ON THE SOLVABILITY CONDITIONS FOR A
LINEARIZED CAHN-HILLIARD EQUATION

Vitaly Volpert !, Vitali Vougalter 2

UInstitute Camille Jordan, UMR 5208 CNRS, University Lyon 1
Villeurbanne, 69622, France
e-mail: volpert@math.univ-lyon1.fr

2 Department of Mathematics and Applied Mathematics, Usitgof Cape Town
Private Bag, Rondebosch 7701, South Africa
e-mail: Vitali.\Vougalter@uct.ac.za

Abstract: We derive solvability conditions ifi*(R?) for a fourth order partial dif-

ferential equation which is the linearized Cahn-Hillianbiplem using the results
obtained for a Schrodinger type operator without Fredhmlaperty in our preced-
ing work [15].
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1. Introduction

Consider a binary mixture and denote bits composition, that is the fraction
of one of its two components. Then the evolution of the contjwsis described
by the Cahn-Hilliard equation (see, e.g. [1], [10]):

oc do
— = MA| -+ - KA 1.1
ot (dc C)’ (1.1)

whereM and K are some constants ands the free energy density. In the station-
ary case we obtain the equation
A(Ac+ F(c)) =0, (1.2)

1d : - . :
whereF'(c) = ———¢. The existence, stability and some properties of solutadns

the Cahn-Hilliard eguation have been studied extensivelgcent years (see e.g.
[3], [6], [10]). In this work we investigate solvability of Bnear fourth order
equation which can be considered as a linearized CahraHileéquation:

A(Au+V(z)u+ au) = f(x). (1.3)
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Here the potentidl’(x) is a smooth function vanishing at infinity. The precise con-
ditions on it will be specified below. The functigf{x) belongs to the appropriate
weighted Holder space, which will imply its square intdgligy, anda is a nonneg-
ative constant. We will study this equation.

Let us recall that Fredholm solvability conditions affirmattan operator equa-
tion Lu = f is solvable if and only if the right-hand side is orthogormétl solu-
tionsw of the homogeneous adjoint equatibrw = 0. This fundamental result is
true if the operatot. satisfies the Fredholm property, that is its kernel has &finit
dimension, its image is closed, the codimension of the inisgéso finite.

The operator

Lu = A(Au+ V(z)u + au)

considered as acting from/*(R?) into L?(IR?) (or in the corresponding Holder
spaces) does not satisfy the Fredholm property. Indeede $iliz) vanishes at
infinity, then the essential spectrum of this operator issiteof all complex\ for
which the equation

A(Au + au) = \u

has a nonzero bounded solution. Applying the Fourier tansfwe obtain

A= —(a—€%), z€R

Hence the essential spectrum contains the origin. Consdguthe operator does
not satisfy the Fredholm property, and solvability coradis of equation (1.3) are
not known. We will obtain solvability conditions for this egtion using the method
developed in our previous papers [15], [16], [17], [18]. §hiethod is based on
spectral decomposition of self-adjoint operators.

Obviously, the problem above can be conveniently rewriitetne equivalent
form of the system of two second order equations

{_M = /@), (1.4)
—Au —V(x)u —au = v(x)

in which the first one has an explicit solution due to the fast of decay of its right
side stated in Assumption 3, namely

_ 1 [ _JW
vo(x) == e A y|dy (1.5)

with properties established in Lemma Al of the Appendix.eé\tbat both equations
of the system above involve second order differential dpesavithout Fredholm
property. Their essential spectra atg,(—A) = [0, co) andoess(—A — V(z) —



a) = [—a, o) for V(x) — 0 at infinity (see e.g. [8]), such that neither of the op-
erators has a finite dimensional isolated kernel. Solugtmbnditions for operators
of that kind have been studied extensively in recent workafsingle Schrodinger
type operator (see [15]), sums of second order differeapatators (see [16]), the
Laplacian operator with the drift term (see [17]). Non Freldn operators arise
as well while studying the existence and stability of staiy and travelling wave
solutions of certain reaction-diffusion equations (seg e[5], [7], [14] ). For
the second equation in system (1.4) we introduce the canespg homogeneous
problem

—Aw — V(x)w — aw = 0. (1.6)

We make the following technical assumptions on the scaltarial and the right
side of equation (1.3). Note that the first one contains d@rdi onV () analogous
to those stated in Assumption 1.1 of [15] (see also [16], )[Iwith the slight
difference that the precise rate of decay is assumed naasleefore but pointwise
since in the present work the potential function is congdéo be smooth.

