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Abstract. We consider Frenkel-Kontorova models corresponding to 1
dimensional quasicrystals.

We present a KAM theory for quasi-periodic equilibria. The theorem
presented has an a-posteriori format. We show that, given an approxi-
mate solution of the equilibrium equation, which satisfies some appro-
priate non-degeneracy conditions, then, there is a true solution nearby.
This solution is locally unique.

Such a-posteriori theorems can be used to validate numerical compu-
tations and also lead immediately to several consequences a) Existence
to all orders of perturbative expansion and their convergence b) Boot-
strap for regularity c) An efficient method to compute the breakdown of
analyticity.

Since the system does not admit an easy dynamical formulation, the
method of proof is based on developing several identities. These identi-
ties also lead to very efficient algorithms.

Quasi-periodic solutions, quasicrystals, hull functions,KAM theory
[2000] 70K43, 52C23, 37A60, 37J40, 82B20

1. Introduction

We consider Frenkel-Kontorova models with a quasi-periodic potential.
In these models, the state of a system is given by a sequence {qi}i∈Z of num-
bers and the physical states are selected to be the critical points of a formal
energy

(1) S ({u}i∈Z) =
∑
n∈Z

1
2

(un − un+1)2 − V(un)

The critical points of S are obtained by taking formal derivatives of S
and setting them to zero ∂

∂un
S ({u}i∈Z) = 0. That is

(2) un+1 + un−1 − 2un + V ′(un) = 0.

In the classical Frenkel-Kontorova model [FK39, ALD83], V is a pe-
riodic function V(un + 1) = V(un)–we choose units so that the period is
normalized to 1.
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In this paper, however, we choose V to be a quasi-periodic function

V(θ) = V̂(θα)

where V̂ : Td → R and θ ∈ R, α ∈ Rd will be an irrational vector, that is
k · α , 0 when k ∈ Zd − {0} where d ≥ 2. Later, we will also assume further
non-resonance conditions. One example to keep in mind could be

V(θ) = a · sin(2πθ) + b · sin(2π
√

2θ)

where a, b ∈ R.
Our goal in this paper is to prove an analogue of KAM theorem. See

Theorem 11, 12. Under some appropriate conditions, we show that there
are smooth families of quasi-periodic solutions. See Section 1.1 for precise
definitions of these families. The proof of the theorems is rather construc-
tive and leads to efficient algorithms that are being implemented.

There are several physical interpretations of FK models. The original mo-
tivation [FK39] was dislocations in solids. In the interpretation of [ALD83]
ui are the positions of a deposited material over a substratum. The inter-
action of the atoms with the substratum is modeled by the term V . The
periodicity of V considered in [ALD83] corresponds to a periodic substra-
tum (e.g. a crystal) and the quasi-periodic models considered here could
appear in cleaved faces of crystals or in quasi-crystals.

In the interpretation of deposition, the existence of quasiperiodic solu-
tions implies the existence of a continuum of equilibria, so that the system
can slide. In contrast, if the KAM tori are not present, the system is pinned.
There have been numerical explorations of these issues in [vE99, vEFRJ99,
vEFJ01, vEF02, RJ97, RJ99]. In particular, the above references pay spe-
cial attention to the boundary of the set of parameters for which there is an
analytic solution (breakdown of analyticity, Aubry transition), which corre-
sponds physically to the boundary between sliding and pinning.

Note that the physical argument to obtain sliding only requires a contin-
uous family of solutions, whereas it has been found that often the boundary
is described by the breakdown of an analytic family. In Section 6.2 we will
show that all the families which are smooth enough are indeed analytic.
From the mathematical point of view this leaves open the possibility that
there are regimes where the solutions have only a rather low regularity. In
the case of twist mappings, using renormalization group, this regime has
found to exist but being a codimension one surface [Koc08].

In the mathematical literature, quasi-periodic Frenkel-Kontorova mod-
els have been considered in [GGP06, AP10], which use mainly topological
methods to study the existence of orbits with rotation number. In the peri-
odic case, the critical points of the energy, i.e. the configurations solving (2)
can be identified with orbits of a dynamical system on the annulus T × R.



KAM THEORY FOR 1-D QUASICRYSTALS 3

In the quasi-periodic case, no such identification is easy. [GGP06] shows
that the quasi-periodic case can be considered as a dynamical system on a
Cantor set ( Delone set).

To the best of our knowledge, there is no systematic Aubry-Mather theory
analogue to that of the periodic 1-D Frenkel-Kontorova systems (existence
of minimizing Aubry-Mather well ordered minimizers). It seems possible
that one could get analogues of the theory of minimizing invariant measures.
See [Bur87, Bur88, Bur90].

1.1. Hull function. We will be interested in solutions of (2) given by a hull
function

un = h(n · ω)
where ω ∈ R and

h(θ) = θ + h̃(θ)
with

h̃(θ) =
∑
k∈Zd

ĥke2πik·θα

equivalently,
h̃(θ) = ĥ(θα)

where ĥ : Td → R is a function

ĥ(σ) =
∑
k∈Zd

ĥke2πik·σ.

We denote the set of h̃ of this type by QP(α). Later on, we always use the
notation σ = θα for variables in Td.

Then (2) is equivalent to

(3) h(θ + ω) + h(θ − ω) − 2h(θ) + ∂αV(α · h(θ)) = 0

where ∂αV ≡ (α · ∇)V . We write (3) in terms of ĥ which is

(4) ĥ(σ + ωα) + ĥ(σ − ωα) − 2ĥ(σ) + ∂αV(σ + α · ĥ(σ)) = 0

1.2. External forces. We will find it convenient to add an external param-
eter to the equilibrium equation (4) and to generalize to situations where the
forces do not derive from a potential. So we will be looking for solutions of

(5) E[ĥ, λ](θ) ≡ ĥ(σ+ωα) + ĥ(σ−ωα)− 2ĥ(σ) + Û(σ+α · ĥ(σ)) + λ = 0

where Û : Td → R and ĥ is as before, λ ∈ R. Note that, both ĥ and λ are
unknown.

Adding the extra term λ will allow us to study the equation (5) for ar-
bitrary periodic Û even if Û is not the gradient of some periodic function.
Later, a very simple argument developed in Section 5 Lemma 22, will show
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that, when Û has a variational structure, then λ = 0. Hence, in the case that
Û = ∂αV̂ , the equation (5) is equivalent to (2).

Remark 1. This procedure of adding an extra parameter and showing that it
vanishes when there are geometric properties similar to the extra parameter
method introduced in [Mos67] to prove “translated curve theorems” and
developed later in [Yoc92, Sev99]. The main advantage is that the extra
term allows a more efficient iterative procedure. The proofs of existence of
perturbative expansions are also considerably easier.

Our main results will be “a-posteriori” theorems (see Theorem 11 and 12
for more details) which show that if we are given a pair [ĥ, λ] that solves
(5) very approximately (and provided ω, α satisfy some appropriate Dio-
phantine condition and [ĥ, λ] satisfy some non-degeneracy condition), then
there is a true solution close by. We note that we do not need that the system
is “close to integrable”, we only need that there is an approximate solution
of the equilibrium equations. Of course, in the case that the system is close
to integrable, the solutions in the integrable case are approximate solutions.
One can, however obtain approximate solutions in other cases, for example,
the result can validate numerically produced approximate solutions.

The method of proof is based on an iterative procedure of Nash-Moser
type using the quadratic convergence to overcome the small divisors. The
quadratic convergence will be based on some geometric cancellations that
come from the variational structure of the problem.

We note that the method of proof leads to very efficient algorithms, which
we present in Section 4.2 and which are implemented in [BHdlL11]. We
note that the method is based on the Lagrangian proof in [Ran87, LM01]
and in [dlL01, Section 5.3]. In [dlL08], it is shown that, in the classical
case, when V is periodic, the method of proof extends to interactions which
are not nearest neighbors. We hope that such an extension is possible in the
quasi-periodic case considered here. This extension to interactions which
are not nearest neighbors is interesting because the most physical models
involve such interactions.

The precise formulation of Theorem 11 and Theorem 12 requires us to
make precise the sizes of functions, Diophantine condition, etc. which we
take up in Section 2.1.

Note that the solution of (5) are not unique. If [ĥ(σ), λ] is a solution, for
any β ∈ R, [ĥ(σ + βα) + β, λ] is a solution. Hence, by choosing β, we can
always choose our solution normalized in such a way that

(6) lim
T→∞

1
T

∫ T

−T
h̃(θ)dθ ≡

∫
Td

ĥ(σ)dσ = 0.

Note that the choice of β that accomplishes (6) is unique.
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We will indeed establish that the solution of (5) and (6) is unique.

