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In this paper we continue the study of a topological glassyesy. The state space of the model is given by
all triangulations of a sphere with nodes, half of which are red and half are blue. Red nodes wdreve

5 neighbors while blue ones want 7. Energies of nodes witeratambers of neighbors are supposed to be
positive. The dynamics is that of flipping the diagonal betwéwo adjacent triangles, with a temperature
dependent probability. We consider the system at very lowptgatures.

We concentrate on several new aspects of this model: Sfdrtim a detailed description of the stationary
state, we conclude that pairs of defects (nodes with the tigitalegree) move with very high mobility
along 1-dimensional paths. As they wander around, theyuetieo single defects, which they then move
“sideways” with a geometrically defined probability. Thigluces a diffusive motion of the single defects.
If they meet, they annihilate, lowering the energy of thetays We both estimate the decay of energy to
equilibrium, as well as the correlations. In particular, fimel a decay liket —0-4.

1. Introduction, the M odel

This paper deals with a species of a class of models on tojealogtudies of triangula-
tions. Such models have been studied in several contextgrawitation, froth, [1, and
references therein]. The variant we use here was introdincg], but it turned out that
a very similar study was initiated earlier by Aste and Simgiion [3]. So, we hope that
David will accept this paper as a small sign of recognition.

We reconsider here the model which was inspired by [4] an@diiced in [2]. For
completeness we repeat the definition of the model: We fixrgd)anumberV of nodes,
half of which are red, and the other half blue. These nodetharaodes of a topological
triangulation?” of the spheres?. The set of all possible such labelled triangulations vell b
denoted7 . We define a dynamics dfiy by the following Metropolis algorithm whose
elementary steps are flips (T1 moves): A link is chosen umfgat random (among the
3N — 6 links). In Fig. 2, if the link AB was chosen then the flip consis replacing it by
the link CD. This move is not admissible if the link CD alreaghists before the move.
Otherwise it is admissible. Note that the number of nodésdoes not change in this
model. However, we will be interested in the behaviorfor oo.

The Metropolis algorithm is based on the energy functioron 75 which, for any
triangulationT’ € Ty, is defined as

E(T)= Y (di—=77%+ Y (di—5),

icblue icred

whered; is the degree (number of links) of the noderhus, this energy favors 7 links
for the blue nodes and 5 for the red onEkitatis mutandisthe detailed definition of the
energy is not important for the discussion of the model, aaawil stick to this particular
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form of the energy. Given an admissible flip, compute the gnef the triangulation
before and after the flip; this defines

dE = Eafter— Ebefore-

An admissible flip is performed if eithetE < 0 or, whendE > 0, with probability
exp(—pdE), whereg is the inverse temperature of the system.

Several properties of this model were discussed in [2], but lve study in more detail
the dynamical properties of the model. In particular, weodtice a “charge” defined as
follows:

Definition 1.1: Thechargeof a red node is defined by, — 5 and the charge of a blue
node is defined by, — 7. We will say the charge is@efect+ if itis +1 and- ifitis —1.
In general, the color of the charge will not matter and wilt he mentioned.

In principle, all charges betweent andO(N) can occur, sincé; > 3, but, obviously,
at low temperatures mostly the charge®, and- will come into play.

2. Equilibrium and the Approximation of the Dynamics

The dynamics of the model is given by the Metropolis alganitin it, a link is chosen uni-
formly at random among all possible links. The change ofgnarduced by the flipping
of this link is calledd E. If dE < 0 the flip is performed, il E > 0 the flip is performed
with probability p(dE) = exp(—/SdE). This process satisfies detailed balance, and most
of the paper is dealing with the equilibrium properties ad ffrocess at low temperatures.
Because of the detailed balance, the equilibrium meashees the property that the prob-
ability to see a given state whose energyiss proportional teexp(—SE). We use this
elementary observation to argue that at low temperature thee only few defects, by
which we mean that there are few red nodes whose degree isamot&lso few blue ones
whose degree is not 7. Given that there are few of these “tfewe further assume that
the “positions” of these defects are random in the sensetltea¢ are no strong condi-
tional expectations: For example, having a defect +1 doesayothat there is a defect -1
close-by. The upshot of this way of reasoning, which we dworate by numerical studies,
is that one can approximate the dynamics by just looking fatie.

Indeed, the full dynamics must be described by the evolutfaorrelation functions. It
would have to take into account correlation functions betwthe charges (and the colors)
of, say, the 4 nodes on a pair of triangles sharing an edgen, Tlgping that edge, the
correlations of many neighboring triangles would be changjenultaneously, and this
would necessitate considering a full hierarchy of corretet (like BBGKY). What we
will see is that in this model, these higher order corretafimctions do not influence our
basic understanding of what is going on.

