
A class of analytic solutions for force-free electromagnetic�elds Mark DavidsonSpectel Research Corp., Palo Alto, CA, USAE-mail: mdavid@spectelresearch.comAbstract. A method for producing a large class of force-free electromagnetic �eld solutions incurved spacetime is presented. Analytic examples in �at spacetime are given. All the solutionsstart with a null electromagnetic free-�eld solution with special properties. Then, a transformationof the null free-�eld solution produces a solution to the force-free problem. Examples based onthe Hopf-Rañada electromagnetic knot are presented. All of the solutions considered have theproperty that both invariants of the Faraday tensor, F
µν

Fµν and F
µν(∗F )µν , are zero. Thisrequires that in a local Lorentz frame the electric and magnetic �elds are perpendicular and equalin magnitude. Thus these degenerate null �elds are quite idealized cases, and they may only berelevant to real physical systems in certain limits. We provide a software program which can beused to check the validity of at least one of the solutions found.Keywords : force-free, plasma, magnetohydrodynamics, Hopf-Rañada, electromagnetic knotPACS numbers: 03.50.De, 52.65, 52.30, 52.27AMS classi�cation scheme numbers: 53Z05, 55P99, 76W05, 85-08



21. IntroductionForce-free electromagnetic theory has found numerous applications in astrophysics, solar physics,and laboratory plasma physics [1, 2]. Since there are a number of applications of force-freeelectrodynamics in astrophysics where the spacetime is curved, the presentation here shall workwith the pseudo-Riemannian geometry of general relativity. We use the formalism of di�erentialforms. Our metric signature is (-,+,+,+). Units are such that c=1. Our goal is to present a newclass of solutions to the force-free electromagnetic problem. Let the vector potential 1-form for theelectromagnetic �eld be denoted by A and the Faraday 2-form by
F = dA (1)where d denotes exterior derivative. The tensors for A and F are related to their formrepresentations by the following
A = Aαdx

α (2)
F =

∑

α,β,α<β

Fαβdx
α ∧ dx

β =
1

2!

∑

α,β

Fαβdx
α ∧ dxβ (3)Maxwell's equations are written

dF = 0, d ∗ F = 4π ∗ J (4)or in tensor notation
∇αF

αβ =
1√
|g|
∂α

(√
|g|Fαβ

)
= −4πJβ (5)

∇[αFβγ] = ∂[αFβγ] = 0 (6)where square brackets denote the usual antisymmetrization operation,∇ is the covariant derivative,
J is the current 1-form, and * is the Hodge dual operator which in tensor notation takes the form

(∗F)
αβ

=
1

2
εαβγδFγδ (7)

(∗J)
αβγ

= εαβγδJδ (8)where εαβγδ is the Levi-Civita totally antisymmetric tensor which satis�es
εαβγδ = |g|

1/2
ε̃αβγδ, εαβγδ = − |g|

−1
εαβγδ g = det (gαβ) (9)where the ε̃ represents the Levi-Civita symbol. The force-free condition is simply

FαβJ
β = 0 (10)It follows from this equation alone that

det(Fαβ) = 0 (11)



3and consequently that (in spacetime dimension four)
F ∧ F = 0, (∗F)αβF

βγ = 0 (12)The helicity 4-current K or Chern-Simons current is de�ned by the 1-Form
K ≡ ∗(A ∧ F) (13)and it is conserved because of the force-free condition
∇µK

µ = 0, d ∗ K = 0; (14)2. Euler potentialsUchida [2] has derived the following local representation for the Faraday tensor under very broadconditions for a force-free �eld
Fαβ = ∂αs1∂βs2 − ∂αs2∂βs1 (15)Actually, Uchida's proof does not apply to the case where both invariants of the Faraday tensorvanish, but we shall �nd solutions with an Euler potential even for that case here. The two scalarfunctions s1and s2 are the Euler potentials. This is equivalent to the Farady 2-form being writtenas
F = ds1 ∧ ds2 (16)The vector potential is not uniquely determined by these potentials. One may write in general
A = s1ds2 + dψ (17)where ψ is a gauge potential. The Euler potentials are not unique either, as discussed in [2].If the Faraday tensor is nonzero inside a domain D, then the one forms ds1and ds2 must be linearlyindependent inside D.3. A class of analytic solutionsWe look for solutions which satisfy the following ansatz for the Hodge-dual current 3-form.
∗J =

