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Abstract

We consider some elliptic PDEs with Dirichlet and Neumann data prescribed on some
portion of the boundary of the domain and we obtain rigidity results that give a classification
of the solution and of the domain.

In particular, we find mild conditions under which a partially overdetermined problem is,
in fact, globally overdetermined: this enables to use several classical results in order to classify
all the domains that admit a solution of suitable, general, partially overdetermined problems.

These results may be seen as solutions of suitable inverse problems – that is to say, given that
an overdetermined system possesses a solution, we find the shape of the admissible domains.

Models of these type arise in several areas of mathematical physics and shape optimization.
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1 Introduction

The purpose of this paper is to prove some rigidity results for overdetermined problems arising
in elliptic PDEs – namely, assuming both Dirichlet and Neumann conditions gives very strict
constraints on both the solution and the domain, leading, quite often, to a complete classification.
We refer to [Ser71, Wei71, BCN97] for classical results on overdetermined problems.
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In particular, it was proved in [Ser71] that if, in a smooth, bounded, connected domain Ω, there
exists a smooth solution u of







∆u+ f(u) = 0 in Ω,
u > 0 in Ω,

u = 0 and ∂νu = c on ∂Ω,
(1)

then Ω is a ball and u is radially symmetric about the center of such ball. As usual, here above, ν
denotes the exterior unitary normal vector on ∂Ω and c ∈ R is any fixed constant.

An alternative, striking proof of some of the results of [Ser71] was given in [Wei71]. The results
in [Ser71] have been of outstanding importance, both for the applications and for the development
of a fruitful mathematical theory.

Indeed, according to [Ser71], the study of problem (1) was motivated by a question of R. L. Fosdick
about fluid mechanics. In this setting, the model in (1) describes a viscous incompressible fluid
moving through a straight pipe of given planar cross section Ω: then, u represents the flow velocity
of the fluid, and ∂νu is the tangential stress on the pipe. So, the conclusion of [Ser71] is that the
tangential stress on the pipe wall is the same at all points of the wall if and only if the pipe has
a circular cross section.

Other models from physics are also referable to (1), e.g. in the linear theory of torsion of a solid
straight bar (see pages 109–119 in [Sok56]). In this framework, the result of [Ser71] states that
when a solid straight bar is subject to torsion, the magnitude of the resulting traction which
occurs at the surface of the bar is independent of the position if and only if the bar has a circular
cross section.

Also, (1) can be related to a lower dimension obstacle problem (the so called Signorini problem, see
for instance [Fre77]) and so to the fractional Laplacian and to Dirichlet-to-Neumann operators. See
also [DSV10] for an overdetermined problem in a fully nonlinear case. Overdetermined boundary
conditions also arise naturally in free boundary problems, where the variational structure imposes
suitable conditions on the separation interface: see, e.g., page 109 in [AC81].

Besides the very many applications, [Ser71] also made available to the mathematical community
the (up to now classical) moving plane method, which is a very flexible version of the reflec-
tion method of [Ale56], and from which many fundamental results originated, such as the ones
in [GNN79].

Then, in [BCN97], the analogue of (1) in unbounded domains was considered, in connection with
the regularity theory of some free boundary problems. In this case, the “typical” nonlinearity f
taken into account is the bistable nonlinearity f(u) = u−u3, which reduces the PDE in (1) to the
Allen-Cahn equation. Under suitable assumptions on Ω (such as, ∂Ω being a globally Lipschitz
epigraph with some control at infinity), it was proved in [BCN97] that if (1) admits a smooth,
bounded solution, then Ω is a halfspace – in a sense, while the results of [Ser71] on bounded
domains reduce Ω via a rotational symmetry, the one in [BCN97] on unbounded domains perform
a planar symmetry.

Some of the results in [BCN97] have been extended in [FV10a] in low dimensions, by dropping
some of the conditions at infinity. Also, the planar symmetry results of [BCN97] may be related
to a famous question posed by [DG79] (see [FV09] for a recent review on this topic). It was also
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asked in [BCN97] whether

the existence of a bounded, smooth solution of (1) in a smooth domain Ω

whose complement is connected implies that Ω is either a halfspace, a ball or a cylinder

(or the complement of one these regions).

(2)

It has been recently shown in [Sic10] that the answer to such a question is negative in dimension 3
or higher when f is linear (as far as we know, the question is still open in dimension 2, and in any
dimension if f is nonlinear, e.g. if f is bistable). We refer to [FV10a] for some related results,
and to the forthcoming Theorem 14 here for a further remark.
The main feature of (1) is that it is an overdetermined problem, i.e. both the Dirichlet and the
Neumann data are given on ∂Ω (and this is the main reason that excludes many nasty solutions).
A natural variant of the problem consists in a partial overdetermination, that is in considering
a boundary value problem whose overdetermined prescription occurs only on a portion of the
boundary Γ ⊆ ∂Ω, such as, for instance,















∆u+ f(u) = 0 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,
∂νu = c on Γ.

(3)

These partially overdetermined problems arise quite naturally, for instance, in shape optimization
– e.g., in the minimization problem of the first Dirichlet eigenvalue of −∆ among all open sets
constrained to lie in a given box and also with a given volume, in the minimization problem of
the second Dirichlet eigenvalue among all planar convex domains of given area, in the problem of
minimizing the Dirichlet energy of domains with prescribed volume and confined in a planar box,
etc., see [Hen06]. In fact, we can not attempt to list an exhaustive bibliography on overdetermined
and partially overdetermined elliptic problems: we refer to [Ser71, Wei71, WCG95, BCN97, HP05,
FG08, FGLP09] and the bibliography therein for basic references and also to Section 2 of [FG08]
for detailed physical motivations and relations, among other subjects, to fluid and solid mechanics,
thermodynamics and electrostatics.
A particular case of partially overdetermined problem is the one in which Ω in (3) is a cone, and
so the Neumann prescription cannot be given in the whole of ∂Ω but, at most, outside the vertex
of the cone (in this case ∂Ω\Γ would consist of just one point). We refer to [FV10b] for the study
of this problem in dimension 2 and 3 (see also Corollary 13 in what follows).
Here, the problems we consider may be divided into two categories, namely the problems whose
overdetermined prescription occurs on a well-known portion of the boundary, and the ones which
possess rotational symmetry. Here below, we describe in detail the results obtained, whose proofs
will follow in the subsequent sections.
We remark that our results may be extended to uniformly elliptic linear operators on Riemannian
manifolds. From now on, we will suppose n ≥ 2.

1.1 A Unique Continuation Principle

For clearly stating our results, it is convenient to recall the following, classical notation – see, e.g.,
page 22 in [DZ01]:
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Definition 1. Let Ω ⊂ R
n be open, nonempty, and k ∈ N∪{∞}∪{ω}. We say that Ω is of class

Ck if, for any x ∈ ∂Ω,

there exist an open set U (x) ⊂ R
n, with x ∈ U (x),

and a bijective map g(x) ∈ Ck(U (x), B1), with inverse map h(x) ∈ Ck(B1, U
(x)),

such that

U (x) ∩ Ω = h(x)
(

B1 ∩ {xn > 0}
)

,

U (x) ∩ (∂Ω) = h(x)
(

B1 ∩ {xn = 0}
)

,

and U (x) \ Ω = h(x)
(

B1 ∩ {xn < 0}
)

.

