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1. Introduction and main result

Birkhoff [3] introduced the problem afonvex billiard tablesnore than 80 years ago as a way
to describe the motion of a free particle inside a closed exswnooth curve. The particle is
reflected at the boundary according to the law “angle of iecad equals angle of reflection”.
Good modern starting points in the literature of the bitigroblem are [11, 18].

Caustics—curves with the property that a billiard trajectory, oneadent to it, stays
tangent after every reflection— are the most distinctivengetoic objects inside billiard
tables, since they are a geometric manifestation of thdaaguof their tangent trajectories.
For example, integrable billiards have a continuum of dasistvhereas the nonexistence
of caustics inside a convex billiard table implies that ¢hare some billiard trajectories
whose past and future behaviours differ dramatically. $eeinstance, [13]. Hence, the
existence and persistence of caustics are two fundamangatigns in billiards. Most of the
literature deals with convex caustics, since they are etsinderstand and related to ordered
trajectories. Two exceptions are [§&] and [10].

We summarize the classical existence results as followsh©aone hand, if the boundary
curve is smooth enough and strictly convex, then there ®aisollection of smooth convex
caustics close to the boundary of the table whose union hasyaoarea [7, 12]. On the other
hand, Mather [13] proved that there are no smooth convexticausside a convex billiard
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table when its boundary curve has some flat point. Gutkin azak[8] gave a quantitative
version of Mather’s theorem.

The robustness of a smooth convex caustic is closely retatége arithmetic properties
of its rotation numbey which measures the number of turns around the caustic pgEdm
Caustics with Diophantine rotation numbers persist unaedigerturbations of the boundary
curve. This follows from standard KAM arguments [7, 12]. @a tontraryresonant caustics
—the ones whose tangent trajectories are closed polygornkastheir rotation numbers are
rational— are fragile structures that generically break$ge, for instance, [16].

This raises two complementary questions. First, to cheriaet the perturbations that
preserve/destroy a given resonant caustic of a billiarigt&econd, to determine all resonant
caustics that are preserved/destroyed under a given patitum of an integrable billiard table.
These questions have been studied by several authors.HBédye and Zharnitsky [2] proved
that the perturbations preserving a given resonant caokaicsmooth convex billiard table
form an infinite-dimensional Hilbert manifold. As a samphe point out that this Hilbert
manifold is given by the set of billiard tables with constesdth when the rotation number of
the unperturbed caustic is one half [10]. Concerning thersgguestion, Ramirez-Ros [16]
gave a sufficient condition for the break-up of the resonantiar caustics inside a circular
billiard table, in terms of the Fourier coefficients of thetpebation, see Remark 3 below.

In this paper we tackle the second question when the bilbakchdary is an ellipse. In
that case, the billiard dynamics is integrable and anyadlirajectory has a caustic [18]. The
caustics are the conics confocal to the original ellipsefacal ellipses, confocal hyperbolas,
and the foci. Poncelet [15] showed that if a billiard tragegtinside an ellipse is a closed
polygon, then all the billiard trajectories sharing its sttiare also closed polygons. Even
more, if a billiard trajectory tangent to one of the elligticaustics is &n, n)-gon—a closed
polygon withn sides that makes: turns around its caustic—, then all the billiard trajectari
sharing its caustic are algan, n)-gons, and their caustic is calléd:, n)-resonant (These
two definitions are not restricted to billiards inside edigs.) We shall see in Section 4 that
there is a uniquém, n)-resonant elliptical caustic for any relatively prime igéesm andn
such thatl < m < n/2. Our main result is that all these resonant elliptical cassireak up
under a large class of explicit perturbations of the oribatigpse, see Theorem 1.

The following notations are required to state the main te€uice fixed the ellipse
2 2

_ 2 ¥ Y

Q—{(:c,y)ER.E—i-ﬁ—l}, a>b>0,

we consider its associated elliptic coordinatesy) given by the relations
x = ccosh p cos @, y = csinh psin @,

wherec = va? — b? is the semifocal distance @). The equation of the ellips@ in this
elliptic coordinates i$. = po, wherecosh py = a/c andsinh iy = b/c. Hence, any smooth
perturbatiorn(). of the ellipse) can be written in elliptic coordinates as

p = pe() = po + epur (i0) + O(e?), (1)
for some2r-periodic smooth functiop. ().
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Theorem 1. Let i, () be a2r-periodic entire function. Ifi; (¢) is not constant (respectively,
1y () is notr-antiperiodic), then none of then, n)-resonant elliptical caustics with oda
(respectively, even) persists under the perturbation (1).

