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Abstract

We present a review of rigorous mathematical results about non–
adiabatic transitions in molecular systems that are associated with
avoided crossings of electron energy level surfaces. We then present a
novel numerical technique for studying these transitions that is based
on expansions in semiclassical wavepackets.

1 Introduction

In the standard time–dependent Born–Oppenheimer approximation for mo-
lecular propagation, the electrons obey an adiabatic approximation. This
approximation can break down at avoided crossings. Avoided crossings are
nuclear configurations where electron energy levels approach close to one
another. The resulting non–adiabatic dynamics plays an important role in
physics, chemistry, and biology [19, 18, 17, 25].

Because of its importance in applications, the problem of simulating non–
adiabatic dynamics in the presence of avoided crossings has been studied
often. Probabilistic surface-hopping algorithms [23, 22, 16] are frequently
used, since direct integration of the Schrödinger equation is considered too
expensive, even with modern computers. One direct method, developed
and used by the quantum chemistry community, is the Time–Dependent
Discrete Variable Representation or TDDVR method [20]. A second method
[4], based on semiclassical wavepackets, is a generalization of the TDDVR
method and is expected to yield accurate results.
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In Section 2 of this paper, we review rigorous mathematical results on
non–adiabatic transitions caused by avoided crossings when the nuclei have
one degree of freedom. In Sections 3 and 4, we present the results of numer-
ical simulations that use the semiclassical wavepacket approach.

2 Theoretical Results concerning Propagation

through Avoided Crossings

As mentioned in the introduction, we shall restrict attention to situations
in which the nuclei have just one degree of freedom. There are some other
results [11] for avoided crossings with “small gaps” (as defined below) when
the nuclei have more degrees of freedom.

There are only two situations for which mathematically rigorous results
are known for propagation of molecular wave functions through generic
avoided crossings in the Born–Oppenheimer limit. We describe both sit-
uations in this section. The first [11, 21] involves avoided crossings with
small gaps, i.e., avoided crossings whose gaps are O(ǫp) for p close to 1,
where ǫ is the Born–Oppenheimer parameter. The second involves avoided
crossings with small gaps that are fixed as ǫ is decreased. To describe these
two situations, we begin with a definition of avoided crossings.

Definition Suppose h(x, δ) is a family of self-adjoint operators with a
fixed domain D in a Hilbert space H for x ∈ (x1, x2) and δ ∈ [0, α). Suppose
the resolvent of h(x, δ) is C4 in both variables as an operator from D to H.
Suppose h(x, δ) has two eigenvalues EA(x, δ) and EB(x, δ) that are isolated
from the rest of the spectrum of h(x, δ). Assume further that there exists
x0 ∈ (x1, x2), such that x = x0 is the only solution to EA(x, 0) = EB(x, 0),
and that EA(x, δ) 6= EB(x, δ) whenever δ > 0. Then we say h(x, δ) has an
avoided crossing at the point x0.

We restrict attention to the case where EA and EB are simple eigenvalues
except when x = x0 and δ = 0. For convenience, we assume x0 = 0, x1 =
−∞, and x2 = ∞. These are Type 1 avoided crossings in the classification
given in [9]. By a proper choice of basis, the restriction h(x, δ) to the spectral
subspace associated with EA(x, δ) and EB(x, δ) generically can be put in
the normal form

h(x, δ) =

(
V (x, δ) 0

0 V (x, δ)

)
+

(
b1x+ b2δ c2δ

c2δ −b1x− b2δ

)

+ O
(
x2 + δ2

)
.
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Thus, the two eigenvalues have the forms

EA(x, δ) = V (x, δ) +
√

(b1x+ b2δ)2 + c22δ
2 + O

(
x2 + δ2

)

and

EB(x, δ) = V (x, δ) −
√

(b1x+ b2δ)2 + c22δ
2 + O

(
x2 + δ2

)
.

The corresponding eigenvectors will be denoted by vA and vB.
The Landau–Zener model [15, 24] is the special case with

h(x, δ) =

(
x δ
δ −x

)
.

The models used in chemistry usually involve exponential localization in
space [22], so in the later sections of this paper, we consider the example of
a related model that has the advantage that the potential term approaches
its limits exponentially fast:

h(x, δ) =

(
1
2 tanh(x) 1

2δ
1
2δ −1

2 tanh(x)

)
(1)

with eigenvalues ± 1

2

√
δ2 + tanh(x)2 .

