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1 Introduction

Reaction-diffusion equations involving operators without Fredholm property have been ac-
tively studied in the recent years. In spite of some progress in the investigation of linear
non-Fredholm equations (see e.g. [8], [9], [10]-[15]), there exist only few examples where
nonlinear non-Fredholm operators are analyzed (see [3]-[5]). Clearly, this situation is related
to the fact that most methods of linear and nonlinear analysis are based on the Fredholm
property. In the present article we consider some nonlinear integro-differential equations, for
which the Fredholm property may not be satisfied:

% = Au+ / G(x —y)F(u(y,t),y)dy + au, a > 0. (1.1)
Q

Here  is a domain in R? ~d = 1,2,3, the more physically interesting dimensions. In
population dynamics the integro-differential equations describe models with intra-specific
competition and nonlocal consumption of resources (see e.g. [1], [2], [6]).

The nonlinear part of the problem above will satisfy the following regularity conditions.



Assumption 1. Function F(u,z): R x Q — R is such that
|F(u,x)| < klu|+h(z) for weR, ze€f) (1.2)

with a constant k > 0 and h(z) : @ — R, h(x) € L*(Q). Moreover, it is a Lipschitz
continuous function, such that

|F(uy, ) — Fug,x)| <llug —us| for any w2€R, 2€Q (1.3)
with a constant [ > 0.

Clearly, the stationary solutions of (1.1), if they exist, will satisfy the nonlocal elliptic
equation

Au+/G(:p —y)F(u(y),y)dy + au =0, a > 0.
Q

Let us introduce the auxiliary problem

—Au —au = / Gz —y)F(v(y),y)dy. (1.4)
Q

We denote (fi(z), f2(z))12) := [, f1(2)f2(x)dz, with a slight abuse of notations when
these functions are not square integrable, like for instance those used in the one dimensional
Lemma A1l of the Appendix. In the first part of the article we study the case of = R,
such that the appropriate Sobolev space is equipped with the norm

lull @y = ullZoge) + | AullZa @)

The main issue for the problem above is that the operator —A —a : H?(R?) — L*(R%), a >0
does not satisfy the Fredholm property, which is the obstacle to solve equation (1.4). The
similar situations but in linear problems, both self- adjoint and non self-adjoint involving non
Fredholm second or fourth order differential operators or even systems of equations with non
Fredholm operators have been studied extensively in recent years (see [10]-[15]). However, we
manage to show that equation (1.4) in this case defines a map T, : H*(R?) — H?(R?), a > 0,
which is a strict contraction under certain technical conditions. The notation S¢ will stand
for the sphere of radius r in R%.

Theorem 1. Let Q = R4, G(z):R? = R, G(x) € LY(R?) and Assumption 1 holds.

I) When a > 0 we assume that xG(z) € L*(RY), orthogonality relations (5.4) hold if
d=1 and (5.9) when d = 2,3 and \/5(27r)gNa7 4 | < 1. Then the map T,v = u on H?*(RY)
defined by equation (1.4) has a unique fized point v,, which is the only stationary solution
of problem (1.1) in H*(RY).

II) When a = 0 we assume that 2?G(x) € LY(R?), orthogonality relations (5.10) hold,
d=1,2,3 and \/5(27r)gN07 4 | < 1. Then the map Tyv = u on H*(RY) defined by equation



(1.4) admits a unique fized point vy, which is the only stationary solution of problem (1.1)
with a = 0 in H*(R?).
In both cases 1) and II) the fized point vy, a > 0 is nontrivial provided the intersection

—

of supports of the Fourier transforms of functions suppF (0, z) N supp(A}’ is a set of nonzero
Lebesgue measure in RY.

In the second part of the work we study the analogous problem on the finite interval with
periodic boundary conditions, i.e. Q =TI := [0, 27| and the appropriate functional space is

H*(I) = {u(z) : [ = R | u(x),u"(x) € L*(I), u(0)=u(2r), u'(0)=1u(27)}.