2. Function spaces and preliminary estimates

In Section 2.1, we collect several standard definitions of spaces and present
some preliminary results on these spaces. In Section 2.2 we present defini-
tions of the Diophantine properties we will use in this paper. In Section 2.3
we present well known estimates for cohomology equations, which are the
basis of the KAM procedure.

2.1. Spaces. Given a function

h̃(θ) =
∑
k∈Zd

ĥke2πik·αθ

it is natural to consider the function

ĥ(σ) =
∑
k∈Zd

ĥke2πik·σ

where σ ∈ Cd/Zd.
Clearly, if the above sums converge pointwise (in our applications they

will converge in much stronger senses), we have

(7) h̃(θ) = ĥ(αθ)

We will find it more convenient to define spaces and norms using the func-
tion ĥ.

Following [CdlL10] we will find it convenient to use at the same time
spaces of analytic functions and Sobolev spaces. Using the abstract results
in [CdlL10] this leads automatically to several interesting corollaries such
as bootstrap of regularity of solutions and a numerically verifiable criterion
for the breakdown of analytic solutions. See Section 6.

Definition 2. If the series ĥ(η) =
∑

k∈Zd ĥke2πik·η defines an analytic function
on Dρ ≡ { η | |Im(ηi)| < ρ} which extends continuously to Dρ, we denote

(8) ‖ĥ‖ρ = sup
η∈Dρ

|ĥ(η)|

We denote by Aρ the space of such functions. As it is well known, Aρ is a
Banach space when endowed with (8). Clearly for ρ′ < ρ, Aρ ⊂ Aρ′ . By the
maximum principle, ‖ f ‖ρ is monotone increasing in ρ for f ∈ Aρ.

For the sake of convenience we will also introduce A r
ρ , the Banach space

of functions whose r derivative is in Aρ, endowed with the norm ‖ f ‖A r
ρ

=

‖Dr f ‖Aρ
+ |〈 f 〉| where 〈 f 〉 denotes the average of f . By Cauchy bounds, if

ρ′ < ρ, then A r
ρ′ ⊂ A r

ρ .
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We also define

(9) ‖ĥ‖2Hr =
∑
k∈Zd

|ĥk|
2(1 + |k|2)r

and denote by Hr the spaces of functions for which (9) is finite. It is well
known that Hr is a Banach space and indeed a Hilbert space.

2.1.1. Some elementary properties. There are several well-known proper-
ties of those spaces. We just note

• Cauchy estimates for analytic functions:

‖Dlĥ‖ρ−δ ≤ C(l, d) · δ−l · ‖ĥ‖ρ

|ĥk| ≤ e−2π·|k|·ρ · ‖ĥ‖ρ.

• Interpolation inequalities:
– Analytic case:

Lemma 3 (Hadamard 3-circle theorem, see [Ste70]).

‖ĥ‖ρ ≤ ‖ĥ‖
1
2
ρ−δ · ‖ĥ‖

1
2
ρ+δ.

– Sobolev case:

Lemma 4 (See [Zeh75, Ste70] ). For any 0 ≤ n ≤ j, 0 ≤ θ ≤ 1,
denote l = (1 − θ)n + θ j, we have for any ĥ ∈ H j:

‖ĥ‖l ≤ Cn, j · ‖ĥ‖1−θn · ‖ĥ‖θj.

• Banach algebra properties:
– Analytic case:

∀ ĝ, ĥ ∈ Aρ : ‖ĝ · ĥ‖ρ ≤ ‖ĝ‖ρ · ‖ĥ‖ρ.

– Sobolev case (see [Ada75]): Let m > d
2 , there exists a constant

K depending only on m, d such that for any u, v ∈ Hm, u · v ∈
Hm and we have

‖u · v‖Hm ≤ K · ‖u‖Hm · ‖v‖Hm .

• Composition properties:
– Analytic case (see [dlLO99, dlL08]): Let ĥ ∈ Aρ and Ω ⊆ Cd

be a compact set. Take ι = dist(Cd −Ω, (Id + α · ĥ)(Dρ)).

Lemma 5. Let Û : Ω→ C be an analytic function ‖Û(z)‖L∞(Ω) ≤

M. Define the operator Φ acting on analytic functions by (Φ[ĥ])(σ) =

Û(σ + α · ĥ(σ)).
We present sufficient conditions that ensure that the operator is
well defined and differentiable.
∗ If ‖ĥ∗ − ĥ‖ρ ≤ ι, then Φĥ∗ ∈ Aρ.
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∗ If ‖ĥ∗ − ĥ‖ρ < ι
2 , then

(DΦ[ĥ]∆̂)(σ) = ∂αÛ(σ + αĥ(σ))∆̂(σ),

‖Φ[ĥ∗] − Φ[ĥ] − DΦ[ĥ](ĥ∗ − ĥ)‖ρ ≤ C · ‖ĥ∗ − ĥ‖2ρ.

– Sobolev case (see [Tay97, CdlL10]):
The following result is a consequence of the Gagliardo-Nirenberg
inequalities.

Lemma 6. Let f ∈ Cm and assume f (0) = 0. Then, for u ∈
Hm ∩ L∞

‖ f (u)‖Hm ≤ K2(‖u‖L∞)(1 + ‖u‖Hm),

where K2(λ) = sup|x|≤λ, µ≤m |D
µ f (x)|.

In the case that m > d
2 , if f ∈ Cm+2, we have that

(10) ‖ f ◦(u+v)− f ◦u−D f ◦u ·v‖Hm ≤ Cd,m(‖u‖L∞)(1+‖u‖Hm)‖ f ‖Cm+2‖v‖2Hm .

The reason for (10) is that we have pointwise

f ◦ (u + v)(x) − f ◦ u(x) − D f ◦ u(x) · v(x) =

=

∫ 1

0
dt

∫ t

0
ds D2 f ◦ (u + tsv)(x) · u(x) · v(x)

We obtain the desired result using that, by Gagliardo-Nirenberg
D2 f ◦ (u + tsv) ∈ Hm and that the Hm norm is a Banach algebra
under multiplication. Therefore, we can estimate the Hm norm of
the integrand independently of s, t.

Note that Lemma 6 also gives a formula for the derivative of Φ

as the composition with the derivative of Û. It follows that if Û ∈
Cm+2+`, then, Φ ∈ C`+1.

Remark 7. In [Zeh75] it is shown that the interpolation inequalities are a
consequence of the existence of smoothing operators. which play an impor-
tant role in the abstract formulation of KAM theorem.

We also note that Lemma 5 is rather elementary. It suffices to show that
there are Taylor estimates with uniform constants. (As shown in [dlLO99],
it is important that in the domain of Û, among any two points x1, x1, it
is possible to choose a path γ such that `(γ), its length satisfies `(γ) ≤
C|x1 − x2|.)

Actually, one can prove something stronger, namely that the operator Φ

is an analytic operator when Û is analytic, but we will not need as much.

The following lemma is standard in the theory of quasi-periodic func-
tions.
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Lemma 8. Let α be irrational. Assume that
∑

k∈Zd |ĥk| < ∞. (So that, by
Weierstrass M-test, the series h̃(θ) =

∑
k∈Zd ĥke2πik·αθ converges uniformly

over the real line.) Then,

ĥ0 = lim
T→∞

1
2T

∫ T

−T
h̃(θ)dθ.

Proof. Given ε > 0, we can find N such that∑
|k|>N

|ĥk| ≤
ε

3
.

Hence, for all T > 0 ∣∣∣∣∣∣∣ 1
2T

∫ T

−T

∑
|k|>N

ĥke2πik·αθdθ

∣∣∣∣∣∣∣ ≤ ε

3
.

Furthermore,

(11)
1

2T

∫ T

−T

∑
|k|≤N

ĥke2πik·αθdθ = ĥ0 +
∑

0<|k|≤N

ĥk
e2πik·αT − e−2πik·αT

2πik · α · 2T

We see that, for all T sufficiently large, we can assume that the term in the
sum in (11) (it is a finite sum) is smaller than ε

3 . This ends the proof of
Lemma 8. �

2.2. Diophantine properties. Given α ∈ Rd such that

(12) |α · k| ≥ µ|k|−υ, ∀k ∈ Zd − {0}

where |k| = |k1|+ |k2|+ ...+ |kd|, we are interested in the numbers ω ∈ R such
that

(13) |ωα · k − n| ≥ ν|k|−τ, ∀k ∈ Zd − {0}, n ∈ Z.

That is, we are interested in the ω ∈ R such that ωα is a Diophantine vector
in the standard sense. Here µ, υ, ν, τ are positive numbers.