In contrast, the Euler relations play a small but not totakgligible role for the sizes
of the systems we consider.

3. Description of the Stationary State
It will be useful to define throughout the paper the naturahpeeter
e=e P,

We are interested in a regime where the density charges (which equals/N) is low
but also, where the number N of charges is large, so that good statistics and a certain
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independence of the Euler relations is attained. More pedgiwe fixo < 1 andDg > 1,
and requiree < pandNe > Dgy. We furthermore consider the limit of largé.
The main result of this section is summarized in the follayymoposition:

Proposition 3.1: Consider an equilibrium state at temperatife< 1 satisfying the
above conditions otV ande.

(1) Atfirst order ine, the only charges present in the system are simple defelcts
Their density i2e + O(<?).

(2) The distribution of the colors (red or blue) is indepenti@a the limite — 0.

(3) The distribution of the charges is independent in thé lim— 0.

Remark 1: The meaning of — 0 above is that the quantities become more and more
decorrelated as — 0 while still maintaining the inequalities < g and Ne > D.

3.1. Energy of the stationary state

In this paragraph, we will calculate the energy of the stetig state in the limit specified
above, as a function of the temperature.

Estimate 3.2: Consider the regios N > Dy ande < p. For sufficiently largeD, and
sufficiently smalp the density of chargesis

c=E/N =2+ 0(?) .

Proof: Assuming equilibrium, by detailed balance, the probabilit see a defect of
charget1is O(e~1"#) = O(e), while the probability to see higher charge€ig—2"7) =
O(e*), by the assumption of equilibrium and the form of the Hamilém, since, if(d; —
5)2 > 1thenitis at least 4.

So it remains to estimate the coefficient in front of the faectoThere are 4 cases to
consider: The number of red nodes with degree 4 or 6, resmuhber of blue nodes
with degree 6 or 8. All these cases cost energy 1 per instancethus these 4 numbers
are equal by the virial theorem.

We also need to estimate the cases with O chargeblue nodes with 7 neighbors and
red nodes with 5 neighbors, which appear again equally ditethe virial theorem. Since
there areV/2 nodes of each color, and each of the colors has 2 states aftdefleamely
+1), we conclude that the expected total number of defects is

2-2-¢-(N/2) =2eN + O(£%) . 1)

O

3.2. Distribution of the colors

We next calculate the probabilities that a randomly chossn donnects 2 red (blue)
nodes. We denote these probabilitieghyfor red-redp,;, for red-blue and so on. If there
are no defectd,e., at order<?, all red nodes have neighbors and all blue nodes hake
This leads to the following relations:

2prr + prb = 5/6 )
2ppb + prb = 7/6 .
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Figure 1. Numerical check of relatign, = 70/144 by plotting p,,/(70/144). The error bars are @ and the data for
N = 3283 are slightly shifted (in the:-direction) for better visibility.

A

Figure 2. Labeling of the corners of 2 adjacent triangles

Assuming that the positions of the colors are uncorrelatedfind that the relative prob-
abilities to find a red-red, resp. blue-blue pair are

prr/pbb - 25/49 .

This leads t,, = 25/144, p,, = 49/144, andp,;, = 70/144. In Fig. 1 we show that
numerical simulations confirm this simple approximatioa teery high degree of fidelity.

3.3. Energy cost of flips

We adopt an approach similar to Sect. 3.2. We use the hypsttiesg the charges are
randomly distributed over the nodes to calculate the pritibabf finding a link with a
given neighborhood of charges and compare it to simula#@sults. In this case however,
given a link?, the neighborhood we consider is the ordered set of all 4svdelved in
its flipping. For example in Fig. 2, this set would b€ A), c¢(B), ¢(C), ¢(D)) wherec(A)

is the charge of the nodé. This choice will be very useful for to study the dynamicgtat
on since it determines the energy cost of flipping a givert link

dE() = Y (c(n) =1)* = (c(m))*+ Y (e(n) +1)* = (c(n))’

ne{A,B} ne{C,D} (2)
=44+2(c(C)+c(D) —c(A) —e(B)) .