Let us introduce the following auxiliary constrained subspaces

e:l:znoa:

V2r

H2(I) = {u € HX(I) | (u(aj), )LQ(I) — 0}, np €N (1.5)

and
Hg o(I) = {u e H*(I) | (u(x),1) 120y = 0}, (1.6)

which are Hilbert spaces as well (see e.g. Chapter 2.1 of [7]). We prove that equation (1.4)
in this situation defines a map 7,, a > 0 on the above mentioned spaces which will be a
strict contraction under our assumptions.

Theorem 2. Let Q = I, G(z) : [ — R, G(x) € L(I), G(0) = G(27), F(u,0) =
F(u,2m) for uw € R and Assumption 1 holds.

I) When a > 0 and a # n*, n € Z we assume that 2/7N,l < 1. Then the map 7,v = u
on H*(I) defined by equation (1.4) has a unique fized point vy, the only stationary solution
of problem (1.1) in H*(I).

II) When a = ng, ng € N assume that orthogonality relations (5.17) hold and 2/TN,zl <
1. Then the map 7,20 = u on HZ(I) defined by equation (1.4) has a unique fived point Un2s
the only stationary solution of problem (1.1) in HZ(I).

IIT) When a = 0 assume that orthogonality relation (5.18) holds and 2v/TNol < 1. Then
the map 700 = u on H& o(I) defined by equation (1.4) has a unique fized point vy, the only
stationary solution of problem (1.1) in H§ o(I).

In all cases 1), II) and III) the fized point v,, a > 0 is nontrivial provided the Fourier
coefficients G, F(0,x), # 0 for some n € Z.

Remark. We use the constrained subspaces Hg(I) and H§ (1) in cases II) and III) re-
2

d d?
spectively, such that the operators e ng: H3(I) — L*(I) and o Hg o(I) — L*(I),
which possess the Fredholm property, have empty kernels.

We conclude the article with the studies of our problem on the product of spaces, where
one is the finite interval with periodic boundary conditions as before and another is the
whole space of dimension not exceeding two, such that in our notations Q = I x R? =

3



0,27] x R4, d =1,2 and x = (2,2, ) with z; € I and z; € R%. The appropriate Sobolev
space for the problem is H?(f2) defined as

{u(z): Q= R | u(z), Au(z) € L*(Q), u(0,2,) = u(2m,21), Uy (0,21) = up, (2m,2,)},

where 2, € R? a.e. and u,, stands for the derivative of u(x) with respect to the first variable
r1. As in the whole space case covered in Theorem 1, the operator —A —a : H*(Q) —
L3(Q2), a > 0 does not possess the Fredholm property. Let us show that problem (1.4)
in this context defines a map t, : H*(2) — H?*(Q2), a > 0, a strict contraction under
appropriate technical conditions.

Theorem 3. Let Q=1 xRY d=1,2, G(x):Q—-R, G(z)e L'(Q), G0,z,)=
G2m,xy), F(u,0,7) = F(u,2m,2,) for x; € R a.e. and u € R and Assumption 1
holds.

I) When n2 < a < (ng+1)?, nge€Z*=NU{0} let z,G(x) € L*(Q), condition (5.29)
holds if dimension d =1 and (5.30) if d = 2 and \/2(27)“s M,l < 1. Then the map t,v = u
on H*(Q) defined by equation (1.4) has a unique fized point v,, the only stationary solution
of problem (1.1) in H?*(Q).

II) When a = n2, ng € N let 22 G(z) € L (), conditions (5.25), (5.27) hold if dimension
d =1 and conditions (5.26), (5.27) hold if d = 2 and ﬂ(Qﬂ)%Mn%l < 1. Then the map
tn2v = u on H?(Q) defined by equation (1.4) has a unique fized point Unz, the only stationary
solution of problem (1.1) in H?*(Q).

IITI) When a = 0 let 22 G(z) € LY(), conditions (5.23) hold and v/2(2r)F Myl < 1.
Then the map tgv = u on H*(Q) defined by equation (1.4) has a unique fized point vy, the
only stationary solution of problem (1.1) in H*(Q).

In all cases 1), II) and III) the fixved point v,, a > 0 is nontrivial provided that for some

n € 7Z the intersection of supports of the Fourier images of functions suppF (0, z), N suppé\n
is a set of nonzero Lebesque measure in RY,

Remark. Note that the maps discussed above act on real valued functions due to the
assumptions on F(u,x) and G(x) involved in the nonlocal term of (1.4).

