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1. Abstract

The driving force of this paper is a local symmetry in lattices. The
goal is two theorems: a partial converse to the Perron-Frobenius the-
orem in dimension 3 and a characterization of conjugacy in Sl3(Z). In
the process we develop a geometric approach to higher dimension con-
tinued fractions, HDCF. HDCF is an active area with a long history:
see for example Lagarias, [L],[Br].

The algorithm: Let Zr be the set of all lattice points within r > 0
of a ray L = {mP ∈ R

n : m > 0} Let z1 denote the point in Zr closest
to the origin. Having defined z1, .., zi, 1 ≤ i < n, let zi+1 be the point
of Zr closest point into the origin, which is independent of z1, ...zi.

Conjecture 1. z1, ..., zn is a basis of Z
n.

The proof of this conjecture in dimension n = 3 occupies the bulk
of the paper. Here P ∈ R

n is taken to have all positive components as
usual, and we use a metric in L⊥. For further discussion and the relation
of the conjecture to the Minkowski sequential minima theorem, see the
section “Remarks on the algorithm” below.

We have no such arithmetic theorems in dimension n > 3. However,
in the first place, the symmetry theorem, its relation to arithmetic, and
part of the bifurcation theorem are proved in all dimensions. Secondly,
lots of computer studies in the next three dimensions have been done
and we find no obstruction to this conjecture; in particular, for the
partial converse mentioned above, we easily find bases of Z

n, relative
to which the matrix becomes positive, for n = 3, 4, 5, 6. A few examples
are given below.
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2. Introduction

We will need to prove that there really are n such lattice points
which are (just) linearly independent; this is done in terms of the n−1
dimensional cohomology of the n dimensional torus.

Given this setting and r > 0, we determine a certain n−1-dimensional
cell complex Kr. This complex is homotopy equivalent to the n − 1-
skeleton of the n-dimensional torus, and is a smooth (in fact flat)
branched manifold [W3]. The n − 1-cells E(z) of Kr, are labeled with
lattice points z ∈ Z

n; the geometry of these cells is intimately tied up
with the arithmetic of Z

n; and there is a recipe (equivalent to the al-
gorithm) for choosing n of these cells, E(z1), ..., E(zn), where z1, ...zn,
is the sequence in Z

n chosen by our algorithm.
There are infinitely many bifurcations of Kr, and thus a sequence of

bases {ai, bi, ci} of Z
3. These bases limit down on the ray ρ = {xP : x ∈

R, x > 0} and the ’update’ matrix relating the ith basis to the i+1st is
among a certain small set of matrices. Recall that the complete (ordi-
nary) continued fraction is determined by the corresponding transition
matrices—there are only two, to wit the 2 ’elementary’ 2× 2 matrices:
each ai in the continued fraction expansion, is just the number of one
of these that occur before the other one shows up. Thus, we have a
geometric theory of 2 dimensional (2D) continued fractions See [St] for
a geometric presentation of ordinary continued fractions.

We use a computer to find these bases; the programs are elementary,
are potentially polynomial in the dimension n, and proceed by seeking
out best approximants directly. (see definitions, below) Thus much
of our theory can be regarded as just finding out ’what’s there’ near a
line in a 3-dimensional symmetric lattice.

Theorem 1. Given a Pisot matrix A ( 3× 3, integral entries determi-
nant 1,having one eigenvalue bigger than 1, and the other 2 less than 1
in modulus), there exists B ∈ GL(3, Z) such that no entry of BAB−1

is negative.

We claimed to have proved this theorem before, in particular in [W1],
where the argument is incomplete.

The corresponding converse is known in dimension 2 [ATW][W4];
it also follows from the fact that the transition matrices in ordinary
continued fractions have only non-negative entries. Unfortunately, in
the next dimension these matrices have occasional negatives, especially
when the ray ρ is too close to a rational subspace of dimension 2.
Finally, in the (eventually) periodic case, the complete machinery (the
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bifurcations, and the complex Kr is easily shown to be (eventually)
periodic.

Another application is solution to the conjugacy problem for matrices
A, B ∈ SL3(Z). (See [ATW] for this result in dimension2.) That is,
there is a finite process for deciding whether A and B are conjugate
over Z. First, if one eigen value λ > 1 and the other two complex,
and the inner product gotten by declaring the complex eigen vectors
to be normal and of the same length, our whole structure is eventually
periodic. For the totally real case, periodicity is obtained by changing
the metric continually, to offset the different rates of contractions of
the two small eigenvalues. Of course, either a given A ∈ Gl3(Z) or
its inverse is one of these two types. We understand that there is a
solution of this problem, by very different methods, in [BS], p 128.

This work has taken many years; among those who have helped are
Rafael de la Llave, Marcy Barge, Harold Stark, Jeff Vaaler and John
Tate.

The paper is organized as follows. The complexes Kr and Qr are
described and we prove the symmetry result, this far for all dimensions.
Then the bifurcations are described and shown to the only ones for
n = 3. Next, we find the simplest examples of the complexes Qr and
Kr and show that they are models in all cases (n = 3 here and below).

Almost half the paper is devoted to proving the main proposition,
that our choice gives a basis for Z

3. First we show that the cochains dual
to the cells E(zi) of Qr or Kr which are convex span the 3-dimensional
cohomology of Kr : it follows that the corresponding z′is span Z

3. Hence
there are always at least 3 convex cells; 4, 5, and 6 can occur. We next
show that any cell is a positive linear linear combination of the convex
cells. Here we abuse notation by using the same symbol for a cell E
the label z ∈ Z

n such that E = E(z). In dimension 3 we show that
there is a subset of at most 4 convex cells in terms of which any other
cell as can be written as a positive linear combination.

This leads us to the special cases where four convex cells, say E(z), z =
a, b, c, d are actually required: when the ray ρ is near a rational sub-
space, generated by a, b ∈ Z

3. In such cases a relation like a + d =
X = b + c is shown to hold, where E(X) is a cell of Kr. Of course this
yields a basis, say a, b, c, which suffices for our version of 2 dimensional
continued fractions, but is not good enough for our positivity results.
Hence we must work a bit harder in such cases,

The last 2 sections concern the periodic case and conjugating Pisot
matrices to ones with no negative entries.
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4. Remarks on the algorithm

First, a more detailed account of the algorithm: Let π : R
n → P⊥

be the projection along the vector P. For x ∈ R
n, let the weight of

x = wt(x) = P · x, be the distance from x to the hyper-plane P⊥,
measured along the vector P. Given a real number r > 0, let

Zr = {z ∈ Z
n : |π(z)| < 2r and wt(z) > 0}.

Say z1 ∈ Zr minimizes the wt in Zr. Assume that z1, z2, ..., zm, m < n
have been chosen; then there exists a z ∈ Zr such that:

(1) z is independent of z1, ..., zm.

Remark 1. One shows below that this algorithm is unchanged if one
adds the condition (2) if z′ ∈ Zr has less weight than z, then Nr(π(z))∩
Nr(π(z′)) ∩ Nr(O) = ∅, where O = π(L) is the origin.

Among all such z, let zm+1 be the one of least weight.
The lattice point z1 is a best approximant for r provided it minimizes

the weight for lattice points in Zr.
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Remark 2. This is vaguely analogous to the choice in the Minkowski
sequential minima [C] theorem but is essentially different: there is no
inequality here; Minkowski enlarges his set in all dimensions and takes
the first lattice point it hits which is independent of the earlier choices;
whereas, by the definition of Zr, we are only enlarging in one dimension.
And as is well known, the Minkowski process does not always get a basis
of the full lattice.

Remark 3. We have to prove the existence of the full sequence, z1, ..., zn,
which is done in terms of the cohomology of the complex Kr. That this
forms a basis of Z

n is easy for n = 2, (essentially classical) and is
proved below for n = 3.

Remark 4. The cells satisfying 1) and 2) above are convex in Qr; all
other cells have concave boundaries. This is also true in the complex
Kr, where this makes sense as it is endowed with a flat structure.

Remark 5. Here we used the Euclidean inner product—however, other
metrics work and others have been used.

5. The complexes Kr, Qr and QR
r

Recall that P is a vector in R
n with all positive coordinates and P⊥

is the plane through the origin, O, perpendicular to P. Let Qr be the
open, round disk in P⊥, of radius r centered at O. For each z ∈ Z

n,
let Qr(z) = Qr + z, the translation of Qr to the lattice point z. Our
first definition is in terms of decomposition spaces, which allows us
to use the Vietoris-Beagle- mapping theorem. We give an equivalent
definition in the next paragraph, avoiding quotient spaces. Let L be
the family of all lines in R

n parallel to the vector P and let Crt be the
family of all connected components of

L ∩ {R
n − ∪z∈ZnQr(z)} for L ∈ L.

In the quotient space, T
n = R

n/Z
n, let Qrt and Crt be the images of

Qr and Cr respectively. Then T
n − Qrt is foliated by the set Ct of all

the connected components C of L ∩ (Tn − Qrt), all L ∈ Ct.
Standing hypothesis: each C ∈ Ct is a line interval.