We will denote the set of ω satisfying (13) as D(ν, τ;α). We also denote
D(τ;α) = ∪ν>0D(ν, τ;α).

The abundance of Diophantine numbers in subspaces is a subject of great
current interest in number theory [Kle01, Kle08]. Nevertheless in our case,
it suffices the following elementary result Lemma 9 (which is weaker with
respect to the exponents obtained than the results of [Kle01, Kle08]).

Lemma 9. If α ∈ Rd satisfies (12) and τ > d + υ, then D(τ;α) is of full
Lebesgue measure.
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Proof. Let A > 0. Consider the sets

Bk,n = {ω| |ωα · k − n| ≤ ν|k|−τ} = {ω| |ω −
n

α · k
| ≤

ν|k|−τ

|α · k|
}

and
Bk,n,A = Bk,n ∩ [A, 1.01A].

Clearly,
[A, 1.01A] \D(ν, τ;α) = ∪k,nBk,n,A

So Lemma 9 will be proved when we show

| ∪k,n Bk,n,A| ≤ ν ·C(A, τ, α, υ, µ).

We clearly have that Bk,n is an interval of length

|Bk,n| =
2ν|k|−τ

|k · α|
.

We also observe that Bk,n,A = ∅ unless A + ν|k|−τ

|k·α| ≤
n

k·α ≤ 1.01A + ν|k|−τ

|k·α| or
A − ν|k|−τ

|k·α| ≤
n

k·α ≤ 1.01A − ν|k|−τ

|k·α| . Also clearly,

]{n|Bk,n,A , ∅} ≤ 0.02A · |k · α| + 2

Hence

| ∪k,n Bk,n,A| ≤
∑
k,n

Bk,n,A,∅

2ν|k|−τ

|k · α|
≤

∑
k

2ν|k|−τ

|k · α|
· (0.02A · |k · α| + 2)

≤0.02A · 2ν ·
∑

k

|k|−τ +
4ν
µ

∑
k

|k|−(τ−υ) ≤ ν ·C.

�

2.3. Cohomology equations. To prove our results, as it is standard in KAM
theory, we have to study equations of the form

(14) φ̃(θ + ω) − φ̃(θ) = η̃(θ)

where η̃ ∈ QP(α), ω ∈ R are given and φ̃ is the unknown.
We note that if we use the function φ̂(αθ) = φ̃(θ) we see that (14) is

equivalent to

(15) φ̂(σ + ωα) − φ̂(σ) = η̂(σ).

The operator solving these equations is unbounded, but it satisfies some
“tame” estimates from one space to another that can be overcome by a
quadratically convergent algorithm.

Clearly, a necessary solution for the existence of solutions of (15) is∫
η̂(σ)dσ = 0.
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The equation (15) has been considered in KAM theory. The optimal
results for analytic functions were proved in [Rüs75] and we just reproduce
the results adapted to our notation. The results for Sobolev regularity are
very easy.

Lemma 10. Let η̂ ∈ Aρ (resp. Hr, r ≥ τ) be such that∫
Td
η̂(σ)dσ = 0.

Then, there exists a unique solution φ̂ of (15) which satisfies

(16)
∫
Td
φ̂(σ)dσ = 0.

This solution satisfies for any ρ′ < ρ

(17) ‖φ̂‖ρ′ ≤ C(d, τ) · ν−1 · (ρ − ρ′)−τ‖η̂‖ρ

(resp.

(18) ‖φ̂‖Hs−τ ≤ C · ν−1 · ‖η̂‖Hs , τ ≤ s ≤ r).

Furthermore, any distribution solution of (14) differs from the solution
claimed before by a constant.

The method of proof is standard. We take the Fourier coefficients and see
that (14) is equivalent to:

φ̂k(e2πik·αω − 1) = η̂k.

When k , 0, we can use that |e2πik·αω−1|−1 ≤ C ·dist(k ·αω,Z)−1. From this,
the result for Sobolev space follows rather straightforwardly. The result
for analytic functions – with the optimal exponent quoted above – requires
somewhat more elaborate arguments that use not only the upper bounds in
the denominators, but also that they are not saturated very often. We refer
to [Rüs75] for the original proof and to [dlL01] for a more pedagogical
exposition.

3. Statement of the main results

3.1. Statement of the analytic result.

Theorem 11. Let h = Id + h̃ where h̃(θ) = ĥ(α · θ) =
∑

k∈Zd ĥk · e2πi·k·αθ with
ĥ0 = 0, ĥ ∈ A 1

ρ and α ∈ Rd such that α · j , 0, j ∈ Zd − {0}. Denote
l̂ = 1 + ∂αĥ and T−ωα(σ) = σ − ωα. We assume

(H1) Diophantine properties (13): |ωα·k−n| ≥ ν|k|−τ, ∀k ∈ Zd−{0}, n ∈
Z.



KAM THEORY FOR 1-D QUASICRYSTALS 11

(H2) Non-degeneracy condition: ‖l̂(σ)‖ρ ≤ N+, ‖(l̂(σ))−1‖ρ ≤ N− and
|〈 1

l̂·l̂◦T−ωα
〉| ≥ c for some positive constant c where 〈 f 〉 denotes the

average of the periodic function f .
(H3) ‖E[ĥ, λ]‖ρ ≤ ε where E is defined in (5).
(H4) Composition condition: Take ι = dist(Cd−Ω, (Id+α · ĥ)(Dρ)) where

Ω is the domain of Û. We assume that ‖ĥ‖ρ + ρ ≤ 1
2 ι.

Assume furthermore that ε ≤ ε∗(N−,N+, d, τ, c, ι, ‖Û‖C2(Ω)) · ν4 · ρ4τ+A where
ε∗ > 0 is a function and A ∈ R+ ( we will make explicit ε∗ and A along the
proof).

Then, there exists a periodic function ĥ∗ and λ∗ ∈ R such that

E[ĥ∗, λ∗] = 0.

Moreover,

‖ĥ − ĥ∗‖ ρ
2
≤ C · ν−2ρ−2τ−A · ‖E[ĥ, λ]‖ρ,

|λ − λ∗| ≤ C · ‖E[ĥ, λ]‖ρ.

The solution [ĥ∗, λ∗] is the only solution of E[ĥ∗, λ∗] = 0 with zero average
for ĥ∗ in a ball centered at ĥ in A 3ρ

8
, i.e. [ĥ∗, λ∗] is the unique solution in the

set {
ĝ ∈ A 3ρ

8
| 〈ĝ〉 = 0, ‖ĝ − ĥ‖ 3ρ

8
≤

ν2 · ρ2τ

2C̃(N−,N+, d, τ, c,C)

}
where C̃ will be made explicit along the proof.

3.2. Statement of the Sobolev result.

Theorem 12. Let m > 1
2 + 2τ and Û ∈ Cm+34τ+1. Let h = Id + h̃ where

h̃(θ) = ĥ(α · θ) =
∑

k∈Zd ĥk · e2πi·k·αθ with ĥ ∈ Hm+32τ, ĥ0 = 0 for any θ ∈ R
and α ∈ Rd such that α · j , 0, j ∈ Zd − {0}. Denote l̂ = 1 + ∂αĥ and
T−ωα(σ) = σ − ωα. We assume

(H1) Diophantine properties (13): |ωα·k−n| ≥ ν|k|−τ, ∀k ∈ Zd−{0}, n ∈
Z.

(H2) Non-degeneracy condition: ‖l̂(σ)‖Hm ≤ N+, ‖(l̂(σ))−1‖Hm ≤ N− and
|〈 1

l̂·l̂◦T−ωα
〉| ≥ c for some positive constant c.

(H3) ‖E[ĥ, λ]‖Hm ≤ ε.

Assume furthermore that ε ≤ ε∗(N−,N+, d, τ, c, ‖Û‖Cm+34τ+1)·ν−2 where ε∗ > 0
is a function which we will make explicit along the proof. Then, there exists
a periodic function ĥ∗ ∈ Hm−4τ and λ∗ ∈ R such that

E[ĥ∗, λ∗] = 0.
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Moreover,

‖ĥ − ĥ∗‖Hm−4τ ≤ C · ν−2(N+)2 · ε,

|λ − λ∗| ≤ C · ε.

The solution [ĥ∗, λ∗] is the only solution of E[ĥ∗, λ] = 0 with zero average
for ĥ∗ in a neighborhood of [ĥ, λ] in Hm+4τ, i.e. [ĥ∗, λ∗] is the unique solution
in the setĝ ∈ Hm+4τ | 〈ĝ〉 = 0, ‖ĝ − ĥ‖Hm+4τ ≤

ν2

2C̃(N−,N+, d, τ, c, ‖Û‖Cm+34τ+1) ·Cm−4τ,m+4τ


where C̃ will be made explicit along the proof.