Our proof is based on the study of the persistence of the aegantational invariant

circles (resonant RICs) of some twist maps by means of adidgs Melnikov method. Only
convex caustics can be related to the RICs of those twist nfdpss, there is no direct way to
extend the same procedure to the nonconvex caustic hypstlimit we believe that the same
results hold for them.
Remarkl. If u.(p) is constant, then the perturbed curv@s are ellipses, so all caustics
(resonant or not) are preserved. Hence, the hypothg$is) nonconstant is natural, since
we are using a first-order method. Nevertheless, we cansstilé some results when this
hypothesis fails. More precisely, let us assume that

(@) = pro+epn + -+ € i1+ € pi(ip) + O™,
for someyy, . . ., ;-1 € R and some nonconsta®it-periodic entire function;(¢). Then:

e If nis odd, all thg(m, n)-resonant elliptical caustics with oddbreak up. This resultis a
corollary of Theorem 1. It suffices to considet= ¢’ as the new perturbative parameter,

Qf = {pu=po+ -+ tu_1} as the unperturbed ellipse, and to realize thats a

O(6)-perturbation of)* whose first-order term it verifies the hypotheses of Theorem 1.

e If n is even, we believe that alin, n)-resonant elliptical caustics also break up, even if
wi(p) is m-antiperiodic, but we should use a second-order Melnikothoetin order to
prove it. Unfortunately, the computations become too cusdree.

Remark2. If we write the perturbed ellips@. in Cartesian coordinates as

o’ fa® + y? /b + ePy(w,y) + O(e?) = 1,
then?2(a?sin? ¢ + b? cos? )y () + abPi(acos @, bsin ) = 0. In particular, the function
11 () is m-antiperiodic wherP; (z, y) is odd.
Remark3. The case of perturbed circular tables was studied usindasitechniques in [16],
but the final result was quite different. Let us recall it fongparison. Any billiard trajectory
inside a circle of radius, has some concentric circle of radiyérZ — A2 as caustic, where
0 < X < rg plays the role of a caustic parameter. \lf= rq sin(mm/n), then the circular
caustic is(m, n)-resonant. Let us write the perturbed circle in polar cawaths(r, 0) as

7 =1(0) = ro(1 4+ er (0) + O(e?)), (2)
for some smooth function. : T — R. Let ), , e be the Fourier expansion of (6)
andn > 2. If there exists somé € nZ \ {0} such that?! # 0, then the(m,n)-resonant
circular caustics do not persist, see [16, Theorem 1]. ltiqudar, it is not known if the
(m, n)-resonant circular caustics with odd (respectively, evebjeak up when () is not
constant (respectively; (¢) is notr-antiperiodic).

We complete this introduction with a note on the organizatia Section 2 we develop a
general Melnikov theory to study the persistence of resbR&Ds of twist maps. The general
setup is adapted to billiard maps in Section 3. Finally, Teeol is proved in Section 4 by
analysing the complex singularities of certain elliptio¢tions, an idea borrowed from [6].
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2. Break-up of resonant invariant curves in twist maps

This section is a generalization of [1§2], although several hypotheses have been weakened.
Namely, the unperturbed map can be nonintegrable, the aesamvariant circle does not
need to be horizontal, and the shift on the invariant circis be nonconstant. In spite of
it, the essential idea does not change. A similar theory idained in [17]. For a general
background on twist maps we refer to the bookg@.3] or to the review [14].
Let T = R/27Z, andm; : T x R — T be the natural projection. Sometimes it is
convenient to work in the universal covigrof T. We will use the coordinates:, y) for both
T x R andR2. The lines of the form: = constant andy = constant will be called vertical
and horizontal, respectively. A tilde will always denote tift of a function or set to the
universal cover. If is a real-valued functiord), g denotes the derivative with respect to itte
variable. We will assume that all the considered objectsiam@oth. Here, smooth meaf's°.
In particular, all the dependences on the perturbativenpaiere are assumed to be smooth.
We will consider certain diffeomorphisms defined on an opgiinder of the form
Z = T x Y, for some open bounded intervell = (y_,y,) C R. ThenZ = R x Y is
an open strip of the plane. A diffeomorphistin Z — Z is called amarea-preserving twist
mapwhen it preserves area, orientation, and verifiegwhst condition