(4)

We also use the following notation:

Definition 2. Let M ⊂ R
n and k ∈ N ∪ {∞} ∪ {ω}. We say that M is a Ck-hypersurface if it

is nonempty, connected and there exists an open set O ⊂ R
n of class Ck such that M = ∂O.

Definition 3. Let Ω ⊂ R
n be open, Γ ⊆ ∂Ω and k ∈ N∪{∞}∪{ω}. We say that Γ is a Ck-subset

of ∂Ω if Γ is nonempty, open in the natural topology of ∂Ω, and (4) holds for any x ∈ Γ.

Definition 4. Let Γ ⊆ R
n and k ∈ N ∪ {∞} ∪ {ω}. We say that Γ is a Ck-subset if there exists

an open set Ω ⊂ R
n such that Γ is a Ck-subset of ∂Ω.

The following result, which is an enhancement of the classical Unique Continuation Principle, uses
Definition 3 and is one of the cornerstones of our analysis (Definitions 1, 2 3 and 4 will also be
exploited in Theorem 6). Roughly speaking, it says that if two solutions have the same Dirichlet
and Neumann datum on a portion of the boundary, then they must coincide.

Theorem 5. Let εo > 0, and Ω ⊂ R
n be open and connected. Let Γ be a C1-subset of ∂Ω, with

exterior normal ν, and let po ∈ Γ.
Let u(1), u(2) ∈ C2(Ω) ∩C1(Ω ∪ Γ) ∩W 2,2

(

Ω ∩Bεo(p0)
)

solve

∆u(`) + f(x, u(`),∇u(`)) = 0 in Ω, for ` = 1, 2.

Suppose that f is locally Lipschitz in Ω × R × R
n.

If u(1)(x) = u(2)(x) and ∂νu
(1)(x) = ∂νu

(2)(x) for any x ∈ Γ, then u(1)(x) = u(2)(x) for any x ∈ Ω.

We remark that the only regularity needed in Theorem 5 is of first derivative type (on Γ and f).
This will allow us to obtain results similar to the ones of [FG08] in a non-analytic setting (see,
e.g., Corollary 7 and Theorem 10 below; see also Appendix A for recovering the results of [FG08]
from ours).

1.2 From partially to globally overdetermined problems

Now, we deal with problems which are overdetermined only in a portion of the boundary (see [FG08,
FGLP09]).
The next result gives a condition under which a partially overdetermined problem is, in fact,
globally overdetermined. In this case, the reason for recalling Definitions 1, 2, 3 and 4 is that
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we will deal with domains that are not necessarily connected or bounded, that may have several
connected components, and that may not be smooth. We consider this result as the major
contribution of this paper, since it holds under very mild hypotheses and it has a wide range
of applications – for instance, reducing to a globally overdetermined problem will allow us to
use several classical results in order to classify all the domains that admit a solution of suitable,
general, partially overdetermined problems.

Theorem 6. Let εo > 0, f be locally Lipschitz in Ω × R × R
n, and let Ω, Ω̃ ⊂ R

n be open sets.
Let Γ be a C1-subset of ∂Ω, with po ∈ Γ. Let C be the connected component of ∂Ω that contains Γ.
Suppose that there exists a C2-hypersurface M, with exterior1 normal ν, such that Γ ⊆ M and Ω∪
(C ∩M) ⊂ Ω̃.
Let φ : R

n → R be C1 in a neighborhood of M and ψ ∈ C0(M), with

ψ(x) − ∂νφ(x) 6= 0 for any x ∈ M \ Γ. (5)

Assume that for any P ∈ M \ Γ there exist r(P ) > 0 and

u(P ) ∈ C2(Br(P )(P )) (6)

which solves






∆u(P ) + f(x, u(P ),∇u(P )) = 0 in Br(P )(P ),

u(P ) = φ on M∩Br(P )(P ),

∂νu
(P ) = ψ on M∩Br(P )(P ).

(7)

Let u ∈ C0(Ω) ∩ C2(Ω) ∩W 2,2(Ω ∩ Bεo(po)) ∩ C1(Ω̃) be a solution of a problem that is partially
overdetermined on ∂Ω by the following equations:







∆u+ f(x, u,∇u) = 0 in Ω,
u = φ on ∂Ω,
∂νu = ψ on Γ.

(8)

Then
C = M (9)

and
u = φ and ∂νu = ψ on C. (10)

Concerning the statement of Theorem 6, and in particular the boundary conditions in (8), we
remark that

u is supposed to solve an overdetermined problem only in Ω,

not in the larger set Ω̃.
(11)

1We observe that there is a slight abuse of terminology here, because the interior/exterior normal is not de-
termined by M itself, but also by the choice of the set O for which M = ∂O in Definition 2. Indeed, one could
replace O by R

n \ O and reverse the direction of ν. On the other hand, once the choice of O is fixed once and for
all, we can also think that the outward direction is given, and this prescribes ν along M, and therefore, along Γ.

A natural, possible choice is also to consider ν to be defined on M as the normal that extends the exterior normal
of Γ with respect to the open set Ω.
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Moreover, there is no sign assumption on either u on f , so they are allowed, in principle, to change
sign.
Furthermore, we stress that the Neumann datum of problem (8) is not necessarily given on the
whole of ∂Ω (in any case, as far as we know, Theorem 6 is new even in this simpler case).
In this spirit, condition (5) may be seen as a nondegeneracy (or transversality) conditions between
the Dirichlet and Neumann data. Such condition cannot, in general, be dropped (see Appendix B).
Similarly, the condition that Γ is open in the relative topology of ∂Ω cannot be dropped (see
Appendix C).
At a first glance, Theorem 6 may look pretty technical2. On the other hand, its statement may
be interpreted, roughly speaking, saying that if the problem is partially overdetermined on some
portion Γ of ∂Ω and we can locally solve an overdetermined problem on some smooth M that
contains Γ, than the portion of the boundary on which the problem is overdetermined is the whole
boundary ∂Ω – or, better to say, the connected component C of it that contains Γ.

Figure 1: Drawing what Theorem 6 prevents

Indeed, the statement of Theorem 6 is somewhat depicted in Figure 1, where Ω is the grey area
enclosed by the two pentagons, Γ is represented as the union of the thick solid (open) segments,
and M as the thin solid straight line. Then, C is the boundary of the bigger pentagon and ∂Ω
is the union of the boundaries of the two pentagons. In such a situation, (9) says that Figure 1
cannot hold, since the boundary of the bigger pentagon should agree with the solid straight line
on its top.
In this spirit, Theorem 6 states that the Neumann boundary condition is propagated from a
subset Γ of the boundary to the whole of its connected component C, via a smooth hypersurface M.

2We could have done worse though. In fact, it is enough, in Theorem 6, to have the hypotheses stated with (C ∩
M) \ Γ, instead of M \ Γ. Even if this assumption would be weaker, we think it is not really “fair”, since, in
principle, one does not know C from the beginning (one would like to reconstruct it!).
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The assumption that Ω∪M ⊂ Ω̃ in Theorem 6 is taken in order to ensure some very mild regularity
up to the boundary. We stress that ∂Ω is not assumed to be smooth outside Γ: in particular its
wild behavior may not allow, a-priori, to deduce by elliptic estimates any regularity information
on u near ∂Ω \ Γ.