1

4π
dh ∧ dφ1 ∧ dφ2 (18)for scalar functions h, φ1, φ2. The rationale for considering solutions which have this property issimply that they exist and can be studied rather easily. The Maxwell equations become

dF = 0, d ∗ F = dh ∧ dφ1 ∧ dφ2 (19)Consider a candidate solution of the following form
∗F = hdφ1 ∧ dφ2 (20)



4The inhomogeneous equation is satis�ed automatically. Taking the dual of this we have
F = −h ∗ (dφ1 ∧ dφ2) (21)and so to have a solution we must require
dF = d (−h ∗ (dφ1 ∧ dφ2)) = 0 (22)In order to satisfy this equation, we note the following. Suppose that the 2-form R = (dφ1 ∧ dφ2)is a Hopf-Rañada electromagnetic knot solution to Maxwell's equation [3�5]. For such a solutionwe have
R =

1

2πi

∂µϕ̄∂υϕ− ∂υϕ̄∂µϕ

(1 + ϕ̄ϕ)2
(23)and the dual satis�es

∗R = −
1

2πi

∂µθ̄∂υθ − ∂υ θ̄∂µθ(
1 + θ̄θ

)2 (24)for complex scalar functions ϕ and θ are scalars, and where ϕ̄ and θ̄ denote complex conjugates.These forms are both closed so that dR = 0 and d ∗ R = 0, and they are also both exact. AsRañada shows, it is possible to write them in terms of real-valued Euler (or Clebsch) potentials as
R = dφ1 ∧ dφ2 (25)
∗R = du1 ∧ du2 (26)by making the following transformation with ϕ = Sϕexp(i2πγ) and θ = Sθexp(i2πρ)and then using
φ1 =

1

1 + S2
ϕ

, φ2 = γ, u1 =
1

1 + S2
θ

, u2 = ρ (27)We can satisfy Maxwell's equations if we make the following choice
h = u1 (28)so that
∗F = u1R (29)and
F = −u1 ∗ R = −u1du1 ∧ du2 = d

− (u1)
2

2
∧ du2 (30)so that F has the Euler form (15) and Maxwell's equations are satis�ed. We next �nd a conditionthat ensures that this solution is force-free. The Lorentz force on a current element is proportionalto

fµ = FµνJ
ν = Fµν

1

3!
εναβγ (∗J)αβγ (31)
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fµ = (−u1du1 ∧ du2)µν

1

3!
εναβγ

(
1

4π
du1 ∧ dφ1 ∧ dφ2

)

αβγ

(32)
fµ = −u1∂µu1∂νu2

1

3!
εναβγ

(
1

4π
du1 ∧ dφ1 ∧ dφ2

)

αβγ

(33)
fµ = −u1∂µu1

1

3!
εναβγ

(
1

4π
∂νu2∂αu1∂βφ1∂γφ2

)

αβγ

(34)
fµ =

1

12πu1
∂µu1FαβF

αβ (35)Now we note that this vanishes provided that
FαβF

αβ = 0 (36)But this requires
RαβR

αβ = 0 (37)The force-free condition is also equivalent to the following equation
J ∧ ∗F = 0; (38)The choice (28) is not unique. We could more generally have used (for any smooth function f)
h = f(u1, u2) (39)and still obtain a force-free solution.And so that we must restrict the electromagnetic knot solutions even further by requiring (37). Notall of the electromagnetic knot solutions satisfy (37), however some do. For example, the solutionbased on the Hopf �bration satis�es it [3, 6�8]. It follows further that in this case we have
JµJµ = 0 (40)4. Examples4.1. Hopf-Rañada electromagnetic knot solutionThis electromagnetic free-�eld solution is based on the Hopf mapping from S3 → S2as described in[3, 8]. We use the notation of [3]. One �nds for this case (where the spacetime is �at Minkowski spaceand the coordinates have been made dimensionless by dividing by a constant length parameter)with
ϕ(r, t) =