827}1f~<xvy) 7£ 07 V(SL’,y) S Z

If the twist is positive (respectively, negative), then first iterate of any vertical line tilts
to the right (respectively, left). We also assume, althoig$ not essential, that verifies
somerigid boundary conditions To be more precise, we suppose that the twist rfiap
can be extended continuously to the closed cylirfiler [y_, .| as a rigid rotation on the
boundaries. That is, there exist solmaundary frequencies. € R, w_ < w,, such that

f(xvy:lz) = <x+wiayi)'
Let D = {(z,2') € R? : w_ < 2’ — x < w,}. Then there exists a functidn: D — R

such thatf(z,y) = (2/,y') if and only if

Yy = —61h(l’, l‘,), ?// = 62h(l’, ZL‘/). (3)
The function’ is called thegenerating functionf f. Besides, ifz”,y") = f(2/, '), then
Ooh(x,2') + O1h(2', 2") = 0. 4)

We study the dynamics of, but it is often more convenient to work with the lift so
we will pass between the two without comment and, in whaofed, the lift / remains fixed.

A closed curvel C 7 is said to be aotational invariant circle (RIC)of f when it is
homotopically nontrivial angf(T) = Y. Birkhoff proved that all RICs are graphs of Lipschitz
functions. See, for instance, [14V.C]. Letv : T — Y be the Lipschitz function such that
T = graphv := {(z,v(x)) : x € T}. If vis smooth, we say thaf is asmooth RIC

Twist maps do not form a closed set under composition. Fdamte, the square of a
twist map is not necessarily a twist map, and indeed typidalis not. Nevertheless, any
power of a twist map isocally twiston its smooth RICs.
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Lemma 2. If T = graph v is a smooth RIC of an area-preserving twist map~Z — 7, then
Oaity [ (x, 0(x)) # 0, Vo € R, Vn > 1.

Proof. Given any poinp = (z,0(z)) € T, letp; = (z;,0(z;)) = fi(p), t; = (1,'(x;)),

andv; = (0,1). We identify the tangent planég,Z with the Euclidean plan&?. Thus,
the vectort; is tangent toY at the pointp; andw; is a vertical vector ap;. The linear map
df*(p) : T,Z — T,,Z is the composition of the linear magdy (p;) : T,,,Z — T,,,, Z for

Jj=0,...,n—1. Leta;, b;,c;,d;j, an, By, Tn, 0, € R be the coefficients such that

Af(p) = t; = gt + v, vy bty + djvji
dfn(p) : tO = apty, + TnUn, Vo > Bntn + 5nvn-

We note thab; = 0,7, f(p;) and B, = dy7, f™(p). Let us suppose that the twist is positive,
sob; > 0. We want to prove that,, > 0 for any integem > 1. The case of negative twist is
completely analogous.

We deduce that; = 0 from the invariance of. Hence3, = ") DJ~'b;A}; |, where
D! =TI, dr andA! = [];_, ax. Besides, we note that > 0 because the two components
of C'\ T are invariant. Finally, we get that > 0 from the preservation of orientation. [

Roughly speaking, a RIC is said to besonantwhen all its points are periodic, but we
need to be more precise. L@t y) € Z be a periodic point of the twist mafy and letn be its
least period. Then the exists an integesuch that its lift verifiesf™(z, y) = (z + 27m, y).
Obviously,w_ < 2mm/n < w,. Such a periodic point is said to betype(m,n). ARIC is
said to be(m, n)-resonantwhen all its points are periodic of tygen, n).

Let f be an area-preserving twist map witlva, n)-resonant smooth RIC = graph v.
Considering area-preserving twist perturbations of tmnfé. = f + O(e), we prove in the
following lemma that there exists two graplis = graph v, andY? = graph v} O(e)-close
to T and such thaf”" projects the first graph onto the second one along the vediiegction.

Lemma 3. There exist two smooth functions v’ : T — Y defined fof € (—¢y, €), €o > 0,
such that:

(i) ve(z) =v(x)+ O(e) andv(x) = v(z) + O(e), uniformly inz € T; and
(i) f(z,v(x)) = (x,v}(x)), forall z € T.

Proof. We work with the lift of the maps. Once fixed an angle R, lety, = ©(x) and
Gly,€) := T f*(x,y) — x — 2mm.