This is of course true if the coordinates of the vector P are rationally
independent—but, as is customary, this weaker assumption allow for
some rational dependence in our lines, as long as the radius r is not too
small. For example, if n = 3 and P = (1, 1, 1), then for

√
2/3 < r <√

3/2, this all works. The upper bound is to keep the coordinates of
the various zi ≥ 0. See also the section on rational subspaces, especially
for n = 3.
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Finally, let Kr = (Tn − Qrt)/Crt. That is, Kr is the quotient space
in which all the intervals of Crt are collapsed to points, and let q :
T

n − Qt → Kr be the quotient map. Then Kr has the homotopy type
of the (n−1)-skeleton of T

n, (which is the union of n, (n−1)-dimensional
tori.) Furthermore, Kr is an orientable, (n − 1)-dimensional branched
manifold. This follows from general results in [W3], or can easily be
seen directly. Let C0 be the family of all line intervals (t, b) ∈ C, having
their bottom end, b in Qr = Qr(O). Note that

∪C∈C0)C ∪ Qr

is a fundamental domain for T
n. Finally, For each z ∈ Z

n such that
some (b, t) ∈ C0 has its top t ∈ Qr(z), and bottom end in Qr = Qr(O),
define

E(z) = {b ∈ Qr : for some t ∈ Qr(z), z ∈ Z
n, (b, t) ∈ C0}.

This complex is finite, that is S = {z|E(z) 6= ∅} is finite because the
lines parallel to L are densely and uniformly winding in the torus. We
can avoid the quotient space terminology, with the following equivalent
definition:

E(z) = [π(Q(z)) −∪x∈S,wt(x)<wt(z)π(Q(x)] ∩ Qr.

Here, π is the projection along the line L; in this sum, any set larger
than S, for example Z

n itself, will give the same answer. The set S is
determined as {z ∈ Z

n : E(z) 6= ∅}.
We distinguish Qr (actually, Qr union its boundary) as a separate

cell complex and there is the identification map Qr → Kr. This iden-
tification can be described as follows: each interior n − 1-cell of the
complex Qr, is identified to its (unique for n > 2) translate in the
boundary of Qr. In all our figures, it is Qr that is drawn.

More generally, if R ⊂ R
n, is a rational subspace, define

E(z) = [π(Q(z)) − ∪x∈S∩R,wt(x)<wt(z)π(Q(x)] ∩ Qr.

Remark 6. These cells ER(z) may not cover the open disk Qr but do
form a a complex, QR

r , useful below where it is used as a ’background’.

It is striking that each codimension 1 cell in Kr bounds 3 and only
3 cells of dimension n− 1. (For n = 2 this is fails at bifurcation points,
but is always true for higher dimensions.)

6. Symmetry

This is the key to our approach and ties the geometry to the arith-
metic.
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Figure 1. Figure Symmetry

Theorem 2. Each cell of Qr is symmetric under the reflection about its
center. If a cell E(z) has τ as a concave boundary then the symmetric
boundary τ ′ is also concave; if E(a), E(b) are the other cells in Qr

having τ, τ ′ as (convex) boundaries then z = a + b. Furthermore, the
symmetry reverses the order of the weights of all cells bounding E(z).

Notation We say that the cells a and b are dual with respect to the
cell z.
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Remark 7. For R a rational subspace, the complex QR
r satisfies this

because the symmetry map, defined below, leaves any subspace invari-
ant;and thus satisfies many of the consequences listed below as well.

Proof of the theorem. Let R : R
n → R

n be given by x 7→ −x. Then
R respects all of the structure that enters into the definition of Kr :
the disks Qr(z) go into Qr(−z), the lines of our foliation go into other
lines, etc. The family C0 is mapped into a ’dual’ family, C′

0 which covers
another fundamental domain of T

n.
Recall that π : Qr(z) → P⊥, is the projection along our foliation L;

let Q̄r(z) = π(Qr(z)). Let T = Tz be the translation x 7→ x + z,
Then R maps P⊥ to itself by reflection about O and (π ◦ T )|P⊥,

is the translation of the hyperplane P⊥ sending Qr(0) to Q̄r(z), the
projection of Qr(z), and in particular, sending the origin to z̄ = π(z).
Then π ◦ T ◦ R sends x to z̄ − x, which has fixed point z̄/2. Then this
composition sends

z̄/2 + x → z̄ − z̄/2 − x = z̄/2 − x;

this is the reflection R′ of the plane P⊥ about the point z̄/2 midway
between the centers of these 2 disks; the center of B = Q̄r(z) ∩ Qr, is
z̄/2. See the figure.

Now suppose s ∈ E(z). Then based at s there is an interval (s, t) ∈ C0

and T ◦ R takes this interval into another interval in C0. As −s ∈ Qr,
−s + z ∈ Qr(z) and −t + z ∈ Qr so that R′(s) = −t + z ∈ E(z). That
is, R′ is a reflection symmetry of E(z), as claimed.

Now if s is in a concave boundary of E(z), we see that the interval
(s, t) intersects the boundary of one of the disks, say at a′ ∈ ∂Q(a).
Since both the maps R, T, send these disks into others, we see that
TR(a′) is in the boundary one, say Q(b). Hence, (see the figure), R′(s)
is likewise in a concave boundary of E(z), and TR(a) = −a + z = b,
or z = a + b as claimed.

The fact about reversing the order of neighboring cells, is really just
the fact that R reverses the direction of intervals of Cr and is detailed
in the

Lemma 1. The symmetry R′ satisfies the equation wt(R′(E)) = wt(E(z))−
wt(E), for each cell E touching the boundary of E(z).

Corollary 1. Each cell which has part of its boundary on the boundary
of Qr(0) has a convex inner edge; moreover R′ interchanges the inner
and outer boundaries.

Proof For the reflection sends the outer boundary of the carrying
lenticular region B into the interior of Qr(O).
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Corollary 2. Each cell has an even number of faces and these faces
occur in dual pairs which the symmetry interchanges. For s and s′ dual
pairs, the tangent plane to a point x ∈ s is parallel to the point x′ ∈ s′,
dual to x′ under the symmetry; unless two faces are dual, they cannot
have parallel tangents.

Proof First, duality is defined by the symmetry, which is an involu-
tion. Since the symmetry is differentiable the result follows.

Corollary 3. Suppose D is an open disk in the boundary of a cell E,
away from edges of smaller dimension, is diametrical to its dual D′, in
the sense that when D and D′ are translated to the boundary of Q, are
exactly diametrical; D′ is unique in that no other disk in the boundary
of E is diametrical to D.

Proof. This is just the fact that when two spherical disks intersect
they cut off diametrical segments of each other. This implies the corol-
lary in case the cell is convex. And if a “bite” is taken out of a cell by
another cell, this is principle applies to show that the disk removed is
diametrical to that which replaces it on the boundary. The corollary
follows by induction in the number of “bites” that have been taken out
of the cell.

If a cell has dual concave sides, then as r is decreased they approach,
become tangent and finally overlap, thus disconnecting the cell. How-
ever,

Corollary 4. For n = 3 no cell has more than 2 components.

(This is seems true in higher dimensions but is more involved and
not needed below.)

Proof First, only concave sides can intersect at one of their interior
points, and they first meet at a point A, of tangency. Hence the meet-
ing sides are dual. At this radius the geometry at A is unique in the cell
and hence fixed under its symmetry and therefore is the center of the
cell. For larger values of the radius r, the cell has two connected com-
ponents, which the symmetry interchanges. Subsequently, dual sides
are in different connected components, and therefore cannot become
tangent or intersect intersect. A cell with two connected components
can be capped, if it has a convex side, and thus gain a new pair of dual
concave sides—however these are in deferent components, and thus
cannot lead to a further cutting of the cell into more components. This
uses the uniqueness of dual edges.

Corollary 5 (The same cell lemma). Each cusp in Qr has a dual cusp
and they belong o the same cell.
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Proof. For the cell containing a portion of one cusp, has a symmetry
and only two cusps can be interchanged by a symmetry. And the only
cusp parallel to a given one, is that at the other end of the surviving
arc of the given cusp.

7. That the selection z1, z2, ...zn exists

There is a commutative diagram [W1][W2] linking the first homology
of T

n to the n − 1th cohomology of Kr. Since the lattice points of Z
n

correspond directly to the first homology of T
n, this shows that the

n − 1th cohomology is free abelian of rank n. Finally, as each cell of
Kr can be written in terms of its convex cells, this shows that the zi’s
can be so chosen.

There is a different way of seeing this: we need to see that the
arithmetic in Corollary 5.3 agrees with that in the n−1st cohomology:
let E(a), E(b) be dual with respect to z and let F be a concave face
between E(a) and E(z) (in Qr.) Then reflecting F about the center
of E(z) and reflecting it again about E(b), we get a face F ′ of E(b)
on the boundary of Qr. But the composition of two reflections is a
translation, so that F ′ = F in Kr. Let Cn−2 be the cochain dual to F ;
then the coboundary of Cn−2 is E(z) − E(a) − E(b). This proves that
the arithmetic in Kr agrees with that in its cohomology.

8. Some terminology

: approximant: a lattice point z is a best approximant to L
provided that no other lattice point is closer to both the origin
and the line L.

: cell z: at times we say the “cell” z meaning the cell E(z).
: hex cell: a special cell (see the ’simplest cases’ section) with 6

sides, 2 convex and 4 concave.
: shell: a cell, say E(z) which contains the two extreme points of

π(Qr(z))∩Qr . Examples: convex cells, cells that have just been
capped, such as E(z2) for r > r0, in the capping bifurcation
below.See figure 4.

: span cell: a cell c with inner boundary joining two shells a, b
which are dual with respect to c. For example the cell z2 in both
the breakout and upstaging bifurcation. Figures 2 and 3.

: end points of a shell: the two extreme points in the definition
of ’shell’.

: stack: See the section on Rational subspaces.
: capped cell: a cell in Qr whose intersection with the boundary

of Qr is disconnected, See the section on rational subspaces.
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: small cell: cells grow faster when they are ’small’, providing
thus for the breakout bifurcation. (If 2 unit circles overlap by
∆, measured along their radii, then the width of the arc they
cut off is

w =
√

4∆ − ∆2.)