See Figure 1. Since tanh(x) = x− 1

3
x3 + . . . for |x| < π

2
, this example fits

into our setting with V (x, δ) = 0, b1 = c2 = 1
2 , b2 = 0 and the remainder

O
(
x3

)
independent of δ. We note that realistic molecules have Coulomb

potentials which give rise to electronic Hamiltonians that do not satisfy the
smoothness assumptions used here. However, these non-smooth potentials
are accommodated with regularization techniques [7, 14].
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Figure 1: Electronic energy levels depending on gap parameter δ

The principal objects used in this paper are semiclassical wavepack-
ets which in the one-dimensional case are parametrized Hermite functions.
Given a set of parameters q, p,Q, P , a family of semiclassical wavepackets
{ϕǫ

k[q, p,Q, P ]} is an orthonormal basis of L2(R) that is constructed in [10]
from the Gaussian

ϕǫ
0[q, p,Q, P ](x) = (π)−

1

4 (ǫQ)−
1

2 exp

(
i

2ǫ2
PQ−1(x− q)2 +

i

ǫ2
p(x− q)

)
,

via a raising operator. In the notation used here, Q and P correspond
to A and iB of [5, 6, 10], respectively. Note that Q and P must obey
the compatibility condition QP − P Q = 2i, see [10]. One can get an
impression of the roles of the parameters ǫ, q, p, Q, and P in the one-
dimensional case from Figure 2. Each state ϕk(x) = ϕǫ

k[q, p,Q, P ](x) is
concentrated in position near q and in momentum near p with uncertainties

ǫ|Q|
√
k + 1

2 and ǫ|P |
√
k + 1

2 , respectively. The recurrence relation

Q
√
k + 1ϕǫ

k+1(x) =

√
2

ǫ
(x− q)ϕǫ

k(x) −Q
√
k ϕǫ

k−1(x) (2)

permits us to compute the functions ϕk at any given value x.
In [11], molecular wave packets initially associated with one of the two

energy levels are propagated through the avoided crossing with δ = ǫ, the
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Figure 2: Left: first member of different families of semiclassical wavepack-
ets. Right: a few members of the family with q = 0, p = 0, Q = 1, P = i

Born–Oppenheimer parameter. The Schrödinger equation for this situation
is

i ǫ2
∂ψ

∂t
= − ǫ4

2

∂2ψ

∂x
+ h(x, ǫ)ψ. (3)

If the initial wave function is associated with EA, then the initial condition
at some negative time −T is taken to be

ψ(x, 0) = ϕǫ
l [q, p,Q, P ](x)vA(x, ǫ). (4)

The results of [21] are closely related, but with δ = ǫp, with p close to 1.
The cases p < 1, p = 1, and p > 1 display different results that we describe
below.

The other situation in which there are rigorous results involves choosing
a fixed, but sufficiently small value of δ > 0, independent of ǫ. These results
[12] describe a scattering situation for the Schrödinger equation

i ǫ2
∂ψ

∂t
= − ǫ4

2

∂2ψ

∂x
+ h(x, δ)ψ. (5)

In this case EA and EB and the corresponding eigenvectors are assumed to
approach constants sufficiently rapidly as x approaches ±∞. If the incoming
wave function was associated with EA and incident from the left, then for
large negative times t, ψ(x, t) is assumed asymptotic to

ei (p2

0
/2−EA(−∞, δ)) t/ǫ2 ϕǫ

l [q0 + p0t, p0, Q0 + P0t, P0](x) vA(x, δ), (6)

with p0 > 0.
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2.1 Results for the Situation of a Small Critical Gap

The critical situation for small gaps is the one where the gap is proportional
to ǫ. In this section we describe the results of [11] for Type 1 Avoided
Crossings when the nuclear configuration parameter x is one–dimensional
and δ is proportional to ǫ.