This functioné(y, ¢) verifies the hypotheses of the Implicit Function Theoremhatpoint
(y,€) = (1,0), sinceG(yo,0) = 0 andd, G (yo, 0) = dory f(z, 0(z)) # 0, see Lemma 2.
Consequently, there exist, n > 0 such that the equatic@l(y, ¢) = 0 has exactly one solution
Y. = yo + O(e) in the interval(yo — 1, yo + n) for all e € (—ep, ). We recall thati(y, €) had
x € R as an extra parameter, but it appearedin-geriodic smooth way. Hence, andr can
be taken independent from the estimatéy. —y,| = O(¢) is uniform inz, andy,. dependsin a
2w-periodic smooth way onm. Finally, seto.(x) = y. and thero*(z) is determined by means
of relation f(x, () = (z + 2zwm, ¥*(z)). The functionsy,, o* : R — Y are2r-periodic
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and smooth, so they can be projected to two smooth functigng : T — Y that verify the
two claimed properties by construction. O

We say that gm, n)-resonant smooth RIQ of a twist mapf persistsunder an area-
preserving twist perturbatiofy = f+O(e) whenever the perturbed map hasa n)-resonant
RIC T, for any small enough such thatY, = T + O(e). The corollary below follows
immediately from this definition.

Corollary 4. The resonant RIQ" persists under the perturbatiofa if and only if T, = T7.
Therefore, it is rather useful to quantify the separatiomvieen the graph¥. and Y.

Lemma5. v¥(z) — v.(z) = L.(z), whereL, : T — R is a function whose lift is
n—1
L(x) =Y h@j(wie) 2palzse)), @) = 7 f (2, 0u(x)), (5)
j=0

andh. is the generating function gf.

Proof. As long as confusion is avoided, we will omit the dependencercande. We
introduce the notationéz;, 7;) = fi(z,0(z)) andw; = 87;/dx for j = 0,...,n. Then
Ty = xz andz, = x + 27m, SOw, = w, = 1. Besidesy, = 0(z) andy, = 0*(x).
From the implicit equations (3), we get thath(zo,z1) = —vo, h(Tpn_1,%,) = Yn, and
Ooh(T;1,7;) + O (T, Tj41) = 0forj =1,...,n— 1. Therefore L' (x) = 01 h(Zo, T1 ) +
S0 (Oah(T o1, T5) + O AT, Tjd) ) + Oahi(Tp1, T )0, = D" (x) — D(2). Itis immediate
to check that : R — R is 2r-periodic, so it can be projected to a functibn T — R. [

Corollary 6. The resonant RIQ" persists under the perturbatiof if and only if L. (x) = 0.

We shall say that,, : T — R is thesubharmonic potentialf the resonant RIQ" under
the twist perturbatiory.. It is rather natural to extract information from the lowder terms
of its expansior.(z) = Lo(x) + €L, (z) + O(e?). This is the main idea behind any Melnikov
approach to a perturbative problem. The zero-order teg(w) is constant (and so useless),
sinceL)(z) = vi(x) —vo(z) = v(x) —v(x) = 0. We shall say that the first-order tetba(x)
is thesubharmonic Melnikov potentiaf the resonant RIQ" under the twist perturbatiof.
The proposition below provides a closed formula for its catagon.

Proposition 7. If h, = h + ehy + O(€?), then the lift ofL, (x) is
n—1
Ly(z) = halwj, wj11), ;=71 f (x, 0(2)).
=0

Proof. Given anyzr € R, we setr; = z;(z) := z;(2;0) andz; = z;(z) := 0»z;(z;0) for
j=0,...,n. Then theO(¢)-term of (5) is

n—1

Izl(l‘) = 81h(x0, 1‘1)20 + Z (81h(xj, Zl'j+1) + 62h({['j_1, l‘])> Zj + 62h(l‘n_1, l‘n)Zn +

j=1

n—1
> (s, wi).
§=0
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Figure 1. The billiard mapf (¢, 9) = (¢’,9¥').

Using the implicit equations (3) for the unperturbed twistpnthe first summation vanishes.

The terms), h(z, x1)20 anddzh(x,—1, ©,) 2, @lSo vanish, sincgy(z; €) = x andz,(z;¢) =

x + 2rmforall e € (—eg, €o). Besidesy; = z;(z) = 7;(x;0) = 7y f(x, v(z)). O
The following corollary displays the most important prageof the subharmonic

Melnikov potential in relation with the goals of this paper.