2 The Whole Space Case

Proof of Theorem 1. We present the proof of the theorem in case I) and when a = 0
the argument will be similar. Let us first suppose that in the case of QO = R? for some
v € H?(RY) there exist two solutions u; 5 € H?(R?) of problem (1.4). Then their difference
w = u; —uy € H*RY) will satisfy the homogeneous problem —Aw = aw. Since the
Laplacian operator acting in the whole space does not have any nontrivial square integrable
eigenfunctions, w(z) vanishes a.e. in R%. Let v(z) € H?(RY) be arbitrary. We apply the



standard Fourier transform to both sides of (1.4) and arrive at

+G(p) f(p)

u(p) = (2) - a (2.7)

~

with f(p) denoting the Fourier image of F'(v(z),x). Clearly, we have the upper bounds

a(p)| < (27)2 N, ol f(p)] and [p¥a(p)| < (27)% No, ol F(0)]

with N, 4 < oo by means of Lemma A1l of the Appendix in one dimension and via Lemma
A2 for d = 2,3 under orthogonality relations (5.4) and (5.9) respectively. This enables us to
estimate the norm

[l ey = TP 12 @ay + D7D | F2@ey < 2027) N 4 F(0(2), 2) |1 Z2gay,

which is finite by means of (1.2) of Assumption 1. Therefore, for any v(z) € H?(R?) there
is a unique solution u(z) € H?(R?) of problem (1.4) with its Fourier image given by (2.7)
and the map T, : H?*(R?) — H?(R?) is well defined. This enables us to choose arbitrarily
v19(7) € H*(R?) such that their images u; = T,v12 € H*(RY) and estimate

[@1(p) —Ta(p)] < (2m)2 Ny, al Fi(p) = Fo(0), P70 (0) — P*Ta(p)| < (27)2 Ny, al o (0) — Fo(p),

where ]?172(]9) stand for the Fourier images of F(vy2(z), ). For the appropriate norms of
functions this yields

lur = uall oy < 2027m) NG G| F(v1(2), 2) = Fva(2), 2) |72 ga)-

Note that vy o(x) € H?*(RY) € L>(R?), d < 3 by means of the Sobolev embedding. Using
condition (1.3) we easily arrive at

d
||Ta1)1 - Ta'UQHHQ(Rd) S \/5(271’)5]\[(17 le’Ul - vQHHQ(Rd)

with the constant in the right side of this estimate less than one by the assumption of the
theorem. Therefore, by means of the Fixed Point Theorem, there exists a unique function
v, € H? (Rd) with the property T,v, = v,, which is the only stationary solution of equation
(1.1) in H%(R%). Suppose v,(x) vanishes a.e. in R?. This will contradict to the assumption
that the Fourier images of G(z) and F(0,z) do not vanish on a set of nonzero Lebesgue
measure in R?. [ |

3 The Problem on the Finite Interval

Proof of Theorem 2. Let us demonstrate the proof of the theorem in case I) and when
a =nZ nyg € Nora=0 the ideas will be similar, using the constrained subspaces (1.5)
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and (1.6) respectively instead of H?(I). First we suppose that for v € H?(I) there are two
solutions uy o € H?(I) of problem (1.4) with Q = I. Then function w := uy; — uy € H*(I)

will be a solution to the problem —w” = aw. But a # n* n € Z and therefore, it is not
2

d
an eigenvalue of the operator oz O L*(I) with periodic boundary conditions. Therefore,
x

w(x) vanishes a.e. in I. Suppose v(x) € H?*(I) is arbitrary. Let us apply the Fourier
transform to problem (1.4) considered on the interval I which yields

un:\/ﬁann , neZ (3.1)
a

n2 —

with f,, == F(v(x),x),. Clearly for the transform of the second derivative we have

