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Abstract

Suppose that a uniqueness theorem is valid for an ill-posed problem. It is shown
then that the distance between the exact solution and terms of a minimizing sequence
of the Tikhonov functional is less than the distance between the exact solution and the
first guess. Unlike the classical case when the regularization parameter tends to zero,
only a single value of this parameter is used. Indeed, the latter is always the case in
computations. Next, this result is applied to a specific Coefficient Inverse Problem. A
uniqueness theorem for this problem is based on the method of Carleman estimates. In
particular, the importance of obtaining an accurate first approximation for the correct
solution follows from one of theorems. The latter points towards the importance of
the development of globally convergent numerical methods as opposed to conventional
locally convergent ones. A numerical example is presented

1 Introduction

The classical regularization theory for nonlinear ill-posed problems guarantees convergence
of regularized solutions to the exact one only when both the level of the error δ and the
regularization parameter α (δ) tend to zero, see, e.g. [10,18]. However, in the computational
practice one always works with a single value of δ and a single value of α (δ) . Let x∗ be the
ideal exact solution of an ill-posed problem for the case of ideal noiseless data. The existence
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of such a solution should be assumed by one of Tikhonov principles [18]. Suppose that x∗

is unique. The Tikhonov regularization term usually has the form α (δ) ‖x− x0‖2 , where
x0 is counted as the first guess for x∗ and ‖·‖ is the norm in a certain space. Let {xn}∞n=1

be a minimizing sequence for the Tikhonov functional. In the case when the existence of a
minimizer of this functional is guaranteed (e.g. the finite dimensional case), we replace this
sequence with a minimizer xα, which is traditionally called a regularized solution (one might
have several such solutions).

The goal of this paper is to address the following questions: Why it is usually observed
computationally that for a proper single value of α (δ) one has ‖xn − x∗‖ < ‖x0 − x∗‖ for
sufficiently large n? In particular, if xα exists, then why the computational observation is
that ‖xα − x∗‖ < ‖x0 − x∗‖? In other words, why the regularized solution is usually more
accurate than the first guess even for a single value of α (δ)?

Indeed, the regularization theory guarantees that this is true only in the limiting sense
when both δ and α (δ) tend to zero. These questions were not addressed in the regularization
theory. We first prove a general Theorem 2, which addresses the above questions in an
“abstract” form of Functional Analysis. In accordance to this theorem the short answer on
these questions is this: If a uniqueness theorem holds for an ill-posed problem, then the above
accuracy improvement takes place. Usually it is not easy to “project” an abstract theory on
a specific problem. Thus, the major effort of this paper is focused on the demonstration on
how our Theorem 2 works for a specific Coefficient Inverse Problem for a hyperbolic PDE.
Also, we present a numerical result for this problem.

We show that two factors are important for the above observation: (1) the uniqueness
theorem for the original problem, and (2) the availability of a good first guess. The latter
means that x0 should be chosen in such a way that the distance ‖x0 − x∗‖ would be suffi-
ciently small. In other words, one needs to obtain a good first approximation for the exact
solution, from which subsequent iterations would start from. These iterations would refine
x0. However, in the majority of applications it is unrealistic to assume that such an approx-
imation is available. Hence, one needs to develop a globally convergent numerical method
for the corresponding ill-posed problem. This means that one needs to work out such a
numerical method which would provide a guaranteed good approximation for x∗ without a
priori knowledge of a small neighborhood of x∗.

To apply our Theorem 2 to a Coefficient Inverse Problem (CIP) for a hyperbolic PDE,
we use a uniqueness theorem for this CIP, which was proved via the method of Carleman
estimates [7,11-15]. Note that the technique of [7,11-15] enables one to prove uniqueness
theorems for a wide variety of CIPs. A similar conclusion about the importance of the
uniqueness theorem and, therefore, of the modulus of the continuity of the inverse operator
on a certain compact set, was drawn in [9]. However, norms ‖xα − x∗‖ and ‖x0 − x∗‖ were
not compared in this work, since x0 = 0 in [9]. Only the case when both δ and α (δ) tend to
zero was considered in [9], whereas these parameters are fixed in our case.