We choose the initial nuclear position and momentum q0 and p0 at some
negative time so that the associated classical path determined by

q̇C(t) = pC(t)

ṗC(t) = −V ′(qC(t), ǫ)

passes through the avoided crossing near time t = 0. By this we mean that
we require

qC(0) = 0

pC(0) = p0 + O (ǫ) ,

with p0 > 0. The small ǫ asymptotics of the solutions to the initial value
problems

q̇A(t, ǫ) = pA(t, ǫ)

ṗA(t, ǫ) = −E′
A(qA(t, ǫ), ǫ),

qA(0, ǫ) = 0,

pA(0, ǫ) = p0 + O (ǫ)

and

q̇B(t, ǫ) = pB(t, ǫ)

ṗB(t, ǫ) = −E′
B(qB(t, ǫ), ǫ),

qB(0, ǫ) = 0,

pB(0, ǫ) = p0 + O (ǫ)

are determined in Section 2 of [11] up to O
(
|t3| + ǫt2

)
errors for the positions

and up to O
(
t2 + ǫ|t|

)
errors for the momenta. These asymptotics are very

complicated and contain various logarithmic terms. Analogous small t and
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ǫ asymptotics are determined for the initial value problems

Q̇A(t, ǫ) = PA(t, ǫ),

ṖA(t, ǫ) = −E′′
A(qA(t, ǫ), ǫ)QA(t, ǫ),

QA(0, ǫ) = Q0,

PA(0, ǫ) = P 0,

and

Q̇B(t, ǫ) = PB(t, ǫ),

ṖB(t, ǫ) = −E′′
B(qB(t, ǫ), ǫ)QB(t, ǫ),

QB(0, ǫ) = Q0,

PB(0, ǫ) = P 0.

Small ǫ asymptotics for the classical action integrals SA(t, ǫ) and SB(t, ǫ)
associated with these orbits are also determined.

The results of [11] are now obtained by an asymptotic matching proce-
dure. For times −T < t < −ǫ1−ξ there is an “incoming outer solution” to
(3) with initial condition (4) that satisfies

ψ(t, ǫ) = F (|x− qA(t, ǫ)|/ǫ1−δ′) ei SA(t, ǫ)/ǫ2 vA(x, ǫ)

× ϕǫ
l [q

A(t, ǫ), pA(t, ǫ), QA(t, ǫ), PA(t, ǫ)](x)

+ O
(
ǫξ

)
.

Here the uninteresting factor F (·) is a cut off function that must be inserted
for technical reasons. The semiclassical wave packet ϕl is only large where
F (·) takes the value 1. The error term is measured in the L2 norm in x.

This incoming solution is then matched to an “inner solution” that in-
volves parabolic cylinder functions of complex order and complex argument.
For times −ǫ1−ξ′ ≤ t ≤ ǫ1−ξ′ this inner solution agrees with an exact solution

to (3) up to O
(
ǫ1−3ξ′

)
errors. In the overlap region −ǫ1−ξ′ < t < −ǫ1−ξ,

the incoming outer solution and inner solution agree up to O (ǫp) errors,
where p > 0.

The inner solution is then matched to an “outgoing outer solution” that
is a superposition of two standard Born–Oppenheimer approximate solu-
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tions. For ǫ1−ξ < t < T , this outgoing outer solution is

ψ(t, ǫ) = CA F (|x− qA(t, ǫ)|/ǫ1−δ′) ei SA(t, ǫ)/ǫ2 vA(x, ǫ)

× ϕǫ
l [q

A(t, ǫ), pA(t, ǫ), QA(t, ǫ), PA(t, ǫ)](x)

+ CB F (|x− qB(t, ǫ)|/ǫ1−δ′) ei SB(t, ǫ)/ǫ2 vB(x, ǫ)

× ϕǫ
l [q

B(t, ǫ), pB(t, ǫ), QB(t, ǫ), PB(t, ǫ)](x)

+ O
(
ǫξ

)
.

The values of CA and CB are determined by the Landau–Zener formula. In
particular, we have the leading order transition probabilities

|CA|2 = 1 − e
−

π c4
2

b2
1

p0

(7)

and

|CB|2 = e
−

π c4
2

b2
1

p0

. (8)

This analysis is extremely tedious, but yields a rigorous proof of the
leading order behavior of the full wave function.

We now make three observations about the results:
1. A properly interpreted Landau–Zener formula based on the classical
mechanics of the nuclei gives the correct leading order transition probabili-
ties.
2. We see that if the initial nuclear wave function is a ϕl, then the final
full wave function is a superposition of two Born–Oppenheimer states in
which the nuclear wave functions are both ϕl wavepackets that propagate
independently according to the dynamics of the EA and EB levels.
3. Conservation of the classical energy determines the classical orbit after
the transition. At time zero, pA(0, ǫ) = p0 +O (ǫ) and pB(0, ǫ) = p0 +O (ǫ).
The O (ǫ) terms here are different, but are determined to leading order by
conservation of the classical energy. Since the two effective potentials differ
by an O (ǫ) amount at the avoided crossing, the momenta also differ by an
O (ǫ) amount so that the energies are the same.