(Ax− tz) + i(Ay + t(A− 1))

(Az + tx) + i(A(A− 1) − ty)
(41)

θ(r, t) =
(Ay + t(A− 1)) + i(Az + tx)

(Ax − tz) + i(A(A− 1) − ty)
(42)
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A =

x2 + y2 + z2 − t2 + 1

2
(43)A set of Euler potentials may be obtained using (27). We obtain

φ1 =
1

1 + ϕ̄ϕ
, φ2 =

1

4πi
ln(

ϕ

ϕ̄
) (44)

u1 =
1

1 + θθ̄
, u2 =

1

4πi
ln(

θ

θ̄
) (45)Notice that φ2 and u2are potentially multivalued because of the branch point in the logarithm atthe origin in the complex plane. Since we want the Faraday tensor to be single valued, we canensure this by choosing h = u1 so that the force free electromagnetic �eld in this case is given bythe Faraday 2-form

F = −
∗R

1 + θθ̄
(46)where R is the Faraday 2-form for the free-�eld electromagnetic knot solution for the Hopf �brationgiven by (41) and (42) obtained by applying (24). In the appendix we verify that this is indeed aforce-free solution with a non vanishing electromagnetic current vector, but vanishing Lorentz forcevector.As discussed in [3], one can generate other electromagnetic knot solutions based on higher homotopyclasses of the Hopf �bration using the formulas

ϕ(n)(r, t) =

(
(Ax− tz) + i(Ay + t(A− 1))

(Az + tx) + i(A(A− 1) − ty)

)n (47)
θ(n)(r, t) =

(
(Ay + t(A− 1)) + i(Az + tx)

(Ax− tz) + i(A(A− 1) − ty)

)n (48)and once again using (46) we obtain force-free �eld solutions with nonzero charge.In all these cases the �elds satisfy RµνR
µν = Rµν(∗R)µν = FµνF

µν = Fµν(∗F )µν = 0.In appendix A we present software code which can be run under the REDUCE computer algebrasystem [9] and which uses EXCALC, a package for Cartan algebra and di�erential forms [10]. Thissoftware validates that the above solutions are valid force-free solutions.Bialynicki-Birula and others have analyzed a generalization of Robinson-Trautman �elds which isachieved by multiplying the Riemann-Silberstein vector by a scalar prefactor [6, 8]. Provided aEuler representation for these �elds can be found, then they would provide a large class of modelson which to base force-free plasma solutions of the type presented here.5. Shocks in the force-free solutionsIt is well known that shocks may occur in force-free solutions to relativistic plasmas. Theelectromagnetic knot solutions of Rañada satisfy the free-�eld Maxwell equations, and thereforethey can't generate nonlinear shocks, although there can be initial conditions which might focus



