, z, s(1)

)
= −kS(1)

(
x, z, s(1)

)− ln
(
2
√

2π
)
− 1

2
ln S(1)

(
x, z, s(1)

)
+ p∞ (x, z1) ,

where the function S
(
x, z, s(1)

)
is given in (5.4). Next, we compute the function u

(
x, z, s(1)

)
=

exp
(
w̃

(
x, z, s(1)

))
and get a(1) (x, z) , (x, z) ∈ Ω via (5.1), (5.2).

For light sources 4, 5 and 6, we repeat the above procedure to get a(4) (x, z) , a(5) (x, z)
and a(6) (x, z) respectively. Then we consider the average coefficient

a (x, z) =
1

4

(
a(1) (x, z) + a(4) (x, z) + a(5) (x, z) + a(6) (x, z)

)
(5.7)

and set
a (x, z) := max

(
a (x, z) , k2

)
. (5.8)

Next, we solve the forward problem (2.1), (2.2) for the light s(3) with this coefficient a (x, z)
again to get u (x, z, s) , s =

∣∣s(3)
∣∣ . The final approximate tail function obtained on the first

stage is

T1 (x, z) =
ln u (x, z, s)

s2 . (5.9)

5.2.2 The second stage for the tail

The second stage involves an iterative process that enhances the first approximation for the
tail (5.9). We describe this stage only brief here referring to [18] for details. In this case we
use only one source Number 3, s(3). Recall that

∣∣s(3)
∣∣ = s. Denote a1 (x) := a (x, z) , where

the function a (x, z) is one calculated in (5.7), (5.8). Next, we solve the following boundary
value problem

∆u1 − a1 (x) u1 = 0,x ∈ Ω1,

u1|∂Ω1 = ϕ (x, s) ,x ∈ ∂Ω1.
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Then, we iteratively solve the following boundary value problems

∆wm − am (x) wm = [am (x)− am−1 (x)] um−1, m ≥ 2,

wm|∂Ω1 = 0.

We set um := um−1 + wm. Next, using (5.1) and (5.2) with u := um, we find the function
am+1 (x) . We have computationally observed that this iterative process provides a convergent
sequence {am (x)} in L2 (Ω1) . We stop iterations at m := m1, where m1 is defined via

‖am1 − am1−1‖L2(Ω1)

‖am1−1‖L2(Ω1)

≤ ε, (5.10)

where ε > 0 is a small number of our choice, and the norm in L2 (Ω1) is understood in the
discrete sense. Next, assuming that um1 > 0, we set for the tail

T (x) =
1

s2 ln um1 (x) . (5.11)

Then we proceed with calculating of functions qn as described above.
Remarks 5.1.
1. Even though we can reconstruct an approximation for the function a (x) from the

tail function (5.11) without computing functions qn, we have found in our previous numeri-
cal experiments with computationally simulated data that finding functions qn significantly
improves the image accuracy.

2. Unfortunately we cannot yet prove that functions am (x) → a (x). Likewise, we cannot
yet prove analytically the positivity of functions um. Also, we cannot prove analytically that
functions um converge, nor that our tail T (5.11) is close to the correct tail T ∗. Nevertheless,
we have consistently observed this closedness in our previous publications [18,22,23]. For
example, it can be seen from Figure 2 of [23] that our constructed tail function is quite close
to the real one. Also, by (5.11) T (x) := T (x,s) = O (1/s2) , which is similar with (3.4),
(4.12)-(4.14).

6 Experimental Data

We now describe our experimental setup for collecting the optical tomography data from an
optical phantom. This phantom is a man-made subject that has the same optical property
as animals. Such a phantom is a well-accepted standard to test reconstruction methods for
real applications before animal experiments.

Fig. 2 is a photograph of our measurement setup. The center of the picture is the
phantom (rectangular box with a hemisphere on top surface) which, in particular, contains a
hidden inclusion inside (not visible in this photo). The hemisphere mimics the mouse head in
animal experiments of stroke studies, and a hidden inclusion mimics a blood clot. The four
needles are laser fibers that provide light sources in our experiments. The fiber on the right
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Figure 2: Photograph of the experimental setup, an optical phantom is connected by 4 laser
fibers, one on the righthand side is movable to locations 1,2, and 3. The gelatin made
phantom is of a shape of rectangular box with a hemisphere on top surface, mimic a mouse
head with a mask exposing crown part of the mouse. A CCD camera mounted above phantom
(not shown), takes light intensity measurements of the top surface of phantom.

hand side of Fig. 2 can be moved to three other positions which are source positions 1,2,3
on Fig. 1a. Three other fibers represent positions 4,5,6 of the source on Fig. 1a. A CCD
camera is mounted directly above the setup (not shown in photo), and the camera focus
on the top surface of the phantom. CCD stands for Charge Coupled Device. CCD camera
with its sensitivity and response range is commonly used for near infrared laser imaging of
animals.