Also, cells may become small and then vanish—in itself a bifur-
cation.

: duality: The dual to a boundary point of a cell is its image un-
der the symmetry of the cell; similarly faces of Qr interchanged
by the symmetry are dual, as are the cells bounding those faces.
Note that when dual arcs are translated to the boundary circle,
they are exactly antipodal.

: chasing duals In the complex Qr, proceeding from one edge to
another by duality; in particular, a double dual is a translation,
allowing one to compute boundary identifications forming Kr

from Qr. to-f
: parallel cells: n−2-cells in the complex Q a said to be parallel

if they are translates of sets which are (exactly) antipodal on
the n − 2-sphere. For example, the two sides of a convex cell
are parallel, as are the dual sides of any cell.

: π-span: 2 cells in capping, or 3 cells in upstaging which take
up π radians of the boundary of Qr.

: background The background of a cell E(z), z ∈ Z
3, is Q(O) ∩

π(Q(z)), where π is the projection along the the line L.
: background of a stack For a stack based on a and b and the

rational subspace, R that they span, for each z for which E(z)
is a stack cell, define

ER(z) = [π(Q(z)) − ∪x∈S∩R,wt(x)<wt(z)π(Q(x)] ∩ Qr.

Here S is the set of all x such that E(x) is a stack cell. Then
QR

r is the complex consisting of all these ER(x).

9. The Bifurcations

We use the radius r of the disk Qr as a bifurcation parameter and
distinguish 3 bifurcations which happen at r = r0, say; these each occur
when 2 cells collide and they all involve 3 cells E(zi), i = 1, 2, 3. See
figures 2, 3. 4. There are two types of collisions: when end points (on
the boundary of Qr) of two shells touch and when two cells touch in
the interior of Qr. The first happens in two ways: first, ’upstage’ when
a right end point of one shell touches the left end point of another.
Say the right endpoint of z1 touches the left endpoint of z2 where
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wt(z1) < wt(z2). Then for r > r0, z2 will have a concave edge on its
left, and hence it must have a concave edge on its right, made by, say
z3. Hence z1 and z3 are dual relative to z2 and z1 + z3 = z2. Of course
left and right could be switched here. See figure 2.

Secondly, breakout occurs when the shells touch at their left end
points, say z1 and z2, where wt(z1) < wt(z2); see the figure. Note that
just before r = r0, both endpoints of z1 were between z2’s endpoints
on the boundary of Qr and the cell z1 is growing faster than z2 as it is
’younger’. Just after r = r0, z2 will have a concave side on its right and
thus there is another cell, z3 with wt(z3) < wt(z2), making a concave
side on z2’s right. Hence z1 andz3 are dual with respect to z2.

As above, we can determine a π-span by following parallel tangents
over several—this time 4—points:

(1) the exterior tangent at z1’s right end point;
(2) the interior tangent at z1’s left end point;
(3) the interior tangent to z2’s right end point; and
(4) the exterior tangent to z3’s right end point.

Finally, the cells z1, z2 could touch in an interior point of Qr; as the
radius is increasing the circular arcs in Qr are moving in the direction
of the outward normal and when two sides touch they are tangent, say
at a point a. Then the cell of less weight, say z1, will proceed to “top”
the other, say z2. Then at the point ā, dual to a in z2, a new convex
cell will be ’born’. Note that ā is on the boundary of Qr, and that Qr

is actually tangent to the disk π(E(z3)). As r increases, these two disks
will intersect and thus E(z3) becomes a cell. At this point, z1 and z3

are dual with respect to z2 and z1 + z3 = z2. Note that at the point
of bifurcation the tangent line to the boundary of z1 and z2 is parallel
to the tangents at both the dual to a in z2 and the dual to a in z1,
There are two cases here: first, if there is a spanning cell between z1

and z2, we see that these three cells occupy an arc of more than π on
the boundary of Qr. This is very useful in crowding arguments below.
Secondly, if there is no spanning cell, then neither of the two half circles
is picked out.

Upstaging.

(1) The cells E(zi) are shells and are mutually disjoint for r < r0.
(2) For r = r0 the three shells just touch; the extreme points of

E(z2) are (respectively) the left extreme point and right extreme
point of E(z1) and E(z3).

(3) At r = r0 the other extreme points of E(z1), E(z3) are antipodal
on the n − 1 sphere ∂Qr(O).
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(4) For r > r0, the middle cell has lost its shell character and is
also a span cell.

(5) z1 + z3 = z2.
(6) A totally concave cell is destroyed and another is formed. [The

central cell is destroyed and replaced.]

Breakout.

(1) The cells E(zi) are shells, E(z2) separates E(z1) from the rest
of the complex Qr and E(z1) and E(z3) are duals with respect
to E(z2);

(2) For r = r0 the extreme points of E(z2) are the left (respectively,
right) extreme points of E(z1) and E(z3).

(3) At r = r0, E(z1) ∪ E(z2) ∪ E(z3) spans π+ the angle of E(z1).
(4) For r > r0, the middle cell has lost its shell character.
(5) z1 + z3 = z2.
(6) The span cell E(z2 + z3) (only) is destroyed; it has 2 convex

sides.

Capping.

(1) The cells E(z1), E(z2) have nearby interior convex edges e1, e2,
for r < r0.

(2) At r = r0. the convex edges of part (1) are tangent at a point
a.

(3) The weights satisfy wt(z1) < wt(z2).
(4) For r > r0 there is a new convex cell, E(z1 − z2) which appears

on the spot a′ of the boundary of E(z3) dual to the point a.
(5) E(z2) is not convex; in fact, ∂E(z2)∩∂Qr is not connected, thus

E(z2) is a ’capped’ cell.
(6) The points a′ and a′′ are antipodal on ∂Qr, where a′′ is dual to

a in E(z1). In particular, if there is a cell spanning E(z1) and
E(z2) then these three cells contain a π-span.

Proposition 1. These bifurcations occur in all dimensions, n ≥ 3,except
that part 6 of upstaging and part 6 of breakout are only for n = 3. (See
“small cells” below.) For n = 3 these are the only bifurcations that
occur for a generic path, as r changes.

Proof. We next go over some details about these bifurcations, say
at r = r0. For the ’upstaging’ bifurcation we have already verified
everything except conditions (3) and part of (6). For r > r0, using
the symmetries of cells, E(z3), E(z2), E(z1) in that order, we see (The
Spanning Pie figure) that the arc from the outer extreme points of
E(z1), E(z3), is π+ the arc CC ′. Thus at r = r0, the angle is π, which
proves part (3).
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Figure 2. The Upstaging Bifurcation

For r just above r0, we use the segment CC ′ above: applying the
general duality proposition, we see (Spanning pie) that z2 − z1 = z3,
Finally, since at the bifurcation, only 2 intervals in ∂Qr are lost and
these are on the boundary of Qr,
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Figure 3. The Breakout Bifurcation

Now cell E ′′ containing these two intervals and their duals for r < r0,
can have no convex sides, for r > r0 as is seen as follows: first,
it cannot have boundary points of Q on both sides of the π-span
E(z1)E(z2)E(Z3) and hence by symmetry it cannot have any boundary
points at all. Thus it is totally concave sided.
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Figure 4. The Capping Bifurcation

Secondly, the duals to these two intervals, relative to E” are in the
interior of Qr for r < r0, and completely disappear for r ≥ r0. Thus they
must have been part of the boundary of a disconnected cell consisting
of 2 small triangles. The fact that there is only one totally concave
cell is proved below. With this exception, the proof of the ’upstaging’
bifurcation is complete.
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The real difference between the breakout and upstaging bifurcation
is in parts (3), (6) and the second part of (5). To see part (3), use the
symmetries of E(z1), E(z2), E(z3) in that order, (see the 4th picture in
figure 3) in that order to see that the lines drawn are parallel, which
proves (3). The second part of (5): At r = r0, the inner convex edge of
E(z2) connects the inner edge of E(z3) to the left end point of E(z1).
Thus when E(z2) gets larger is spans the other cells as required.

Finally, just before the bifurcation, there is the cell E(z2+z3), having
its boundary convex segment dual (in E(z2)) to the gap between the
leftmost points of E(z1) and E(z2). This boundary segment is in a
“triangle” with one convex segment, and the segment is wiped out at
r = r0. Thus, so is the triangle and therefore the whole cell, which
proves (6) and finishes the proof in the case of the breakout bifurcation
.

We have covered enough of the proof of the capping bifurcation,
above.

So far, we have shown that if one cell collides with or obstructs
another at r = r0, then 1 of the 3 bifurcations does occur.

For the rest of the paper we will be working with the case

n = 3.
There is one other type of bifurcation that could a priori happen

here: a cell E or one of its sides, becomes very small, then at the
bifurcation disappears all together. This happens at each the of three
bifurcations, as we have seen above. We show below in the section on
“Small cells,” that this happens only at these bifurcations.

10. The simplest cases

Here we consider the case that each cell of Qr has at most one pair
of convex edges—equivalently, the intersection of each cell with ∂Qr, is
connected. We show this happens in just two ways; these turn out to
be quite general models, as every Qr is a variation of one of these two
types, fugue 5.

Proposition 2. If all cells of Qr have connected intersection with the
boundary of Qr, then there are 7 and only 7 cells; furthermore, this
occurs in two and only two topological types: one with 3 span cells and
one with 2 span cells and a hex cell.

Proof. First note that all cells except any possible totally concave
cell(s) have just 2 convex edges, one on ∂Qr and one interior; in par-
ticular, all shells are convex.