For the situation we describe in the section 2.3, none of these three
observations will be valid. All three depend on the choice δ = ǫ we have
assumed throughout this section.
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2.2 Results for the Situation with a Small, Non–critical Gap

The results of [21] are closely related to those of the previous section, except
that the gap parameter δ can be O (ǫp) for p in a neighborhood of 1.

When p > 1, δ/ǫ tends to zero, so the gap is smaller than in the previous
section. Intuitively, this would be like having c2 tend to zero in (7) and (8).
Thus, one would expect |CA| to tend to zero and |CB| to tend to 1.

In contrast, when p < 1, δ/ǫ tends to infinity, and the gap is much
larger. Again, one would be like having c2 very large in (7) and (8). So, one
would expect |CA| to tend to 1 and |CB| to tend to zero.

This is precisely what is proved in [21]. When δ/ǫ tends to zero, the
system behaves as though it has an actual crossing [8], and the system
makes the transition from the upper level to the lower level or vice versa to
leading order. When δ/ǫ tends to infinity, the gap is large enough that to
leading order, there is no transition, and the system stays on the same level.
Furthermore, one sees that the three remarks at the end of section 2.1 still
apply.

These results are again proved by asymptotic matching. They show
that the case considered in the previous section is critical, and that slightly
larger or slightly smaller gaps completely change the outcome as the system
propagates through an avoided crossing.

2.3 Results for the Situation with a Fixed Gap

We now consider the situation described in [12], where δ > 0 is small,
but fixed, independent of ǫ. We assume that h(x, δ) is simply a 2 × 2
matrix. We further assume it is defined and analytic in the complex strip
{x : |Imx| < α} and that h(x, δ) approaches limiting values h(±∞, δ)
sufficiently rapidly as the real part of x tends to ±∞, uniformly in a strip.
We only consider wave functions whose total molecular energy is strictly
above the suprema of both eigenvalues of h(x, δ) for all real x.

We assume h(x, δ) has exactly one avoided crossing, and that it has
the generic form described above. In this case, the time–dependent Born–
Oppenheimer approximation is exponentially accurate in 1/ǫ2, uniformly in
time. Thus, the probability of a non–adiabatic transition from one electronic
level to the other, is bounded by exp

(
−Γ/ǫ2

)
for some Γ > 0. Thus, it

is too small to be determined by any straightforward perturbation theory
argument.

The strategy used in [12] is to expand the wave function at each time in
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terms of the generalized eigenvectors of the full Hamiltonian

H(ǫ, δ) = − ǫ4

2

∂2

∂x2
+ h(x, δ).

These are solutions to the system of ordinary differential equations

H(ǫ, δ) φ = E φ.

When E is strictly above the suprema of both eigenvalues of h(x, δ), there
are four independent solutions that intuitively correspond to left or right
motion governed by the effective potentials EA or EB. For small ǫ, one can
establish a WKB approximation for each of these solutions that is valid for
x in the complex strip. When δ is sufficiently small, the avoided crossing
for real x is associated with a pair of complex conjugate crossings of the
eigenvalues where EA(x, δ) = EB(x, δ). This is one reason we assume δ > 0
is sufficiently small. When one starts on the real x–axis, moves around such
a generic crossing in the complex plane exactly once, and moves back to
the real axis, the levels EA and EB are interchanged. As a result, one can
analyze the transition by using the complex WKB approximation.

There are several exponentially small components one should expect for
large times. The nuclei could reverse direction while the electrons stay in
the initial level or switch levels. It is proved in [12] that the probability
of this happening is exponentially smaller than the probability of making
a non-adiabatic transition with the nuclei continuing to move in the same
direction. This result depends on the total energy being above the suprema
of both levels and δ > 0 being small.

To keep the total energy strictly above both levels, one cannot simply
use the ϕl for the nuclear wave functions; a momentum cut off must be
inserted. In this discussion we shall suppress mentioning this technicality.
However, for small enough ǫ, multiplying by the cut off only changes ϕl by
an exponentially smaller amount than the errors we discuss here.