It is easy to enumerate all the various cases and the enesgassociated with each
of them. We restrict the discussion to those situations a/ilee charges take values in
{+1,0,—1}. In principle, there ar&* configurations, which are reducedi6, by sym-
metry. They are summarized in Table 1 (symmetrical casetemuti
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Table 1. The energy differences obtained by flipping the tietween the first 2 values to a link between the second 2 vasesfunction
of the number of defects.

defects initial state dE
0 0 0 0 O 4 defects initial state ~ dE
1 + 0 0 O 2 3 - -+ 0 10 defects initial state dE
1 0 0 © 2 3 0 - + + 10
1 0 - 0 0 6 3 + - 0 - 2 4 oo - 0
1 0 0 + 0 6 3 + + + 0 2 4 + + + - 0
2 T+ 0 0 0 3 + + 0 - =2 4 - v+ 12
2 + 0 0 - 0 3 + 0 - -2 4 X i 4
2 00 - - 0 3 + 0 4+ 2 4 * * 4
2 + - 0 0 4 3 0o - - 2 4 o 4
2 + 0 + 0 4 3 - -0 6 4 ror o+t 4
2 0 - 0 - 4 3 + - + 0 6 4 - * 8
2 0o 0 + - 4 3 + 0 + o+ 6 4 - M 8
2 - 0O O 8 3 -+ - 6
2 0 + 0 8
2 0O 0 + + 8

Note that if the defects of the original configuration arered by+1, thend £ varies
between—4 and12.

3.4. The number of local defect configurations

We assume throughout that the number of red (blue) nodes (&) and thatA =
n, —np € {0,1}. We denote by the probabilities to find chargesl, respectively.
Assuming that there are no other charges (except 0), we dg wr

N-(p—-+py)=F,
N-(p-—py)=12-A,

where the second equation follows from the Euler formuladuilibrium, £ = 2N¢, by
Eg. (1), and therefore we get

pr=cF6/NEA/2N)+0 (%) . (3)

We will assume thafVe > 6 so that the second term in Eq. (3) can be neglected. In a
similar way, one can show that

pr2=e'+ O(°),
and combining these we find that the probability of nodes walithrge0 is
po=1-2+0(?).

We next consider in more detail what happens in those paitsasfgles where a flip
leads tod £ = 0. Looking again at Eq. (2) we see that the cd¢e = 0 appears in 3
cases:

Caseqg,_ : One of A or B has charge and C or D has charge (and the others, charge
0).

Casey, : A and B charge +, C and D charge 0.

Caseg__ : Aand B charge 0, C and D charge.

Continuing with the independence assumption, we now lodkeprobability to find
a configuration of typey, +, ¢._ , andqg_ _ . Note that there ar6 N — 12 half-links
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emanating from the nodes, and we are to pair them up randbdlotg. that if a site is red,
it has4, 5, 6 outgoing links, depending on whether its charge-is0, +, respectively.
Similarly, the numbers for a blue node a&g7, 8. Therefore, given that there are on
averageN/2 defects of type red; red-6, blue6, blues, there will be4e N/2 links from
the red4, 6 N/2 from red6 and blue6, and8sN/2 from blues8. The blue7 and red5
occur with probability almost 1 and have therefore respebtir N /2 and5N/2 dangling
edges (with a correction factar— O(e)) which we omit throughout. The probabilities to
see such dangling edges are the quantities above, dividéd/by 12, the total number
of dangling edges. We get, omitting higher order terms:

G+t = (Tp4/6)% - pp = 49° /36 ,
g =(5p-/6)*-pp = 25¢7/36 , @
gy =4(5p_/6) (Tpy /6) - p = 140> /36 .

We also get, by looking at Table 1:

PaE=0 = G+ + ¢~ +qp— = 214e%/36,
pap=2 = 2 (Tp+ /6 +5p_/6) - pb = 4e , (5)
Pap—1 =py=1-0(e),

The discussion of the other valuesdl’ shows the limitations due to our closing as-
sumptions: by the virial theorem, in total independenceywwald simply have

PdE=0 = PdE=8 aNdpap—2 = Par=6 - (6)

But we could also have computed the probabilities as aboitie the result:

Pap=—2 = 2(Tp1/6) - (5p—/6) - po + 2 (5p—/6)° - (Tp1/6) - po (7
~ 3.89¢3

instead ofdc® = pyp—s - €2 given by the stationarity assumption, which proves that the
distribution of defects is not completely uncorrelated. Witk say that the correlation is
bounded by).1e3, and can thus be neglected in the limits 0.

In Figs. 3 and 4 we show with 2 examples that the numericallgitioms confirm these
simple approximations to a very high degree of fidelity. Nb& in [5], theuniformmea-
sure on7y was considered, and even this leads to correlations of degfeneighboring
nodes.

4. Dynamics of the System (at Equilibrium)

We can use the results of the previous section to estimatdythamics of the system
under the Metropolis algorithm.