2
(—u"), = Vorl Cnfr n € Z,

nz—a’

which enables us to estimate

lalfemy = Yo lual?+ D InPunf® < AN F(u(@), )7 < o

n=—oo n=—oo

due to (1.2) of Assumption 1 and Lemma A3 of the Appendix. Hence, for an arbitrary
v(z) € H*(I) there is a unique u(z) € H?*(I) solving equation (1.4) with its Fourier image
given by (3.1) and the map 7, : H*(I) — H?(I) in case I) is well defined. Let us consider
any vy o € H?(I) with their images under the map mentioned above uy o = 7,012 € H*(I)
and arrive easily at the upper bound

o0 [e.9]
[Juy — U2H12H2(1) = Z U1y — tgn|? + Z n? (U1, — u2,)[* <

n=—oo n=—oo

< ATNZ||F (v1(2), ) — F(va(x), 2) 72

Obviously vy »(z) € H*(I) C L>(I) due to the Sobolev embedding. By means of (1.3) we
easily obtain
HTaU1 - TaU2HH2(1) < QﬁNal”Ul - U2HH2(1)7

such that the constant in the right side of this upper bound is less than one as assumed.
Thus, the Fixed Point Theorem implies the existence and uniqueness of a function v, € H?*(I)
satisfying 7,v, = v,, which is the only stationary solution of problem (1.1) in H?(I). Suppose
va(x) = 0 a.e. in /. Then we obtain the contradiction to the assumption that G, F'(0,z), # 0
for some n € Z. Note that in the case of a # n?, n € Z the argument does not require any
orthogonality conditions. [ |



4 The Problem on the Product of Spaces

Proof of Theorem 3. We present the proof of the theorem for case II) since when the
parameter a vanishes or is located on the open interval between squares of two nonnegative
integers the ideas are similar. Suppose there exists v(z) € H*(Q2) which generates u; () €
H?(Q) solving equation (1.4). Then the difference w := u; — uy € H*(Q) will satisfy

—Aw = niw in our domain 2. By applying the partial Fourier transform to this equation

we easily arrive at —A jw,(x1) = (n§ — n*)w,(z,). Clearly |lwl|3, @ = =3 w3, (R4)

such that w, (7, ) € L*(R?), n € Z. Since the transversal Laplacian operator —A | on L?*(RY)
does not have any nontrivial square integrable eigenfunctions, w(x) is vanishing a.e. in €.
Let v(z) € H?*(Q) be arbitrary. We apply the Fourier transform to both sides of problem
(1.4) and obtain

_ a1 Go(p) fulp) g
n = (2 2 €7, eR d=1,2, 4.1
W(p) = (2m)F 2T p (4.1)

where f,(p) stands for the Fourier image of F(v(x), ). Obviously,

[@a(p)] < (20)F Moz |fu(p)| and  [(0? + n2)a(p)] < (27)F M,z| fulp)],

where M,> < oo by means of Lemma A5 of the Appendix under the appropriate orthogonality
conditions stated in it. Thus

)2y = /|un ) 2dp + Z / (7 + 1) () Pdp <

< 202m) " M || F (v(2), 2) | 720y < 00

by means of (1.2) of Assumption 1, such that for any v(z) € H?(Q) there exists a unique
u(x) € H*(Q) solving equation (1.4) with its Fourier image given by (4.1) and the map
t, : H*(Q) — H?*(Q) in case II) of the Theorem is well defined. Then we consider arbitrary
Vg € HQ(Q) such that their images under the map are u; o = tngvm S HZ(Q) and obtain

[ / () — Ton(p)Plp + Z 167+ 0 Fia) = T ) Pl <

< 22m) ™ M,z? | F(vi(2), 2) = F(ua(), 2)l[72(0)

Clearly v15 € H*(Q) C L>®(£2) via the Sobolev embedding theorem. Using (1.3) we easily
arrive at the estimate

d+1
[t2v1 = tzvall o) < V2(21) 7 Myalllvy — va o)



with the constant in the right side of it less than one by assumption. Therefore, the Fixed
Point Theorem yields the existence and uniqueness of a function v,z € H 2(Q) which satisfies
tn2Un2 = U2 and is the only stationary solution of problem (1.1) in H?(2) in case II) of the
theorem. Suppose v,2 () = 0 a.e. in Q. This yields the contradiction to the assumption that