Concerning this boundary regularity issue, we think that is quite important to avoid unnecessary
regularity assumptions on ∂Ω\Γ in Theorem 6, not only for the sake of generality, but also because
of the applications that Theorem 6 has. For instance, if the overdetermined system arises in a
free boundary context, it is a very delicate issue to establish the regularity of ∂Ω in general, and,
in fact, singularities may occur: see, e.g. [AC81, DSJ09].

Of course, particular cases of Theorem 6 are when f depends only on u (viz, the case of a
semilinear PDE), when ∂Ω is connected (hence C = ∂Ω), or when the Dirichlet and Neumann
data are constants (say, φ := 0 and ψ := c, in this case (5) reads c ∈ R \ {0}). As far as we know,
Theorem 6 is new even in these simpler cases.

In spite of its technical flavor, we think that it is good to have Theorem 6 stated in such a general
form, since, in this way, several results of this paper may be traced back to it, so this general form
of Theorem 6 has a somewhat unifying purpose.

We also observe that if one knows from the beginning that ∂Ω is C 2 and u ∈ C2(Ω), then
Theorem 6 simplifies, because there is no need to involve Ω̃ in its statement (indeed, the existence
of such Ω̃ is warranted by classical extension results, see [GT01]; in fact one can take Ω̃ := R

n,
recall (11), and deduce Corollary 7 from Theorem 6). In fact, the assumption that ∂Ω is C 2 is
quite natural and compatible with the statement of Theorem 6 a posteriori, since, by (9), C agrees
with M, which is C2. In light of these observations, we think it is worth to state this simplified
case in a separate result as follows:

Corollary 7. Let f be locally Lipschitz in Ω × R × R
n, and Ω ⊂ R

n be of class C2.

Let Γ ⊆ ∂Ω be nonempty and open in the natural topology of ∂Ω.

Let C be the connected component of ∂Ω that contains Γ.

Suppose that there exists a C2-hypersurface M, with exterior normal ν, such that Γ ⊆ M.

Let φ : R
n → R be C1 in a neighborhood of M and ψ ∈ C0(M), with

ψ(x) − ∂νφ(x) 6= 0 for any x ∈ M \ Γ, (12)

and assume that for any P ∈ M \ Γ there exist r(P ) > 0 and u(P ) ∈ C2(Br(P )(P )) which solves







∆u(P ) + f(x, u(P ),∇u(P )) = 0 in Br(P )(P ),

u(P ) = φ on M∩Br(P )(P ),

∂νu
(P ) = ψ on M∩Br(P )(P ).

(13)

Let u ∈ C2(Ω) be a solution of







∆u+ f(x, u,∇u) = 0 in Ω,
u = φ on ∂Ω,
∂νu = ψ on Γ.

Then C = M, and u = φ and ∂νu = ψ on C.
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We believe that Theorem 6 and Corollary 7 are quite powerful, and they allow to use many results,
such as the ones in [FV10a], that deal with fully overdetermined problems. For example, we
obtain from Corollary 7 the following result on the partially overdetermined Allen-Cahn equation
on globally Lipschitz, analytic epigraphs:

Corollary 8. Let n ≤ 3 and c ∈ R. Let Ψ : R
n−1 → R be an analytic and globally Lipschitz

function. Let U be an open subset of R
n−1,

Ω := {(x′, xn) ∈ R
n−1 × R s.t. xn > Ψ(x′)}

and Γ := {(x′, xn) ∈ U × R s.t. xn = Ψ(x′)}.

Let ν be the exterior normal to ∂Ω. Suppose that there exists u ∈ C 2(Ω) ∩ L∞(Ω) satisfying











∆u+ u− u3 = 0 and u > 0 in Ω,

u = 0 on ∂Ω,

∂νu = c on Γ.

Then, we have that Ω = R
n−1 × (0,+∞) up to isometry and

u(x1, . . . , xn) = tanh

(

xn√
2

)

for any (x1, . . . , xn) ∈ Ω.

Also, we will make use of Theorem 6 to prove the forthcoming Theorem 10, in which the shape
of the domain will be reconstructed from a “nice” portion of the boundary on which the problem
is overdetermined.

1.3 Partially overdetermined problems in “nice” domains

Now, we point out the following result for analytic domains, which may be seen as a refinement
of the classical Cauchy-Kowaleskaya Theorem in a setting convenient for our purposes:

Theorem 9. Let Ω ⊂ R
n be open and connected, and u ∈ C2(Ω) ∩ C1(Ω) solve

n
∑

i,j=1

ai,j(x, u,∇u)∂iju+ f(x, u,∇u) = 0 in Ω. (14)

Suppose that aij and f are analytic, and that there exist Λ ≥ λ > 0 such that

λ ≤
n
∑

i,j=1

aij(x, r, p)ξi(x)ξj(x) ≤ Λ for any ξ ∈ Sn−1, x ∈ Ω, r ∈ R, p ∈ R
n. (15)

Let Γ be a Cω-subset of ∂Ω, and let ν be its exterior normal.
Then:

(i). there exist Ω? ⊆ Ω and u? ∈ Cω(Ω?) ∩C1(Ω?) such that ∂Ω? ∩ ∂Ω = Γ and u? is a solution
of (14) in Ω?, with u?(x) = u(x) and ∂νu?(x) = ∂νu(x) for any x ∈ Γ;
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(ii). u(x) = u?(x) for any x ∈ Ω?;

(iii). if u? can be extended to a solution of (14) in the whole of Ω, then u(x) = u?(x) for any x ∈ Ω.

We remark that the ellipticity condition in (15) is classical and it ensures to locally deal with
many standard operators – e.g., the Laplacian, the mean curvature operator, etc.

Now, we consider domains which contain pieces of spheres, or hyperplanes, or cylinders, on which
the problem is overdetermined, and we reconstruct both the solution and the domain, according
to the following result:

Theorem 10. Let c ∈ R \ {0}. Let Ω ⊂ R
n be connected and of class C1.

Let Γ ⊆ ∂Ω be nonempty and open in the natural topology of ∂Ω, with exterior normal ν.

Let u ∈ C2(Ω) ∩C1(Ω) solve






∆u+ f(u) = 0 in Ω,
u = 0 on ∂Ω,
∂νu = c on Γ.

(16)

with f locally Lipschitz.

• Suppose that Γ agrees with a portion of sphere ∂B1, i.e. that there exist po ∈ R
n and ro > 0

for which

Γ := Bro(po) ∩ (∂Ω) = Bro(po) ∩ (∂B1). (17)

Then3 u has rotational symmetry. Moreover, one of the following four possibilities holds:
Ω = B1, Ω = R

n \B1, Ω = B1 \B1−κ or Ω = B1+κ \ B1, for some κ > 0.

