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Abstract: We derive solvability conditions inH2(R3;R2) for certain systems of
nonhomogeneous elliptic partial differential equations involving Schrödinger type
operators without Fredholm property using the technique developed in preceding
works [10], [11], [12], [13], [14].
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1. Introduction

Solvability conditions for elliptic equations with non Fredholm operators were
studied actively in recent years. Most of the works on the subject deal with a single
equation of the second order (see [10], [11], [12], [13]), tothe exception of
the linearized Cahn-Hilliard problem studied in [14]. Suchan equation of the
fourth order can be easily related to the system of two nonhomogeneous equations
of second order. The first one in it is just the Poisson equation which has an explicit
solution decaying fast enough at infinity under the appropriate assumptions on its
right side . The second one is the nonhomogeneous Schrödinger equation. In the
present note we consider the system of two Schrödinger typeequations

{

∆u+ a(x)u+ αu+ b(x)v = f(x),

∆v + c(x)v + βv = g(x),
(1.1)

whereα, β ≥ 0 are constants,x ∈ R3, the potential functionsa(x) andc(x) are
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shallow and short-range and satisfy the conditions analogous to those used in
works [10], [11], [12].

Assumption 1.The potential functiona(x) : R3 → R satisfies the estimate

|a(x)| ≤ C

1 + |x|3.5+ε

with someε > 0 andx = (x1, x2, x3) ∈ R3 a.e. such that
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and the requirements forc(x) here are exactly the same as fora(x).

HereC denotes a finite positive constant andcHLS given on p.98 of [6] is the
constant in the Hardy-Littlewood-Sobolev inequality
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Here and further down the norm of a functionf1 ∈ Lp(R3), 1 ≤ p ≤ ∞ is denoted
as‖f1‖Lp(R3). The homogeneous system corresponding to (1.1) will be given by

∆θ + a(x)θ + αθ = 0, (1.2)

∆w + c(x)w + βw = 0. (1.3)

We will be using(f1(x), f2(x))L2(R3) :=
∫

R3 f1(x)f̄2(x)dx, with a slight abuse
of notations when the functions involved in this inner product are not necessarily
square integrable, like for instancew(x) involved in the first relation of (1.6). The
sphere of radiusr in the space of three dimensions centered at the origin will be
denoted byS3

r . Due to the decay of the potential functions at infinity the essential
spectra of the Schrödinger operators

hα = −∆− a(x)− α and lβ = −∆− c(x)− β, α, β ≥ 0 (1.4)

onL2(R3) involved in the left sides of the equations of system (1.1) concide with the
semi-axes[−α,∞) and[−β,∞) respectively (see e.g. [4]) such thathα andlβ do
not have finite dimensional isolated kernels and the Fredholm alternative theorem
fails to work for equations of system (1.1). We impose the conditions on the right
side of (1.1) analogical to those used in the preceding worksmentioned above and
on the remaining coefficient of the first equation of the system.

Assumption 2. Let the functionf(x) : R3 → R, such thatf(x) ∈ L2(R3) and
|x|f(x) ∈ L1(R3) and the requirements forg(x) here are exactly the same ones as
for f(x).



Assumption 3. Let the functionb(x) : R3 → R, such thatb(x) ∈ L∞(R3) and
|x|b(x) ∈ L2(R3).

Let us introduce the functional space

W̃ 2, ∞(R3) := {w(x) : R3 → C | w,∇w,∆w ∈ L∞(R3)} (1.5)

used in establishing solvability conditions for the Laplacian problem with convec-
tion terms in [13] and for nonhomogeneous Schrödinger typeequations in [12]. As
distinct from the standard Sobolev space only the boundedness of the Laplacian of a
function is required here, no explicit restrictions on its all second partial derivatives.
Our main result is as follows.

Theorem 4. Let Assumptions 1,2 and 3 hold. Then problem (1.1) admits a
unique solution(u0, v0)

T ∈ H2(R3;R2) if and only if

(g(x), w(x))L2(R3) = 0, (f(x)− b(x)v0(x), θ(x))L2(R3) = 0 (1.6)

for anyθ(x), w(x) ∈ W̃ 2, ∞(R3) satisfying homogeneous equations (1.2) and (1.3)
respectively with the spacẽW 2, ∞(R3) defined in (1.5).

In the present work the solvability conditions for the system of equations are
obtained as orthogonality conditions to the solutions of the corresponding homoge-
neous equations belonging to the appropriate functional space. The analogy with
the standard Fredholm solvability conditions here is only formal because the oper-
ators involved do not satisfy the Fredholm property and their ranges are not closed.

Understanding the spectral properties of the operators without Fredholm prop-
erty is very important, for instance when establishing the existence in certain func-
tional spaces of stationary and travelling wave solutions of reaction-diffusion equa-
tions (see e.g. [2], [3], [9], [13]).

2. Proof of the solvability conditions

Proof of Theorem 4.Under Assumption 1 the Schrödinger operatorshα and
lβ given in (1.4) are self-adjoint and unitarily equivalent to−∆ − α and−∆ − β

onL2(R3) respectively via the wave operators (see [1], [5], [8], [10]) and their
functions of the continuous spectra satisfying

h0ϕk(x) = k2ϕk(x), k ∈ R
3, l0ηq(x) = q2ηq(x), q ∈ R

3, (2.7)

the Lippmann-Schwinger equations for the perturbed plane waves (see e.g. [7]
p.98)
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and the orthogonality relations

(ϕk(x), ϕq(x))L2(R3) = δ(k − q), (ηk(x), ηq(x))L2(R3) = δ(k − q), k, q ∈ R
3

form the complete systems inL2(R3). The functionsϕ0(x) andη0(x) correspond to
the case when the wave vectors vanish. By means of Theorem 3 of[12] the second
equation of (1.1) admits a unique solutionv0 ∈ H2(R3) if and only if the first
orthogonality condition of (1.6) holds. Whenβ > 0 we considerηq(x), q ∈ S3√

β
.

These functions belong tõW 2, ∞(R3), which was proven in Lemma A3 of [13] and
solve the homogeneous equation (1.3) via (2.7). When the parameterβ vanishes we
consider similarlyη0(x). Hence it remains to solve the first equation of (1.1) given
by

∆u+ a(x)u+ αu = f(x)− b(x)v0. (2.8)

Sinceb(x) is bounded due to Assumption 3, the second term in the right side of
the equation above is square integrable as well. Via the Schwarz inequality and
Assumption 3

‖|x|b(x)v0(x)‖L1(R3) ≤ ‖|x|b(x)‖L2(R3)‖v0‖L2(R3) < ∞.

Therefore, by means of Theorem 3 of [12] equation (2.8) possesses a unique solu-
tion u0 ∈ H2(R3) if and only if the second orthogonality condition of (1.6) holds.
Whenα > 0 one considers the functions of the continuous spectrumϕk(x), k ∈
S3√

α
. They are contained iñW 2, ∞(R3) due to Lemma A3 of [13] and satisfy the

homogeneous equation (1.2) by means of (2.7). When the parameterα = 0, we
take into consideration analogouslyϕ0(x).
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