We now explain our motivation for this paper. The crucial question about a method
of choice of a good first approximation for the exact solution is left outside of the classical
regularization theory. This is because such a choice depends on a specific problem at hands.
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On the other hand, since the Tikhonov regularization functional usually has many local
minima and ravines, a successful first guess is the true key for obtaining an accurate solu-
tion. Recently the first and third authors have developed a globally convergent numerical
method for a Coefficient Inverse Problem (CIP) for a hyperbolic PDE [2-6]. Furthermore,
this method was confirmed in [16] via a surprisingly very accurate imaging results using blind
experimental data.

It is well known that CIPs are very challenging ones due to their nonlinearity and ill-
posedness combined. So, it is inevitable that an approximation was made in [2] via the
truncation of high values of the positive parameter s of the Laplace transform. In fact,
this approximation is similar with the truncation of high frequencies, which is routinely
done in engineering. It was discovered later in [3-6] that although the globally convergent
method of [2,3] provides a guaranteed good approximation for the exact solution, it needs
to be refined due to that approximation. On the other hand, since the main input for any
locally convergent method is a good first approximation for the exact solution, then a locally
convergent technique was chosen for the refinement stage. The resulting two-stage numerical
procedure has consistently demonstrated a very good performance [2-6], including the case of
experimental data [5]. So, since only a single value of the regularization parameter was used
in these publications, then this naturally has motivated us to address the above questions.

We also wish to point out that the assumption about a priori known upper estimate of
the level of the error δ is not necessary true in applications. Indeed, a huge discrepancy
between experimental and computationally simulated data was observed in [5] and [16], see
Figure 2 in [5] and Figures 3,4 in [16]. This discrepancy was successfully addressed via new
data pre-processing procedures described in [5,16]. Therefore, it is unclear what kind of δ the
experimental data of [5,16] actually have. Nevertheless the notion of a priori knowledge of
δ is quite useful for qualitative explanations of computational results for ill-posed problems.

In section 2 we present the general scheme. In section 3 we apply it to a CIP. In section
4 we present a numerical example of the above mentioned two-stage numerical procedure
solely for the illustration purpose.

2 The General Scheme

For simplicity we consider only real valued Hilbert spaces, although our results can be
extended to Banah spaces. Let H,H1 and H2 be real valued Hilbert spaces with norms
‖·‖ , ‖·‖1 and ‖·‖2 respectively. We assume that H1 ⊂ H, ‖x‖ ≤ ‖x‖1 , ∀x ∈ H1,the set H1 is
dense in H and any bounded set in H1 is a compact set in H . Let W ⊂ H be an open set
and G = W be its closure. Let F : G → H2 be a continuous operator, not necessarily linear.
Consider the equation

F (x) = y, x ∈ G. (1)

The right hand side of (1) might be given with an error. The existence of a solution of
this equation is not guaranteed. However, in accordance with one of Tikhonov principles
for ill-posed problems, we assume that there exists an ideal exact solution x∗ of (1) with an
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ideal errorless data y∗ and this solution is unique,

F (x∗) = y∗. (2)

We assume that
‖y − y∗‖2 ≤ δ, (3)

where the sufficiently small number δ > 0 characterizes the error in the data. Since it is
unlikely that one can get a better accuracy of the solution than O (δ) in the asymptotic
sense as δ → 0, then it is usually acceptable that all other parameters involved in the
regularization process are much larger than δ. For example, let the number γ ∈ (0, 1) . Since
limδ→0 (δ

γ/δ) = ∞, then there exists a sufficiently small number δ0 (γ) ∈ (0, 1) such that

δγ > δ, ∀δ ∈ (0, δ0 (γ)) . (4)