3The statement of Theorem 10 can be made more explicit in the following way. If (17) holds, let τ > 0 and
u? ∈ C2((1 − τ, 1 + τ )) be the local solution of the Cauchy problem

(

u′′

? (r) +
n − 1

r
u
′

?(r) = −f(u?(r)) for any r ∈ (1 − τ, 1 + τ )

u?(1) = 0 and u′

?(1) = c.
(18)

Then, the rotational symmetry of u means that u(x) = u?(|x|) for any x ∈ Ω.
Similarly, if (21) holds, let τ > 0 and u? ∈ C2((−τ, τ )) be the local solution of the Cauchy problem



u′′

? (r) = −f(u?(r)) for any r ∈ (−τ, τ ),
u?(0) = 0 and u′

?(0) = c.
(19)

Then, the planar symmetry of u means that u(x) = u?(xn) for any x ∈ Ω.
Analogously, if (22) holds, let τ > 0 and u? ∈ C2((1 − τ, 1 + τ )) be the local solution of the Cauchy problem

(

u′′

? (r) +
k − 1

r
u
′

?(r) = −f(u?(r)) for any r ∈ (1 − τ, 1 + τ )

u?(1) = 0 and u′

?(1) = c.
(20)

Then, the cylindrical symmetry of u means that u(x1, . . . , xn) = u?(|(x1, . . . , xk)|) for any x ∈ Ω.
We remark that the existence of the solutions u? in either (18), or (19), or (20), is warranted by the standard

ODE existence and uniqueness theory, since f is locally Lipschitz.
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• Suppose that Γ agrees with a portion of hyperplane {xn = 0}, i.e. that there exist po ∈ R
n

and ro > 0 for which

Γ := Bro(po) ∩ (∂Ω) = Bro(po) ∩ {xn = 0}, (21)

Then u has planar symmetry. Moreover, one of the following four possibilities holds: Ω =
{xn > 0}, Ω = {xn < 0}, Ω = {0 < xn < κ} or Ω = {−κ < xn < 0}, for some κ > 0.

• Analogously, suppose that Γ agrees with a portion of cylinder ∂B ′

1×R
n−k, where 1 ≤ k ≤ n−1

and B′

1 is the k-dimensional, unit ball, i.e. assume that there exist po ∈ R
n and ro > 0 for

which

Γ := Bro(po) ∩ (∂Ω) = Bro(po) ∩
(

(∂B′

1) × R
n−k
)

. (22)

Then u has cylindrical symmetry. Moreover, one of the following four possibilities holds:
Ω = B′

1 ×R
n−k, Ω = (Rk \B′

1)×R
n−k, Ω = (B′

1 \B′

1−κ)×R
n−k or Ω = (B′

1+κ \B′

1)×R
n−k,

for some κ > 0.

Classical simple examples of Theorem 10 are when f = −1 and u?(r) := (|x|2 − 1)/(2n) in case (17)
and when f = 0 and u?(r) := r in case (17). Of course, in these cases, the domain Ω may be
classified with more precision, since it follows that either Ω = B1 or Ω = R

n \ B1 if (17) holds,
and either Ω = {xn > 0} or Ω = {xn < 0} if (21) holds.

Results related to Theorem 10 have been recently given in [FG08]. We remark that, differently
from [FG08], we do not need to assume any analytic regularity in Theorem 10, ∂Ω does not need
to be connected, and Ω does not need to be bounded.

Also, Theorem 10 gives a new proof of Theorem 4.2.5 on page 67 of [Hen06] (see also [HO03]): we
devote Appendix D to this new proof.

When conditions (17), (21) or (22) are dropped, Theorem 10 may not hold and very interesting
counterexamples have been constructed in [FGLP09].

We remark that the condition that ∂Ω is smooth cannot, in general, be dropped, see Appendix E.

Also, we observe that Theorem 10 is a partial counterpart to the classical result of [Ser71] to
unbounded domains.

Moreover, it is worth noticing that the statements of Theorem 10 may not hold if the Dirichlet
boundary condition in (16) is given only on Γ instead on the whole of ∂Ω (see Appendix F).

Other “nice” domains are the ones which possess a rotational symmetry. In this setting, the next
result is an energy bound (namely, formula (26) below), valid for solutions of a semilinear PDE in
a rotationally invariant domain, with a rotationally invariant boundary data, in dimension n ≤ 11:

Theorem 11. Let Ψ : R → R be globally Lipschitz and C 3(R \ {0}). Let O := (0,Ψ(0)). Let f ∈
C1(R). Let

Ω :=
{

(x′, xn) ∈ R
n−1 × R s.t. xn > Ψ

(

|x′|
)

}

(23)

and Ωo := {(s, t) ∈ R
2 s.t. t > Ψ(s)}.

Let uo, vo : ∂Ωo → R, and let ν be the exterior normal to ∂Ω.
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Let
{

u ∈ C2(Ω) ∩ C1(Ω \ {O}) ∩W 1,∞(Ω),
∆u(x) + f(u(x)) = 0 for any x ∈ Ω.

(24)

Suppose that u(x′, xn) = uo(|x′|, xn) for any (x′, xn) ∈ ∂Ω and that ∂νu(x
′, xn) = vo(|x′|, xn) for

any (x′, xn) ∈ ∂Ω \ {O}.
Then, u(·, xn) is rotationally symmetric, that is there exists u? : Ωo → R for which

u(x) = u?(|x′|, xn) for any x = (x′, xn) ∈ Ω. (25)

Also, let F be a primitive of f , and define

cu := sup

r∈

[

inf
R

u, sup
R

u
]

F (r).

For any R ≥ 0, let

E(R) :=

∫

Ω∩BR

|∇u(x)|2
2

− F (u(x)) + cu dx.

Assume that ∂xnu(x) > 0 for any x ∈ Ω.
Then, there exists C ≥ 1, only depending on n, ‖u‖W 1,∞(Rn) and ‖f‖C1(R) such that, if n ≤ 11,

E(R) ≤ CRn−1. (26)

As a consequence of Theorem 11, we obtain the following onedimensional symmetry result, which
establishes that overdetermined problems in rotationally symmetric domains in dimension n ≤ 3
possess a solution only if the domain is a halfspace:

Corollary 12. Let Ψ : R → R be globally Lipschitz and C 3(R \ {0}), O := (0,Ψ(0)), and f ∈
C1(R). Let Ω be as in (23) and u as in (24).
Assume that ∂xnu(x) > 0 for any x ∈ Ω.
Suppose that

u and |∇u| are constant on (∂Ω) \ {O}. (27)

Then, if n ≤ 3, there exists u] : R → R such that u(x′, xn) = u](xn) for any (x′, xn) ∈ Ω.
Moreover, Ψ is constant and Ω is a halfspace.

A particular case of Corollary 12 is when the domain is a cone. In this case, we have:

Corollary 13. Let n ≤ 3, c ∈ R, f ∈ C1(R), α ≥ 0 and

Ω :=
{

x = (x′, xn) ∈ R
n s.t. xn > α|x′|

}

.

Let ν be the exterior normal on (∂Ω) \ {0}.
Suppose that there exists u ∈ C2(Ω) ∩ C1(Ω \ {0}) ∩W 1,∞(Ω) such that

{

∆u+ f(u) = 0, u > 0 in Ω,

u = 0, ∂νu = c on (∂Ω) \ {0}.
(28)

Then, α = 0.