Corollary 8. If Li(x) is not constant, then the resonant RICdoes not persist under the
perturbationf..

Proof. It follows directly from Corollary 6 and the estimate = constant+eL; +O(e?). [

3. Break-up of resonant caustics in perturbed billiard tables

Let ) be a closed strictly convex smooth curve in the plane. et T — @ be a
counterclockwise parametrization. L8t= T x (0, 7) be an open cylinder. We can model
the billiard dynamics insidé€) by means of amap : Z — Z, f(¢,9) = (¢',9'), defined
as follows. If the particle hitg) at a pointy(y) under an angle of incidenag < (0, 7) with
the tangent vector at(y), then, as the motion is free inside the nextimpact point is(¢’),
the intersection point with the boundary and the next anfleadence isy’ € (0, ), as in
Figure 1. A straightforward computation shows tliap, J) = (/. ) if and only if

17/ (0)| cos ) = —01h(p, ¢'), 17 (") cos " = Oah(e, ¢'), (6)

whereh : T? \ {¢’ # ¢} — Ris given byh(p,¢’) = |v(¢) — v(¢')|. Besides, the twist
condition holds:0y' /09 = h(p, ¢") /|7 (¢’)|sin?’ > 0. Finally, it is geometrically clear that
f verifies the rigid boundary conditions with. = 0 andw., = 2.

A remark is in order. Equations (6) differ slightly from eduoas (3), but identity (4) still
holds and so the theory developed in the previous sectibbastilies.
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Figure 2. Left: A (1,4)-resonant convex smooth causic Right: Its two smooth RICs
T~ = graphd~ andY~ = graph?~ in the phase spacg = T x (0, 7).

Obviously, one could write the map in the canonical coorima—arclength parameter
for the boundary andos ¥ as its conjugate— in order to ha¥eas a generating function, but
this is not a wise choice when dealing with ellipses.

Let us assume that there exists a closed convex smoothcaustintained in the region
enclosed by). Then the billiard mag : Z — Z has two smooth RIC¥* = graph 9+ C Z.
The functionsy® : T — (0,7) are easy to understand: () andv¥~(¢) are the angles
determined by the two tangent lines to the cauSticom the pointy(¢) € @, see Figure 2. In
particulary~ (p)+91(¢) = . Tofixideas, we willassume that~ andY " correspond to the
billiard motion around”' in the couterclockwise and clockwise senses, respectivdnce,

0 <V (¢) < /2 < I(p) < . There is an explicit formula relating the parametrization
of the billiard curveQ, the parametrization of the caustit, and the functiong*. See, for
instance, [7, 10].

Let @ be a closed strictly convex smooth billiard boundary witlvan)-resonant convex
causticC, so that its RICY ™ is (m, n)-resonant and its RIQ'* is (n — m, n)-resonant. We
say that”' persistsunder a perturbatio®@. = @ + O(e) whenever the perturbed billiard curve
has a(m, n)-resonant causti€, for any small enough such thaC, = C + O(e).

Let f. be the billiard map insid&). andL; () and L (¢) be the subharmonic Melnikov
potentials of the resonant RIGS™ and Y™ under the area-preserving twist perturbatjon
Both potentials coincide, due to the time reversibility lod billiard dynamics. Therefore, we
can skip thet signs. In this context, we will say thdt, (¢) is the subharmonic Melnikov
potential of the resonant caustitfor the perturbatiord)..

Corollary 9. If L;(y) is not constant, then the resonant causticloes not persist under the
perturbationq..
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4. Break-up of resonant caustics in perturbed elliptic biliard tables

From now on, we will assume that the unperturbed billiardiutary is the ellipse

2 oy
QI{QI(%Z/)ERi?—l—ﬁ:l}, a>b>0.
It is known that the convex caustics of the billiard insi@deare the confocal ellipses
2 x? y?
sz{qz(x,y)eR:az_A2+b2_A2=1}, 0< A<D

Let p(\) be the rotation number of the elliptical caustiz. Thenp : (0,b) — R is an
analytic increasing function such that0) = 0 andp(b) = 1/2. See, for instance, [4].
Thus, there is a uniquen, n)-resonant elliptical caustic for any relatively prime igéesm
andn such thatl < m < n/2. We shall see that the caustic parameteg (0, b) of the
(m, n)-resonant caustic is implicitly determined by means of areéign containing a couple
of elliptic integrals, see equation (10).