Hence, it would be acceptable if one would choose α (δ) = δγ , see (9) below.
To solve the problem (1), consider the Tikhonov regularization functional with the reg-

ularization parameter α,

Jα (x) = ‖F (x)− y‖22 + α ‖x− x0‖21 , x ∈ G ∩H1. (5)

It is natural to treat x0 here as the starting point for iterations, i.e. the first guess for the
solution. We are interested in the question of the minimization of this functional for a fixed
value of α. It is not straightforward to prove the existence of the minimizer, unless some
additional conditions would be imposed on the operator F , see subsection 3.3 for a possible
one. Hence, all what we can consider is a minimizing sequence. Let m = infG∩H1 Jα (x) .
Then

m ≤ Jα (x
∗) . (6)

Usually m < Jα (x
∗). However we do not use the latter assumption here.

2.1 The case dimH = ∞
Let dimH = ∞. In this case we cannot prove existence of a minimizer of the functional Jα,
i.e. we cannot prove the existence of a regularized solution. Hence, we work now with the
minimizing sequence. It follows from (5), (6) that there exists a sequence {xn}∞n=1 ⊂ G∩H1

such that
m ≤ Jα (xn) ≤ δ2 + α ‖x∗ − x0‖21 and lim

n→∞
Jα (xn) = m. (7)

By (3)-(7)

‖xn‖1 ≤
(
δ2

α
+ ‖x∗ − x0‖21

)1/2

+ ‖x0‖1 . (8)

It is more convenient to work with a lesser number of parameters. So, we assume that
α = α (δ) . To specify this dependence, we note that we want the right hand side of (8) to
be bounded as δ → 0. So, using (4), we assume that

α (δ) = δ2µ, for a µ ∈ (0, 1) . (9)
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Hence, it follows from (8) and (9) that {xn}∞n=1 ⊂ K (δ, x0) , where K (δ, x0) is a precompact
set in H defined as

K (δ, x0) =

{
x ∈ H1 : ‖x‖1 ≤

√
δ2(1−µ) + ‖x∗ − x0‖21 + ‖x0‖1

}
. (10)

Note that the sequence {xn}∞n=1 depends on δ. The set K (δ, x0) is not closed in H . Let
K = K (δ, x0) be its closure. Hence, K is a closed compact set in H .

Remark 1. We have introduced the specific dependence α := α (δ) = δ2µ in (9) for the
sake of definiteness only. In fact, in the theory below one can consider many other dependen-
cies α := α (δ) , as long as α (δ) >> δ for sufficiently small values of δ and limδ→0 α (δ) = 0.

Let B1 and B2 be two Banah spaces, P ⊂ B1 be a closed compact and A : P → B2 be
a continuous operator. We remind that there exists the modulus of the continuity of this
operator on P . In other words, there exists a function ω (z) of the real variable z ≥ 0 such
that

ω (z) ≥ 0, ω (z1) ≤ ω (z2) , if z1 ≤ z2, lim
z→0+

ω (z) = 0, (11)

‖A (x1)− A (x2)‖B2
≤ ω

(
‖x1 − x2‖B1

)
, ∀x1, x2 ∈ P. (12)

We also remind a theorem of A.N. Tikhonov, which is one of back bones of the theory of
ill-posed problems:

Theorem 1 (A.N. Tikhonov, [18]). Let B1 and B2 be two Banah spaces, P ⊂ B1 be a
closed compact set and A : P → B2 be a continuous one-to-one operator . Let Q = A (P ) .
Then the operator A−1 : Q → P is continuous.

We now prove
Theorem 2. Let the above operator F : G → H2 be continuous and one-to-one. Suppose

that (9) holds. Let {xn}∞n=1 ⊂ K (δ, x0) ⊆ K be a minimizing sequence of the functional (5)
satisfying (7). Let ξ ∈ (0, 1) be an arbitrary number. Then there exists a sufficiently small
number δ0 = δ0 (ξ) ∈ (0, 1) such that for all δ ∈ (0, δ0) the following inequality holds

‖xn − x∗‖ ≤ ξ ‖x0 − x∗‖1 , ∀n. (13)

In particular, if a regularized solution xα(δ) exists for a certain δ ∈ (0, δ0) , i.e. Jα(δ)

(
xα(δ)

)
=

m (δ) , then ∥∥xα(δ) − x∗∥∥ ≤ ξ ‖x0 − x∗‖1 . (14)

Proof. By (5), (7) and (9)

‖F (xn)− y‖2 ≤
√
δ2 + α ‖x0 − x∗‖21 =

√
δ2 + δ2µ ‖x0 − x∗‖21 .