—

there exists n € Z for which supp@n N suppF'(0,z), is a set of nonzero Lebesgue measure in
R |

5 Appendix

Let G(x) be a function, G(z) : RY - R, d < 3 for which we denote its standard Fourier
transform using the hat symbol as

~ 1 )
G(p) :== - / G(x)e Pdx, p € R
(2m)z Jra
such that .
|G (D)l oo may < 711Gl a) (5.1)
(2m)>
1 ~ .
and G(z) = v G(q)e""dq, x € RY. Let us define the auxiliary quantities
(2m)2 JRre
. s
Ny q:= max{’ Glp) ’ , ’ PG } (5.2)
’ p?* —allLe®y’ 1l p? — a llr=®d)
for a > 0 and R
G(p) A
No = mas| o ) -
amman{[S2) 6w, (5.9
when a = 0.
Lemma A1l. Let G(z) € L'(R).
a) If a > 0 and xG(z) € L*(R) then N, 1 < oo if and only if
o e:l:i\/aaz A
x), =0. 5.
(G015 ) (5.4)
b) If a =0 and 2*G(x) € L*(R) then Ny, 1 < oo if and only if
(G(.T), 1)L2(R) =0 and (G(.T), SU)LQ(]R) =0. (55)
Proof. In order to prove part a) of the lemma we write the function
Gw) _ G, G)
— c 5.6
p2—CL p2_aX16+p2_aX167 ( )

8



where x4 here and further down stands for the characteristic function of a set A, A€ for its
complement, the set Iy = I UI; with I ={peR | a—-d<p<+a+d}, I; ={p€
R| —Va—0<p<—ya+d}and 0 <d < y/a. The second term in the right side of (5.6)

\/_ 2HG”L1R < o0

can be easily estimated in absolute value from above using (5.1) as

and the remaining term in the right side of (5.6) can be written as

G(p) G(p)
IT — aXIgr + pg—_ aXIg-

We will use the expansions near the points of singularity given by

~ ~ P dG(s ~ ~ P dG(s
G =Gva+ [ Sas, Gy =aeva+ [y,
va S —a S
with H HL < \/—_”xG”LI(R < 00 by the assumption of the lemma. This enables
us to obtam the bound
p dG(s) ds P dG(s) ds
2\/a—§ P?—a 5 2y/a—9§

Therefore it remains to estimate

Glva) . Gl=va)

P —a I P —a X1

which belongs to L*(R) if and only if G(£+/a) = 0, which is equivalent to the orthogonality
relations (5.4). To estimate the second term in the right side of (5.2) under these orthogo-
nality relations we consider the two situations. The first one is when [p| < \/a + 0 and we

have the bound R
G ( )

—a

< (Va+9)?

< Q.
L (R)

p*G(p)
p*—a

In the second one [p| > y/a + ¢ which yields — € L™(R) and G(p) is bounded via (5.1),
PP —a

which completes the proof of part a) of the lemma. Then we turn our attention to the
situation of a = 0, such that

Gp) _ Gp)
2 p? X{lpl<1} (5.7)
The second term in the right side of the identity above can be easily estimated as
G(p) .
’ 2 X1y S 1G(P) ||z (m) < 00 (5.8)




due to (5.1). We will make use of the representation

G(p) = G(0) +p§(0) + /Op (/0 diig“’)dq> ds.

G (p) ' 1
Obviousl < 2*G(x < o0 by the assumption of the lemma. Hence
s ‘*%EH (@) 21wy y D
s d2@
fOp ( 0 dng) dq> ds C
2 X{lpl<1}| < 9 <00
o . N Go) %) .
and the only expression which remains to estimate is given by | —— + X{lp|<1}, Which
p p B

~ dG
is contained in L*(R) if and only if G(0) and d—(O) vanish. This is equivalent to the
p
orthogonality relations (5.5). Note that ||G(p)||z®) < 0o by means of (5.1). |

The proposition above can be generalized to higher dimensions in the following statement

Lemma A2. Let G(x) € LY(R?), d=2,3.
a) Ifa>0 and zG(z) € L'(RY) then N, 4 < oo if and only if

eipx
G(z), =0 e 54 e. 5.9
(G0 5o7) oy =0 Jor PESUa ac (59)
b) If a =0 and 2*°G(z) € L*(R?) then Ny 4 < oo if and only if
1 <k<d (5.10)