We now fix l and consider the solution to equation (5) with large negative
t asymptotics given by (6). Since the time–dependent Born–Oppenheimer
approximation is exponentially accurate, the main component of the full
wave function stays associated with the EA level for all times. We write the
solution as a superposition of generalized eigenvectors of H(ǫ, δ) and employ
the complex WKB approximation. The piece of the full wave function that
makes a non-adiabatic transition is thus written as an integral (because of
the superposition). The large time and small ǫ asymptotics of this integral
can be obtained by a rigorous version of Laplace’s technique. One obtains
the following for the leading order behavior:
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For sufficiently small ǫ the largest exponentially small correction to the
Born–Oppenheimer propagation is the component that has made a non-
adiabatic transition with the nuclear momentum with the same sign as the
initial nuclear momentum. It has leading order large positive time asymp-
totics

Cl ǫ
−l e−γ/ǫ2 ei ((pB)2/2−EB(∞, δ)) t/ǫ2

× ϕǫ
0[q

B + pBt, pB, QB + PB t, PB](x) vB(x, δ).

There are three surprising differences from the result in the previous sec-
tion:
1. When l = 0, the magnitude

∣∣∣C0 e
−γ/ǫ2

∣∣∣ is strictly greater than what

one would obtain by using the Landau–Zener formula for the electron Hamil-
tonian with the classical position qA(t, δ) in place of x.
2. The classical energy (pB)2/2+EB(∞, δ) is strictly greater than the ini-
tial classical energy p2

0/2 + EA(−∞, δ) of (6).
3. For sufficiently small ǫ (that depends on l), one always obtains a ϕ0 for
the nuclear wavepacket after the transition, independent of the choice of l.
Note, however, that the choice of l shows up in the factor ǫ−l, so there is a
strong dependence on l.

The reasons for these three observations become clear from the proof.
For each generalized eigenfunction of the full Hamiltonian, the Landau–
Zener formula gives the correct transition amplitude. That transition am-
plitude increases exponentially rapidly as the momentum is increased. When
one makes the superposition of these generalized eigenfunctions, the higher
momentum components are much more likely to make a non-adiabatic tran-
sition. This bias toward higher momenta causes the wave function after the
transition to have energy greater than the average energy of the incident
wave function. It is also responsible for the Landau–Zener formula based
on the average momentum giving too small a transition amplitude. Finally,
this extra shift in momentum occurs in the Gaussian part of the nuclear
wavepacket. There is no corresponding shift of the Hermite polynomial
in nuclear momentum space. So, the mean momentum of the Gaussian is
strictly greater than the momenta where the Hermite polynomial has its ze-
ros. Away from where the polynomial has its zeros, the polynomial behaves
like its highest order term, which due to the scaling in ǫ looks like ǫ−l pl.
This is how the factor of ǫ−l arises, and pl e−κ(p−p0)2/(2ǫ) is asymptotically a
Gaussian if p0 6= 0. Thus, we obtain a ϕ0 in this case instead of a ϕl.
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This technique of proof is mathematically appealing, but it is not prac-
tical. It relies on the analytic continuations of the levels EA and EB, and
the final quantities depend on solutions to equations that use those analytic
continuations. For that reason, we have sought a reliable, stable numerical
technique that can be used in applications when ǫ is small. The remainder
of this paper is dedicated to developing such a technique.

3 Practical Propagation

In this section and the next, we present a new technique for the numerical
propagation of molecular wave packets through avoided crossings. There
are other techniques, and all of the techniques have various difficulties if ǫ
is very small.

The numerical results presented in [11] and [13] were obtained by a
Strang splitting and fast Fourier transform technique applied to the finite
difference approximation to the Hamiltonian. This technique is limited to
small spatial dimensions, and one must store the wave function at a huge
number of points if ǫ is small.

Recently, a numerical technique [1, 2] has been developed that is mo-
tivated by optimal truncation of the time–dependent Born–Oppenheimer
expansion. The Born–Oppenheimer expansion concentrates on a single elec-
tron energy surface, and it is asymptotic, but not convergent. The idea of
optimal truncation is to take the expansion to the order that minimizes
the error for any given ǫ. The central idea of [1] and [2] is to study non-
adiabatic transitions between the optimally truncated wave functions. This
“superadiabatic” approach is successful as long as ǫ is not too small, since
the optimal number of terms in the Born–Oppenheimer expansion behaves
like C/ǫ2. Also, the numerical results of [1, 2] appear to be very good for
values of ǫ that are not too small, but are not consistent with the rigorous
results of [12] in the ǫ→ 0 limit.