If a flip leads to an energy chandé” then it is accepted in the Metropolis algorithm
with probability

0,dE
Pacceptance = gmax( ) . (8)

On the other hand, the probabilities to pick a link with fixe#l are given by Eq. (5) and
Eg. (6). Multiplying these numbers with the probabilitiefskm. (8) leads to an estimate
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Figure 3. Numerical test of the mean energy per node (Esti®&) for 950 realizations. The data fdf = 9844 are
slightly shifted for better visibility. Note the excellefit with the theoretical curve, although the fluctuations launge,
getting better with larger system size (1 standard deviatoown).
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Figure 4. Numerical test i r—o (Eq. (5)) from 950 realizations. The data st = 9844 are slightly shifted for better
visibility. Note the excellent fit with the theoretical carvalthough the fluctuations are huge, getting better withela
system size (1 standard deviation shown).

of the probability that the flip in question actually happ€efse results are summarized in
Table 2 (calculated this time with the method of Eq. (7)).

Discussion: Inspection of Table 2 shows that the events with the higinassition rate
are those which cost no energy, followed by those which haverergy cost oft2.
Also note that the probability to find a link which will lead gogivend E is equal to the
quantity in the table times—™ax(0.dE) since then we neglect the Metropolis factor. This
leads to a table with the same prefactors, but with a peWér4//2, In particular,in the
steady state, the local landscape is given by the 3rd coluihialale 2: It is symmetric
arounddF = 4.

Henceforth, we will only consider the 3 most frequent type8ips (the others are an
ordere less probable):

(1) Flips which change from 1 defect to 3 of them and whichediiwe energy by 2.
These flips will be calledreation events
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Table 2. The probabilities of transitions from the initigdt®. Data only
shown to ordee*. The third column shows the probabilities to pick a link
leading to a givenl E. Higher order corrections are omitted.

dE transition rate local landscape
-4 1225/1296 - &4 1225/1296 - 4
2 35/9 - &3 35/9 - &3
0 107/18 - €2 107/18 - €2
2 4.¢3 4. ¢l
4 1.¢4 1.0
6 4.€7 4. ¢l
8 107/18 - €10 107/18 - £2
10 35/9 - €13 35/9 - &3
12 1225/1296 - €16 1225/1296 - 4

Figure 5. A flip from++00 (on the left) and the resulting triangulation on the righteTaffected nodes are supposed to
be red, in this example. Note that the resuligsin of the type++00. Furthermoreagainwith d£ = 0 one can flip back.
This is reminiscent of “blinkers” in the game of life [6, CI2g].

(2) Flips which start from 3 defects and end with 1 defect amiciv decrease the
energy by 2. These flips will be callehnihilation eventsCreation and annihi-
lation events are obviously dual to each other and equifneba the stationary
state.

(3) Flips which do not change the energy, and in which a p&ir+-, or - - is in-
volved. These flips are by far the most probable. We will discloielow in more
details the 3 configurations which leadd& = 0.

4.1. The most probable flips

As stated above, it = 1%, then over99% of the flips (which are accepted by the
Metropolis algorithm) do not change the energy. It is clémattin order to understand
the dynamics of the system, one should start by studyingttiies.

Looking at Table 1 we see that there are 3 candidateg fb= 0 and they all involve
only 2 defects. We will now show that the casestef00 and00- - are quite different
from that of+00- (and its 3 other variants0- O, ... ). In the first caset+00, which is
similar to the cas@0- -, the local neighborhood looks like in Fig. 5. In this caseatwh
happens is a flipping back and forth between the 2 statespnotabilityp = (3N —6) !
(the probability to choose the colored link).

The case-00- isillustrated in Fig. 6. Here a new, and important phenomeappears:
The pattern#+00- which we will call apair, is recreated, budt a new positiora distance
1 away from the old one. We will also say that the pairwalksone step.

The more important observation is that the pairs of defeatstiwalk along grede-
fined, 1-dimensional paths shown in Fig. 7. This means thée dE£ = 0 motion of
+- pairs is aone-dimensional random walk in the current triangulati@h This random
walk (flipping back and forth on the predefined path) will ¢ouné until some other type
of event happens.
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Figure 6. Change of pattern in the cas®0- . In the sample only the relevant colors are as shown. Notetieaeffect of
the flip is that the 2 defects move (in the pictudgwn The reverse flip costs nothings = 0. The second flip (dashed
line) moves the defects one step further. Note that thisanatiust take place onepaiedefined, 1-dimensional path

¥

Figure 7. The same configuration as in Fig. 6 with thdimensionapath of the pair of defects superimposed.