The following lemma on elliptic billiards is useful to sinifyl the expression of the
subharmonic Melnikov potential later on.

Lemma 10. Let (g;) ez be any billiard trajectory inside the ellips@ with causticC'. Let
p; = (g;41 — ¢;)/|¢;+1 — ¢;] be the unitinward velocities of the trajectory. Then

ab(p;—1 — pj, D_qu> = 2, V) e,
whereD = diag(a, b) is the diagonal matrix such th& = {q € R? : (¢, D%¢) = 1}.
Proof. We shall prove that given any poigt = (z,y) € @ and any unit inward vector
p = (u,v) € St, the linel = {q + 7p : T € R} is tangent to the coni€, if and only if

A = —(bzu/a + ayv/b) = —ab{p, D~q).

To begin with, we note that the linfles tangent to the coni€, if and only if the equation
of second order in the variabtegiven by

(z+7u)?/(a®> = X))+ (y+70)2/(b* = X*) —1=0
has zero discriminant, which is equivalent to the equation
2 2 2 2 2
ru Yv U v T Y
(a2—)\2+1)2—)\2) - (aQ—)\2+b2—)\2) (a2—)\2+62—)\2_1)'
After some simplifications, we can rewrite this equation as
(zv — yu)? = (B2 — M)u? + (a® — M\)v? = a®0? + b*u? — N\,

sinceu? + v? = 1. Next, using that?/a? + y?/b* = 1, we obtain that
N = (a®v® + b*u?)(2?/a® + y*/b?) — (2v — yu)? = (bru/a + ayv/b)>.

Thus, we have two possibilitiest = ab{p, D~2q) or A = —ab{p, D~2¢). The first one is
discarded, because > 0 and (p, D~%¢) < 0. The second inequality follows from the fact
that the vectop points inwardQ at ¢, whereasD 3¢ is an outward normal vector {9 at q.
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Finally, we note that-p;_1 = (¢;-1 — ¢;)/|g;—1 — ¢;| andp; = (¢j+1 — ¢;)/|g;+1 — ¢
are the two unit vectors that point inwa€gl at the impact poing,; and give the two tangent
directions to the causti€,. Therefore A = ab(p;_1, D~%¢;) = —ab(p;, D~%¢;). O

Proposition 11. Let C), be the(m, n)-resonant elliptical caustic confocal to the ellipge
Givenany angle € T, letg; = (acos ¢;, bsin ¢;) be the vertexes of the, n)-gon inscribed
in @ and circumscribed around’, such thatg, = (acos ¢, bsin ). Then the subharmonic
Melnikov potential of the caustiC) for the perturbed ellipse (1) is

Li(p) = 22> (). (7)
=0

Proof. The parametrization of the perturbed ellipse (1) is given by

Ye(p) = (ccosh pie(p) cos g, esinh pe(p) sin ) = 70(0) + en () + O(€),

wherevy () = (acosp, bsin ), v1(p) = abui(p) D yo(¢), andD = diag(a, b) as above.
The generating function of the billiard map inside the pdxed ellipse is

he(, @) = 7e(¢") = 7e(@)] = ho(i0, ) + e, @) + O(€?).
The first terms of this expansion verify the identities(¢, ¢') = |70(¢’) — Y(¢)| and
ho(e, )i, ') = (o(¢") = 70(®), 1(¥") = 7(@))-
Let (¢;),;ez be the billiard trajectory inside the ellipsg@ with causticC), such that
¢; = v(p;) andyy = ¢. The unit inward velocities of this trajectory are

G — 4 Yolgiv) = Y(es)
T g — gl ho(j, ¢j+1)
It follows from Proposition 7 that the subharmonic Melnikaatential is

n—1
Li(p) = Z hi(j, j+1)
j=0
~1

= > i n(pie) — ()
=0
n—1
=ab (pj, (1) D >qi1 — pa(9)D>g5)
=0
n—1
=ab Z(pjfl —pj, D72q;) ()

j=0
n—1

=2\ Z 11(;)-
j=0

We have used the periodicity in the fourth equality and Leni®an the last one. O
Next, we give a couple of sufficient conditions for the sulbmanic Melnikov potential
to be constant. These conditions are trivial. Neverthetbsy play a key role in our problem.
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Concretely, we shall check later on that they are also nacgs®nditions in the class of
2m-periodic entire functiong ().