Remark 13. The theorems 11 and 12 have the “a-posteriori” format of
numerical analysis.

Given a function which solves very approximately the invariance equa-
tions, then there is a true solution nearby. The needed approximation is
quantified in terms of the non-degeneracy condition N+,N−, c, (which in
numerical analysis are often called condition numbers ). We note that the
condition numbers can be computed in the approximate solution. We em-
phasize that this formulation does not require that the system is close to
integrable.

Of course, the non-degeneracy conditions depend on the function ĥ (and
on the parameter of the domain ρ in the analytic case. If this can cause
confusion – e.g. when we are performing an iterative step – we will use
N±(ĥ; ρ).

4. Proof of main theorems, Theorem 11 and Theorem 12

As indicated in the introduction, the proofs of Theorems 11 and 12 are
based on an iterative step that given an approximate solution of (19) will
produce a better approximation.

The crux of the proof is to show that, if started with a sufficiently approx-
imate solution, the procedure converges.

As it is very well known in KAM theory, there are arguments that es-
tablish the convergence, provided that we show that the iterative procedure
satisfies tame quadratic estimates. That is, that the norm of the new error is
bounded by the square of another norm of the original error (in a smoother
space) times a factor that depends on the “loss of regularity”. There are
several abstract theorems in this direction, one which is quite well adapted
to the problem at hand and which we will use appears in [CdlL10].

In Section 4.1, we will give some motivations for the iterative procedure.
(It is a Newton method with a small modification that does not affect the
quadratic convergence.)
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In Section 4.2, we will formulate the iterative procedure as a succes-
sion of elementary sub-steps. We note that these elementary sub-steps can
be implemented by very efficient algorithms. If the functions ĥ are dis-
cretized using N points and appropriate algorithms are used for the math-
ematical sub-steps, the iterative procedure requires only O(N) storage and
O(N log N) operations.

In Section 4.3, we present estimates for the iterative step. We first present
estimates on how much it changes the function. Then, we use the Taylor
estimates to show that the error of the improved function is tame quadratic
in the sense of Nash-Moser theory.

In Section 4.4, we will review the convergence of the procedure, which,
as we have indicated before is rather standard, indeed in [CdlL10], there is
an abstract theorem designed to cover exactly the problems considered here.
Nevertheless, for the sake of completeness in the analytic case, we will also
present a very short direct proof of the convergence argument. Since this
direct proof is so direct it also leads to good numerical values.

In Section 4.5, we present several considerations that allow us to discuss
uniqueness.

Finally, in Section 6, we show that we can obtain several consequences
combining the Sobolev and analytic versions of the a-posteriori theorem.
Namely, we show that for analytic mappings all sufficiently smooth solu-
tions are analytic, that Lindstedt series converge, and we present a numeri-
cally efficient criterion for the breakdown of analyticity. As it was shown in
[ALD83], the breakdown of analyticity is associated to the onset of trans-
port properties, so there is some interest in its computation.

Of course, readers interested only in rigorous proofs can safely skip Sec-
tion 4.1 and the algorithmic considerations in Section 4.2. Readers only
interested in algorithms can skip 4.3.

4.1. Motivation for the iterative step. We start from an approximate so-
lution of (5),

(19) ĥ(σ + ωα) + ĥ(σ − ωα) − 2ĥ(σ) + Û(σ + α · ĥ(σ)) + λ = e

where e is to be thought of as “small”.
Our goal is to devise a procedure that gives a much more approximate

solution. For the moment, we will not make precise the sense in which
quantities are small. This will be taken up in Section 4.3.

Given an approximate solution as in (19), the Newton method would con-
sist in finding a solution of

(20) ∆̂(σ+ωα) + ∆̂(σ−ωα)− 2∆̂(σ) + ∂αÛ(σ+α · ĥ(σ)) · ∆̂(σ) + δ = −e.

Then [ĥ + ∆̂, λ + δ] will be a better approximate solution.
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The equation (20) is hard to study because of the term ∂αÛ(σ+α · ĥ(σ)) ·
∆̂(σ) which is not constant coefficients.

The key observation is that, if we are given (19) we are also given the
following equation which is just obtained by taking the derivative of (19)
with respect to θ (we recall that σ = θα):
(21)
∂αĥ(σ+ωα)+∂αĥ(σ−ωα)−2∂αĥ(σ)+∂αÛ(σ+α·ĥ(σ))·(1+∂αĥ(σ)) = e′(θ).

Denoting l̂(σ) = 1 + ∂αĥ(σ), we rewrite (21):

(22) l̂(σ + ωα) + l̂(σ − ωα) − 2l̂(σ) + ∂αÛ(σ + α · ĥ(σ)) · l̂(σ) = e′(θ).

If we substitute (22) into (20), we obtain that the Newton procedure (20)
is equivalent to

(23) ∆̂(σ+ωα)+∆̂(σ−ωα)+
e′(θ) − l̂(σ + ωα) − l̂(σ − ωα)

l̂(σ)
·∆̂(σ) = −e−δ.

The equation (23) is still hard to solve, but, as we will now see, we can
study the equation obtained by omitting the term e′(θ) · ∆̂(σ) in (23).

Because both e′(θ) and ∆̂(σ) are small, we can hope and we will show
that omitting the term e′ · ∆̂(σ) does not affect the quadratic character of the
procedure.

The key observation is that the quasi-Newton equation for ∆, δ:
(24)
l̂(σ)·∆̂(σ+ωα)+l̂(σ)·∆̂(σ−ωα)−∆̂(σ)[l̂(σ+ωα)+l̂(σ−ωα)] = (−e−δ)·l̂(σ)

is equivalent to the system

(25)

 ∆̂

l̂

 ◦ T−ωα −

 ∆̂

l̂

 =
Ŵ

l̂ · l̂ ◦ T−ωα

(26) Ŵ ◦ Tωα − Ŵ = l̂ · (e + δ).

In fact, from (25), we get

Ŵ = ∆̂ ◦ T−ωα · l̂ − ∆̂ · l̂ ◦ T−ωα

and
Ŵ ◦ Tωα = ∆̂ · l̂ ◦ Tωα − ∆̂ ◦ Tωα · l̂

By (26), we can easily get the equivalence.

The key point is that the equations (25) and (26) are of the form (14), and
can be studied using the theory in Section 2.3.

We write Ŵ = Ŵ0 + Ŵ where Ŵ0 is a function with zero average and

Ŵ is a number. That is, we decompose Ŵ into its average and the zero
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average part. Both are unknowns. Now we describe the procedure to solve
the system (25), (26).

We first choose δ to be the unique value that makes the average of the
right-hand-side of (26) zero. Then, we can apply Lemma 10 to find Ŵ0

solving (26). We note that there is only one choice of δ and then, Ŵ0 is
determined uniquely, by the condition that it solves (26) and that it has zero
average. The only solutions of (26) differ from it by a constant.

Then we observe that Ŵ = −
〈 Ŵ0

l̂·l̂◦T−ωα
〉

〈 1
l̂·l̂◦T−ωα

〉
is the only possible value of the

average of solutions of (26) that makes the right-hand-side of (25) with
zero average. Them, we can apply again Lemma 10 to find ∆̂

l̂
solving (25).

This solution is unique up to the addition of constant. Once we have ∆̂

l̂
, we

obtain ∆̂ is obtained just multiplying by l̂. Note that the ∆ is thus determined
uniquely up to the addition of a constant multiple of l̂. In particular, ∆̂ is
unique when we impose the normalization that it has zero average.

4.2. Formulation of the iterative step.

Algorithm 14. Given ĥ : Td → R, λ ∈ R with ĥ(σ) =
∑

k∈Zd ĥke2πikσ and
h̃(θ) = ĥ(αθ) for θ ∈ R and any irrational vector α ∈ Rd, d ≥ 2, we will
calculate:

1) Let L = ĥ(σ + αω) + ĥ(σ − αω) − 2ĥ(σ). In Fourier components
L̂k = 2(cosωα · k − 1)ĥk.

2) We calculate Û(σ + α · ĥ(σ)).
3) So we can calculate e = L + Û + λ.
4) Calculate l̂ = 1 + ∂αĥ. In Fourier components l̂k = δk,0 + 2πik ·α · ĥk

where δ0,k is the Kronecker delta.
5) Let f = l̂ · e.
6) Choose δ = −〈 f 〉.
7) Denote b = l̂ · (e + δ).
8) Solve the cohomology equation (26) for Ŵ0 with zero average. That

is, Ŵ0
k = bk

2(cosωα·k−1) .