(G(SL’), 1)L2(Rd) =0 and (G(SL’), .T}k)LQ(Rd) = O,
Proof. To prove part a) of the lemma we introduce the auxiliary spherical layer in the space
of d = 2,3 dimensions

As={peR? | Va-d<|p|<Va+6}, 0<§<+a

~

and write R R
Glp) _ GO G(p) (5.11)

X4s t mXAS'

”—a pP-a
For the second term in the right side of (5.11) we have the upper bound in the absolute value

G(p)| 1~
as M < 0o due to (5.1). Let us expand
Vad

N Pl 9G(1s]. o N
G = [ sl + G0,

va

10



where o stands for the angle variables on the sphere. Using the elementary inequality

aG(p)
dlp|

estimate

<5 )% |2G ()] 11 (rey With its right side finite by the assumption of the lemma we
Ip| 8G(
fp a|| \‘ d|s \X <£

p?—a Va

G .
The only remaining term MXA& € L*(RY), d=2,3ifand only if G(y/a, o) vanishes
P> —a

a.e. on the sphere Sda, which is equivalent to orthogonality relations (5.9). The proof of
the fact that the second norm in the right side of (5.2) under conditions (5.9) is finite is
analogous to the one presented in Lemma Al in one dimension. For the proof of part b)
of the lemma we apply the two and three dimensional analog of formula (5.7), such that
for the second term in its right side there is a bound analogous to (5.8). Let us use the
representation formula

Ao — G 2 0oy [T PGl o) ) Y
Gl) =60+ g 0.0+ [ ([ E D )a

Apparently
a .
96 0y = -1 / G ()|z|cosbdz, (5.12)
Ilp| (2m)z Jrd
where 6 is the angle between vectors p and x in R? and for the second derivative
62§(P) 2
< 2°G(2) || 1 (pay < 00
8|p‘2 (277_)% || ( )HL (R%)

by the assumption of the lemma. This yields

pl [ s 92G(lql,0)
0 ( 0 a‘q(‘g d|q‘ dS
p2

such that the only expression remaining to estimate is given by

Xpl<}| S 5 <00,

G(0) . 55(0.0)

5 T
p [p|

with the first derivative (5.12) containing the angular dependence. We consider first the

case of d = 2 such that p = (|p|,0,), = = (|z|,0,) € R? and the angle between them
0 =0, —0,. A straightforward computation yields that the right side of (5.12) is given by

Q% + Q3cos(0, — ) with

]Mmu (5.13)

Q2

o (5.14)

Q1 ::/ G(z)ridr, Qo ::/ G(z)rodr, tana =
R2 R2

11



and = = (z1,75) € R? such that (5.13) is equal to

Go) i
[ p<2) - % \ QF + Qz%] X{lp|<1}-
T

T
Note that the situation of Q; = 0 and ()3 # 0 corresponds to the cases of « equal to 5 0r—5

Obviously, the expression above is contained in L°°(R?) if and only if the quantities G (0), @
and () vanish, which is equivalent to orthogonality relations (5.10) in two dimensions. In
the case of d = 3 the argument is quite similar. The coordinates of vectors

T = (11,79, 73) = (|7|sind,cosp,, |x|sind,sinp,, |r|cosd,) € R?

and
p= (|p|5in0p00390p7 |p|sin9p8ing0p, |p|0050p) € R’

(pa "L‘)]RC*
pllz
stands for the scalar product of the vectors in three dimensions. An easy calculation shows

that when d = 3 the right side of (5.12) can be written as

are being used to compute cosf = involved in the right side of (5.12). Here (p, z)gs

B Z)§ Q% + Q3sinb,cos(p, — a) + Qzcos0,}
)2

with « given by (5.14) and here Q) = [gs G(x)xpdr, k =1,2,3, which are the three dimen-
sional generalizations of the correspondent expressions given by (5.14) and term (5.13) will
be equal to