Case 1. Each adjacent pair of convex cells has a span cell.
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radius =  0.63 radius =  0.67

Figure 5. The simplest cases

Then there can be only 3 convexes and labeling them a, b, c, the
span cells are the sums of these in pairs. These 6 use up the exterior
boundary of Qr : hence there is one other cell, which is six-sided and
totally concave. Then there are 3 ways to compute remaining cell, but
they all come out a + b + c. Thus, there is only one concave cell and
the complex is determined.

Lemma 2. If a, b, c are three adjacent convex cells then there is a span
cell between either a and b or between b and c.

Proof. Label three of the convex cells in the order a, b, c around
the boundary of Qr. Suppose that there is no span cell between a and
b; let α be arc on the boundary of Qr joining extreme points of a
and b and let β that between b and c. Let A be the the cell having
the portion of α nearest b as its exterior side. Then A must have a
concave side, say γ, with one end on the inner boundary of b. Any
other edge having an end point on ∂b would also have to curl towards
β, because adjacent edges are on the same cell and were there a pair
of adjacent edges curling toward each other, then they would bound a
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cell having 2 interior convex edges. But this would mean that there are
two exterior convex edges, contrary to our assumption that the exterior
boundary of each cell is connected. Let β ′ be the closest of these edges
to β, measured along the boundary of b. It follows that β ′ is dual to β
relative to B—the cell with β as exterior edge —because B has only
two convex edges. Thus B is a span cell which proves the lemma.

Let d be the next convex cell, after a in order along the boundary
of Qr. We claim that d = c. Assume otherwise.for purpose of contra-
diction. Now apply the lemma to the cells d, a, b : as no cell spans a
and b, there must be one spanning d and a. But this makes 2 disjoint
π-spans, a contradiction. This proves our claim that d = c. Now apply
the lemma to c, a, b : thus there is a cell spanning c and a. At this point
we have 3 convex cells a, b, c and cells spanning b, c and c, a.

By “chasing duals” it is easy to see that the dual arcs to our 5 known
interior arcs span everything on the circle except α. Thus the edge α′

dual to α in A, is exactly the last missing piece. At this point we know
that A has the convex sides α, α′ and (at least) one pair of consecutive
concave sides: the inner boundaries of b and the cell spanning b and c.
This leaves 3 sides available to be sides or parts of sides of A : the inner
boundaries of c and a and the span cell between them. As the number
of sides must be even, is must be 6; occurring in the order convex,
concave, concave, convex, concave, concave. Thus α′ must connect the
two span cells; then the last cell is totally concave, having boundaries
α′ and parts of the inner boundaries of c and the two span cells. See
figure 5.

11. Small cells and the central cell

Recall that we are now working only in the case n = 3.

Lemma 3. If upon changing r a cell E of Qr or one of its sides de-
creases to (diameter) zero at r = r0, then this is accounted for by one
of the three bifurcations.

First in case E is convex, then it can only disappear at a capping
bifurcation and as r decreases.

Thus assume that a cell E has at least one pair of concave sides and
at least one side that gets small and disappears at r = r0.

First we claim this cannot happen as r decreases.
Proof. The totally concave case will be dealt with in the section.

Thus we assume that E has convex sides also. Thus S = E ∩ ∂Qr 6= ∅,
and if not connected, E cannot have small diameter until S becomes
connected. At this point, there is a (reverse) capping, which leaves S
connected. Then E has a convex side in the interior of Qr and thus not
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small diameter while r is decreasing. Then more reverse cappings or
a reverse upstaging can reduce the concave sides, still without danger
of E having a side go to zero length. Thus E becomes convex before
disappearing and we are in the previous case.

Thus except for the totally concave case, the remaining case is that
an edge of E goes to zero as r is increasing. Now as concave sides
increase in length as r increases, it follows that E has a pair of concave
sides that have become tangent and then crossed; in other words, a cell
a has capped another, say b yielding c, where a + c = b. Then E =
a + b = 2a + c is disconnected and as r increases, the two components
become further apart.

Assume as case 1 that E has two pairs of convex sides. It follows
that these meet at a vertex, A. If (for our purposes the interesting case)
the line L is not actually on the subspace generated by a and c, then b
may break out of E; this turns E into a span cell, by removing a pair
of its convex sides. In this case no cell disappears.

If L is on the subspace generated by a and c, then by symmetry of
the situation, there will be no breakout and no side of this cell going
to zero diameter.

As case 2) assume that E = E(x) has only one pair of convex sides;
then it has a side on ∂Qr by symmetry.

Now we know that E consists of two 3-sided pieces and each piece
has one convex and two concave sides. It follows that this cell disap-
pears with a breakout bifurcation. Here the cell a plays the role of z3

in the breakout bifurcation (figure 3) and b the role of z2. Then E cor-
responds to the cell z2 +z3, which disappears in a breakout bifurcation,
as claimed.

This completes the proof of the proposition except for the case in
which E is totally concave; this case will be covered in the next section
where we prove at the same time that there is always one and only one
totally concave cell. In addition a structure theorem will proved be at
the same time. We complete this section with some terminology and a
fact about central cells.

Finally,

Lemma 4. The central cell can have at most 6 sides.

Proof. We will see below that at birth with r increasing the central
cell has either 4 or 6 sides. Thus it suffices to show that they cannot
gain sides as r increases.

Suppose two of the sides have their centers at A and A′. To prove
the lemma, take a coordinate system (see figure 6) with the two cen-
ters at (±a, 0). We are concerned with the vertex, (0, v), which is the



2D CONTINUED FRACTIONS AND POSITIVE MATRICES 21
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(-a,0)
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(a,0)

. (b,-c)

Figure 6. Side loss for the central cell

intersection of the two sides; and whether another arc can approach it
as r increases.

Were there such an arc, say α, to approach the vertex, it would have
to do this from below the vertex. The coordinates of its center (b,−c),
must satisfy −a < b < a and c > 0, for this crossing to happen. Let
(0, d) be where α crosses the y-axis. This crossing is D = v − d units
below the vertex, where

D =
√

r2 − a2 −
√

r2 − b2 + c.

One computes that as r increases, D decreases monotonely. Hence if α
does hit the vertex, it approaches it from above. If this happens (and
it does if c sufficiently small) then the cell looses a side—rather than
gaining one. This completes the proof of the lemma.

12. Simple cases as models

In this section we prove that each Qr has one and only one cell with
all sides concave. Existence is easy: consider E ′ the last open cell added
that has a boundary point, say p ∈ ∂Qr; the dual p′ to p relative to E ′

is an interior point of Qr and is certainly not in E ′. Nor could it be in
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a previous chosen cell, as then E ′ would not have been chosen. Then
p′ is in some cell, say E. Now no face of E can be convex as then its
dual relative to E would be in ∂Qr. Hence E is totally concave.

We know of no simple proof of uniqueness. This proceeds by induc-
tion, taking a generic path through the space of complexes, using the
bifurcations deduced from symmetry. At the same time we prove a
structure theorem for the Qr and Kr.

Definition 1. We say Qr is of 3-span type provided it has three speci-
fied shells and a span cell for each pair of these shells. Furthermore, a
unique cell C with all sides concave; C has 6 sides, and the dual cells
with respect to C are a shell xi and span cell si, i = 1, 2, 3.

On the other hand, Qr is of 2-span hex type (hex for short) provided
it has three specified shells, a, b, c, a span cell of two pairs of these three
shells, a unique (central) cell C of all concave sides, and a hex cell H.
Furthermore, C has 4 sides and with respect to C, the dual pairs are
a, H and b′, c′ where b′ and c′ are the span cells. Finally, with respect
to H the two dual pairs are b, b′ and c, c′; H has 2 convex sides.

The definitions of 3-span and 2-span-hex include the two simple cases
(in which there are no other cells) but much more, as we allow other
shells and capping. Of course capping introduces new cells and new
sides of old cells.

Theorem 3. Each Qr is either 3-span or 2-span-hex.

Proof. This is proved by induction along a generic path by showing
that each bifurcation retains this property by changing it in the correct
way. Thus the result follows from the following:

Lemma 5. (1) The cell types: span, hex, and central are not changed,
nor are any new cells of these types created by the capping bi-
furcation.

(2) Just before a breakout bifurcation, Qr must be 3-span. At this
bifurcation, a six sided central cell looses a pair of sides and
after this bifurcation, Qr is of hex type.

(3) Just before an upstaging, Qr must be of hex type. At each up-
staging the old central cell is destroyed and another created,
having either 4 or 6 sides.

(4) If 6, the resulting Qr will be 3-span: 2-span-hex if 4.

Proof. The first part is covered in the section describing this bifur-
cations.

For the second part, we use the notation set above in describing
the breakout bifurcation: assume z1 breaks out of z3, at r = r0, and
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note that z2 + z3 is the span cell lost at the bifurcation. As the inner
boundary of this span cell lies in the boundary of the central cell, the
central cell looses a pair of sides.

We need to show that there are three span cells, (just before the
breakout.) Assume for purpose of contradiction, that this is false. Let
f denote the inner convex edge of z2 + z3. Then by the induction hy-
pothesis, there must be hex cell, say t with convex edge e, spanning f
and another span cell, say s. Then f cuts off the central cell, C (and
a hex cell.) We see than s spans either z3 and another shell or z2 and
another shell, because there cannot be two disjoint π-spans. Then the
dual e′ of e, with respect to C, lies on either ∂z3 or ∂z2. In either case, e
and e′ both have end points on f and thus coincide at, say r = r1 ≤ r0.
But then e and e′ become tangent at r = r2 and r2 must be < r1,
because the parallel points of dual sides are closer together than their
end points. This makes r = r2 a point of bifurcation, to wit a capping.
Thus a capping bifurcation occurs before the breakout, contrary to our
assumption.