Hence,

‖F (xn)− F (x∗)‖2 = ‖(F (xn)− y) + (y − F (x∗))‖2
= ‖(F (xn)− y) + (y − y∗)‖2 (15)

≤ ‖F (xn)− y‖2 + ‖y − y∗‖2 ≤
√
δ2 + δ2µ ‖x∗ − x0‖21 + δ,
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where we have used (3). By Theorem 1 there exists the modulus of the continuity ωF (z) of
the operator F−1 : F

(
K
)
→ K. It follows from (15) that

‖xn − x∗‖ ≤ ωF

(√
δ2 + δ2µ ‖x0 − x∗‖21 + δ

)
. (16)

Consider an arbitrary ξ ∈ (0, 1) . It follows from (11) that one can choose a number δ0 = δ0 (ξ)
so small that

ωF

(√
δ2 + δ2µ ‖x∗ − x0‖21 + δ

)
≤ ξ ‖x0 − x∗‖1 , ∀δ ∈ (0, δ0) . (17)

The estimate (13) follows from (16) and (17). It is obvious that in the case of the existence
of the regularized solution, one can replace in (16) xn with xα(δ). �

2.2 Discussion of Theorem 2

One can see from (16) and (17) that two main factors defining the accuracy of the recon-
struction of points xn, as well as of the regularized solution xα(δ) (in the case when it exists)
are: (a) the level of the error δ, and (b) the accuracy of the first approximation x0 for the
exact solution, i.e. the norm ‖x∗ − x0‖1 . However, since in applications one always works
with a fixed level of error δ, then the second factor is more important than the first.

In addition, regardless on the existence of the infimum value m (δ) of the functional Jα(δ),
it is usually impossible in practical computations to construct the above minimizing sequence
{xn}∞n=1 . This is because the functional Jα(δ) usually features the problem of multiple local
minima and ravines. The only case when an effective construction of that sequence might
be possible is when one can figure out such a first guess x0 for the exact solution x∗, which
would be located sufficiently close to x∗, i.e. the norm ‖x0 − x∗‖1 should be sufficiently small.
Indeed, it was proven in [6] that, under some additional conditions, the functional Jα(δ) is
strongly convex in a small neighborhood of xα(δ) (it was assumed in [6] that the regularized
solution exists). Furthermore, in the framework of [6] x∗ belongs to this neighborhood,
provided that x0 is sufficiently close to x∗, see subsection 3.3 for some details. Hence, local
minima and ravines do not occur in that neighborhood. In particular, the latter means
that the two stage procedure of [2-6] converges globally to the exact solution. Indeed, not
only the first stage provides a guaranteed good approximation for that solution, but also, by
Theorems 7 and 8 (subsection 3.3), the second stage provides a guaranteed refinement and
the gradient method, which starts from that first approximation, converges to the refined
solution.

In summary, the discussion of the above paragraph points towards the fundamental im-
portance of a proper choice of a good first guess for the exact solution, i.e. towards the
importance of developments of globally convergent numerical methods, as opposed to con-
ventional locally convergent ones.