G()
(2 )|p|

and will belong to L>*(R3) if and only if @(O) along with Q, k = 1,2,3 vanish, which is
equivalent to orthogonality conditions (5.10) in three dimensions. The second norm in the
right side of (5.3) is finite under relations (5.1). |

{\/ Q1 + @3sinbpcos(py — ) + Qscosly} | X(pl<1)

Let the function G(z) : I — R, G(0) = G(27) and its Fourier transform on the finite
interval is given by

27 e~ inz
G, = / G(z) de, neZ
0

Z77/$

and G(z Z G

n=—oo

Similarly to the whole space case we define

2

N, = max{

} (5.15)

n



for @ > 0. In the situation of a =0

G

n2

—~

Ny = max{ 5.16)

e

5

[

We have the following elementary statement.

Lemma A3. Let G(x) € L'(I) and G(0) = G(2).
a) Ifa >0 and a # n* n €Z then N, < .
b) If a =nd, ny €N then N, < oo if and only if

e:l:inox
G(x), ) —0. (5.17)
( V2m L2(I)
¢) If a =0 then Ny < oo if and only if

Proof. Clearly we have the bound
1
Gl < —2||G||L1(I) < o0. (5.19)
™

Thus in case a) when a # n?, n € Z the expressions under the norms in the right side
of (5.15) do not contain any singularities and the result of the lemma is obvious. When
a = ng for some ng € N or a = 0 conditions (5.17) and (5.18) respectively are necessary
and sufficient for eliminating the existing singularities by making the corresponding Fourier
coefficients equal to zero: G4, in case b) and Gy in case c). |

Let G(x) be a function on the product of spaces studied in Theorem 3, G(x) : Q =
IXxRY =R, d=1,2, G(0,2,) = G2, z,) for r; € R? a.e. and its Fourier transform on
the product of spaces equals to

~ 1 4 m ,
Gn(p) := 7“1/ d:cle”’”/ G(r1, 7 )e ™ dx,, peRY neZ
(2m)z Jre 0
such that .
|Gn(P) s, = SUDgpera, nezy|Ga(p)] < WHGHLI(Q) (5.20)
1 . PN
and G(z) = ( )d+1 Z / Gn(p)eP*e™dp. 1t is also useful to consider the Fourier
2m) 2 T JRd

transform only in the first variable, such that

efin:vl
dxry, n €.

V21

Gp(ry) = /02” G(z1,1)
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én (p)

Let us introduce &1 (p) := P _a and define
My = mar (€@ s, 107 + 02, ) (5.21)
for a > 0 and R
My = max{’ pf’f;; " ||€;n(p)||%} (5.22)

when a = 0. Here the momentum vector p € R

Lemma A4. Let G(z) € LY(Q), 22 G(z) € LY(Q) and G(0,2,) = G(2m,x.) for x, €
R% a.e., d =1,2. Then M, < oo if and only if

(G(ZL‘), 1)L2(Q) = 0, (G’(l‘),l‘l7 k)LQ(Q) = 0, 1 S k S d, d= 1, 2. (523)
Proof. Let us expand

Gn(p)  Go(p) Gn(p)
Prn? X{peRd, n=0} T pig T2 X{peRd, neZ, n#0}-

The second term in the right side of this identity can be estimated above in the absolute

value by means of (5.20) by ﬁHGHLl(Q) < 0. Clearly we have the bound on the norm
2m) 2

1 2T
122 G| 1 ey < \/—27/ dry /ddmxim(m <oo, mEZ  (5.24)
0 R

é\0 (p)

by the assumption of the lemma. Thus the term € L= (RY) if and only if the or-

thogonality conditions (5.23) hold, which is guaranteed for d = 1 by Lemma A1l and when
dimension d = 2 by Lemma A2. Note that the last term in the right side of (5.22) is bounded
via (5.20). |

Next we turn our attention to the situation when the parameter a is nontrivial.