Assumption 1. The potential functiod’(z) : R* — R satisfies the estimate

C
Vi) < —————
| ( )| — 1+ ‘x|3.5+5

with some) > 0 andz = (1, 72, 23) € R3 such that
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49§(47r)__||V||LOO R3)||V|| <1 and \/CHLSHV”L%(RS) < 4.

Here and further dowid' stands for a finite positive constant ang; s given on
p.98 of [11] is the constant in the Hardy-Littlewood-Sohaleequality

L’5 (R3)

fi € L2(R?).

(v)
———dxdy| < ¢
‘/RS - |.’,U— ‘2 Y HLSHleLT(RS)

Here and below the norm of a functigh € L?(R3), 1 < p < oo is denoted as
[ f1ll 2r(s)-

Assumption 2. AV € L*(R?) and VV € L*(R?).

We will use the notation
(f1(@), fo(@)) r2ms) = g fu(x) fa(a)de,

with a slight abuse of notations when these functions arsquare integrable, like
for instance some of those used in the Assumption 3 below.usentroduce the
auxiliary quantity

p(z) = (1+ |22, & = (21,20, 73) € R? (1.7)



and the spac€”(R?), wherea is a real number andl < p < 1 consisting of all
functionsu for which

up® € CH(R?).
Here C*(IR?) stands for the Holder space such that the norn'¢(R?) is defined
as

lp® (z)u(z) — p*(y)u(y)|
|z —y|" '

[ullcs @) = SURBers|p® (2)u(w)] + SUR, yeps

Then the space of all functions for which

u e C”

a+|a\(R3>7 ‘a| S lv

wherel is a nonnegative integer is being denoted’s! (R?). Let P(s) be the set

of polynomials of three variables of the order less or equalfor s > 0 and P(s)

Is empty whens < 0. We make the following assumption on the right side of the
linearized Cahn-Hilliard problem.

Assumption 3. Let f(z) € C{,.(R?) for somes > 0 and the orthogonality
relation

(f(@),p(x))r2(re) = 0 (1.8)
holds for any polynomigh(z) € P(3) satisfying the equatiot\p(z) =0 .

Remark. A good example of such polynomials of the third order is

a b

C

2

wherea, b and ¢ are constants, such thadt + b + ¢ = 0. The set of admissible
p(z) includes also constants, linear functions of three vagabhnd many more
examples.

By means of Lemma 2.3 of [15], under our Assumption 1 abovénempotential
function, the operator-A — V(x) — a is self-adjoint and unitarily equivalent to
—A — a on L*(R?) via the wave operators (see [9], [13])

Q:I: — g — Iimt_>¢ooeit(_A_v)eitA
with the limit understood in the stronf’® sense (see e.g. [12] p.34, [4] p.90).
Therefore,—~A — V(z) — a on L?(R?) has only the essential spectrum,(—A —
V(z) — a) = [—a, o). Via the spectral theorem, its functions of the continuous
spectrum satisfying

[—A = V(2)]or(z) = K*pp(z), kR (1.9)



in the integral formulation the Lippmann-Schwinger eqoiatfor the perturbed
plane waves (see e.g. [12] p.98)

(@) =< 1 / ) w)d (1.10)
x) = -+ — :
Pk @m)i | ar Jus iz —y| Pr)\y)ay

and the orthogonality relations

(wk(x)v (Pq(IL’))Lz(Re,) = 5(k - Q)a ka qc R? (111)

form the complete system ih*(R?). We introduce the following auxiliary func-
tional space (see also [17], [18])

W22(R?) := {w(z) : R = C | w, Vw, Aw € L=(R?)}. (1.12)

As distinct from the standard Sobolev space we require hetr¢he boundedness
of all second partial derivatives of the function but of igdlacian. Our main result
is as follows.