9) Take Ŵ = −
〈 Ŵ0

l̂·l̂◦T−ωα
〉

〈 1
l̂·l̂◦T−ωα

〉
.

10) Calculate Ŵ = Ŵ0 + Ŵ.
11) Solve the cohomology equation (25). Find β̃ satisfying β̃−β̃◦T−ωα =

Ŵ
l̂·l̂◦T−ωα

. That is, β̃k = ak
2(cosωα·k−1) where a = Ŵ

l̂·l̂◦T−ωα
.

12) We obtain ∆ = (β̃ + β̄) · l̂ where β̄ is chosen to be −〈β̃ · l̂〉/〈l̂〉 so that
〈∆〉 = 0.
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Remark 15. It is important to note that the procedure also shows that the
solution of (25) and (26) is unique up to the addition of a constant multiple
of l̂ to ∆̂.

Hence, if we the choose the solutions of (25), (26) which satisfy the
normalization 〈∆̂〉 = 0, the solutions are unique.

Of course, since the system (25), (26) is equivalent to (24), the same
considerations apply to (24).

Remark 16. Note that if we consider functions discretized by their values
at N points and by N Fourier coefficients, steps 1), 4), 8), 11) are fast in
Fourier coefficients (they require O(N) operations) while the other steps are
fast (they require O(N) operations) in the representation of the function by
its values at points. Of course, once we know the representation in space or
in Fourier coefficients we can use the Fast Fourier transform which requires
O(N log N) operations to compute the other.

Note also that if we discretize the function as above, the iterative step
only requires to store several functions, and therefore we only need to store
O(N) numbers.

We, thus obtain a quadratical convergent algorithm, with O(N) storage
requirements and O(N log(N)) operations. In contrast, a Newton method
would require O(N2) storage to store a matrix and O(N3) operations to
solve the linear equations (there are faster algorithms [Knu81] to solve lin-
ear equations but they do not seem to be practical). In practice the present
algorithm with N = 107 can run comfortably on a modest desktop machine.

Remark 17. It is important to note that [∆̂, δ], the outcome of the algorithm
depends linearly on e ≡ E[ĥ, λ].

Hence, we will write

(27) [∆̂, δ] = η[ĥ, λ]e

The operator η is called an “approximate right inverse” in Nash-Moser
theory. See, for example [Zeh75].

Notice that the estimates for the improved solution can be written in a
symbolic way as estimating E[[ĥ, λ] + η[ĥ, λ]E[ĥ, λ] ], which, using Taylor
expansion (up to quadratic errors) becomes

(28) E[ĥ, λ] + DE[ĥ, λ]η[ĥ, λ]E[ĥ, λ]

In the Newton method, we would choose η in such a way that (28) vanishes.
As pointed out in [Mos66, Zeh75], it suffices that the norm of (28) can be
bounded by the square of another norm of E[ĥ, λ].

4.3. Estimates on the quasi-Newton step. In this section we show that
the Quasi-Newton method specified in Algorithm 14 produces more ap-
proximate solutions. We will present two versions of the estimates, one in
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analytic spaces and another one in Sobolev spaces. The goal is to obtain
that the new error is quadratic in the original error even if in a weaker norm.
We note that the analytic estimates presented are a bit more delicate and
involve a condition, (34).

4.3.1. Some useful identities. We start by remarking an elementary identity
that will be used for both the analytic and the Sobolev estimates:

(29) l̂ · (D1E[ĥ, λ]∆̂) − ∆̂ · (D1E[ĥ, λ]l̂) = −l̂ · (E[ĥ, λ] + δ).

where D1 denote the derivative with respect to the first variable.
We also have the following identity obtained just adding and subtracting

terms in the definition of E[ĥ + ∆̂, λ + δ] and grouping them.

E[ĥ + ∆̂, λ + δ]

=E[ĥ, λ] + ∆̂(σ + ωα) + ∆̂(σ − ωα) − 2∆̂(σ) + δ

+ Û(σ + α · (ĥ + ∆̂)(σ)) − Û(σ + α · ĥ(σ))

=E[ĥ, λ] + (−E[ĥ, λ]) +
l̂(σ + ωα) + l̂(σ − ωα) − 2l̂(σ)

l̂(σ)
· ∆̂(σ)

+ Û(σ + α · (ĥ + ∆̂)(σ)) − Û(σ + α · ĥ(σ))

=
e′(θ) − ∂αÛ(σ + α · ĥ(σ)) · l̂(σ)

l̂(σ)
· ∆̂(σ) + Û(σ + α · (ĥ + ∆̂)(σ)) − Û(σ + α · ĥ(σ))

=e′ ·
∆̂(σ)

l̂(σ)
+ Û(σ + α · (ĥ + ∆̂)(σ)) − Û(σ + α · ĥ(σ)) − ∂αÛ(σ + α · ĥ) · ∆̂(σ)

≡e′ ·
∆̂(σ)

l̂(σ)
+ R

(30)

where R = Û(σ + α · (ĥ + ∆̂)(σ)) − Û(σ + α · ĥ(σ)) − ∂αÛ(σ + α · ĥ) · ∆̂(σ).
Clearly, R is the remainder of the Taylor estimate in the composition studied
in Lemma 5 and Lemma 6.

4.3.2. Estimates for the iterative step in analytic spaces. We now observe
that for any ρ′ < ρ, by (17), we obtain using (26)

‖Ŵ0‖ρ′ ≤ C(d, τ) · ν−1 · (ρ − ρ′)−τ · N+ · ‖e‖ρ.

Since the average of Ŵ is obtained in step 9) of Algorithm (14), we have

the estimate for Ŵ:

|Ŵ | ≤ c · ‖Ŵ0‖ρ′ · (N−)2 ≤ c · (N−)2 · N+ ·C(d, τ) · ν−1 · |ρ − ρ′|−τ · ‖e‖ρ.
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Therefore, we obtain the estimates for Ŵ:

‖Ŵ‖ρ′ ≤ M · ν−1 · (ρ − ρ′)−τ · ‖e‖ρ

where M = (c·(N−)2+1)·N+C(d, τ). The important point is that the constant
is uniform provided ĥ stays in a neighborhood in ‖ · ‖ρ norm.

Again for ρ′′ < ρ′, by (17), we have

‖∆̃‖ρ′′ ≤ C(d, τ)·ν−1 ·(ρ′−ρ′′)−τ ·(N−)2 ·‖Ŵ‖ρ′ ≤ M′ ·(ρ−ρ′)−τ ·(ρ′−ρ′′)−τ ·‖e‖ρ.

So, we have

‖β̃‖ρ′′ ≤ N+ · M · ν−2(ρ − ρ′)−τ · (ρ′ − ρ′′)−τ · ‖e‖ρ

and

(31) ‖∆‖ρ′′ ≤ N+ · N−M · ν−2(ρ − ρ′)−τ · (ρ′ − ρ′′)−τ · ‖e‖ρ.

Similarly, using Cauchy estimates, we obtain for ρ′′′ < ρ′′

(32) ‖∆‖ρ′′ ≤ N+ · N−M · ν−2(ρ′′ − ρ′′)−1(ρ − ρ′)−τ · (ρ′ − ρ′′)−τ · ‖e‖ρ.

If we take ρ − ρ′ = ρ′ − ρ′′ in (31) and ρ − ρ′′ = ρ′ − ρ′′ = ρ − ρ′′ (and
redefine ρ′′′ ) in (32) we obtain:

‖∆̂‖ρ′′ ≤ M′ · ν−2(ρ − ρ′′)−2τ · ‖e‖ρ

‖∆̂‖ρ′′ ≤ M′ · ν−2(ρ − ρ′′)−2τ−1 · ‖e‖ρ.
(33)

If we have that ‖∆̂‖ρ′′ ≤ ι/2, which, by (33) is implied by

(34) M′ · ν−2(ρ − ρ′′)−2τ · ‖e‖ρ ≤ ι/2,

we can define Û(σ + α̂h + ∆̂(σ)) and indeed apply Taylor’s estimate we
obtain

(35) ‖R‖ρ′′ ≤ sup Û · ‖∆̂‖2ρ′′ ≤ Mν−4(ρ′′ − ρ)−2τ‖e‖2ρ.

The first term in the right-hand-side of (30) is estimated using the Cauchy
estimates and the previous estimates on ‖∆̂‖.∣∣∣∣∣∣e′ · ∆̂

l̂

∣∣∣∣∣∣
ρ′′
≤ (ρ − ρ′′)−1‖e‖ρN−N+ · M′ · ν−2(ρ − ρ′′)−2τ · ‖e‖ρ

= M(ρ − ρ′′)−2τ−1ν−2‖e‖2ρ
≤ M(ρ − ρ′′)−4τ−1ν−4‖e‖2ρ.