Hence just before the breakout Qr is of 3-span type. Say z1 breaks
out of z2 where z3 is dual to z1 relative to z2. Then z1 +z3 spans z2 and
z3. Since there can be no π-span disjoint from this one, it must be part
of the 3-span setup: thus there is another shell w, a cell A spanning
z2 and w, and a cell B spanning z3 and w. By induction, the inner
boundaries of the span cells are in the boundary of the central cell.
Thus it has these 3 sides, and their duals with respect to the central
cell, and thus 6 sides. When z1 breaks out, the span cell z2 + z3 is lost,
decreasing the central cell to 4 sides. In addition, as z1 extends into
A, z2 becomes a span cell of z1 and z3, and its inner boundary adds
another concave side to A; this and its dual make 6 and A becomes a
hex cell. This proves part 2.

For the third part, assume for purpose of contradiction that just
before an upstaging, Qr is of 3-span type. Say xiare the shells, si the
spans, where si is dual to xi relative to the central cell, i = 1, 2, 3.
Then no two of the xi can be involved in the upstaging, as they are
further apart than π.. Furthermore, the full upstaging cannot be “cut
off” by a single cell, as the outer boundary of single cells span less that
π. Therefore there must be a breakout before the upstaging. This is a
contradiction, and thus before an upstaging, Qr must be of hex type.

We must have a capping, as no 3 of these shells can make an upstag-
ing. We use the notation above. As the upstaging is to occur next,
without breakout, the three shells in the upstaging must include b and
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Figure 7. Before and after upstaging, case b

c. Hence the capping must supply a shell either between them or adja-
cent to one of them. Using the notation above, we see that there are
three and only three possibilities:

a) a caps the hex cell h = a + b + c creating x = b + c and cutting
the central cell into two ’triangles’. Then b and c upstage x. Note that
the capped hex cell has two short exterior edges—between b and x and
x and c— that disappear at the bifurcation. Their duals are edges
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of C, and hence the cell C itself disappears. After the upstaging, x
spans b and c, and thus Qr is 3-span. The old hex cell becomes the
new central cell and has 6 sides: the interior convex sides of the 3 span
cells, together with their duals. This is quite simple compared to the
next case. Refer to figure 7.

b) b′ caps c′ (as these are dual with respect to C) creating x =
a + c − (a + b) = c − b. Then x and b upstage c. Here the capped
cell c′, has two exterior edges, only one of which—that between c′ and
x—disappears with the bifurcation. This removes two of the convex
edges c′ got from capping, leaving two; it also got a pair of concave
edges, and thus the resulting cell, h, has six sides which is right for a
hex cell.

On the other hand, the old hex cell looses its convex edge, being
between b and c, and now has 4 concave edges and is the new central
cell. The duals of the two exterior edges that disappear, also disappear:
as these duals are edges of the old central cell, it disappears. The new
cell x becomes one of the shells, c in our standard notation. Other
changes: a → b; b → b′; c → a; b′ → c′; c′ → h. It is straightforward to
check the duality requirements, for example, b′ and b dual with respect
to h translates to c′ and b′ are dual with respect to C.

c) c caps c′ (or the symmetric case, b caps b′.) This creates the cell
x where c + x = c′ = a + b. There is no possible upstaging here: the
only triple not obviously too far apart are c, x, b. But these don’t add
up. This completes the proof of the lemma and the proposition. The
following diagram summarizes the results of this section.

13. Rational Subspaces

An important special case (of any theory of continued fractions)
occurs when the vector P is close to a rational subspace of R

3

Suppose R is a 2 dimensional rational subspace of R
3 with normal

N, where the coordinates are integral and relative prime. We have

Remark 8. For the rational subspace R, the critical distance is 1/|N | :
the distance from R to the closest lattice points not on R is 1/|N |.

Proof. For z ∈ Z
3 we have k = |z · N | = |N ||z|cosθ, where k is an

integer. If z is not on R, the minimum value for k is 1. The minimum
is attained at any lattice point (a, b, c) chosen using the relative prime
assumption, to give a ·N1 + b ·N2 + c ·N3 = 1. As the distance from z
to the subspace R is |z · cosθ| the result follows.
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breakout

upstageupstage

3-span type 2-span hex type

a b

Figure 8. How Qr varies between 3-span and 2-

span hex as r increases. a if a caps hex: b if b′

caps c′.

Corollary 6. If Qr is a stack then it is so relative to a rational subspace
R, with, say, normal N in lowest terms. If the radius is ≤ one half the
critical distance dcrit = 1/|N |, there is a positive basis.
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13.1. For P on a rational plane. First, if P is actually on R2, and
the radius is less than rcrit we get a 2D interpretation of a 1D continued
fraction. That is, varying P on this subspace, is like varying a vector
in the plane, so that the complexes Qr that we get are parameterized
by a full set of ordinary continued fractions. Furthermore, since we are
in 3 dimensions, we can ’see’ all of a terminal section of the continued
fraction in each picture of figure 12. Thus the convex cells a and b will
be on the right and left sides, say, and ’behind’ these are the remain-
ing, partially hidden and trailing off to infinity (see the appendix). In
particular, for our theory we have to limit the radius to be > rcrit, a
restriction like the one for the case when the vector P is rational itself.
Here, this concerns us mainly in that, when near a rational plane, can
have an arbitrarily large number of cells, by continuity.

We begin with a lemma needed in the stack proposition.

Lemma 6. Every cell in Qr is one of the following:

(1) the central cell;
(2) a capped cell, that is a cell with exterior boundary disconnected;
(3) a span cell;
(4) a hex cell; or
(5) a convex cell.

Remark 9. These are not exclusive: for example, both hex and span
cells can be capped.

Proof.Assume X is a cell and not one of the first 4. Then ∂X ∩ ∂Qr

is (1) nonempty, (2) connected, and has at least one pair of convex
sides. Since X is not a span cell, it must have the extreme points of
its background = π(E(z)) ∩ Qr. Thus it is a shell and since it is not
capped, it is convex.

13.2. Stack Proposition. The purpose of the section is to get a han-
dle on stacks.

Proposition 3. If there is a capped cell in Qr, then then there are cells
a, b, X, such that

(1) a and b contain diametrically opposite points on ∂Qr;
(2) a and b are dual with respect to X;
(3) a ∪ X ∪ b separates Qr into two sets, one above and one below

the diameter in part 1;
(4) b is convex.

Proof. As there is a capped cell, let X be one with the least weight.
Thus X has at least one, say k pairs of dual concave sides. Each such
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pair leads to a pair a, b of cells satisfying the first 2 conditions. We
claim that k = 1, 2, or 3. To see this, assume for purpose of contra-
diction that k ≥ 4. Now label the first k a’s a0, ...ak−1 and their duals
ai, ai+k, mod2k. Then as r increases a little, which would result in an
upstaging, say ai and ai+2 upstage ai+1, or a capping. But then these
span π radians, even though they lie entirely on one side of the diame-
ter between points of ai+3 and ai+3+k. (i+3+ k 6= i.) A capping would
lead to a similar contradiction. This proves our claim. Note that the
outer boundary of X consists of k + 1 intervals.

Let a, b be one such pair; were part 3 to fail, by lemma 6, one of
a, b, X would be disconnected. Suppose first that X is disconnected.
Then X has a pair of dual concave edges which overlap; let Y, Z denote
the corresponding cells, dual with respect to X. Then one of Y, Z caps
the other. This contradicts our choice of X, as both Y and Z have
less weight than X. Next, assume that either a or b is disconnected.
Then reasoning the same way, we arrive at a (or b) capping cell that
has less weight than a (or b.) But then this cell has less weight than
X, again yielding a contradiction. This proves part 3 holds in each of
the k cases.

Note b 1) is not capped, by our choice of X; 2) is not central as it
has a convex edge; 3)could not be a hex cell as the outer boundary of
a hex cells is bounded by shells, leaving no room for X’s disconnected
sides; 3) could not be upstaged, as this would leave no room for X to
have its disconnected boundary. Thus b is convex.

Similarly, a is neither capped nor central; to see that it not hex,
recall that if x caps y then they are dual, relative to a cell between
them where the dual edges overlap and x has less weight than y. But
a hex cell has move weight than than any other cell, except the central
cell and thus cannot cap another cell. So far we know that a is either
a convex cell or a span cell, by the lemma above.

To go further we must proceed by cases: for k = 2, and a1, b1, a2, b2

the two pairs, a1 cannot be a span cell because the resulting π-span
would have to be on one side of the diameter determined by a2, b2.
Similarly for a2. Hence the ai are convex.

For k = 3 (and similar notation) a2 might span a1 and a3, but then
the other two could not be span cells and thus are convex. For k = 1, a
might well span two (necessarily convex) cells, and often does.

Corollary 7. Under the conditions of the previous proposition, a may
fail to be convex only in the cases k = 1 or 3. Furthermore, in the
exceptional case where k = 1 and a is not convex, a is a span cell and
there is a positive basis.
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Proof. The first statement has been proved. Next, if a is not convex,
it spans two cells c, d, resulting in a π-span. Just as for a, c and d satisfy
1-4 above and thus are convex, as neither can be span cells. We claim
b, c, d forms a positive basis. Now assume for purpose of contradiction
that there is a convex cell e not in their positive span—say e is between
b and c. Let r increase until e touches. First, suppose e touches c; this
cannot be a capping as it would be above the diameter determined
by the dual cells a and b. Second, could c and another cell x upstage
e? Only if x = b, again because of the dual cells a and b. But this
contradicts the assumption that e is not in the positive span of b, c, e.