11



We observe that Corollary 13 states that the only case in which a cone admits a solution of the
overdetermined problem in (28) is when the cone is, in fact, a halfspace. Such result was also
obtained in [FV10b] under the additional sign requirement that f ≥ 0 (and n = 3): here such
an assumption is dropped, and Corollary 13 is just a plain consequence of Corollary 12, since,
if α > 0, the domain is coercive and so ∂xnu > 0 (hence all the assumptions of Corollary 12 are
fulfilled), see Theorem 1.3 of [BCN97].

1.4 Overdetermined eigenvalue problems on epigraphs

Now, we consider the particular case in which the overdetermined problem is set on a Lipschitz
epigraph and the nonlinearity is, in fact, linear (i.e., the PDE boils down to an eigenvalue problem).
This setting is more complicated than what it may look like at a first glance, and the classification
results in [FV10a] and their counterparts given by the counterexample in [Sic10] may be seen
as a bridge between the setting in [Ser71] and the one in [BCN97]. Indeed, the counterexample
in [Sic10] is obtained by perturbing the symmetric cylinder B × R, where B is a ball. On the
other hand, smooth, globally Lipschitz epigraphs could be seen as a perturbation of a halfspace
(another symmetric domain). Hence, one might think to give an answer to the question posed
in [BCN97] (as quoted in (2) here), in any dimension, by looking at the overdetermined eigenvalue
problem for a smooth, globally Lipschitz epigraph.

But this case is ruled by the following observation:

Theorem 14. Let λ ∈ R. Let Ω be a globally Lipschitz epigraph of R
n, with n ≥ 2.

Then, there exists no solution u ∈ C2(Ω) ∩ C0(Ω) ∩ L∞(Ω) of







∆u+ λu = 0 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(29)

In the forthcoming sections, we prove the results stated above.

2 Proof of Theorem 5

The proof is based on the Unique Continuation Principle. By possibly taking a smaller εo > 0,
we have that Bεo(po) ∩ (∂Ω) ⊂ Γ. We let w(x) := u(1)(x) − u(2)(x). Then

∆w(x) + α(x)w(x) + β(x) · ∇w(x) = 0 (30)

in Ω, for suitable α ∈ L∞(Ω ∩ Bεo(po)), β ∈ L∞(Ω ∩ Bεo(po),R
n). Now, we extend α, β and w

to vanish identically in Bεo(po) \ Ω. By construction, α and β are bounded in Bεo(po), and w ∈
C1(Bεo(po)) ∩W 2,2(Bεo(po)).
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Moreover, for any ψ ∈ C∞

0 (Bεo(po)),
∫

Bεo(po)
∇w · ∇ψ =

∫

Bεo(po)∩Ω
∇w · ∇ψ

=

∫

∂(Bεo (po)∩Ω)
ψ∂νw −

∫

Bεo(po)∩Ω
ψ∆w

= 0 −
∫

Bεo(po)∩Ω
ψ(αw + β · ∇w)

= −
∫

Bεo(po)
ψ(αw + β · ∇w),

that is w is a weak solution of (30) in Bεo(po).
Accordingly, by the Unique Continuation Principle (see, e.g., [Hör83a, Hör83b]), w vanishes iden-
tically in Bεo(po) and so in Ω.

3 Proof of Theorem 6

The idea for the proof is that, when the Dirichlet and Neumann data agree on some piece of the
boundary, this piece may be enlarged a little bit, thanks to Theorem 5, and this rules out the
possibility that the two different natural boundaries C and M may bifurcate one from the other.
The details of the proof go as follow. By possibly replacing Γ with Γ ∩Bεo/2(po), we may and do
suppose that,

u ∈W 2,2(Ω ∩Bεo/2(x)), for any x ∈ Γ. (31)

We define

X :=
{

x ∈ C s.t. there exists α(x) > 0 for which

C ∩Bα(x)(x) is a C1-subset of ∂Ω,

C ∩Bα(x)(x) = M∩Bα(x)(x),

u = φ, ∂νu = ψ on C ∩Bα(x)(x),

and u ∈W 2,2
(

Ω ∩Bα(x)(x)
)}

.

(32)

We observe that, if x ∈ X , then
C ∩Bα(x)(x) ⊆ X . (33)

Indeed, if y ∈ C∩Bα(x)(x), we take α(y) := α(x)−|x−y| > 0, we notice that Bα(y)(y) ⊆ Bα(x)(x),
hence C ∩ Bα(y)(y) is a C1-subset of ∂Ω, C ∩ Bα(y)(y) = M ∩ Bα(y)(y), u = φ and ∂νu = ψ
on C ∩ Bα(y)(y) ⊆ C ∩ Bα(x)(x), and u ∈ W 2,2

(

Ω ∩ Bα(x)(x)
)

⊆ W 2,2
(

Ω ∩ Bα(y)(y)
)

, and so (33)
follows.
On the other hand, C ∩Bα(x)(x) = M∩Bα(x)(x) for all x ∈ X . Therefore, we may write (33) as:

if x ∈ X then M∩Bα(x)(x) = C ∩Bα(x)(x) ⊆ X .

From this and (31), we obtain that

Γ ⊆ X and X is open in the natural topologies of C and of M. (34)

13



We claim that
X is closed in the natural topologies of C and of M. (35)

To check this, we take a sequence Pk ∈ X such that

lim
k→+∞

Pk = P. (36)

The limit in (36) is in the topology of C, and therefore in the topology of R
n too. In order to

prove (35), we will show that P ∈ X . If P ∈ Γ, we have that P ∈ X , thanks to (34), therefore we
may focus on the case in which

P 6∈ Γ. (37)

Notice that
P ∈ C ∩M, (38)

because Pk ∈ X ⊆ C ∩M and the latter set is closed in R
n.

Also, since u ∈ C1(Ω̃), we have that

u(P ) = lim
k→+∞

u(Pk) = φ(P )

and ∂νu(P ) = lim
k→+∞

∂νu(Pk) = ψ(P ).

In particular,
∂ν(u− φ)(P ) = (ψ − ∂νφ)(P ) 6= 0,

due to (5). From this and the Implicit Function Theorem, we deduce that there exists r ∈
(0, r(P )) such that {u − φ = 0} ∩ Br(P ) is a connected C1-graph, that we denote by G. Up to a
rotation, we may suppose that such a graph is in the vertical direction, say G := {xn = g(x′)};
we let G+ := {xn > g(x′)} and G− := {xn < g(x′)}. Here above, we used the notation in (7)
for r(P ): we remark that r(P ) is defined because P ∈ M\Γ, due to (37) and (38), and, of course,
the restriction r < r(P ) may be taken without loss of generality. Then, for small positive r,

∂Ω ∩Br(P ) = C ∩Br(P ) ⊆ {u− φ = 0} ∩Br(P ) = G ∩Br(P ). (39)

By (36), we take ko large enough so that

Pko
∈ Br/2(P ),

and we use (32) to see that
Bαo(Pko

) ∩ C ⊆ Br(P ) ∩M
and u = φ, ∂νu = ψ on C ∩Bαo(Pko

), where

αo := min
{

α(Pko
),
r

2

}

.