4.2. Lifetime of pairs

As we have seen, a pair of opposite charggescan move through the system without
energy cost. Its motion is a 1D random walk along a fixed 1-disianal path. Edges are
still chosen randomly and will be flipped if possible and & fetropolis condition is met
in casedE > 0. Here we ask about the relative probabilities that a pamghears, and
we will show thatpredominantly a pair will die when it collides with a defect

We need to compare 3 possibilities of which the first will bersto be the most proba-
ble:

(1) The random walk reaches another defect.

(2) The pair is destroyed because a creation event invol¥ing 2 of its 2 defects
occurs.

(3) Two independent random walks meet.

Our earlier discussion says that the concentration of gaiis®/36) is much smaller
than the concentration of defe¢t ), implying that the probability of 2 pairs meeting is
insignificant when compared to the probability of a pair nrepa defect.

We next estimate the probability of destroying a pair as sed@). On average, there
are 7 links in the neighborhood of a given pair which increBsand flipping such a link
has an energy cost @ The probability of this to happen i&?/(3N). Since the pair
moves eveny)(N) attempted flips, we conclude that, on average, a pair withda?)
steps before it is destroyed as in case (2).

The number of steps needed for case (1) to happen dependsisihvon the density
of defects. We let denote the average distance between defects (counted inemwh
links). Since the number of defectsZs/V and the system is 2-dimensional, we conclude
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Figure 8. A creation event: & pair is created from & defect, which is pushed one step.

that
£=0(""?).

As long as the pair is not destroyed by the mechanism leadingde (2) it can thus do
O(e72) steps by which time it can visiP (s~ ') defects.

This terminates the comparison of the 3 cases, and shows izt has the time to visit
a very large number of defects before it is destroyed by thth@ranechanisms.

5. The Geometry of Pair-Defect Collisions

In this section we consider the collisions between a pairaddfect. The discussion is
really in two parts: On one hand, we must consider the prdibathiat a collision between
a pair and a defect is initiated. This depends on the denkihealefects, and hence en
But, once a collision is initiated, we can ask what the efté¢he collision is going to be.
The next proposition shows that this effect is purely geoivedtand independent af

Proposition 5.1: There are 9 topologically different possibiliti€g;,: = 1,...,9 for

a collision to be initiated. For each of them, there are 2 pyrgeometrical constants
Py ; > 0andPy,; > 0 (depending or) which tell us the probability that a collision leads
to a move f, ;) of a defect (by 1 or 2 links) resp. the deletion of the péiy {).

The remainder of the section deals with the proof of Projmosh.1.

5.1. Definition

We will study in detail how collisions move defects. Firstadf, we will define what we
mean by a collision. Assuming that the density of defectgiy gmall, the only collisions
we will consider are those involvirgydefects, namely, the pai~ which will collide with
a defectt or - .

Definition 5.2:  Consider some configuratidh. Three defectd;,i = 1,2,3 of T are
said to bein a collisionif there arek > 2 flips (k links of T) that do not increase the
energy such that

(1) The only defects involved in thegdlips areD;,i = 1,2, 3.

(2) All 3 defects are involved in thegeflips.

(3) At least one of thesg flips will move a pair (the others might be any of the 4
cases which do not increase the energy).

5.2. Collision types

In this section, we will describe all possible configuratiaf a collision and we will show
that the probability of any such configuration depends galalthe topology (and not on
the temperature).

The third condition of the definition of a collision statesthve can always identify
a pair; as a result, the set of all possible configurationsailiision can be obtained by
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Figure 9. A figure showing all possible relative positionsagfair and a defect in collision. The pair is shown as a solid
black line.

taking a pair and placing either adefect or a+ defect in any position where it can interact
with one of the pair's 2 defects. As seen in the previous secti+ defect can interact
with any defect if and only if both defects are at distance. dwe - defects can interact
if and only if they are on opposite corners of 2 adjacent gies. The last ingredient is
that + defects can have a degree of 6 or 8 whereatefects have a degree of 4 or 6.
This yields a systematic method of constructing all possiloinfigurations of a collision:
consider a pair and Iét; be the set of all empty sites (chargewhich are at distance 1
of any of the pair's 2 defects arid, be the set of all empty sites which are opposite to
the- defect of the pair. The set of all possible configurations obliision is obtained by
placing at+ defect in any oi4;’s sites or a defect in any oi4,’s sites, as shown in Fig. 9
in the case where the defect is red and the defect is blue. All in all, we get 9 different
configurations of a pair and a defect (symmetrical case ed)itt

Assuming that the defects are randomly distributed, itescfrom Fig. 9 that the prob-
ability of a collision to be of some typ@; € {1,...,9} is a temperature independent
constant that can be calculated. To prove Proposition Selnaust study in detail each of
the 9 cases. We will study in particular:

e What are the possible outcomes of each collision type and ishle (conditional on
having initiated the collisiond);) probability of each outcome?

e What is the probability (conditional on having initiatecetollision ;) that a pair
pushes a defect?