We now present our new numerical algorithm. In the case of a well-
separated energy level (i.e., in the adiabatic Born–Oppenheimer model), the
wave function is well approximated by a family of semiclassical wavepackets,
whose dynamics is driven by the Schrödinger equation on that energy level
[3, 4]. When the wave function ψ has several components and well-separated
levels, the dynamics on each level can be approximated with a distinct family
of semiclassical wavepackets. As long as the energy levels are far from each
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other, there is little interaction between them, so each energy surface should
dictate the dynamics of its own wave function. The interaction is non-trivial
near an avoided crossing. In order to investigate this interesting case, we
choose incoming initial conditions in terms of semiclassical wavepackets as-
sociated only with one energy level λ (it can be EA or EB). The wavepacket
will be driven initially by its own energy level, i.e., λ(x) plays the role of
the potential in this adiabatic Born-Oppenheimer case. In our propaga-
tion scheme (Algorithm 1) we keep λ(x) as the guiding potential and use
only its family of semiclassical wavepackets. The orthogonality between the
members of one family of wavepackets simplifies the propagation.

We split λ(x) into a local quadratic part u0 and a non-quadratic remain-
der w0. This is done via a simple Taylor series expansion up to second order
around q.

u0(x) = λ(q) + λ′(q) (x− q) +
1

2
λ′′(q) (x− q)2

w0(x) = λ(x) − u0(x) .
(9)

We can now write h(·, δ) as a pure quadratic diagonal part U plus a non-
quadratic remainder matrix W :

h =

(
u0 0
0 u0

)
+

(
h00 − u0 h01

h10 h11 − u0

)
= U +W . (10)

The propagation of the wavepackets

ψ =

(
1
0

) K−1∑

k=0

c0k ϕ
ǫ
k[q, p,Q, P ] +

(
0
1

) K−1∑

k=0

c1k ϕ
ǫ
k[q, p,Q, P ]

is exact for the terms involving only the kinetic energy operator and the
quadratic part of the potential energy operator. The coefficients of the
wavepackets do not change under the influence of these operators, but they
do under the action of the non-quadratic part W . The propagation scheme
developed in [3] can now be used, at least until the system enters the non-
adiabatic region, and even longer if we can afford to use enough basis func-
tions. The evolution of the parameters q, p,Q, P is dictated by the quadratic
part u0 of the chosen guiding energy level λ. As in the tunneling problem [4],
the orthogonal basis formed by the members of a single family of wavepack-
ets might not be very well suited for the second component after passing the
non-adiabatic region, but they still are a basis of L2 and the propagation
can be done.
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Algorithm 1 Propagation of a vector-valued wavepacket

Require: A wavepacket at time tj and a guiding energy level λ
// Propagate with the kinetic operator

q(j+ 1

2
) := q(j) + τ

2p
(j)

Q(j+ 1

2
) := Q(j) + τ

2P
(j)

S(j+ 1

2
,−) := S(j) + τ

4p
(j)p(j)

// Propagate with the local quadratic potential
p(j+1) := p(j) − τ ∇λ(q(j+1/2))
P (j+1) := P (j) − τ ∇2λ(q(j+1/2))Q(j+1/2)

S(j+1/2,+) := S(j+1/2,−) − τ λ(q(j+1/2))
// Propagate with the non-quadratic remainder
C(j+1) := exp

(
−τ i

ǫ2
F(j+1/2)

)
C(j)

// Propagate with the kinetic operator again
q(j+1) := q(j+1/2) + τ

2p
(j+1)

Q(j+1) := Q(j+1/2) + τ
2P

(j+1)

S(j+1) := S(j+1/2,+) + τ
4p

(j+1)p(j+1)

Return the wavepacket at time tj+1 = tj + τ

How should one compute the Galerkin matrix F for the non-quadratic
remainder? Since we have considered only two energy levels, we have two
vectors with K complex coefficients each, corresponding to the approxima-
tions of each part of the wave function ψ. We stack these vectors in a long
block vector C:

C :=
(
c00, . . . , c

0
K−1 c10, . . . , c

1
K−1

)T
. (11)

Note that the case of L energy levels yields a vector with LK complex
entries. The matrix F will be of size LK × LK and will consist of blocks
Fi,j of size K ×K. Attention is now required: W (x) is a matrix, thus each

block Fi,j is given by
∫

R
F̃i,j(x)dx, where

F̃i,j(x) := Wi,j(x)




...