The sets involved are sketched in Figure 2, in which the dashed horizontal straight line repre-
sents M, the solid curve represents C, and M and C agree on the dotted horizontal straight
line near Pko

(of course, this is just an “a-priori” picture, and we will show that these lines do
coincide!).
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P

Br(P )

Pko

Bαo
(Pko

)

Figure 2: Drawing the proof of (35)
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Now, we show that
C ∩Br(P ) is a C1-subset of ∂Ω. (40)

To prove this, we use that Pko
∈ X ∩Br(P ) and we argue as follows. Since C ∩Bα(Pko)(Pko

) is a

C1-subset of ∂Ω, we have that Ω lies on one side of it with respect to the vertical direction, by (4):
that is to say, by possibly reverting the orientation of the vertical direction and taking α(Pko

)
suitably small, we may suppose that

G+ ∩Bα(Pko )(Pko
) ⊆ Ω (41)

and
G− ∩Bα(Pko )(Pko

) ⊆ R
n \ Ω. (42)

We claim that
G+ ∩Br(P ) ⊆ Ω. (43)

Suppose not: then there exists a point Z ∈ G+ ∩ Br(P ) ∩ (Rn \ Ω). Take a curve ϑ : [0, 1] →
G+ ∩Br(P ) such that ϑ(0) ∈ Ω and ϑ(1) = Z (thanks to (41) such a curve exists), and let t? :=
sup{t ∈ [0, 1] s.t. ϑ(t) ∈ Ω}. Then, Z? := ϑ(t?) ∈ (∂Ω) ∩ G+ ∩ Br(P ). In particular, by the
Dirichlet boundary datum in (8), we have that

Z? ∈ ∂Ω ⊆ {u− φ = 0},

and so, by (39), we obtain that Z? ∈ G. This is in contradiction with the fact that Z? ∈ G+,
hence (43) is established.
In the same way (by reverting the roles of Ω and R

n \ Ω and by using (42) instead of (41)), one
obtains that

G− ∩Br(P ) ⊆ R
n \ Ω. (44)

From (43) and (44), we conclude that (∂Ω) ∩Br(P ) = G ∩Br(P ). So, by (39),

C ∩Br(P ) = (∂Ω) ∩Br(P ) = G ∩Br(P ) (45)

and this completes the proof of (40).
Now, we use (7), according to which u and u(P ) satisfy the same PDE in Br(P )(P ) ∩ Ω, and they
have the same Dirichlet and Neumann data on C ∩Bαo(Pko

), due to (32).
By (7) and Theorem 5 (up to taking a smaller r(P )), it follows that u(x) = u(P )(x) for any x ∈
Br(P )(P ). In particular, since the latter is an open set that contains P , there exists ρ(P ) ∈ (0, r)

for which Bρ(P )(P ) ⊆ Br(P )(P ), and {u(P ) − φ = 0} ∩Bρ(P )(P ) = M∩Bρ(P )(P ).
So,

u(x) = u(P )(x) for any x ∈ Bρ(P )(P ) ∩ Ω (46)

and

G ∩Bρ(P )(P ) = {u− φ = 0} ∩Bρ(P )(P ) = {u(P ) − φ = 0} ∩Bρ(P )(P ) = M∩Bρ(P )(P ).

This and (45) imply that
C ∩Bρ(P )(P ) = M∩Bρ(P )(P ). (47)
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Also, for any x ∈ M ∩ Bρ(P )(P ), we deduce from (46), (47) and (7) that u(x) = u(P )(x) = φ(x)

and ∂νu(x) = ∂νu
(P )(x) = ψ(x).

Moreover, by (6) and (46) that

u = u(P ) ∈W 2,2
(

Bρ(P )(P ) ∩ Ω
)

.

These observations, together with (47) and (40), says that P ∈ X .

This completes the proof of (35).

Then, from (34) and (35), we have that

X = C = M, (48)

which implies (9) and (10).

4 Proof of Corollary 8

We use Corollary 7, with M = ∂Ω and

Γ := {(x′xn) ∈ R
n−1 × R s.t. xn = Ψ(x′) and x′ ∈ U}.

We remark that condition (13) is fulfilled in this case due to the Cauchy-Kowaleskaya Theorem
(see, e.g., [Eva98]), since Ψ and u 7→ u− u3 are analytic. Also, ∂Ω is connected.

Then, Corollary 7 gives that u and ∂νu are constant on the whole of ∂Ω.

This and Theorem 1.7 of [FV10a] imply the desired result.

5 Proof of Theorem 9

By (15), we observe that Γ is noncharacteristic for the PDE in (14), i.e.

n
∑

i,j=1

aij(x, r, p)νi(x)νj(x) 6= 0 for any x ∈ Γ, r ∈ R, p ∈ R
n.

Therefore, claim (i) follows from the Cauchy-Kowaleskaya Theorem (see, e.g., [Eva98]) and claims (ii)
and (iii) follow from Theorem 5.

6 Proof of Theorem 10

We deal with the case of (21), the case of (17) (or (22)) being very similar, just replacing portions
of hyperplanes with portions of spheres (or cylinders), formula (19) with formula (18) (or (20)),
and the 1D symmetry with the rotational (or cylindrical) one.

The idea for the proof is to use Theorem 6 to obtain that the overdetermined prescription occurs
on the whole of {xn = 0}. From this, one can use Theorem 5 to obtain that u is symmetric
near {xn = 0}, and then the Unique Continuation Principle to extend this symmetry everywhere.
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Here are the details of the argument. First we extend u := 0 outside Ω, so that u ∈ C 1(Rn).
Also, by possibly changing u to −u, we use the Neumann condition to say that u > 0 near Γ.
Consequently, by Theorem 1 of [Vog92] (see also, for instance, Theorem 16 of [FG08]), we have
that Γ is a C2,α-subset of ∂Ω (more precisely, from Theorem 1 of [Vog92] one obtains that Γ is
C2,α from each side, in the terminology of page 446 of [Vog92]; then, since we already know that Γ
is a C1-subset, we obtain that Γ is a C2,α-subset).

From this and elliptic regularity (see, e.g., Lemma 6.18 in [GT01]), we conclude that u ∈ C 2,α(Ω∪
Γ), and so, fixed po ∈ Γ, u ∈W 2,2(Ω ∩Bεo(po)).

Now, we define u? as in (19), and we set u?(x) := u?(xn). Furthermore, we may suppose, with no
loss of generality, that

τ gives the maximal interval of existence of the solution in (19). (49)

Now, we apply Theorem 6 with Ω̃ := R
n, M := {xn = 0} and Γ := Bro(po) ∩ {xn = 0}: for this,

we observe that condition (7) is satisfied in this case thanks to the Cauchy Theorem for ODEs
(see the footnote on page 9). Therefore, by Theorem 6, we conclude that

{xn = 0} ⊆ ∂Ω, and u = 0 and ∂νu = c on {xn = 0}. (50)

Therefore, by (19) and Theorem 5, we have that u = u? in Ω ∩ {|xn| < τ}. Also {|xn| < τ}
contains Ω, by (49), so

u = u? in Ω. (51)

This gives the desired symmetry for u. In particular, the connected component of ∂Ω which
contains Γ has to agree with {xn = 0}.
Now, we classify the domain. For this, first of all, we observe that

the zeroes of u? cannot accumulate, (52)

due to Cauchy’s Uniqueness Theorem for ODEs.