We can summarize the answers as follows:

e There will always be a defect left over at the end of the doltis

e Finding a pair and a defect at the end of the collision is fmss$n all 9 cases.

e An annihilation of the pair is possible in 2 of the 9 cases.

e ltis possible that the defect is pushed in 8 cases. A defechegushed by more than
1 step.

o Itis possible that the defect remains in its initial positia all 9 cases.

The relative probabilities of any of the above outcomes delyend on the local geometry.
While all the cases have been worked out in detail, we iléistthe discussion for just 2
of them, and this will complete the proof of Proposition 5.1.
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Figure 10. A collision where a an annihilation is possiblaeTgreen links show the way the pair enters (or exits) the
collision. Flipping the red link will cause an annihilatievent.

5.2.1. Example 1: A possible annihilation

There are 2 cases where an annihilation might occur. We d@ensiere the case of
Fig. 10. A+- pair collides with & defect. For simplicity, assume that tke pair came
from the left. Once the pair and the defect are in collisiberé are 3 links whose flipping
leads tod £ < 0. Two of these links (the green ones) allow the pair to walkyafiam (or
enter) the collision. Flipping the red link on the other haadses an annihilation: the pair
is destroyed and the defect is pushed by one step. We cleszlhat there are 3 possible
outcomes:

e The pair exits the collision through the same way it entenea(r case, on the left).
The defect remains in its initial position.

e The pair exits the collision through the other green linke Defect moves 2 steps.

e An annihilation event occurs. The pair disappears and thectimoves 1 step.

The (conditional) probability of each outcome is 1/3 and(tt@nditional) probability that
the defect will have moved at the end of the collision is 2/3.

5.2.2. Example 2: A bifurcation

Here, we look at the collision case of Fig. 11. No annihilati® possible here and the
outcome of the collision is always one pair and one defect. ity relevant question is
what is the probability that the defect will have moved atehe of the collision. But the
combinatorics is more involved.

The pair enters and may exit the collision through a greda Htipping a red link on
the other hand will not end the collision. Notice that thenfifiagram contains 4 red links
and no green ones. Moving a red link will visit the 6 figurestssagially. But moving the
two lower red links in the lowest left figure will lead to anettcircle of five configura-
tions, which is not shown in the figure. This collision case ba represented by a “state
diagram” as in Fig. 12, where each node represents a stateamfdlink represents the
effect of flipping one of the colored links in Fig. 11. The pairters the collision through
a dangling link¢;. It can wander around the vertices of the state diagram befiting
through a dangling links.

If /1 = {5, then itis as if the collision never occurred. In particuthe defect does not
move. Furthermore, if; and/y are of the same color, then the defect will remain in its
initial position at the end of the collision. Using this remxand the diagrams of Fig. 11,
one can explicitly compute the (conditional) probabiliat a pair pushes a defect if the
collision is of the above type. This probability will be teerpture independent.
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Figure 11. The central figure (with only red links) is symrnetlong the axis +- . If we flip the long vertical line, we
arrive at the figure top-right. If we flip in it the red link whicoes not lead back to the center, we arrive at top-leftpiiigp

the red link which does not lead back to top-right, we arrivieaitom-left, then at bottom-right, and then back to theeen
Since the same happens for the two lower links of the centesee that the local state space is a figure “8” with 9 nodes
of which 8 have two exits each. The state space can be syrati@iin Fig. 12.

The other 7 cases are treated similarly, and this compliegegroof of Proposition 5.1.

Note that the proof means that collisions lead, on averageptusitiveprobability of
moving a defectThis mechanism is the basic reason for the diffusive wandesf the
defects in the triangulations. It is mediated by the cadilisiof pairs with the defects.
Clearly, if there are no pairs, the defects can not move tstiéchanism, but only through
much less probable events.



April 15, 2011

15:2

Philosophical Magazine paper

14

Figure 12. Each vertex represents one possible configardtiong the collision of Fig. 11. Two vertices are linked iifeo

can go from one configuration to the other by flipping a (real bf Fig. 11. The pair enters and exits the collision through
one of the 16 dangling links. If these 2 dangling links areghme or if they are of the same color, then the pair does not
push the defect, otherwise, it is pushed by 1 step.