The purpose of this experimental setup is to study the feasibility of using our numerical
method in stroke model of animal study. In the case of a real animal the top hemisphere
(meshed shape in Fig. 3a) is to be replaced by a mouse head and the rectangular block
of phantom to be replaced by an optical mask filled with a “matching” fluid (a liquid with
same optical as mouse skin/skull). The image reconstruction should provide the spatial
distribution of the optical coefficient a (x) (directly related to blood content) in a 2-D cross-
section of the animal brain.

We have modified specific geometrical parameters to match actual experiments. In ad-
dition, while in our above algorithm is for the 2-D case, experimental data are obviously in
3-D. Hence, we collect the data at the boundary of a 2-D cross-section. And in our compu-
tations we ignore the dependence on the variable which is orthogonal to this cross-section.
The latter is similar with the case of a quite successful treatment of the experimental data
of Electrical Impedance Tomography by a non-locally convergent algorithm in [17].

Specifically, our inverse reconstruction is performed in a 2-D plane depicted in Fig. 3b,
with the optical parameter distribution of the medium inside the circle (at the center of Fig.
3b) as an unknown coefficient in the photon diffusion model. Should we need a diagnosis of
a different cross-section of mouse brain in animal experiments, we need a different optical
mask filled with matching fluid, and repeat both the experiment and the reconstruction.
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(a) (b)

Figure 3: The schematic diagrams of our data acquisition process. (a) Schematically depicts
a 3-D phantom and its hidden inclusion (shown in meshed surface) 5mm below the phantom.
The light source is placed at various locations on the top surface of the rectangular block
(shown in Fig. 1a) and light intensity measurements are taken on the top surface of phantom.
(b) Shows the measurement surface by a CCD camera. The data are collected from the surface
of the hemisphere as well as un-shaded area of top rectangle, both area are lifted from the
phantom in this drawing for a better illustrative purpose. The rectangular figure in Fig. 3b
also illustrates in the middle a 2-D cross-section (meshed circle) of the presumed “animal
head”, at the boundary of which light intensity data are collected for reconstruction. The light
intensity at the 2-D cross-section (except for the boundary) is obstructed by the top surface
of the hemisphere. Light sources are also located in the same plane as this cross-section area.
The 2-D inverse problem is solved in this cross-section via ignoring the dependence on the
orthogonal coordinate.

The geometry of the phantom (shown in a vertical central cross-section) is depicted in
Fig. 4 with dimensions specified. The phantom is shaped by a hemisphere (diameter 13 mm)
on top of a cube of 30mm × 30mm × 30mm. A spherical hollow of 5 mm diameter is inside
the phantom, with its top 5mm below the top surface (Fig. 4). The location of this hollow
is symmetric here but can be in any place when needed. The hollow is our inclusion which
we fill with different kinds of liquid from ink/intralipid mix to model strokes by blood clots.
Intralipid is a product for fat emulsion, mimic the response of human or animal tissue to light
at wavelengths in the red and infrared ranges. The phantom is made of gelatin mixed with
the intralipid. The percentage of intralipid content is adjustable. So that the phantom has
the same optical parameters as the background medium of the target animal model. At the
location of the inclusion (the hollow), we inject ink/intralipid mixed fluids which has optical
absorption rate 2 times, 3 times, 4 times of the background. Also, we use the pure black ink
to test our reconstruction method for the case of infinite absorption. Different levels of the
absorption ratio are used to validate our method for its ability for different blood clots. Light
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Figure 4: Dimensions of the phantom, shown in a vertical cross-section at center of the
phantom from side view. The circle in Fig. 1a corresponds to the blue circle in Fig. 3b.
This is also corresponds to the boundary of the 13mm diameter circle at a top view above
the rectangular box (but not related to circle or semicircle in this graph). The 5mm diameter
hollow sphere is for placement of inclusions, filled with liquids of different compositions to
emulate strokes. The hidden inclusion is 5mm below the top surface.

intensity measurements are taken from direct above the semicircle in Fig. 4. We note that
Fig. 1a shows a top view of the layout but Fig. 4 shows a cross-section from side view. The
disk region Ω in Fig. 1a corresponds to the meshed area in Fig. 3b as well as a horizontal
cross-section of 13mm hemisphere. The reason we use such a geometry is that we need to
test our capability to reconstruct inclusions at several different depth (moving up and down
vertically as in Fig. 4) as well as different locations (moving horizontally in Fig. 3b).