The last estimate is done with the purpose of simplifying the expressions,
but it is obviously wasteful. Note that τ ≥ 1 and that the estimates above
are delicate only when ρ − ρ′′, ν are small.
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Finally, putting together the estimates for the two terms in the right-hand-
side of (30), we have:

(36) ‖E[ĥ + ∆̂, λ + δ]‖ρ′′ ≤ C · ν−4(ρ − ρ′′)−4τ‖E[ĥ, λ]‖2ρ.

Therefore, we have proved the following

Lemma 18. In the hypothesis of Theorem 11.
Assume that (34) holds. Then, the improved function obtained applying

Algorithm (14), satisfies (36).

As it is well-known in KAM theory, the above estimates imply that the
iterative procedure can be repeated indefinitely and the resulting sequence
converges to a function satisfying the claims of Theorem 11. Indeed, the
paper [CdlL10] contains an abstract theorem that immediately applies to
this situation. We will discuss this in more detail in Section 4.4.

4.3.3. Sobolev estimates for the iterative step. Let s > d
2 . According to the

algorithm 8), we have

‖b‖Hs =
∑
k∈Zd

(1 + |k|2)s|l̂k · (ek + δk,0)|2

=
∑

k∈Zd−{0}

(1 + |k|2)s · |l̂k · ek|
2

≤ ‖ f ‖Hs ≤ K · ‖l̂‖Hs · ‖e‖Hs .

By (18), we obtain

‖Ŵ0‖Hs−τ ≤ C · ν−1 · ‖b‖Hs ≤ C · ν−1 · K · N+ · ‖e‖Hs .

We get

|Ŵ | ≤ c · (N−)2‖Ŵ0‖Hs−τ

and
‖Ŵ‖Hs−τ ≤ C · ν−1 · K · N+ · ‖e‖Hs .

So we have

‖∆̃‖Hs−2τ ≤ C · ν−1K2 · (N−)2 · ‖Ŵ‖Hs−τ ≤ C · ν−2 · N+ · (N−)2 · ‖e‖Hs .

Hence,
‖∆̂‖Hs−2τ ≤ C · ν−2 · (N+)2 · (N−)2 · ‖e‖Hs .

We recall that the approximate inverse of the derivative η[ĥ, λ] is just the
result of applying applying the algorithm in Section 4.2, i.e. [∆̂, δ] =

η[ĥ, λ]E[ĥ, λ]. We have proved the following lemma:

Lemma 19. Let s > d
2 + 2τ. Then we have

‖η[ĥ, λ]E[ĥ, λ]‖Hs−2τ ≤ C · ν−2 · (N+)2 · (N−)2 · ‖e‖Hs .
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We will also need estimates on (D1E[ĥ, λ]η[ĥ, λ] − Id)(E[ĥ, λ] + δ).

Lemma 20.

‖(D1E[ĥ, λ]η[ĥ, λ] − Id)(E[ĥ, λ] + δ)‖Hs−2τ

≤C · ν−2 · (N+)2 · (N−)3 · ‖E[ĥ, λ]‖Hs−2τ−1‖E[ĥ, λ]‖Hs .

Proof. By the definition of η[ĥ, λ], we know ∆̂ = −η[ĥ, λ](E[ĥ, λ] + δ).
Hence,

(D1E[ĥ, λ]η[ĥ, λ] − Id)(E[ĥ, λ] + δ)

= − D1E[ĥ, λ]∆̂ − E[ĥ, λ] − δ =
∆̂ · D1E[ĥ, λ]

l̂
.

So we have that

‖(D1E[ĥ, λ]η[ĥ, λ] − Id)(E[ĥ, λ] + δ)‖Hs−2τ

≤C · ν−2 · (N+)2 · (N−)3 · ‖E[ĥ, λ]‖Hs−2τ−1‖E[ĥ, λ]‖Hs .

�

4.4. Convergence of the procedure. The existence of solutions both in
the analytic case and in the Sobolev case is deduced from the estimates in
Section 4.3 followed by Nash-Moser estimates.

Indeed in [CdlL10], one can find an abstract Nash-Moser implicit func-
tion theorem which is tailored to the theorems 11 and 12.

In this section, we reproduce the theorem from [CdlL10] and explain why
it is applicable. We note that the the theorem has several corollaries which
are of physical interest and we present them in Section 6.

For the sake of completeness, in Section 4.4.2, we present a direct proof
of the convergence in the analytic case.

4.4.1. An abstract implicit function theorem. In [CdlL10, Appendix A] one
can find a proof of the following result, Theorem 21. This is an abstract
theorem that applies to operators in scales of Banach spaces, which have
smoothing operators.

In [CdlL10] one can also find a verification that the Sobolev spaces and
analytic spaces considered indeed have smoothing operators (one can take
S t

∑
k ĥke2πikσ = e−t|k|ĥke2πikσ. The regularity properties of the operator en-

tering in the assumptions of Theorem 21 follow immediately for the com-
position properties presented in Section 2.1.1 and, specially Lemma 6.

Theorem 21. Let m > 2τ and Xr for m ≤ r ≤ m + 34τ be a scale of Banach
spaces with smoothing operators as shown in [CdlL10]. Let Br be the unit
ball in Xr, B̃r = ĥ + Br the unit ball translated by ĥ ∈ Xr and B(Xr,Xr−2τ)
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is the space of bounded linear operators from Xr to Xr−2τ. Consider a map
F : B̃r → X

r−2τ and η : B̃r → B(Xr,Xr−2τ) satisfying the following:

(i) F (B̃r ∩ X
r) ⊂ Xr−2τ for m ≤ r ≤ m + 34τ.

(ii) F |B̃r∩Xr : B̃r ∩ X
r → Xr−2τ has two continuous Fréchet derivatives,

both bounded by some constant M, for m ≤ r ≤ m + 34τ.
(iii) ‖η[∆̂]F [∆̂]‖Xr−2τ ≤ C · ‖F [∆̂]‖Xr , ∆̂ ∈ B̃r, for r = m − 2τ, m + 32τ.
(iv) ‖(DF [∆̂]η[∆̂] − Id)F [∆̂]‖Xr−2τ ≤ C · ‖F [∆̂]‖2

Xr , ∆̂ ∈ B̃r, for r = m.
(v) ‖F [∆̂]‖Xm+32τ ≤ C · (1 + ‖∆̂‖Xm+34τ), ∆̂ ∈ B̃m.

Then if ‖F [ĥ]‖Xm−2τ is sufficiently small, there exists ĥ∗ ∈ Xm such that
F [ĥ∗] = 0. Moreover, ‖ĥ − ĥ∗‖Xm < C · ‖F [ĥ]‖Xm−2τ .

We recall that the method of proof of Theorem 21, following [Sch60]
is to modify the quasi-Newton step adding a smoothing step. That is, one
constructs a sequence [ĥn+1, λn+1] = [ĥn, λn] + S tnη[ĥn, λn]E[ĥn, λn]. The
choices of tn have to be carefully chosen so that the quadratic convergence
(in some norm) is maintained. The main difference between Theorem 21
and the result in [Sch60] is that Theorem 21 includes the fact that η is an
approximate inverse and not an inverse.

The estimates showing that η is indeed an approximate inverse are the
estimates obtained in Section 4.3.

4.4.2. A direct proof of the convergence in the analytic case. Since the es-
timates in the analytic case are so easy, we present a direct proof. As we
will see, the estimates are rather easy to verify. The main difficulty is the
order of the choices.

We start with an approximate solution [ĥ0, λ0] with ĥ ∈ A 1
ρ0

.
Since we will have to change the function through an iterative procedure,

we note that the condition numbers N+,N−, c depend on the functions we
are considering, nevertheless, they are uniform in a A 1

ρ neighborhood.
We start by choosing a number γ > 0 such that that in neighborhood of

size γ in A 1
ρ0

, we have that N± ≤ 2N±(ĥ0), c ≤ 2c(ĥ0).
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The following algebraic identities will be useful in estimating the change
of non-degeneracy conditions in the iterative step.