We know from (51) that the level sets of u have planar symmetry (or rotational, or cylindrical
symmetry, in the other cases), and so, by (52),

∂Ω is contained on non-accumulating, parallel hyperplanes (53)

(or concentric spheres, or cylinders, in the other cases). By (51), these hyperplanes are normal to
the nth direction of the coordinate frame.

We claim that

any connected component of ∂Ω is a hyperplane (54)

(or a sphere, or a cylinder in the other cases). To prove this, let C be a connected component of
∂Ω. In particular, C is closed in ∂Ω and so in Rn. By (53), we have that C is a C0-subset of ∂Ω
contained in some hyperplane Π, thus C = Π, and this proves (54).

From (54), the domain Ω may be classified as stated in Theorem 10.
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7 Proof of Theorem 11

Let R be a rotation of R
n−1. For any x = (x′, xn) ∈ Ω let v(x) := u(Rx′, xn). By construction, v

satisfies (24) and v(x) = uo(|x′|, xn) = u(x) when x ∈ ∂Ω.
Moreover, if we consider the rotation of R

n given by

R? :=

(

R 0
0 1

)

,

we deduce from the rotational symmetry of ∂Ω that if ν is the exterior normal at x ∈ ∂Ω, then ν̃ =
(ν̃ ′, ν̃n) := R?ν = (Rν ′, νn) is the exterior normal at x̃ = (x̃′, x̃n) := R?x = (Rx′, xn) ∈ ∂Ω. As a
consequence, for any x ∈ ∂Ω,

∂νv(x) = ν · ∇
(

u(Rx′, xn)
)

= ν · ∇
(

u(R?x)
)

= ν ·
(

RT
? ∇u(R?x)

)

= (R?ν) · (∇u(x̃)) = ν̃ · (∇u(x̃)) = ∂ν̃u(x̃) = vo(|x̃′|, x̃n) = vo(|x′|, xn) = ∂νu(x).

Therefore, by Theorem 5, we have that v is identically equal to u (in order to apply Theorem 5,
notice that u is C2 up to ∂Ω \ {O} by Lemma 6.18 in [GT01]).
Since R is an arbitrary rotation of R

n−1, we have proved (25).
Now, we prove (26). For this, we notice that, since u is monotone and bounded, we can define,
for any x′ ∈ R

n−1,
u(x′) := lim

n→+∞
u(x′, xn).

By (25), we have that u is rotationally symmetric, i.e. we can write

u(x′) = u?(|x′|), (55)

for a suitable u? : R → R.
Moreover, by the monotonicity of u, we have that u is stable (see, e.g., [AAC01], or Section 7
in [FSV08]), that is

∫

Ω
|∇ϕ(x)|2 − f ′(u(x))

(

ϕ(x)
)2
dx ≥ 0 (56)

for any ϕ ∈ C∞

0 (Ω).
Thus, by passing to the limit (56), we have that u is stable as well. Using this, (55), Theorem 2.2(i)
in [Vil07] (see also [CC04] for related results), and the fact that n− 1 ≤ 10, we deduce that u is
constant.
Then, (26) follows from a classical, variational, energy argument of [AAC01] (see, e.g., Lemma 9.1
in [FV10a]).

8 Proof of Corollary 12

The proof makes use of (26) and of some rigidity results in the literature. From Theorem 11 and
the fact that n ≤ 3, we know that E(R) ≤ CR2. Hence, repeating verbatim the argument4 in the

4We remark that the argument in the proof of Corollary 9.4 of [FV10a] needs condition (27), and this is why
we require such condition in the statement of Corollary 12 here. See also the version of the Geometric Sternberg–
Zumbrun–Poincaré Inequality for Lipschitz epigraphs as given in Theorem 1 of [FV10b].
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proof of Corollary 9.4 of [FV10a], we see that u(x) = u](ω · x) for any x ∈ Ω, for suitable ω =
(ω′, ωn) ∈ Sn−1 and u] : R → R.
So, recalling (25), we see that u and its level sets have both rotational and planar symmetry,
which implies the thesis of Corollary 12.

9 Proof of Theorem 14

The idea for the proof is that, since u is bounded, f(r) can be modified for large r without affecting
the problem, and this trick makes some results of [BCN97] available for our purposes.
Here are the details. We argue by contradiction, supposing that such a solution u exists. Then,
we have that

λ > 0. (57)

To establish this, suppose, by contradiction, that λ ≤ 0. Then, ∆u ≥ 0 in Ω, so Lemma 2.1
in [BCN97] gives that u ≤ 0 in Ω, in contradiction with our assumptions.
We define

M := sup
Ω
u,

s0 := 1,

s1 := M + 1,

µ := M + 2,

f(r) :=

{

λr if r ≤ s1,

λs1(µ− r) if r > s1.

s1 µ

λr

r

f

s0

Figure 3: The function f in the proof of Theorem 14

As a consequence of (57) we have that f is globally Lipschitz continuous, f > 0 in (0, µ), and f ≤ 0
in [µ,+∞), that is Condition (1) on page 1090 of [BCN97] is fulfilled; also, f(r) ≥ λr when r ∈
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[0, s0], and f is decreasing in (s1, µ), therefore Conditions (2) and (3) on page 1090 of [BCN97]
are satisfied.

Moreover, ∆u+f(u) = ∆u+λu = 0 in Ω. Consequently, Theorem 1.2(b) on page 1091 of [BCN97]
says that

lim
xn→+∞

u(0, xn) = µ > M,

which is in contradiction with the definition of M .

Appendix A

The purpose of this appendix is to show that the results of this paper are general enough to
comprise, for instance, some of the powerful results of [FG08].

For instance, with our methods, we obtain:

Theorem 15. [Theorem 1(a) of [FG08]] Let c < 0. Let Ω be an open, connected and bounded
subset of R

n.

Suppose that ∂Ω is connected.

Let Γ ⊆ ∂Ω be nonempty and relatively open in ∂Ω.

Assume that there exists an open set Ω′ ⊂ R
n with a connected, analytic boundary such that Γ ⊆

∂Ω′.

Assume also that f is an analytic function.

If there exists a solution u ∈ C2(Ω) ∩ C1(Ω) of







∆u+ f(u) = 0 in Ω,
u = 0 on ∂Ω,
∂νu = c on Γ,

(58)

then Ω = Ω′, Ω is a ball and u is radially symmetric.

Theorem 15 may be proved directly with the results of this paper, via the following argument.
We observe that by the Cauchy-Kowaleskaya Theorem (see, e.g., [Eva98]), for any P ∈ ∂Ω ′, one
can a find a solution u(P ) of (7) on Br(P )(P ). So, we apply Theorem 6 with φ := 0, ψ := c < 0,
C := ∂Ω, M := ∂Ω′ and

Ω̃ := Ω ∪
(

⋃

P∈∂Ω′

Br(P )(P )

)

.