7 Processing Experimental Data

As it is always the case when working with imaging from experimental data, we need to
make several steps of data pre-processing before applying our inverse algorithm.

7.1 Computational domains

In particular, we use several computational domains. The computational domains and
meshes used in our numerical calculation involve four domains. Fig. 5a - Fig. 5c and
Fig. 1b are the finite element meshes on each of these domains Ω, Ω0, Ω0�Ω, Ω1 respectively.
In actual computations we use more refined meshes for each domain than those illustrated.
So, figures are not scaled to actual sizes.

Here the disk Ω is the domain of interest that contains the inclusion, corresponding to
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(a) Ω (b) Ω0 (c) Ω0\Ω

Figure 5: (a) Shows Ω = {(x, z),
√

x2 + z2 < 4.63} (unit:mm) with a triangular mesh, the
domain representing a cross-section of our phantom, and the inclusion inside Ω is to be
reconstructed. (b) Shows Ω0 = {(x, z), |x| < 23.32, |z| < 23.32}(unit : mm), the domain
contains Ω and light sources for forward problem calculation. Meshed small square is the
domain Ω1 which is the same as on Fig. 1b. Computations of the inverse problem are
performed in Ω1. (c) Shows Ω0�Ω the domain used for data processing. To smooth out the
measurement noise, equation (2.1) with the Dirichlet boundary conditions u |∂Ω= ϕ (x, x0),
u |∂Ω0= 0 is solved in Ω0�Ω. Then the smoothed data along ∂Ω1 is used for inverse problem.

the meshed area in Fig. 3b. It reflects a cross-section of the hemisphere of phantom in
Fig. 3b. The light intensity data used in our computation originates from measurements
at ∂Ω by taking pictures with CCD camera on the top of phantom as discussed, shown in
Fig. 3b. The CCD camera collected data is acquired for the entire top surface exposed, and
we extract only the needed data for ∂Ω i.e., the circle in Fig. 3b by getting data at these
locations, as boundary values. There Ω =

{
(x, z) |√x2 + z2 ≤ 4.63mm

}
.

On Fig. 5 Ω0 is a large domain, which can be interpreted as a truncated plane R2. Indeed,
one cannot practically solve the forward problem (2.1), (2.2) in the infinite space R2. Light
sources are located in Ω0�Ω. The background simulation and calibration of background
parameters are performed in Ω0. To smooth the noise data, equation (2.1) is solved in Ω0�Ω
for each source position, which is similar with [22]. Because of (2.3), we use a (x) := k2

for x ∈ Ω0�Ω. In this procedure the Dirichlet boundary condition at ∂Ω is taken from
experimental data, and we use the zero Dirichlet boundary condition at ∂Ω0. As a result,
we obtain the smoothed Dirichlet boundary condition at ∂Ω1 for each source location. The
boundary condition corresponding the source number are used to construct the tail function
in Ω1. Also, we solve the inverse problem in Ω1 and Ω ⊂ Ω1.
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7.2 Data pre-processing and approximations of boundary condi-
tions

As it was stated in subsection 7.1, to smooth out our measurement data, we solve the
Dirichlet boundary problem for equation (2.1) with a (x) ≡ k2 for x ∈ Ω0�Ω (Fig. 5c).
Namely,

∆u− k2u = −δ
(
x− s(i)

)
,x ∈ Ω0�Ω, (7.1)

u |∂Ω = ϕ
(
x, s(i)

)
, u |∂Ω0= 0.

Here k2 = 3µ′sµa is the background value and ϕ
(
x,s(i)

)
is the experimentally measured

data for the light source s(i). Let ϕ
(
x, s(i)

)
be the trace of the solution of the Dirichlet

boundary value problem (7.1) at x ∈ ∂Ω1. We solve the inverse problem in the square Ω1

with the smoothed data u |∂Ω1= ϕ
(
x, s(i)

)
. We have shown in [23, 25] that solving inverse

problems in the original domain Ω and extended domain Ω1 are equivalent mathematically.
But numerically the noisy component in ϕ

(
x, s(i)

)
is much smaller than in ϕ

(
x, s(i)

)
. This

smoothing effect takes place because of the well known smoothing property of solutions of
elliptic equations, see Theorem 6.17 in [16].

As it was mentioned in subsection 5.2, because of limitations of our device, we can use
only three source positions on the line L, which are source positions number 1,2,3 on Fig.
1a. Thus, we work only with functions q1, q2. To calculate Dirichlet boundary conditions
ψi (x) , x ∈ ∂Ω1, i = 1, 2 for functions q1, q2, we use (3.7) and proceed as follows

ψi (x) =
1

s2
i

(
ln ϕ

(
x, s(i+1)

)− ln ϕ
(
x, s(i)

)

si+1 − si

)
− 2 ln ϕ

(
x, s(i)

)

s3
i

, si =
∣∣s(i)

∣∣ , i = 1, 2; s =
∣∣s(3)

∣∣ .