6. Relevant and Irrelevant Pairs

In Sect. 4.2, we have seen that a pair lives long enough toexjis 1D path, before
being destroyed by other mechanisms. We now analyze inl détat can happen during
this exploration phase.

When a pair is created, it is one step away from its birthpléoeill then perform a
random walk on its predefined 1-dimensional path. Each ttmernes back to its birth-
place, it can die with probability4..cn = 1/3 as shown in Fig. 10f this happens, the
triangulation will not have changedVe will call this an ineffective pair. The probability
P = P(§) can be estimated as follows:

Assume that a defecX is at a distance¢ from the birthplace of the pair. Then, by
extending slightly the gambler’s ruin principle [the probability Pr = Pr(€) that the
pair actually can reachX is (1 + (¢ — 1) - pgeatn) "+ = O(1/€). This implies that the
probability for any event implyingd when starting from the birthplace dependstoand
in the case of many defects, on their average distance (wyeatall agairt). Thus,

Pi=1-001/¢), Pr=0(1/¢). ©)

7. TimeCorrelationsat Equilibrium

Here, we estimate the rate of change of triangulations (asietibn of time). Since our
triangulations are purely topological, we need to definetwha mean by the distance
between 2 triangulatioris, andTs; in 7Ty (the space of triangulations of the sphere with
N labeled nodes). There are many possible choicese $£¢8] many of which lead to
equivalent metrics. The one defined below is convenientdioporpose.

Let {T},7»} C Tn. Consider a node of T;. The flowerf (n,T}) of n is defined as
the ordered cyclic set of all neighborswfin T;. Two flowers are then said to be equal if
one can be obtained from the other by a cyclic rotation. Wencandefine the following
metric onTy:

N
Tl,TQ Zdn T17T2 and

n—=

T17T2 { if f n Tl) f(n,Tg) ,

otherwise .
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Figure 13. Decay rate of correlations at equilibrium. Nucgrverification of Egs. (10) and (11). The data are averages
over 10 runs withV = 15’000. The error bars represent 1 standard deviation. The vartalsl equal to— log(e). The fits
are forC betweerD.5 and0.001.

Using this metric, we define the following correlation fuinct

d(T(t), T(t+ 1))

CW)=1- = ,

whereT'(t) is the system state at tinteOur result for the decay of this function at equi-
librium, i.e., whent — oo, is as follows:

Proposition 7.1:  The correlation functior” decays like
CW) = eV, (10)
with a relaxation timer,. of the form
7= 0() = 0= . (11)

Proof : The correlation functior(«) is nothing but the fraction of nodes whose flower
is unchanged aftef time units. At equilibrium, the number of paigswas established
in Eq. (4) to bep = 70/36 - £2. On the other hand, the density of defects in equilibrium
is O(¢) and hence, their average distarfcequalst = O(s~1/2). By the estimates of
Sect. 6 this means that the effective number of pairs whiemgh the configuration in a
permanent way i€ (p - e~ /2). We further saw in Sect. 5 that the number of collisions
a relevant pair will undergo is a temperature independemstemtr = O(1). If £ is the
average distance between 2 defects, then, on averageaihigilbchange, on its way, the
flowers of2v¢ nodes. At time?, each of these flowers is still unchanged with probability
C ().

Since the pair makes a 1D random walk, all this happens wathiaverage time interval
60 = $12€%. This in turn leads to

C(0 + 69) = C(8) — 2pPrveC (D) .

In the limit 9 > 69, we find

() = —4%‘ ),
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Figure 14. The decay rates of several simulations Witk= 15000 ande = 0.002 to 0.005.

and this leads to Eq. (10) with

_ V(e
" BORE 42
Finally, using
Pr(€) = 0(1/§) = 0 (/2) | (13)
Eg. (11) follows from Equations (12) and (13). O

8. TheAging Process

By the aging process, we mean the approach of the energyequtibrium value. Since
the energy is by and large just the densgity) of defects we can formulate the result as

Estimate 8.1: Under the assumptionsV > Dy ande < p one has for the density of
defects:

d(t) = 0((2) %) . (14)

Note that this result differs from that proposed in [9], widre decay rate was given as
(2t)~1/2. This difference is caused by our observation that the siifiu constant of the
defects actually depends on their density, because, ifaheyarer, the pairs, which are
the only ones able to move them around, need longer to find.them

Power decay rates are extremely hard to distinguish, butave performed some tests
which are illustrated in Fig. 14. They give a slight advaetéga decay of-0.4 as com-
pared to—0.5.