N+(h; ρ0) ≡ ‖1 + ∂αĥ‖ρ0

≤ N+(ĥ0; ρ0)‖∂α(ĥ − ĥ0‖ρ0

N−(ĥ; ρ0) ≡ ‖(1 + ∂αĥ)−1‖ρ0

≤ N−(ĥ0; ρ0) + ‖∂α(ĥ − ĥ0)‖ρ0 N−(h0; ρ0)N−(ĥ; ρ)∣∣∣c(ĥ) − c(ĥ0)
∣∣∣ =

∣∣∣∣∣∣
〈

1

l̂ · l̂ ◦ T−ωα
−

1

l̂0 · l̂0 ◦ T−ωα

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈

l̂0 (l̂0 − l̂) ◦ T−ωα + (l̂ − l̂0)

l̂0l̂0 ◦ T−ωαl̂l̂ ◦ T−ωα

〉∣∣∣∣∣∣
≤

[
N−(ĥ; ρ0)N−(ĥ0; ρ0)

]2
(‖l̂‖ρ0 + ‖l̂0‖ρ0)‖l̂ − l̂0‖ρ0 .

(37)

Hence we can find a number γ > 0 depending only on the non-degeneracy
conditions N±, c so that all the functions in a ball of radius γ in A 1

ρ0
cen-

tered at ĥ0, have non-degeneracy constants not larger than twice the non-
degeneracy assumptions of ĥ0.

More generally, we have, by the same argument that if ‖ĥ − ĥ0‖A 1
ρ
≤ γ,

then, N±(ĥ; ρ) ≤ 2N−±(ĥ0, ρ).
The key estimates are, as follows to show that, with some convenient

choices of radii, which we do at the outset, the iterative process can be
applied indefinitely and indeed it converges. We will use (37) to show that
the non-degeneracy constants do not deteriorate much.

We denote by

(38) ρn = ρn−1 −
ρ0

4
2−n = ρ0(1 −

1
4

n∑
i=0

2−i)

and provided that we can apply the iterative step (that is, provided that (34)
applies with the choices of ρn in (38), we define for n ≥ 1, [ĥn, λn] =

[ĥn−1, λn−1] + η[ĥn−1, λn−1]E[ĥn−1, λn−1].
We denote by M the constant in Lemma 18 corresponding to twice the

degeneracy assumptions corresponding to the original function.
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If (34) applies n times, for typographical simplicity, we denote εi =

‖E[ĥi, λi‖ρi we see that

εn ≤ Mν−2ρ−4τ
0 2(n−1)4τε2

n−1 ≤ (Mρ−4τ
0 ν−2)1+22(n−1)4τ+2(n−2)4τε22

n−2

· · ·

≤ (Mν−2ρ−4τ
0 )1+2+···+2n

2(n−1)4τ+2(n−2)4τ+···2n−14τε2n

0

≤ (Mν−2ρ−4τ
0 )2n+1

28τ2n

ε2n

0 .

(39)

We see that if (Mν−2ρ−4τ
0 )228τε0 < 1, the right-hand-side of (39) decreases

faster than any exponential. Indeed the factor can be made as small as
desired by assuming that ε0 is small enough.

If we apply n-times the inductive step, we see that the distance from the
range of hn to the complement of the domain of definition of Û is at least

ι −

n∑
i=0

‖∆i‖ρn ≥ ι −

n∑
i=0

‖∆i‖ρi ≥ ι −

n∑
i=0

M′ν−2ρ−4τ
0 2i4τεi

≥ ι −

n∑
i=0

M′ν−2ρ−4τ
0 (Aε0)21

.

Note that if ε0 is small enough, this is bounded from below by ι3
4 indepen-

dent of n.
According to Lemma 18, the only thing we have to verify is (34), which

with the choices of radii that we have made amounts to:

M′ · ν−2ρ−2τ
0 2n4τεn ≤ ι/4.

We note that this condition is satisfied independently of n if n is large
enough.

Using (37), we have:

N+(ĥn, ρn) ≤ N+(hn−1, ρn) + ‖D∆n‖ρn ≤ N+(hn−1, ρn−1) + Mν−2ρ4τ+1
0 24τ(n−1)εn−1

≤ N+(h0, ρ0) + Mν−2ρ4τ+1
0

m−1∑
i=0

24τ(n−1)(Aε0)2i

and similarly for N−, c. Therefore, under smallness conditions on ε0, we
get that the non-degeneracy conditions do not change by a factor 2 from the
original one, so that the induction hypothesis are satisfied.

In summary, under just three smallness conditions in ε0, which can be
assessed just looking at the non-degeneracy conditions, we conclude that
the iterative step can be carried out infinitely often and that the assumptions
on the non-degeneracy constants make in the estimates for the step remain
valid.
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We also note that since ρn ≥ ρ0/2, we have

‖hN − ĥ0‖ρ0/2 + |λn − λ0| ≤

N∑
n=1

‖ĥn − ĥn−1‖ρ0/2 + |λn − λn−1|

≤ ‖ĥn − ĥn−1‖ρn ≤

N∑
n=1

(Aε0)22n

2(4τ+1)nMν−4ρ−4τ
0

which establishes the quantitative claims made for the result.

4.5. Uniqueness of the solution. In this section, we establish the unique-
ness claims for the Theorems 11, 12. We note that the proof is very el-
ementary and only uses the theory of linearized solutions as well as the
interpolation inequalities in Section 2.1.1.

4.5.1. Uniqueness for the analytic case. If ‖ĥ∗ − ĥ∗∗‖ ρ
4
, |λ∗ − λ∗∗| is suf-

ficiently small and E[ĥ∗, λ∗] = E[ĥ∗∗, λ∗∗] = 0, by Taylor’s theorem and
Lemma 5, we have

(40) 0 = E[ĥ∗∗, λ∗∗] − E[ĥ∗, λ∗] = D1E[ĥ∗, λ∗](ĥ∗∗ − ĥ∗) + (λ∗∗ − λ∗) + R

where ‖R‖ ρ
4
≤ C · ‖ĥ∗∗−ĥ∗‖2ρ

4
.

Now, denoting as before l̂ = 1 + ∂αĥ∗ and recalling that

D1E[ĥ∗, λ∗] · l̂ =
d
dθ
E[ĥ∗, λ∗] = 0

we can write the equation (40) as:

(41) l̂ · (D1E[ĥ∗, λ∗](ĥ∗∗ − ĥ∗)) − (ĥ∗∗ − ĥ∗) · (D1E[ĥ∗, λ∗]l̂) = −l̂R.

The proof of uniqueness is based on uniqueness of the solution of the system
(25) and (26). By the estimates in Section 4.3, we conclude that for any
0 < ρ′′ < ρ′ < ρ

4 ,

‖ĥ∗∗ − ĥ∗‖ρ′′ ≤ C(N−,N+, d, τ, c) · ν−2 · (ρ − ρ′)−τ · (ρ′ − ρ′′)−τ‖R‖ρ

Take ρ′′ =
ρ

8 and ρ′ = 3
16ρ.

In the analytic case, we obtain

‖ĥ∗∗ − ĥ∗‖ ρ
8
≤ C̃ · ν−2 · ρ−2τ · ‖ĥ∗∗ − ĥ∗‖2ρ

4

≤C̃ · ν−2 · ρ−2τ · ‖ĥ∗∗ − ĥ∗‖ ρ
8
· ‖ĥ∗∗ − ĥ∗‖ 3

8ρ
,

where C̃ > 0 is a constant depending on N−,N+, d, τ, c,C. The last in-
equality holds by Lemma 3. So when ‖ĥ∗ − ĥ‖ 3

8ρ
small enough, we obtain

ĥ∗∗ = ĥ∗, λ∗∗ = λ∗. This completes the proof of uniqueness of the solution
in Theorem 11 for the analytic case.
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4.5.2. Uniqueness for the Sobolev case. Instead of applying Hadamard 3-
circle theorem for the analytic case, we use the interpolation inequality for
Sobolev case ( Lemma 4).

Following the proof in Section 4.5.1, we will have

‖ĥ∗∗ − ĥ∗‖Hm−4τ ≤ C̃ · ν−2 · ‖ĥ∗∗ − ĥ∗‖2Hm

≤C̃ · ν−2 ·Cm−4τ,m+4τ · ‖ĥ∗∗ − ĥ∗‖Hm−4τ · ‖ĥ∗∗ − ĥ∗‖Hm+4τ .

This completes the proof of uniqueness of the solution in Theorem 12 for
the Sobolev case.

5. vanishing lemma

In this section we prove

Lemma 22. Consider a solution of (5) with the stated periodicity condition.
If

Û = ∂αV

then λ = 0.

Proof. The proof is very simple. We multiply (5) by h′(θ) and compute
limT→∞

1
2T

∫ T

−T
of all the terms. We note that this produces the formula

(42) λ = − lim
Ti→∞

1
2T

∫ T

−T
Û(h(θ)) · h′(θ)dθ.

In fact, we observe that

h(θ + ω) + h(θ − ω) − 2h(θ) = h̃(θ + ω) + h̃(θ − ω) − 2h̃(θ) ∈ QP(α).