We remark that here it is very important to have stated Theorem 6 in the way we did. Then,
we can extend u ∈ C2(Ω̃) by the analytic continuation, by setting u := u(P ) in Br(P )(P ), and (5)
and (7) are true by construction. Hence, we obtain from Theorem 6 that ∂Ω = C = M = ∂Ω ′,
and u = 0 and ∂νu = c on ∂Ω.

With this and the fact that c < 0, one can use the result of [Ser71], as pointed out in Theorem 17
of Appendix A of [FG08], and obtain the desired claim.
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Appendix B

The purpose of this appendix is to point out that condition (5) cannot, in general, be dropped.
To check this, let n ≥ 2,

u(x′, xn) := x2
n/2,

f := −1,

Γ := {x = (x′, 0) ∈ R
n s.t. |x′| < 1},

C := {x = (x′, 0) ∈ R
n},

Ω := {x ∈ R
n s.t. xn ∈ (0, 1)}

and Ω̃ := {x ∈ R
n s.t. xn ∈ (−1, 2)}.

Let M be a smooth, compact hypersurface such that

Γ ⊂ M ⊂ {x ∈ R
n s.t. |x′| < 2}.

Let also ν be the exterior normal of M, and φ, ψ ∈ C∞(Rn) such that

φ(x) = u(x) and ψ(x) = ∂νu(x) for any x = (x′, xn) ∈ R
n with |x′| ≤ 3,

and φ(4, 0, . . . , 0) = ψ(4, 0, . . . , 0) = 1.

M

Ω

Γ

Figure 4: The sets involved in Appendix B

We observe that
(M\ Γ) ∩ {xn = 0} 6= ∅.

22



Indeed, if not, we would have that M∩ {xn = 0} = Γ, but this cannot be since M∩ {xn = 0} is
a closed subset of R

n, while Γ is not.

Then, all the assumptions of Theorem 6 are satisfied, with the only exception of condition (5),
which is violated on (M\Γ)∩{xn = 0}. Notice, indeed, that (7) is satisfied by choosing r(P ) := 1
and u(P ) := u.

The theses of Theorem 6 also do not hold in this case. Actually, (9) is obviously not true here;
also u(4, 0, . . . , 0) = 0 6= 1 = φ(4, 0, . . . , 0) and |∇u(4, 0, . . . , 0)| = 0 6= 1 = |ψ(4, 0, . . . , 0)|, which
shows that (10) does not hold as well.

Appendix C

Concerning the assumptions on Γ in Theorem 6, we now observe that the condition that Γ is a
C1-subset of ∂Ω cannot be relinquished.

Let n ≥ 2, Ω := {x1 > 0}, Ω̃ := R
n, M := {xn = 0}, Γ := {0}, u(x) := tanh(x1/

√
2),

φ(x) := 0, ψ ∈ C∞(Rn, [1/10, 2]) with ψ(0, . . . , 0, 0) := 1/
√

2 and ψ(0, . . . , 0, 1) = 1. In this
case, C = ∂Ω = {x1 = 0}, and u is a solution of the Allen-Cahn equation (i.e., f(u) = u − u3).
Condition (5) is satisfied, and condition (7) holds since ψ never vanishes.

So, all the assumptions of Theorem 6 are met, with the exception that Γ is not open in ∂Ω. Notice
that in this case, the thesis in (9) of Theorem 6 fail.

Moreover, the thesis in (10) cannot be true, since (0, . . . , 0, 1) ∈ C but |∇u(0, . . . , 0, 1)| = 1/
√

2 6=
1 = ψ(0, . . . , 0, 1).

Appendix D

Now, we show that Theorem 4.2.5 on page 67 of [Hen06] about optimal shapes in elliptic problems
may be easily obtained as a consequence of the results given here, thus obtaining a new proof of
it (see also [HO03]).

Very sketchy, the setting in [Hen06] is the following. For any k ∈ N, one considers the kth
eigenvalue λk(Ω) of the operator −∆ with Dirichlet boundary datum on a convex domain Ω with
prescribed Lebesgue measure.

For a given k ∈ N, it is always possible to find a domain Ω? that attains the minimum value
of λk(Ω) among all the possible choices of convex domains Ω with prescribed Lebesgue measure:
see Theorem 2.4.1 on page 35 of [Hen06].

The case k = 2 and n = 2 turns out to be particularly ineteresting, since the optimal convex
planar shape has to satisfy additional geometric properties: see page 64 of [Hen06]. In particular,
dealing with a conjecture of Troesch, the following result turned out to be very important:

Theorem 16. [Theorem 4.2.5 of [Hen06]] The stadium (i.e. the convex hull of two identical
tangent discs) does not realize the minimum of λ2 among plane convex domains of given area.

We can give a new proof of such a result, via the following argument. Let us call S the stadium.
We observe that the boundary of S is C1,1. Also, ∂S = C1 ∪ C2 ∪ L1 ∪ L2, where C1 and C2 are
two (open) arcs of circumference, and L1 and L2 are two (closed) segments.
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Let u ∈ L2(S) be the eigenfunction corresponding to λ2(S). By Theorem 9.15 of [GT01], we know
that u ∈W 2,2(S) and so, by Sobolev embedding, u ∈ C0,1/2(S) ⊂ Lp(S) for any p > 1.
Consequently, by applying again Theorem 9.15 of [GT01], we conclude that u ∈ W 2,p(S) for any
p > 1 and so u ∈ C1(S) (an argument of this type is also outlined on page 9 of [Hen06]).

Furthermore, by formula (4.5) on page 64 of [Hen06], we have that ∂νu is constant along C1 (and
also along C2). Then, we can apply Theorem 10 (with Ω := S, f(u) := λ2(S)u and Γ := C1).
We obtain that both u and S possess rotational symmetry, in contradiction with the actual shape
of S.

Appendix E

In Theorem 10, one cannot drop the regularity assumption on ∂Ω. For instance, if ∂Ω is not
smooth, the solution may have the desired symmetry, but the domain may not. For example, take
u(x) := sinxn, Γ := {xn = 0}, Ω := {xn ∈ (0, 2π)} \ Σ, for any nonempty closed set Σ such that
Σ ⊂ {x ∈ R

n s.t. |x′| > 1 and xn = π}: in this case u has planar symmetry but Ω does not.

Appendix F

In this appendix, we remark that the statements of Theorem 10 may not hold if the Dirichlet
boundary condition in (16) is given only on Γ instead on the whole of ∂Ω. For instance, take f
for which the solution u? of the ODE in (18) (resp., (19) or (20)) is defined in the whole of R and
let u to be u? extended by symmetry. Let us consider a domain Ω whose boundary is given by
two connected components, Γ and Λ, with Γ := ∂B1 being a sphere (resp., Γ := {xn = 0} being
a hyperplane, or Γ := ∂B ′

1 being a cylinder), and Λ not a sphere (resp., not a hyperplane, not a
cylinder). Then







∆u+ f(u) = 0 in Ω,
u = 0 on Γ,
∂νu = c on Γ

i.e., the Dirichlet datum in (16) is given only on Γ instead on the whole of ∂Ω. But in this case,
of course, it is not possible to obtain any classification of the shape of Ω.

This says that it is essential to prescribe the Dirichlet boundary condition in (16) on the whole
of ∂Ω.
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