Proof: We study the aging process by assuming that, in approachuitibeym, the
system is in a quasistationary state, with charge density’ /N . Here, and in the sequel,
time will be in units ofr = (3N — 6)/2. Letd(t) andp(t) be the density of defects and
pairs respectively. Then, up to terms of ord¥(=3) one has: = d + 2p.

As we will see in this section, the quasistationarity assiiongsimply means that the
relaxation of the energy is a consequence ofdhaihilation of colliding defectsThe
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number of pairs is, up to fluctuations, essentially unchdriyging the process we con-
sider.

8.1. Three timescales

We saw that a fraction — O (¢) of all occurring flips in the system do not change the
energy, and are either motions of pairs or blinkers. Of thdse only relevant ones are
the wandering pairs, which induce diffusion of the defestava have seen in Sect. 7. The
discussion of the equilibrium probabilities apply alsot&tss close to equilibrium, which
is the regime we want to consider now.

The pair dynamics happens on the time seglg = 7 and it conserves both the number
of pairsp(t) and the number of defecit).

The next slower time scale concerns creation and annirilaif pairs. Even though
this change®(t), it conservesi(t). Whenever one of these events happens, defects are
pushed around by the pairs with some geometrically definalgtnility, and this leads to
a diffusion, whose consta}(¢) measures this second time scalgrusion = D~ (t).

The third time scaleryecting IS related to collision ratey(t) of defects;mmecting =
v~1(t). They undergo a 2D random walk. Sooner or later, 2 defectppbsite charges
will meet and will form a new pair which will run on timescateuntil it annihilates.

In the regime we consideonly this sequence of events (collision and running pair) of
the dynamics destroys 2 defects and, as a consequencepamsédde for the relaxation
of the energy. Given the 3 time scales, the derivation of theay rate is now rather
straightforward.

8.2. The quasistationarity assumption and the density of pairs

By the previous discussion,
Tmeeting () > Tdiffusion (t) > Tpair(t) =7 =1.
The orders of magnitude of these quantities near equititbave
Tmeeting (t) = OE2d7%) | Taiftusion(t) = O(e~2d1/?), Tpair(t) = 1.

Consider a system for which, at time @0) > 1 andp(0) > 1. It is clear that the
relaxation of pairs is much faster than that of defects. Weassume that pairs are always
at equilibrium densityi.e., that creation and destruction rates of pairs are equapénd
is independent of.

Remark 1: The above discussion implies that) is constant over time intervals of
order meeting (t). In fact, both creation and annihilation events necessita¢ presence
of defects so that the creation and destruction rates o palil be linear ind(t) at low
density. This implies thap depends ont only through the value ofi(¢). By abuse of
notation, we will writep(d) instead ofp(d(t)).

The creation rate of pairs i52ds? and the destruction rate is simph(d) /Tiitetime-
Therefore, by balancing the rates, we find:

P(d) = 12d Tlifetime 52 . (15)

Since a pair needs to diffuse from one defect to the otheidardo annihilate, we estimate
that Tiierime = O (£2) = O(d™1). This implies that the density of pairszigd) = O(?).
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8.3. The diffusion constant of single defects

Repeating the arguments of Sect. 7 the average number fi@odiz and the average
number of moved defectsare temperature independent constants. The diffusiortaans
of a defect is simply the probability that a given defect nwlig one space unit during
one time unit and it is given by

2p(d) Pr(&)n
V2§2 !

D(d) = O(p(d) - Pr(O(d"?))) .

D-d=

Using Equations (15) and (13), this leads to

D(d) = O(e* - d/?)

8.4. Collision rate of single defects and relaxation coefficient

The annihilation of 2 diffusive particled + B — () has been studied in depth in [10-12].
Here, we use the mean field argument of [10], to deduce thisioollrates. However, there
will also be particle creation. On the other haady, in [12] creation is indeed considered,
but the study is for a fixed substrate, namely the latfiéewhile our study is on a more
floppy domain.

Given a 2D gas of 2 particled and B of equal densitieg/2 such that the diffusion
constantd), = Dp = D, it can be deduced from [10] that the collision rates

v(d) = O(Dd?) .
Extending this identity to a varying diffusion constant, red up with
d=—2v(d) = —0(% - d"?),

where we assumed that we are far enough from equilibriumdtentthe creation rate of
defects. O

Note that this result differs from that proposed in [9], widre decay rate was given as
(2t)~1/2. This difference is caused by our observation that the siifiu constant of the
defects actually depends on their density, because, ifaheyarer, the pairs, which are
the only ones able to move them around need longer to find them.
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