Finally, could e touch b but not c? Yes, with e and d upstaging b;
but b would have to break out first, and this is impossible as a is dual
to b relative to X, and a is spanned and thus not a shell.

Corollary 8. In these three cases where :

k = 1: and a is convex, we have a stack with convexes a, b and
cells a + b and possibly others of the form Aa + Bb, A, B ∈ Z

+.
There may or may not be a positive basis.

k = 2: we have a1 + b1 = X = a2 + b2 and we have a basis, but
not a positive one.

k = 3: Qr has 5 or 6 convexes and Qr takes the form given in
figure 10; there is a positive basis.

Proof.In the first case, there is nothing to prove. However, note that
this case includes the ‘finite stack’ as described below. In particular,
there may be many more cells of the form specified. The second case
is clear.

The third case is the special case of 5 or 6 (the maximum number
possible) convexes mentioned above. Choosing notation a0, a1, a2 and
their duals, a3, a4, a5, these occur in order around ∂Qr, and ai and ai+3,
mod 6, are dual with respect to X. At an upstaging among these, say
a0 + a2 = a1, we can deduce, a2 + a4 = a3 and a4 + a0 = a5. Thus
a0, a2, a4 forms a positive basis.

14. Stacks

Lemma 7. If a stack disconnects Qr, then each cell is either on one
side of the stack (say above or below it) or in the stack.

Proof. Assume for purpose of contradiction, that there is a cell
neither in the stack, above nor below the stack. Such a cell is the union
of two connected pieces one above and one below the stack. Among
all such, let E(x) be one whose upper piece is not lower than any one
adjacent.
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Then we know that the two pieces of E(x) are cut off by a side of
E(x), say the right side, passing over its dual, left side. Note that the
edge just to the right of the upper and lower pieces, bound the same
cell, say E(b). This is true because these two arcs lie on the same circle,
and no two cells of Qr have arcs of the same circle as convex edges.
Similarly, the cell E(a) contains the pieces on the left sides of the top
and bottom parts of E(x).

Hence, by our assumption, each of these two cells must be in the
stack by our choice of E(x). But then, a + b = x, which means that
E(x) is also in the stack. This contradiction proves the lemma.

14.1. Stack background. If there is a stack, say determined by the
rational subspace R, then there is background complex QR

r defined
above. Choose a coordinate system with the line of centers of π(a) and
π(b) horizontal. Then E(a) intersects the top of ∂Qr and is concave to
the left—let E(x) be the rightmost cell of QR

r having these properties.
Similarly, let E(y) be the leftmost cell of this complex, concave to the
right and intersecting the top. Let A be the top end point of E(x) and
D be the top end point of (y). Note: at a bifurcation (breakout) the
cell E(x + y) will be empty, and then the point B = C.

Lemma 8. The boundary β of the complex QR
r consists of portions of

the boundaries of 3 cells E(x), E(y), E(x+y) ∈ QR
r . It proceeds from A

along ∂E(x) to the vertex B of the cell E(x+y), then along ∂E(x+y),
to the vertex C of the cell E(y), then along ∂E(y) back to D.

See the example, figure 9.
Proof. We have indicated why the cells E(x) and E(y) exist. To see

that E(x + y) exists, (except at a breakout) let K be the line segment
joining the centers of π(x) and π(y) and CK its midpoint, and K⊥

its perpendicular bisector. Then CK is the center of symmetry of the
putative cell E(x + y), and thus x + y contains a neighborhood of the
lower intersection ∂Qr ∩ K⊥.

Let A′ be the dual of A, with respect to E(x), B′, C ′ the duals with
respect to E(x + y) and D′ the dual of D with respect to E(y). Note
that A′ = C ′ : certainly C ′ is on the boundary of E(x) which proves
this. Similarly, B′ = D′. Elementary properties of convex sets show
that the convex sets π(E(v)), for v = x, y, x + y together, contain all
of Qr below β thus finishing the proof.

Proposition 4. The background of a stack intersects a non-stack cell
if and only if there is a cell on the bottom of the stack.

Proof. First, note that the symmetry of each stack cell interchanges
top and bottom. Thus if a non stack cell intersects the background on
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Y=ba

X+Y

X

Figure 9. The background of a stack

either one of top or bottom, there is a dual non-stack cell intersecting
the other.

15. Bounding the number of convex cells

Proposition 5. There are never more than 6 convex cells.

Assume on the contrary that there is a radius for which there are 7
(or more) convex cells. Now we allow r to increase and concentrate on
the bifurcations. Consider the following:

(1) There is a capping producing a new cell v which then breaks
out.

(2) Cells a1, c1 upstage another, b1.
(3) A capping producing v which does not break out.

But since this last does not decrease the number of convex cells, we
can ignore it. Call such a bifurcation (1 or 2) a touch. Note that each
touch produces a π-span with the two ends intact; they are much the
same, except that the first uses at most two of our 6 convex cells, the
other (at most) three.

Case 1: there is no touch in which one end is a shell containing more
than one of our 7 convex cells.

The first makes a π-span and uses at most 3 convex cells, leaving at
least 4 untouched, and in the complement. Thus there must be another
touch and the π-span it makes cannot be disjoint from the first, and
thus overlaps it;

Case 1u: x, one of the remaining 4 convex cells, together with an end
cell of the first π-span, upstages y, another one of the four remaining
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Figure 10. A case of 6 convex cells

convexes. The overlap with the first π-span is just one cell, and uses at
most two of our convexes; there are at least 2 convex cells remaining.
Thus there must be a third touch; first, suppose it is

Case 1uu: another upstaging. The π-span made by another touch,
which could overlap the previous two by at most one cell, and there-
fore is disjoint from one of the first two. As this is impossible, this
contradicts our assumption and finishes the proof in this case.

Note that were there only 6 convex cells, then the last of our 7
cells could be upstaged by the two cells on the ends of the previous
(overlapping) π-spans.

This is what happens in a certain case: metric induced by pro-
jecting onto the plane with normal = (0.57605, 0.522974, 0.719093),
P = (0.625822, 0.547594, 0.555417) and radius 0.46-0.50.} as in figure
10. The reader may wish to check that from the first figure one can
compute a′ = b + c, b′ = a + c and c′ = a + b.

Case 1c: the second touch is a capping. Here we need some notation:
say the first π-span is made by cells a, c, with a spanning cell b. Let A
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denote the end point of the π-span at a and let −A denote the other
end, antipodal to a. Now the new π-span cannot be disjoint from the
first; say x one of the four remaining convexes, caps a. This creates
another convex cell , d, at first cut off by a. Let B denote the point
at which d breaks out of a, and −B the point antipodal to B; this is
near an end point of x. not that the two π-span ’s take up all of ∂Qr,
except the shorter arc between −A and −B. At this point there are
at least 3 of our 7 convexes left and there must be another touch. It
must overlap with one of the first two π-span ’s, but it cannot overlap
both, as there are other convexes in the way. Thus we have two disjoint
π-span ’s which is impossible. This completes the proof of case 1.

As Case 2, we assume that there is a stack, that is case k = 1 of the
stack proposition, with a and b convex.

As Case 2A, we assume that there is a shell x on one side of the stack
which cuts off i convex cell in Qr, where i ≥ 2. Say these are a, b, c, ...,
and are on the top of the stack. Since the cell x has i concave edges
on top, it must have i on the bottom; as these edges must be convex
downward, they must belong to stack cells. But there are only three
such stack cells, and thus i ≤ 3. Say that there are j other convex cells
on top of the stack. Each of these has a consequent convex cell on the
bottom of the stack making a total of 2 + 2j + i so that j ≥ 1. Let r
increase and note that none of the i convexes can touch another, while
cut off by the cell x.

Case 2Aa. A convex cell a breaks out of x say on the left. Then the
dual to a with respect to x is a stack cell, say it is X and is on the right
and each of the j convexes on top are to the left of a. Also, x = X + a.
As in case 1 above, the next touching among our convexes cannot be
disjoint from the π-span a, x, X.

Case 2Aaa: a touches.
Case 2Aaaj: a touches one of the j convex cells, say d, together

with a upstages another. This is impossible as it makes a π-span lying
entirely above the stack, which has less than π radians.

Case 2Aaas: one of the j convexes is upstaged by a and a stack
cell Y, which is thus on the left. Since there can be no cell between
a and d, we have j = 1 and i = 3. There is still a convex cell on the
bottom, and it must expand and touch something. It must be either
X or Y ; it cannot be upstaged by X and Y as the resulting π-span
would contain all of Qr except the cells above the stack—which has
less than π radians. Hence it is disjoint from one of the first 2 π-spans,
a contradiction.
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Case 2Aaac: a caps a cell. This must be one of the j ≥ 0 cells on
top, as these cells are to the left of a and between a and the stack cells
on the left. This is impossible as the top is of less than π radians.

Case 2Aaac’: a is capped by one of the j cells to the left of a. This
is impossible as both of these cells are on top, which is of less than π
radians. Thus a does not touch.

Case 2AaX: X touches a cell on bottom. It cannot be another stack
cell Y as Y would be a convex leftward cell, and together they would
cut off a diameter of Qr. Thus X and a convex cell u on bottom must
thus must upstage another, v on the bottom. At this stage we still
have two convex cells on top corresponding to the bottom cells u and
v, and as we may suppose a does not touch, we are again trapped with
a contradiction.

At this point we know that under the special assumption about the
cell x, that there cannot be a breakout. But then one of the the i cells
cut off by x must touch. But this is impossible, as it would make a
π-span cut off by x though cells never span π radians. Thus the special
assumption about x itself is impossible.