Theorem 4.Let Assumptions 1, 2 and 3 hotd> 0 andwv,(z) is given by (1.5).
Then problem (1.3) admits a unique solutione H4(R?) if and only if

(vo(z), w(x))r2(rs) =0 (1.13)
for anyw(z) € W2 (RR?) satisfying equation (1.6).

Remark. Note thatp,(z) € W**(R?), k € R?, which was proven in Lemma
A3 of [17]. By means of (1.9) these perturbed plane wavesfgatie homogeneous
problem (1.6) when the wave vectbrbelongs to the sphere in three dimensions
centered at the origin of radiug/a.

2. Proof of the main result

Armed with the technical lemma of the Appendix we proceedtw@ the main
result.

Proof of Theorem 4The linearized Cahn-Hillard equation (1.3) is equivalent t
system (1.4) in which the first equation admits a solutigir) given by (1.5). The
functionvy(z) € L*(R3) N L>(R3) and|z|vy(z) € L'(R?) by means of Lemma
Al and Assumption 3. Then according to Theorem 3 of [18] tle®d equation
in system (1.4) withyy(z) in its right side admits a unique solution fi?(R?) if
and only if the orthogonality relation (1.13) holds. Thiswmn of problem (1.3)
u.(x) € H*(R3) C L*°(R?) via the Sobolev embedding theorem> 0 satisfies
the equation

—Au, — V(2)u, — au, = vo(x).
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We use the formula
A(Vu,) = VAu, +2VV.Vu, + u, AV (2.14)

with the “dot” denoting the standard scalar product of twotwes in three dimen-
sions. The first term in the right side of (2.14) is squaregrable sincé/(z) is
bounded and\u,(x) € L*(R3). Similarly u,AV € L?(R3) sinceu,(x) is bounded
andAV is square integrable by means of Assumption 2. For the seeonin the
right side of (2.14) we hav&u,(z) € L*(R?) andVV is bounded via Assump-
tion 2, which yieldsVV.Vu, € L?(R?) and thereforeA(Vu,) € L*(R3). The
right side of problem (1.3) belongs & (R?) due to Assumption 3. Indeed, since
SUp,cps [P f| < C, we arrive at the estimate

¢ 3
7@ S e © € R (2.15)
with p(z) defined explicitly in (1.7). Hence from equation (1.3) we deel that
A?u, € L*(R?). Any partial third derivative of, is also square integrable due to
the trivial estimate in terms of the?(R?) norms ofu,, and A%u,, which are finite.
This implies thatu, € H*(R?).

To investigate the issue of uniqueness we suppaese, € H*(R?) are two
solutions of problem (1.3). Then their differeneer) = u;(z) — us(x) € H*(R?)
satisfies equation (1.3) with vanishing right side. Clearl\u € L*(R?) and
Vu € L*(R3). Thereforep(z) = —Au — V(z)u — au € L*(R?) and solves the
equationAv = 0. Since the Laplace operator does not have any nontriviarequ
integrable zero modes(z) = 0 a.e. inR3. Hence, we arrive at the homogeneous
problem(—A — V(z) —a)u = 0, wu(z) € L*(R?). The operator in brackets is
unitarily equivalent to- A —a on L*(R?) as discussed above and therefofe) = 0
a.e. inR3. u

3. Appendix

Lemma Al. Let Assumption 3 hold. Thep(z) € L*(R?) N L>(R?) and
zvo(x) € L' (R?).

Proof. According to the result of [2], for the solution of the Poissequation
(1.5) under the conditiofi(z) € C¥,.(R?*) and orthogonality relation (1.8) givenin
Assumption 3 we havey(z) € C/2(R?). Hence sup.gs|p**=vy| < C, such that

¢ 3
|vg(x)| < W’ r € R”.

The statement of the lemma easily follows from definitior7}1. [ |

Remark. Note that the boundedness@fz) can be easily shown via the ar-
gument of Lemma 2.1 of [15], which relies on Young’'s inedqualiThe square

6



integrability ofug(x) can be proven by applying the Fourier transform to it, using
the facts thatf (x) € L*(R?), |x|f(x) € L'(R?®) and its Fourier image vanishes at
the origin since it is orthogonal to a constant by means ouAgsion 3.
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