7energy to a point, curve, or surface in space-time, and for these cases one could still have a singularelectromagnetic �eld. In optics, this type of singularity is called a caustic. But this is a di�erente�ect from the nonlinear shocks that occur in �uids and plasmas. Caustics are relatively easy topredict and study, whereas nonlinear shocks are much more complex. In the force-free solutionspresented here, the only singularities of the �elds would be singularities in the Rañada free-�eldsolution used to construct the force-free solution, and therefore they would be relatively easy toidentify and study.6. ConclusionWe have presented a new class of solutions to the charged force-free plasma problem. The current4-vector is light-like for all of them. They are topologically interesting as they are derived bya transformation of electromagnetic knot solutions. Of course, as for all force-free plasmas, theChern Simons current is preserved, leading to magnetic helicity conservation. It is hoped that theywill prove interesting from a theoretical point of view, and may serve as approximations to somereal experimental or astrophysical systems. Perhaps they may suggest a way to generate force-freesolutions which are not null degenerate, but only degenerate. An interesting question arises as towhether the �eld lines are still closed and linked in the force-free case as they are for the free-�eldelectromagnetic knot solutions.Appendix A. Computer con�rmation that the proposed solution is a force-free �eldThe following program is written in the REDUCE computer algebra system which is open-source. Ituses the open-source Cartan algebra package EXCALC. After the code runs, the user can examinethe contents of variables to check that the Maxwell equations are satis�ed and to check that theelectric current is non-zero, but the electromagnetic force is zero. The program with N=1 (Hopfindex 1) takes about 19 minutes on a Pentium 4, 2 GHz processor. For N=2 it did not �nish afterseveral days of calculation, and so the run time for that case is unknown, but the program is writtento handle any value of N.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This is a program to test the force-free solutions in this paper based on the Hopf �brationo� output; % Leave o� until calculation is �nished to save time and avoid problems.load_package EXCALC$; %This package is needed for exterior algebra% Setup for Minkowski spacespacedim 4;coframe o(t) = d t,o(x) = d x,o(y) = d y,o(z) = d zwith signature (-1,1,1,1);frame e;% Declare some variables



8pform F=2,HF=2,FF=2,HFF=2,phi=0,theta=0,phiconj=0,thetaconj=0,h=0;fdomain A=A(t,x,y,z), phi=phi(t,x,y,z), phiconj=phiconj(t,x,y,z);fdomain theta=theta(t,x,y,z), thetaconj=thetaconj(t,x,y,z), F=F(t,x,y,z), HF=HF(t,x,y,z);A:=(x*x+y*y+z*z-t*t+1)/2;% N**2 is the is the Hopf indexN:=1;phi:=(((A*x-t*z)+I*(A*y+t*(A-1)))/((A*z+t*x)+I*(A*(A-1)-t*y)))**N;phiconj:=(((A*x-t*z)-I*(A*y+t*(A-1)))/((A*z+t*x)-I*(A*(A-1)-t*y)))**N;theta:=(((A*y+t*(A-1))+I*(A*z+t*x))/((A*x-t*z)+I*(A*(A-1)-t*y)))**N;thetaconj:=(((A*y+t*(A-1))-I*(A*z+t*x))/((A*x-t*z)-I*(A*(A-1)-t*y)))**N;% The Faraday 2-form F and it's Hodge dual HF for the Rañada electromagnetic map based onHopf �bration% This is a charge-free �eld.F:=(1/(2*PI*I))*((d(phiconj)) ^(d(phi)))/((1+phiconj*phi)**2);HF:=(1/(2*PI*I))*((d(theta))^(d(thetaconj)))/((1+thetaconj*theta)**2);% Calculate the currents for these. They should be zeroHJmag := d F;HJelec := d HF;Jmag := #HJmag;Jelec := #HJelec;% Calculate the force-free Faraday 2-form FF and its Hodge dual HFF using the approach describedin the paper.h := 1/(1+theta*thetaconj);HFF := h*F; % The Hodge dual of the Faraday 2-form for the force free �eldFF := -#HFF; % The Faraday 2-form for the force free �eld% Calculate the electric and magnetic currents for these. The magnetic current should be zero.% The electric current should be non-zeroHelecFFJ := d HFF;% The magnetic current should be zeroHmagFFJ := d FF;% calculate the force condition as a 3-formHForce := (#HelecFFJ)^HFF; % This should be exactly zero.% Now we calculate the Lorentz force directlypform J(a)=0, JF=1; tvector JV; JF := #HelecFFJ;J(t) := e(-t) _| JF; J(x) := e(-x) _| JF; J(y) := e(-y) _| JF; J(z) := e(-z) _| JF;JV:=J(t)*e(t)+J(x)*e(x)+J(y)*e(y)+J(z)*e(z);Jsquared := JV _| JF; % This should be zeroLorentzForce := JV _| FF; % This should be zeroon output; %Turn on output so that we can interactively examine variablesend;
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