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Abstract: We derive solvability conditions idf?(R?; R?) for certain systems of
nonhomogeneous elliptic partial differential equatiomslving Schrodinger type
operators without Fredholm property using the techniqueld@ed in preceding
works [10], [11], [12], [13], [14].
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1. Introduction

Solvability conditions for elliptic equations with non ifeolm operators were
studied actively in recent years. Most of the works on theestilaleal with a single
equation of the second order (see [10], [11], [12], [13])the exception of
the linearized Cahn-Hilliard problem studied in [14]. Sumh equation of the
fourth order can be easily related to the system of two nordgemeous equations
of second order. The first one in it is just the Poisson eqnatioich has an explicit
solution decaying fast enough at infinity under the appedprassumptions on its
right side . The second one is the nonhomogeneous Scheydaggiation. In the
present note we consider the system of two Schrodingeragpations
Au+ a(z)u + au+ b(z)v = f(z), (L.1)

Av + c(z)v + v = g(x), '

whereq, 8 > 0 are constants; € R?, the potential functions(x) andc(x) are
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shallow and short-range and satisfy the conditions analegmthose used in
works [10], [11], [12].

Assumption 1. The potential function(z) : R? — R satisfies the estimate
C

a(r)] < ————=—
olo)] <

with somes > 0 andx = (21, 22, 73) € R3 a.e. such that
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and the requirements fet(x) here are exactly the same as fdr).

Here C' denotes a finite positive constant angl s given on p.98 of [6] is the
constant in the Hardy-LittIewood-SoboIev inequality

fi € L2 (RY).

(y)
————dzdy| <
’/RS - |$— |2 ray CHLSHfl”L (Rg)

Here and further down the norm of a functigne LP(R3), 1 < p < oo is denoted
as|| f1||»(rs). The homogeneous system corresponding to (1.1) will bendiye

A0+ a(z)f + ab =0, (1.2)
Aw + c(x)w + pw = 0. (1.3)
We will be using(fi(z), fo(2)) r2rs) = fR3 f1(x) f2(x)dz, with a slight abuse

of notations when the functions involved in this |nner prodare not necessarily
square integrable, like for instanedz) involved in the first relation of (1.6). The
sphere of radius in the space of three dimensions centered at the origin will b
denoted byS2. Due to the decay of the potential functions at infinity theesdial
spectra of the Schrodinger operators

he =—A—a(z)—a and lg=—-A—clx)—p, o >0 (1.4)

on L*(R?) involved in the left sides of the equations of system (1. hiotde with the
semi-axes—a, co) and[—f3, oo) respectively (see e.g. [4]) such thiat andi; do
not have finite dimensional isolated kernels and the Fredladternative theorem
fails to work for equations of system (1.1). We impose theditions on the right
side of (1.1) analogical to those used in the preceding worgstioned above and
on the remaining coefficient of the first equation of the gyste

Assumption 2. Let the functionf(z) : R® — R, such thatf(z) € L*(R?) and
|z|f(z) € L'(R?) and the requirements far(x) here are exactly the same ones as

for f(x).



Assumption 3. Let the functiorb(x) : R® — R, such that(z) € L>=(R?) and
|z|b(z) € L*(R?).

Let us introduce the functional space
W2 2(R?) := {w(z) : R®* = C | w, Vw, Aw € L®(R?)} (1.5)

used in establishing solvability conditions for the Lajdacproblem with convec-
tiontermsin [13] and for nonhomogeneous Schrodinger &pations in [12]. As
distinct from the standard Sobolev space only the boundedrfehe Laplacian of a
function is required here, no explicit restrictions on itsacond partial derivatives.
Our main result is as follows.

Theorem 4. Let Assumptions 1,2 and 3 hold. Then problem (1.1) admits a
unique solutior(ug, vo)” € H?(R?; R?) if and only if

(9(x), w(@))r2@s) = 0, (f(z) = b(x)vo(2),0(2)) 23y =0 (1.6)

foranyd(z), w(x) € W2 =(R?) satisfying homogeneous equations (1.2) and (1.3)

respectively with the spad&? > (R3) defined in (1.5)

In the present work the solvability conditions for the systef equations are
obtained as orthogonality conditions to the solutions efdbrresponding homoge-
neous equations belonging to the appropriate functioretesp The analogy with
the standard Fredholm solvability conditions here is onlyrfal because the oper-
ators involved do not satisfy the Fredholm property andrtftagiges are not closed.

Understanding the spectral properties of the operatotsowitFredholm prop-
erty is very important, for instance when establishing tkistence in certain func-
tional spaces of stationary and travelling wave solutidngaction-diffusion equa-
tions (see e.g. [2], [3], [9], [13]).

2. Proof of the solvability conditions

Proof of Theorem 4.Under Assumption 1 the Schrodinger operatbrsand
lg given in (1.4) are self-adjoint and unitarily equivalenttd — ov and—A — 3
on L?(IR%) respectively via the wave operators (see [1], [5], [8], }1&@jd their
functions of the continuous spectra satisfying

hOSDk("E) = kchk(x)a ke Rga lonq(x) = Qan(x)a qc Rgv (27)

the Lippmann-Schwinger equations for the perturbed plaaeew (see e.g. [7]

p.98)
etk 1 / ei|kafy\
x) = s+ — a dy,




(@) elar 1 / ei\q\\x*y\( \(y)d
Tr) = + — —(c
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and the orthogonality relations

(er(2), @q() r2rey = 0(k — @), (m(x),n(2))r2@s) = 6(k — q), k,q € R®

form the complete systems ii¥ (R?). The functionsp,(z) andn,(x) correspond to
the case when the wave vectors vanish. By means of Theorenjil2pthe second
equation of (1.1) admits a unique solution € H?(R?) if and only if the first
orthogonality condition of (1.6) holds. Wheh> 0 we considen,(x), g € S?/B'

These functions belong &% > (IR3), which was proven in Lemma A3 of [13] and
solve the homogeneous equation (1.3) via (2.7). When trenpeters vanishes we
consider similarlyyy(z). Hence it remains to solve the first equation of (1.1) given
by

Au+ a(x)u 4+ au = f(x) — b(x)vy. (2.8)
Sinceb(x) is bounded due to Assumption 3, the second term in the riglet i
the equation above is square integrable as well. Via the &ahimequality and
Assumption 3

lelb(e)oo (@) 121y < llelb@) 2 ool zzqesy < oo.

Therefore, by means of Theorem 3 of [12] equation (2.8) Es&sea unique solu-
tion uy € H?(R3) if and only if the second orthogonality condition of (1.6)ldi
Whena > 0 one considers the functions of the continuous spectputa), & €
S?.- They are contained i’ *°(R?) due to Lemma A3 of [13] and satisfy the
homogeneous equation (1.2) by means of (2.7). When the péeam = 0, we
take into consideration analogousty(x). |
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