. . . ϕk(x)ϕl(x) . . .
...


 , (12)

and hence the methods presented in [3] can be applied for the elements of
W . In Algorithm 2 we make use of appropriate quadrature points γ and
weights ω.
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Algorithm 2 Building the block matrix F for propagation

Require: A wavepacket (one family on L states)
Require: W a L× L matrix of scalar functions

// Initialize F as the zero-matrix
F ∈ R

LK×LK , F := 0

// Evaluate the functions in the family for all quadrature nodes γ
B := (β0, . . . , βK−1)
// Iterate over all row and column blocks of this matrix
for i = 0 to L− 1 do

for j = 0 to L− 1 do

// Evaluate the function Wi,j for all quadrature nodes γ
(v0, . . . , vN−1) := (Wi,j(γ0), . . . ,Wi,j(γN−1))
// Set up a zero matrix for the local block
F ∈ R

K×K , F := 0

// Iterate over all pairs of quadrature points and weights (γl, ωl)
for l = 0 to N − 1 do

F := F + vlǫ ·BHB · ωl

end for

// Insert the block F into the block matrix F

Fi,j := F
end for

end for

return F
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The same algorithm can be used for the transformation from the canon-
ical basis to the eigenbasis by simply replacing W by the matrix M that
diagonalizes the potential matrix h. This transformation is used in order to
compute observables related to each state; the wave function is written as
the sum of its adiabatic components, e.g., in case of two energy levels given
by the eigenvectors vA and vB:

ψ(x, t) = ΦA(x, t) + ΦB(x, t) = φA(x, t) vA(x) + φB(x, t) vB(x) .

4 Numerical Results

In this section we present results from the propagation method in various sit-
uations. In the case of a single avoided crossing, the semiclassical wavepack-
ets reproduce the numerical results presented in [11] and [13]. Those results
were obtained with Strang splitting and Fourier transformation and were
consistent with the theoretical predictions.

We now consider the time–dependent Schrödinger equation (3) with
the matrix potential (1). While the theoretical investigations consider the
asymptotics as ǫ → 0, concrete chemical systems have a given fixed ǫ. We
focus now on the case ǫ = 0.2 when the solution based on the Fourier trans-
formation and Strang splitting can serve as a reference solution since it is
still feasible and accurate. Our main interest is to see whether we may rely
on the propagation of the semiclassical wavepackets for various sizes of the
gap δ. The initial value is taken to be the eigenvector associated with the
upper energy level times the semiclassical wavepacket ϕ2 with parameters
q = −6, p = 1, Q = 1− 6i, P = i. Usually, the simpler case of the Gaussian
ϕ0 as initial value is considered, but ϕ2 allows us better to illustrate the ca-
pability of our method to reproduce the sophisticated quantum phenomena
that occur when the gap δ is large. We performed the propagation with the
time-step τ = 0.02 from time 0 until the end-time T = 10, separately for
several values of the gap δ. Figure 3 shows the position space plot at times
t = 5 and t = 10 of the probability density for being on the upper energy
level λ0 = EA(·, δ) and on the lower energy level λ1 = EB(·, δ) for δ = ǫ.
We notice that after the complicated behavior near the avoided crossing,
the outgoing wave function on the lower energy level far from the avoided
crossing has the shape of a semiclassical wavepacket ϕ2 moving faster than
the component on the upper level.
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Figure 3: Position space plot at time t = 5 (left) and t = 10 (right) of
the probability density of being on the upper energy level λ0 = EA(·, δ) and
on the lower energy level λ1 = EB(·, δ) in the case δ = ǫ = 0.2. The left
scale refers to the energy levels, while the right scale refers to the squared
absolute values of the components ΦA (upper) and ΦB (lower) on the two
levels.
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In contrast, when δ = 5ǫ, the leading term of the outgoing wave function on
the lower energy level far from the avoided crossing is a very small Gaussian
ϕ0, while near the avoided crossing the transmitted part is much larger. See
Figure 4. The size and the shape of the outgoing wave function on the lower
energy level changes dramatically, as it moves away from the critical region,
as we can see in Figure 5. Note the different magnitudes! The maximum
squared absolute value of the component ΦB is nearly 1.8 · 10−4 at time
t = 5 (lower-left part of Figure 4), and nearly 4.2 · 10−6 at time t = 7.4
(Figure 5). At the time t = 9, we clearly see two components on the lower
level (Figure 5): The first has its maximum squared absolute value nearly
1.3 · 10−8, while the second is slightly lower and wider and is located near a
larger value of x. This latter component dominates at all later times, and we
see it (lower-right part of Figure 4) at t = 10 having its maximum squared
absolute value at about 6.5 · 10−9.