7.3 The forward problem and calibration

We now address the question on which value of k2 one should use when working with ex-
perimental data. The optical properties of the phantom background (without the hidden
inclusion) is known theoretically from the concentration of intralipid in the mix. However,
there is a discrepancy between the theoretical value and actual measurement. Before we
solve the inverse problem to image hidden inclusions, we calibrate our model by adjusting
the background value of k2 to experimental data measured for the reference medium, which
is the phantom without inclusion, i.e. the hollow space is filled with same intralipid solution
as that in the phantom itself.

First, we numerically solve the forward problem with the source position s(1) in the
domain Ω0 without any inclusion,

∆u− k2u = −Aδ
(
x− s(1)

)
,x ∈ Ω0, (7.2)

u |∂Ω0 = 0,

where k2 = 3µ′sµa is the background value. Then we calibrate the parameter µa (fixing µ′s)
as well as the amplitude A > 0 of light source in our model (7.2) to match the measured
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light intensity for s(1) for the uniform background. We do not know the number A. Thus, we
choose A in such a way that ucomp

(
xmax, s

(1)
) ≈ umeas

(
xmax, s

(1)
)
. Here xmax is the brightest

point, i.e. the far right point on ∂Ω, being closest to the light source. Also, ucomp

(
xmax, s

(1)
)

and umeas

(
xmax, s

(1)
)

are computed and measured light intensities respectively. Next, we
should approximate the constant k2. To do this, we take another sampling point xmin with
the minimum light intensity, which is the farthest left point on ∂Ω. Next we consider ratios
Rcomp (k2) , Rmeas, where

Rcomp

(
k2

)
=

ucomp

(
xmax, s

(1)
)

ucomp (xmin, s(1))
, Rmeas =

umeas

(
xmax, s

(1)
)

umeas (xmin, s(1))
.

These ratios are independent on the number A in (7.2). We choose k2 such that Rcomp (k2) ≈
Rmeas. As a result, the calibrated value of k2 was k2 = 2.403. This computed value matches
quite well the theoretical value of 2.4 of the intralipid solution we have used.

8 Reconstruction Results

Let aincl = a (x) be the value of a (x) inside the inclusion and ab = k2 = 2.403 be the value
of the coefficient a (x) in the background, which was computed in subsection 7.3. Our ratios
aincl/ab where

aincl

ab

= 2, 3, 4,∞. (8.1)

These contrasts are created by injecting different liquids in the hollow. The value aincl/ab =
∞ means that the inclusion was filled with a black absorber, i.e. black ink.

As described in sub-subsection 5.2.1, we construct the “asymptotic tail” on the first stage
using light sources 1,4,5, and 6. The image of the function a (x, z) in (5.7) is depicted on
Fig. 6.

In all our examples ε = 10−5 in (5.10). Fig. 7 depicts the resulting image from our
experimental data for the contrast aincl/ab = 3. Reconstructed images for other contrasts
aincl/ab = 2, 4,∞ are similar, although maximal values of a (x) vary accordingly, which
is natural. Recall that ab = k2 = 2.403. The finally reconstructed results for contrasts
a−1

b max a (x) are listed in Table 1. Note that our above reconstruction algorithm does not
use any knowledge of neither the location of the inclusion, nor the contrast value aincl/ab.

Table 1. Reconstructed values of the contrast a−1
b max a (x) within imaged inclusions

and they relative errors, ab = 2.403, compare with (8.1)

The true contrast aincl/ab a−1
b max a (x) Relative Error

2 2.11 0.056
3 2.9 0.032
4 4.22 0.057
∞ 6.69 unknown
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Figure 6: The function a (x, z) in (5.7) is depicted. This function was obtained on the first
stage procedure for the tail (sub-subsection 5.2.1). The inclusion/background contrast (8.1)
was aincl/ab = 3. Images for other values of this contrast listed in (8.1) were similar.

9 Summary

Using experimental data, we have verified the approximately globally convergent numerical
method of [18] for a Coefficient Inverse Problem for an elliptic equation. These data mimic
imaging of a clot in the head of a mouse. We have introduced a new concept of the approxi-
mate global convergence property and have established this property for the discrete case of a
finite number of finite elements, unlike the continuous case of [18]. Images of inclusions from
experimental data are quite accurate, including both inclusion/background contrasts and lo-
cations of inclusions. Note that accurate values of contrasts are usually hard to reconstruct
via locally convergent algorithms. On the other hand, these values are especially important
for our target application, since they might be used for monitoring stroke treatments.
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