Hence, in the case of a stack, the case 1 argument, made under
the special assumption that there was no cell such as x, proves the
proposition.

Corollary 9. There cannot be 4 convex cell on a side, in case there is
a stack.

Proof. For at least one of four would have to a stack cell and thus
determine at least one on the other side. These 5 along with the gen-
erators a, b of the stack make 7. �.

Case 3: k = 2 in the stack proposition. But this is a special case of
a stack—in two different ways, and thus already covered. Alternately,
a very easy proof is possible in this case, as the two pairs ai, bi, i =
1, 2. mean that each touch would have to involve both ai or both bi.
Similarly, the k = 2 case is already covered.

16. Four convex cells suffice: there is always a basis

Proposition 6. Every cell label of Kr is a positive linear combination
of the convex cell labels. More simply, every cell in Kr is a sum of its
convex cells.

Proof. If a cell z has a concave edge bounding a cell a, then the dual
to this edge is also concave, and bounds a cell, b. Then z = a+ b. Note
that both a and b have less weight than z; if either a or b has a concave
side, it is the sum of cells that have less weight. Thus continuing this
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b a

cd

X

Figure 11. Four cells are required

this process must end with cells that have no concave sides, that is are
convex. This proves the proposition by induction. [Note also that this
proof is valid in all dimensions.]

In fact we can do better; the following proposition is crucial in our
proof.

Proposition 7. Four convex cells (or perhaps just three) suffice for
positive labels of the other cells.

The example in figure 11 shows that we sometimes need four: note
that a + d = X = b + c; in particular, any three of {a, b, c, d} is a basis
of Z

3, though not a positive basis, for example, d = a + b − c.
First of all, if there is no capping, then there are just 3 convex cells

and they suffice.
Thus suppose we have a stack, say based on the convex cells a and

b.; then the stack divides Qr into two pieces, each spanning less than π
radians. Now, among all convex cells on top of the stack, let c denote
the one with least weight.

Lemma 9. if x 6= c is a cell on the top of the stack, then x = c + ΣXi

where the Xi are stack cells.

Proof. First, if x 6= c is convex, then it is too close to c to cap or
be capped by it. But a touch will eventually happen and can only be
that one is upstaged by the other and a stack cell. But it could not
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be c = x + X, X a stack cell, as then c would have more weight than
x. Thus. x = c + X. So suppose x is top cell which is not convex.
Then x has at least two concave sides, can be written x = X1 + u1.
where X1 has a a convex downward side and u1 has the dual side, with
respect to x. It follows that X1 is a stack cell, since the side dual the
convex downward side with respect to X is on the bottom boundary
of Qr. This uses lemma (14.7) that any cell containing part above and
part below the stack, is a stack cell. If u1 is convex, we are done.
Otherwise we apply the first step again and get u1 = X2 +u2, and thus
x = X1 + u1 = X1 + X2 + u2, where X2 is a stack cell and u2 a top
cell, which clearly has less weight than u1. Thus by induction we have
x = ΣXi + y, where the Xi are stack cells and y is a convex top cell.
Again, y is within π of c and thus y = c, or y = c + X ′, X ′ a stack cell.
in either case the lemma is proved. Similarly,

Lemma 10. if x 6= d is a cell on the bottom of the stack, then x =
d + ΣXi where the Xi are stack cells.

Proof of the proposition. If there are no convex cells on the bottom,
then a, b, c suffice to write any cell, and hence is a (positive) basis.
Otherwise, we note that any cell in the stack can be written as a positive
combination in the end cells, a and b. Thus, any cell in Qr is a positive
sum of the four cells a, b, c, d.

Corollary 10. The lattice points a, b together with either c or d forms
a basis of Z

3.

Proof. So suppose there is a cell on bottom. Then the convex cell d
exists. Some cell, say y must hit a stack cell X”; let x denote the dual
cell (with respect to X”); x is first, a top cell, and secondly satisfies
X” = y+x. Using the lemma above we have x+y = X” = d+c+ΣXi,
and hence each of c and d can be written as a linear combination of
the other together with a and b. This leads us to the corollary.

Corollary 11. Our algorithm which chooses three of a, b, c, d does form
a basis of Z

3.

Proof. Recall that the first two chosen are the two convexes of least
weight. (The second is automatically not in the span of the first one.)
The third choice is that convex cell that 1) is not in the span of the first
two, and 2) is of least weight among those satisfying part 1. Adjust
the notation so that wt(a) ≤ wt(b). and wt(c) ≤ wt(d) and take as

Case A that wt(d) > wt(a). Then the choice would be a, b, c, which
is a basis as d can be written as a linear combination of c, a, b. Thus
we may assume
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Case B, wt(c), wt(d) ≤ wt(a), wt(b).
Therefore equation d + c + ΣXi = X ′′ means that wt(X”) ≤ wt(d +

c) ≤ wt(a + b) ≤ w(x + y). But as X ′′ = x + y, these are all equalities.
In particular, as x = c + ΣXi and y = d + ΣX ′

i, we have x = c and
y = d.

As X” is a positive linear combination of a, b, we have one of the
following: X” = ma, m ∈ Z, X” = mb, m ∈ Z or X ′′ = a + b.

Case B1: X” = a + b. Then a + b = x + y = c + d, and any three of
a, b.c.d form a basis.

Remark 10. Note that case B1 is the case k = 2 of the stack proposi-
tion.

Case B2: X” = ma. Were m > 1, the cell X ′′ would be behind a
and its center further out form the center of Qr, and thus would not be
(the name of) a cell at all. Thus m = 1 and X ′′ = a = x + y = d + c.
Then wt(a) > wt(c), wt(d). Hence c and d are chosen before a and thus
a is not chosen. Hence the three chosen are b, c, d which is a basis.

Case B3. X ′′ = mb. As in case 2, m = 1 and thus X ′′ = b = c + d.
Then b would not be chosen before c and d and thus would not be
chosen. Then a, c, d is the chosen basis.

17. That decreasing r yields a positive basis

Theorem 4. Given r and Kr, there exists a radius r′ ≤ r for which
there is a positive basis of Kr.

Proof. This is clear if Qr is one of the two simple cases, that is if
there is no capping.

Next, the case k = 3 of the stack proposition has already been
covered—there is a positive basis without perturbing r. The case k = 2
is a special case of the k = 1 case, in that is a stack.

This brings us the case k = 1, and the part of this case in which a
and b are convex and are the ends of a stack. As above, we let c denote
the convex cell on top of the stack which has least weight and d convex,
of least weight on the bottom. We proved above that any cell can be
written as a positive linear combination of the four convexes, a, b, c, d.

Now begin to decrease r; there may be various changes that are not
important, for example, one of a, b, c, d may be replaced with others
but as long as there is a stack with top and bottom cells in Qr, the
property just mentioned holds. Thus there is a value of r, say r = t, at
which something fails. This uses corollary 6 of the section on rational
subspaces.
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Case 1. There is still a stack, but there are no cells on bottom.
Then we claim that a, b, c, forms a positive basis. Because any top
element can be written as a positive linear combination of c and the
stack elements, and thus as positive linear combinations of this putative
basis. And of course, the elements of the stack can be written as
positive linear combination of a and b alone.

Case 2. There is no longer a convex cell to play the role of a. Since
we still have a capping the stack proposition still applies. If k = 2 then
this is still a stack and this is case 1 again. Thus we must be in the
special case of k = 2 in which a is not convex. However, in this case
we proved above that there is a positive basis.

Finally, we could no longer have a capping. Thus we are in one of
the 2 special cases and there is a positive basis.

18. convex bases

Definition. We say that a basis is convex provided it has the eigen-
vector P in its (positive) cone. That is, a basis a, b, c of Z

3 is convex
provided the eigenvector V has the form V = Aa + Bb + Cc, where
A, B, C > 0.

Lemma 11. Every positive basis is convex.

Proof. There are cells that span a triangle with the center in the
interior. For x, y, z such cells, we can write the eigenvector as positive
linear combination of them, and turn, we can write these as a linear
combination of the positive basis. Note that this also implies that the
centers of the last cells form a triangle with the origin in the interior.

19. The periodic case

As has been noticed before for other 2D continued fractions, the
sequence of transition matrices is periodic if there is a 3 × 3 ’Pisot’
matrix A with small eigenvalues complex. Here, in addition, the spaces
Kr themselves are periodic. There is also uniqueness here, provided
that the we are using a metric or inner product on the plane P⊥.

Theorem 5. The sequence of spaces Kri
is eventually periodic if

(1) the vector P is the eigen vector of the eigen value λ bigger than
1.

(2) the other 2 eigen values of A are complex, say α ± iβ.
(3) the bifurcation parameter is the radius r of the round disk Qr

as given by an inner product on the plane P⊥,



2D CONTINUED FRACTIONS AND POSITIVE MATRICES 39

(4) the inner product is that induced on P⊥ by the metric on the
eigen plane of the complex eigenvalues by taking the vectors u, v
in the formal eigen vector u+ iv to be of equal size and normal.

Furthermore, if the update matrices {Ai} determined are even-
tually periodic, and part 3 holds, then the spaces are eventually
periodic and parts 1 and 2 are true.

Conjecture 2. We can add part 4 to the last part of this theorem.