Corollary 12. Letu;(¢) be any2r-periodic smooth function.
(i) If the periodn is odd, theru, () constant= L, () constant.

(i) If the periodn is even, then/, () m-antiperiodic= L;(y¢) constant.

Proof. The casen odd is obvious. Ifn is even, the(m,n)-gons inscribed inQ) and
circumscribed around’, are symmetric with respect to the origin, gg..,/2 = ¢; + 7 and

n—1 n/2—1
Li(p) =20 ) piles) = 2X > (#h () + (5 + 7)) -
J=0 =0
In particular,n even ang| () m-antiperiodic= L} (¢) = 0 = L;(y) constant. O

The subharmonic Melnikov potential of the:, n)-resonant caustic for the perturbed
circle (2) is

L1(0) = 2rgsin(mm/n) } r1(0;), 0, =0+ 2mmj/n, (8)

see [16, Proposition 10]. We recall that= rsin(mn/n) is the (m,n)-resonant caustic
parameter of the circle of radiug. Besides, all thém,n)-gons inscribed in the circle of
radiusr, and circumscribed around the circle of radius= r(sin(mn/n) are regular, so
their vertexes are of the forgy = (r cosé;, rosind;) with §; = 6 + 2mmj/n. Hence, the
function (8) is the limit of function (7) when bothandb tend tor.

Although functions (7) and (8) look quite similar, they hiderucial difference. There
is a simple formula for the; angles, but not for the); ones. This has to do with the
fact that the billiard trajectories inside a circle of raslity sharing a circular caustic with
radius\ = rsin(d/2) have a rigid angular dynamics of the forin— 6 + §. On the
contrary, such a rigid angular dynamics does not take plarcelliptic tables when the angle
v is considered, which is a source of technical difficultiesha study of the subharmonic
Melnikov potential (7). Nevertheless, it is possible to defa new angular parameteover
the ellipse in such a way that all billiard trajectories insidesharing the elliptical caustic
C'\ have a rigid angular dynamics of the form- ¢ + ¢, for some constant shift= §(\).

We need some notations on elliptic functions in order to aeffiis angular parameter
We refer to [1, 19] for a general background on elliptic fuos. Given a quantity € (0, 1),
called themodulus thenK = K (k) = O’T/Q(l — k%sin? ¢)~'/2d¢ is the complete elliptic
integral of the first kind We also writeK’ = K'(k) = K(v/1 — k?). Theamplitudefunction
¢ = amt is defined through the inversion of the integral

@
t= / (1 — k%sin? ¢)~/2dg.
0
Then theelliptic sinusand theelliptic cosinusare defined by the trigonometric relations

snt = sin g, cnt = cos g,
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respectively. Dependence on the modulus is denoted by a agreuneding it, so we can write
am(t, k), sn(t, k), anden(t, k) to avoid any confusion. In the following lemmaiit is statedtth
the angular dynamics becomes rigid in the angular parameaen by = am(t, k). It
suffices to find the suitable modulidor each elliptical caustic’y.

Lemma 13. Once fixed any caustic parameterc (0, b), we set the modulus € (0, 1) and
the constant shif € (0, 2K) by the formulae

a? —b?

9/2
e 2= - Rsnte) ©

whered € (0, ) is the angle such thain(v/2) = A\/b. Let

K =

¢; = (acospj,bsin ;) = (acn(t;, k), bsn(t;, k))
be any billiard trajectory inside the ellips@ with causticC. Thent;; = t; + 0.

Proof. By definition, ¢; = am(t;, k), SOtj; — t; = f£j+1(1 — k%sin? ¢)~1/2d¢. These
integrals are equal to a constarthat depends only o€, see [5, page 1543]). The formula
for the constant shift is given in [5, page 1540]. O

Remark that ife = b = ry then the modulug is equal to zero, the complete elliptic
integral K is equal torr /2, the amplitude function is the identity, the elliptic sivessinus are
the usual sinus/cosinus, the shifie (0, ) is given by = r(sin(6/2), and the dynamical
relationt;,, = t; + 6 becomesp;,; = ¢; + d. Thus, we recover the known rigid angular
dynamics for circular tables as a limit of the formulae fdipgic tables.