Figure 4: Position space plot at time t = 5 (left) and t = 10 (right) of
the probability density of being on the upper energy level λ0 = EA(·, δ) and
on the lower energy level λ1 = EB(·, δ) in the case δ = 5ǫ = 1. The left
scale refers to the energy levels, while the right scale refers to the squared
absolute values of the components ΦA (upper) and ΦB (lower) on the two
levels. Note the different magnitudes!

The probability density for transition to the lower level λ1 = EB(·, δ) as well
as the probability density for remaining in the excited state λ0 = EA(·, δ)
for various gap sizes δ are plotted in Figures 6 and 7. At a gap δ ≈ ǫ
the two components of the wave function ΦA and ΦB are roughly the same
size. Much less (but still of the shape of a ϕ2, not shown in a picture here)
is transmitted to the lower level for δ = 2ǫ, while the exponentially small
transition is reproduced correctly by our numerical method for δ = 5ǫ. The
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Figure 5: Probability density of being on each of the two levels (left) and
the absolute values of the semiclassical coefficients ck (right) in the case
δ = 5ǫ = 1 at times t = 7.9 and t = 9.
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Figure 6: Time evolution of the probability of being in one of the adiabatic
components (left δ = ǫ = 0.2, right δ = 5ǫ = 1). The left scale refers to
the component ΦA (dashed line) on the upper level λ0 = EA(·, δ), while
the right scale refers to the component ΦB (dotted line) on the lower level
λ1 = EB(·, δ).

cases when the transition is significant makes the picture of the evolution of
the energy interesting. See Figure 8. In the probability density and energy
plots, dashed lines refer to the adiabatic component corresponding to λ0 =
EA(·, δ). The dotted lines refer to the adiabatic component corresponding to
λ1 = EB(·, δ). The solid lines refer to the whole wave function. The curves
for the kinetic energy of the ΦA–part and ΦB–part in the left part of Figure
8 suggest a significant difference in momentum between them, and hence the
opportunity for spawning a new family of semiclassical wavepackets. Note
that the total norm and the energy of the numerical solutions in all cases
are well conserved, even if larger wiggling appears for smaller gaps near
the avoided crossing. This also happens in the corresponding simulations
based on the Fourier discretization. Finally, in Figure 9 we plot the error in
the adiabatic components and the error in the transition probability, when
we consider as the exact solution the numerical solution provided by the
Fourier method with 212 = 4096 points and Strang splitting with time-step
τ = 0.02. We note that we obtained very similar results when the initial
wavepacket was associated with the lower energy level EB, which also guides
the propagation scheme.
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Figure 7: Time evolution of the probability of being in one of the adiabatic
components (left δ = 0.5ǫ = 0.1, right δ = 2ǫ = 0.4). The left scale refers
to the component ΦA (dashed line) on the upper level λ0 = EA(·, δ), while
the right scale refers to the component ΦB (dotted line) on the lower level
λ1 = EB(·, δ).

Figure 8: Energy evolution, left δ = ǫ = 0.2, right δ = 5ǫ = 1. Dashed lines
refer to the adiabatic component corresponding to λ0 = EA(·, δ), dotted
lines refer to the adiabatic component corresponding to λ1 = EB(·, δ), while
plain lines refer to the whole wave function.
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Figure 9: Time evolution of the error in the adiabatic components for ǫ = 0.2
(left) and in the transition probability to the lower state (right). Dashed
lines refer to the adiabatic component corresponding to λ0 = EA(·, δ), while
dotted lines refer to the adiabatic component corresponding to λ1 = EB(·, δ).
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