Proof. We assume that A is such a matrix and that we are using
the indicated metric. In particular we may [H],[?]and do assume that
the entries of the P are all positive. We find a radius r, small enough
so that a, b, c each have only non-negative entries and so that r is not
a bifurcation parameter. Let r0 be the bifurcation value just before
this. Note that applying the matrix preserves everything in our setup:
the positive ray of the the eigenvector P, the plane of u, v, the integral
lattice Z

n, and finally multiplies distances in the u − v plane by the
factor

√
λ. note that in addition, the complex Qr0

is exactly the same as
Qrm−1

except rotated by the angle θ = arccosα and with all distances

multiplied by the factor
√

λ.
Hence

√
λr0 is also a bifurcation value, and letting m be the number

of bifurcations so far, rm−1 =
√

λr0. Hence the product of the transition
matrices up to this point is A. The further bifurcation values are of the
form ri(

√
λ)n, 0 ≤ i ≤ m − 1, n = 1, 2, 3, ... Periodicity follows. This

proves the first part.
Next, assume we have an eventually periodic sequence {Ai} of tran-

sition matrices, say periodic after the radius r0. Also take r0 to be not
a bifurcation value. Let A be the product of a full period of the tran-
sition matrices. Choose r0 small enough so that the further matrices
are periodic and so that the entries of the three basis vectors are all
positive. At this point we know a bit about the spectrum of A : it has
one eigen value bigger than unity and the other two less than unity in
absolute value. The eigen vector for the big eigenvalue could not be
different from P, as the lattice points of the special bases converge to
P. Let {a, b, c} denote the first basis set.

Now assume for purposes of contradiction that the small eigen values
are real, say µ, ν, and let the corresponding eigen vectors be u, v. We
introduce another bifurcation parameter t, 0 < t ≤ 1 and form another
sequence of spaces, K ′

t. This will differ from all the other sequences
of spaces, in that we will not be using a single metric throughout the
sequence. For t = 1 we have a round disk Q′

1 of radius r0, and for
t = 1/2, the disk is an ellipse, given by A(Q′

1). Fill in the values of
Q′

t, 1/2 < t ≤ 1, say linearly. Now extend to 1/4 ≤ t ≤ 1/2 by
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Q′
t = A(Q′

2t), and so on. Similarly we have corresponding ellipses at
all the lattice points z defined by Q′

t + z.. This yields a theory with
corresponding bifurcations, because the basic symmetry result follows,
then the bifurcations, etc. Next note that in this theory we also get a
periodic sequence of transition matrices say Bi with the product over
a full period equal to A. The period may be different.

We thus get two periodic sequences, Ki, K
′
i, with perhaps quite differ-

ent transition matrices as well as different periods, but agreeing on their
chosen bases, at the end of each period. to wit {An(a), An(b), An(c)}.
The first set has round disks decreasing in radius, the second set ellipses
decreasing in size and with growing eccentricities.

The diameter of a round disk Qr0
in the direction v is covered by

a certain number , say k cells in K0 (and K ′
0 as they are exactly the

same.) Then these disks form a ’chain’ Di, i = 1, ..k. with Di ∩Di+1 6=
∅, i = 1, k − 1. However, at a later stage, either the elliptical disks are
much longer in the u direction than the round disks or much shorter in
the v direction. As these two possibilities are similar, we suppose that
the ellipses are much shorter in the v direction. Now there is a chain of
k round disks, with centers say π(z1), ...π(zk) that make it across the
round disk and thus with the same centers there are k disks forming a
continuous chain made up of short elliptical disks. But the elliptical
disks are too short to make up such a chain. This contradiction finishes
the proof of the theorem.

We close his section with an application analogous to the use of
continued fractions to solve the Pell equation.

Corollary 12. This gives a finite process of deciding whether two ma-
trices in SL3(Z) are conjugate over the integers, provided not all their
eigen values are on the unit circle.

Proof. Two A, B such matrices, are conjugate iff their inverses are.
Hence we may assume A, B, have an eigen value > 1 and the other 2
are inside the unit circle. If the small eigen values are complex, the
the metric mentioned above to give a periodic sequence of transition
matrices for each matrix. Then the matrices are conjugate in GL3(Z)
if and only if their sequence of transition matrices from a full period of
one is just a cyclic permutation of the the other. This follows from the
fact that a conjugacy R preserves the integral lattice and must send
eigen vectors of one into the eigen vectors of the other. Hence the basis
B′

i chosen by the second sequence, must be R(Bi), the image under R
of the basis chosen by the first sequence. Thus, grouping the transition
matrices, we have A = ST and B = TS. Then S is a conjugacy from
A to B.
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If the small eigenvalues are real, then the device introduced above,
where we change the metric continuously, yields periodic sequences of
update matrices, and the proof continues as in the complex case.

We close this section with a few computations of the invariants at-
tached to matrices (with characteristic polynomial t3 − 4t2 − 1.)
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 :





0 1 0
0 0 1
1 0 1









0 1 0
0 0 1
1 1 0









1 0 0
0 0 1
0 1 1









1 0 0
0 1 0
1 0 1





20. Positive matrices

In [W1] we gave an argument for the 2 × 2 case, though number
theorists knew this as we mentioned above. In [W1, W2] we indicated
how the argument used would extend to higher dimensions provided
one could find a radius such that there were only three convex cells.
Though we still do not know this, our slightly weaker result: there is a
radius for which there are three convex cells which suffice to write all
the other cells as positive sums. So suppose our complex Kr has such
a basis, a, b, c. then the n − 1 = 2 cochains dual to these, say A, B, C,
are a basis of the 2-dimensional cohomology, and using this basis, an
orientation preserving map of Kr to itself determines a matrix C which
we claim to be positive. For though there may be other convex cells,
d, e, their corresponding cochains can be written as positive sums of
our basis, A, B, C. With this minor modification the same proof goes
through.

In an earlier paper [W1] and in several talks, the author naively
conjectured that this would be true in all dimensions. However, there
are Pisot numbers with negative trace, for example in dimension 38, as
had been pointed out me by Mike Mossinghoff [M]. However we have



42 R. F. WILLIAMS

looked at many cases of Pisot matrices in dimensions 4, 5, and 6, and
have had no trouble so far in finding positive bases, in terms of which
the matrix has no negative terms. For example

0 0 0 −1
1 0 0 −3
0 1 0 2
0 0 1 4

.

In the table below, we give several examples of good bases, and just
after each,the resulting positive matrix

0 0 0 1 0 1 0 0
0 0 1 4 1 1 1 0
0 1 3 13 4 9 2 1
1 1 5 20 2 3 4 1

1 4 17 73 1 0 1 0
2 8 35 150 1 0 0 1
3 13 56 240 3 0 1 1
7 31 133 571 6 1 3 2

296 1270 5449 23379 0 0 1 0
905 3883 16660 71480 1 0 0 1
1270 5449 23379 100308 2 0 1 1
3587 15390 66031 283307 4 1 2 3

Not always: There are Pisot numbers with negative trace—so in
such a case this positive representation cannot occur; this yields a
counterexample to the naive conjecture of the author (talks and [ W2]).
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Figure 12. Qr near a rational subspace

[L] Lagarias, J., The Quality of Diophantine approximation found by the Jacobi-
Perron and related algorithms, Monatshefte für Math. 115 (1993) 299-328

[M] Michael Mossinghoff, private communication.
[St] Stark, Harold M. An introduction to number theory, 1970, Markham Publish-

ing Company.
[W1] Williams, R. F. Pisot-Vijayarghavan numbers and positive matrices, Proceed-

ings of the international Conference on Dynamical Systems and Chaos, Tokyo,
1994.

[W2] Spaces that won’t say no, International Conference on dynamical systems,
Montevideo 1995, Ledrappier, Lewowicz, and Newhouse, editors. Pitman re-
search notes in Mathematics number 363, Longman (1996) 236-46

[W3] Williams, R.F.Expanding attractors, Institute des Hautes Études Scientifique
Publ. Math. no. 43(1973)169-203.

[W4] Williams, R.F. The “DA” maps of Smale and structural stability, Global
Analysis, vol. XIV of Amer. Math. Soc. Proc. of Symposia in Pure and Appl.
Math., 14(1970) 239-334.

R.F. Williams
Department of Mathematics
The University of Texas at Austin
Austin, TX 78712 U.S.A.

Appendix A. Appendix: Stacks via 1D CF data

Given a line on the rational subspace Π, with normal N, and 1 di-
mensional continued fraction data, {ni}, i = 0,∞, determined by this
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line in Π, we describe the resulting complex Qr for r < rcrit. First, there
exist lattice points a0, b0, determining with the origin the subspace Π,
and infinite sequences {ai}, {bj}, such that

(1) each of E(ai), E(bj) is a cell of Qr, i, j = 1, ...∞;
(2) bj+1 = a0 + bj , j = 0, ...n0 − 1;
(3) ai+1 = bn0

+ ai, i = 0, ...n1 − 1;
(4) bj+1 = an1

+ bj , j = n0, ..n0 + n2 − 1;
(5) ai+1 = bn2

+ ai, i = n1, ...n1 + n3 − 1;
(6) bj+1 = an1+n3

+ bj , j = n0 + n2, ..n0 + n2 + n4 − 1;

etcetera. The a′s are on the left, say, with their boundary edges cov-
ering the open left half of the circle, and the b’s on the right with
their boundary edges covering the open right half of the circle. See the
illustration above, where ni = 1, i = 0, 1, ...

Remark 11. This does satisfy our definition of a stack—except that
there infinitely many cells.

Now if the line is moved off the subspace Π, by adding a small mul-
tiple of the given normal N, the resulting complex Qr will be a finite
approximation to this. (With r still less than half the critical distance.)
There now will be at least 3 convex regions and by the remark above,
there will be a positive basis consisting of a0, b0 and a third, say c, at
the top. The top will be a four sided region (explained above), filled
with cells E(x), x not on the subspace Π, and the bottom will contain
no such cells.