Lemma A5. Let G(x) € L'(Q), 22G(z) € LYQ) and G(0,z,) = G(2m,zy) for
v, €ERYae., d=1,2 and a=n3, ng € N. Then M, < oo if and only if

(G(:pl,xL) =0, |n|<ny—1, d=1, (5.25)

einxl e:l:i\/n%—anL )
’ V2T V2T L2(Q)

einTl oipT )

G N =0 e S? e. <ng—1 d=2 5.26
< ('TlaxJ_)u\/ﬂ 2 )LQ(Q) ) p \/n(g)_—ng a.ce., |n|_n0 ) ) ( )
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e:l:inoml 6:l:inor1

(G(xl,:pl), T ) =0, (G(xl,:pl), T z, k) =0, 1<k<d (527)
L2(Q) L2 (Q)

Proof. We will use the representation of the function £%(p), n € Z, p € R? as the sum

£Z<p>X{pE]Rd, \n|>no}+£z<p>X{peRd, \n|<n0}+£zo (p)X{peRd, n:n0}+£gn0 (p)X{peRd, n=—ng}* (528)

Obviously [£3(P)X (perd, |nj>no}] < ||@n(p)||L;.ﬁp < oo by means of (5.20). We have trivial
estimates on the norms for n € Z

1 27
G,(x 1 < — dx de | |G(x1,21)] < 00
Gl < == [ dny [ doilGlar.a)

and

1 2T
|2LGn(rL)]| 1 rey < E/O dzq /Rd dz |z, ||G(xy, 2, )| < oc.

Note that G(z) € L'(Q2) and 22 G(z) € L'(Q) by the assumptions of the lemma, which yields
z,G(x) € L'(2). Thus when dimension d = 1 by means of Lemma A1 (D)X (perd, nj<no} €
Ly, if and only if orthogonality relations (5.25) hold. For d = 2 the necessary and sufficient
conditions for the boundedness of the second term in (5.28) via Lemma A2 are given by
(5.26). Lemmas Al and A2 yield that the third term in (5.28) belongs to L7°, if and
only if conditions (5.27) with the positive sign under the exponents are satisfied. Clearly
22 Gp(zy) € LY(RY) due to the assumption of the lemma and estimate (5.24). Similarly,
we obtain that the necessary and sufficient conditions for the the last term in (5.28) to be
contained in L;°, are given by (5.27) with the negative sign under the exponents. Then we

represent (p* + n2)fg(p) as the sum

(p2 + TLQ)SZ(p)X{pERd, nez, p2+n2§n%+1} + (p2 + nz)fg(P)X{peRd, nez, p2+n2>n(2)+1}

in which the absolute value of the first term has the upper bound (ng + 1)[[&(p) ||, < 00

under the orthogonality conditions of the lemma and of the second one (1+n2) G (p)|| Ly, <
oo via (5.20). |

Finally, we study the case when the parameter a is located on an open interval between
the squares of two consecutive nonnegative integers.

Lemma A6. Let G(x) € L'(Q), z,G(z) € LYQ) and G(0,z,) = G(2m,zy) for
v, €Rae, d=1,2 and nd < a < (ng +1)% ng € Z* = NU{0}. Then M, < oo if and
only if

ein:vl e:l:i\/mml
(G(azl,xl), T T )p(g) =0, |n|<ny d=1, (5.29)
einarl eilml )
(G(azl,;m), N )L2(Q) =0, peS mzae, [nf<n, d=2. (5.30)
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Proof. Let us expand £%(p) as the sum of two terms
SZ(p)X{pGRd, neZ, |n|>no+1} + SZ(p)X{pGRd, n€Z, |n|<ngp}s

1Gn(p)ll g,

(np+1)2—a
second one belongs to Ly°, if and only if orthogonality relations (5.29) are satisfied in one
dimension by means of Lemma A1l and if and only if conditions (5.30) are fulfilled in two
dimensions via Lemma A2. We write (p® + n?)£%(p) as the sum

such that the absolute value of the first one is bounded above by < oo and the

(p2 + HQ)SZ(p)X{pERd7 n€Z, p>+n?>(no+1)?} + (p2 + HQ)SZ(p)X{pERd, n€Z, p>+n?<(no+1)2}

in which the first and the second terms can be easily bounded above in their absolute values
by the quantities finite under the conditions of the lemma, namely

4@ A -
(1 T 2= ) IGa®)llLg, and  (no + 1)*I€1(P) Iz,

respectively. [ |
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