From now onk andj will denote the modulus and the constant shift defined inT8us,
we shall skip the dependence of the elliptic functions onntleglulus. We note that', has
eccentricityk. Besides( is the(m, n)-resonant elliptical caustic if and only if

nd = 4Km. (20)

This identity has the following geometric interpretatiowhen a billiard trajectory makes
one turn around’'), the old angular variable changes byr, so the new angular variable
t changes byt K. On the other hand, we have seen that the variableanges by when a
billiard trajectory bounces once. Hence, a billiard trageginscribed in and circumscribed
aroundC’, makes exactlyn turns around’, aftern bounces if and only if (10) holds.

Proposition 14. Let i, (¢) be any2z7-periodic entire function.
(i) If the periodn is odd, then;(¢) constant= p;(¢) constant.
(i) If the periodn is even, therl,(¢) constants 1 (¢) m-antiperiodic.
Proof. Let A = 2K + 2K'iandz(t) = cnt +isnt. If ¢ = amt, then
e¥ = cosp+ising =cnt+isnt = z(t),

e ¥ = cosp —ising =cnt —isnt = z(t + A).
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We have used that the elliptic cosinusAsperiodic, but the elliptic sinus i&-antiperiodic.
We also recall that the elliptic cosinus/sinus aré-antiperiodic meromorphic functions on
the whole complex plane whose unique singularities are diggpof the form

Trs = 2Kr + (1 4 25)K'i, r,s € 7.
Besides, these singularities are just simple poles whesgues are

res(cn; 7,.,) = (—1)" /K, res(sn; 7,5) = (—1)"/k.
Thus, z(t) is a 2K -antiperiodic meromorphic function whose unique singtits are the
points of the set

P={r9541:1,8 €L} =1+ 2KZ + 4K'iZ, T =101 = —K'L

As before, these singularities are just simple poles.
Let ", , ue'” be the Fourier expansion pf (). Then
palamt) = () = Y fue'® = i (2(t+ A)) + fio + fi+ (2(t),
leZ
wherefi_(z) = 3.2, izt and iy (2) = Y77, juz'. We note that the functiong..(z) are
entire, becausg; () is entire. Besides,

n—1

Li(amt) = Li(p) =20 ) () = 2\ (L-(t) + nfio + Lo (1), (11)
j=0
whereL_(t) = Y"7) i (z(t + A+ j6)) and L (t) = 307) i (2(t + j5)). Let us study the
behaviour of these two functions around the peint — K’i. Concretely, we shall prove that
L_(t) is analytic at = 7., whereas_, (¢) has a nonremovable singularitytat 7. provided
11 () is nonconstant and is odd, or provided/ () is notr-antiperiodic and: is even.
We begin with a couple of simple observationsj ¥ {0,...,n — 1}, then:

a) (. +A+jd)=K',sor. + A+ jo ¢ P;and
b) 7. +j0 € P < 4Kmj/n = jo € 2KZ < 2jm € nZ < 2j € nZ < j € {0,n/2}.
Here, we have used thate R, equation (10), andcd(m,n) = 1. Besides, we stress
that the equality = n/2 only can take place whenis even.
We deduce the following results from the above observations
1) L_(t)is analytic att = 7., because so argt + A + jé) for j =0,...,n — 1.
2) If nis odd andu; () is nonconstant, then:

— The functionj, (z) is nonconstant and entire;

— The functionL , (t) — i, (2(t)) = Z;?;ll [ (z(t + j0)) is analytic att = 7.;

— The compositioni, (z(t)) has a nonremovable singularitytat .; and

— The function (11) is nonconstant, since it has a nonremevsibgularity at = ..

3) If nis even and:|(y) is notw-antiperiodic, then:
— The sums (2) = 4 (2) + iy (—2) = 212, iy2* is @ nonconstant entire function;
— 2(t+nd/2) = z(t + 2Km) = (—1)"2(t) = —=z(¢), sincem is odd,;
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= [ (2(1) + Ay (2(E +10/2)) = 6(2(1));

— The functionL (t) — d(z(t)) is analytic at = 7,;

— The compositiors (z(t)) has a nonremovable singularitytat .; and

— The function (11) is nonconstant, since it has a nonremevsibgularity at = ..

Therefore, the proof follows by combining the above reswite Corollary 12. O
Finally, we note that our main result (namely, Theorem lestah the introduction)
follows directly from Corollary 9 and Proposition 14.
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