Similarly,
h′(θ) = 1 + h̃′(θ) ∈ QP(α).

Hence,
[h(θ + ω) + h(θ − ω) − 2h(θ)] · h′(θ) ∈ QP(α)

and we have that

lim
T→∞

1
2T

∫ T

−T
[h(θ + ω) + h(θ − ω) − 2h(θ)] · h′(θ)

=
∑

k∈Zd−{0}

−ĥk · 2(cos(2πωk · α) − 1) · ĥ−k2πi(k · α) + ĥ0(2 cos(2πω0 · α) − 1)

= 0.

The first equality is true because of Lemma 8 and the fact that the sum is
Cauchy formula for the k = 0 coefficient of the integrand ( as we will see
below). The fact that the sum is 0 is clear because it is antisymmetric in k.
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In fact, note that

̂[h̃ ◦ Tω + h̃ ◦ T−ω − 2h̃]k = 2(cos (2πωk · α) − 1)ĥk,

in particular, the coefficient vanishes for k = 0, and

[̂h′]k = δ0,k + 2πik · α · ĥk.

We have using Cauchy formula for the Fourier series of the product

̂[[h̃ ◦ Tω + h̃ ◦ T−ω − 2h̃] · h′]0

=
∑
k∈Zd

2(cos(2πωk · α) − 1)ĥk · [δ0,k − 2πik · α · ĥ−k]

=
∑

k∈Zd−{0}

−ĥk · 2(cos(2πωk · α) − 1) · ĥ−k2πi(k · α) + ĥ0(2 cos(2πω0 · α) − 1).

We also observe that∫ T

−T
∂αV(αh(θ)) · h′(θ)dθ = V(αh(T )) − V(αh(−T )).

So it is bounded independent of T. When we divide the integral by 2T and
take the limit T → ∞. We obtain 0. This ends the proof of Lemma 22. �

6. Several further consequences of the formalism

As pointed out in [CdlL10], once one has an a-posteriori theorem with
local uniqueness in analytic and Sobolev spaces, there are more or less auto-
matically several consequences which could be of interest for applications
and which we now make explicit for our case.

6.1. Existence of perturbative expansions to all orders and their con-
vergence. If we consider models in which the interaction has a small pa-
rameter, i.e. the interaction term is given by εÛ, it is interesting to know
whether one can write formal power series ĥε =

∑
n ε

nĥn, λε =
∑

n ε
nλn

which solve (5) in the sense of power series as well as the normalization
condition (6). Furthermore it is interesting to show that that the series con-
verges. These power series for hull functions are very similar to the Lindst-
edt series in mechanics.

We will show that, when the frequencies are Diophantine, the solution to
both questions is affirmative. Series exist to all orders and converge.



KAM THEORY FOR 1-D QUASICRYSTALS 27

6.1.1. Existence of Lindstedt series to all orders. We first argue that one
can find the solution to (5) in the sense of power series.

If we substitute the power series and match like powers of ε, we obtain a
hierarchy of equations for the coefficients of the perturbation. At order ε0

we obtain:

(43) ĥ0(σ + ωα) + ĥ0(σ − ωα) − 2ĥ0(σ) + λ0 = 0

which implies that λ0 = 0, ĥ0 is a constant. Because of the normalization
(6), we have ĥ0 = 0.

At order ε1, we obtain

(44) ĥ1(σ + ωα) + ĥ1(σ − ωα) − 2ĥ1(σ) + Û(σ) + λ1 = 0.

This equation is very similar to the equations studied in Section 2.3. Indeed,
in Fourier series, it is equivalent to

ĥ1
k2(cos(2πωk · α − 1) = Ûk + δ0,kλ

1.

We see that we can determine λ1 = −Û0. ĥ1
0 is not determined by (44) but

the normalization (6) sets it to h1
0 = 0. All the other Fourier coefficients

can be determined and indeed if Ûk is analytic in some domain then ĥ1
k is

analytic in a slightly smaller domain.
In general, at order n, we obtain:

(45) ĥn(σ + ωα) + ĥn(σ − ωα) − 2ĥn(σ) + Rn(σ) + λn = 0

where Rn is a polynomial expression in ĥ1, ĥ2, · · · , ĥn−1 with coefficients
which are derivatives of Û. So, we can assume by induction that Rn is
known. The equation (45) is of the same form as (44) and the same analy-
sis shows that we can get a unique solution for ĥn and, hence, recover the
hypothesis.

6.1.2. Convergence of the formal power series. The fact that the formal
power series converges is a very easy consequence of the fact that there are
analytic families ĥε , λε , which solve the equations. This is a general fact,
which is a consequence of the formalism and we go over the proof rather
quickly. See [CdlL10, GEdlL08].

We just note that the method we have used works just as well for complex
functions. We note that for all ε small enough, there is a solution. (Note
that we can take ĥ = 0, λ = 0 as an approximate solution if ε is small). So,
it suffices to show that this solution depends differentiably on the complex
parameter ε. We follow the standard practice in analysis of first obtaining a
guess of the derivative and then proving it indeed satisfies the definition of
derivative.
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For a fixed ε we can guess d
dε ĥε ,

d
dελε because if they existed, they should

satisfy

d
dε

ĥε(σ + ωα) +
d
dε

ĥε(σ − ωα) − 2
d
dε

ĥε(σ)

+ ε∂αÛ(σ + αĥε)
d
dε

ĥε(σ) + Û(σ + αĥ(σ)) +
d
dε
λε = 0.

(46)

The method used in Section 4.1 shows that the equation (46) for d
dε ĥε(σ) can

be transformed into a constant coefficient equation (note that, by assumption
hε is an exact solution of (5)).

Now, to prove that this guess indeed is the derivative, we just note that
||Eε+µ(ĥε + µ d

dε ĥε)||ρ−η ≤ C|µ|2. Then, applying the a-posteriori format and
the local uniqueness, we conclude ||ĥε+µ − ĥε − µ d

dε ĥε ||(ρ−η)/2 ≤ Cµ2.

6.2. Bootstrap of regularity. In this section we state the theorem of boot-
strap of regularity and omit the proof. See [CdlL10] for more details.

Theorem 23. Let ĥ ∈ Hm, λ be a solution of (5) with Û analytic.
Assume that m is large enough (depending only on the Diophantine ex-

ponent). Then, ĥ is analytic.

The idea of the proof is very simple. We can take a truncation of the
Fourier series as an approximate solution. Of course, these are analytic
functions. If the decrease of the Fourier series is fast enough, it is possible
to use the analytic theorem and conclude that there is an analytic solution.
By the uniqueness in Sobolev spaces, this must be the original solution.

In Sobolev regularity this is restated as Theorem 6.8 in [CdlL10]. In
[SZ88, GEdlL08], one can find a similar argument for Cr classes. The ar-
gument for Cr classes in the later papers is somewhat more involved since
it obtains sharper results by using better approximations than truncating.

6.3. A practical numerical criterion for the analyticity breakdown. The
above considerations lead to a very practical and reliable way to compute
thresholds of breakdown of analytic solutions.

Observe that by now, we have efficient algorithms to compute the invari-
ant tori, given approximate solutions. This, of course, immediately leads
to a continuation algorithm. Since we have an a-posteriori theorem, we can
be sure that, the approximate solutions produced numerically (which satisfy
the invariance equation up to a few units of round–off error) correspond to
true solutions if they satisfy the non-degeneracy conditions.

Therefore, a practical algorithm to compute the threshold of breakdown
is to implement the continuation method and monitor the non-degeneracy
conditions.
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In many occasions it happens that the only condition that fails is that
||ĥ||Hm becomes very large. In that case, one can argue that the solutions ex-
perience a breakdown because if there were analytic tori in a neighborhood
of parameters, the Sobolev norms would remain bounded. Similar meth-
ods for the periodic Frenkel-Kontorova models and models with long range
interactions have been implemented in [CdlL10].

Some implementations of the method are already in progress [BHdlL11]
and the results will be reported elsewhere.
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1991/92.

[Zeh75] E. Zehnder. Generalized implicit function theorems with applications to some
small divisor problems. I. Comm. Pure Appl. Math., 28:91–140, 1975.

Dept. ofMathematics, Nanjing University, Nanjing, 210093, CHINA

Dept. of Mathematics, Univ. of Texas at Austin, 1 Univ. Station C1200, Austin, TX
78712-0257

E-mail address: billy3492@gmail.com, xifengsu@math.utexas.edu

Dept. of Mathematics, Univ. of Texas at Austin, 1 Univ. Station C1200, Austin, TX
78712-0257

E-mail address: llave@math.utexas.edu