Another inconvenience of Theorem 2 is that it is difficult to work with a stronger norm
‖·‖1 in practical computations. Indeed, this norm is used only to ensure that K (δ, x0) is
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a compact set in H. However, the most convenient norm in practical computations is the
L2−norm. Hence, when using the norm ‖·‖1 , one should set ‖·‖1 := ‖·‖Hp , p ≥ 1. At
the same time, convergence of the sequence {xn}∞n=1 will occur in the L2−norm. This is
clearly inconvenient in practical computations. Hence, finite dimensional spaces of standard
piecewise linear finite elements were used in computations of [2-6] for both forward and
inverse problems. Note that all norms in such spaces are equivalent. Still, the number of
these finite elements should not be exceedingly large. Indeed, if it would, then that finite
dimensional space would effectively become an infinitely dimensional one, and the L2−norm
would not be factually equivalent to a stronger norm. This is why local mesh refinements
were used in [2-6], which is an opposite to a uniformly fine mesh. In other words, the so-called
Adaptive Finite Element method (adaptivity below for brevity) was used on the second stage
of the two-stage numerical procedure of [2-6]. While the adaptivity is well known for classical
forward problems for PDEs, the first publication for the case of a CIP was in [1].

3 Example: a Coefficient Inverse Problem for a Hy-

perbolic PDE

We now consider a CIP for which a globally convergent two-stage numerical procedure was
developed in [2-6]. Recall that on the first stage the globally convergent numerical method
of [2,3] provides a guaranteed good first approximation for the exact solution. This ap-
proximation is the key input for any subsequent locally convergent method. Next, a locally
convergent adaptivity technique refines the approximation obtained on the first stage. So,
based on Theorem 2, we provide in this section an explanation on why this refinement became
possible.

3.1 A Coefficient Inverse Problem and its uniqueness

Let Ω ⊂ Rk, k = 2, 3 be a bounded domain with its boundary ∂Ω ∈ C3. Consider the function
c (x) satisfying the following conditions

c (x) ∈ [1, d] in Ω, d = const. > 1, c (x) = 1 for x ∈ Rk�Ω, (18)

c (x) ∈ C2
(
Rk
)
. (19)

Let the point x0 /∈ Ω. Consider the solution of the following Cauchy problem

c (x) utt = ∆u in Rk × (0,∞) , (20)

u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (21)

Equation (20) governs propagation of both acoustic and electromagnetic waves. In the
acoustical case 1/

√
c(x) is the sound speed. In the 2-D case of EM waves propagation, the

dimensionless coefficient c(x) = εr(x), where εr(x) is the relative dielectric function of the
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medium, see [8], where this equation was derived from the Maxwell equations in the 2-D
case. It should be also pointed out that although equation (18) cannot be derived from the
Maxwell’s system in the 3-d case for εr(x) 6= const., still it was successfully applied to the
imaging from experimental data, and a very good accuracy of reconstruction was consistently
observed [5,16], including even the case of blind study in [16]. We consider the following

Inverse Problem 1. Suppose that the coefficient c (x) satisfies (18) and (19), where
the number d > 1 is given. Assume that the function c (x) is unknown in the domain Ω.
Determine the function c (x) for x ∈ Ω, assuming that the following function g (x, t) is
known for a single source position x0 /∈ Ω

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (22)

Since the function c (x) = 1 outside of the domain Ω, then we can consider (20)-(22) as
the initial boundary value problem in the domain

(
Rk�Ω

)
× (0,∞) . Hence, the function

u (x, t) can be uniquely determined in this domain. Hence, the following function p (x, t) is
known

∂nu (x, t) = p (x, t) , ∀ (x, t) ∈ ∂Ω× (0,∞) , (23)

where n is the unit outward normal vector at ∂Ω.
This is an inverse problem with the single measurement data, since the initial condition

is not varied here. This is because only a single source location is involved. The case of
single measurement is the most economical one, as opposed to the case of infinitely many
measurements. It is yet unknown how to prove uniqueness theorem for this inverse problem.
There exists a general method of proofs of such theorems for a broad class of CIPs with single
measurement data for many PDEs. This method is based on Carleman estimates, it was first
introduced in [7,11] (also, see [12-15]) and became quite popular since then, see, e.g. the
recent survey [19] with many references. In fact, currently this is the single method enabling
proofs of uniqueness theorems for CIPs with the single measurement data. However, this
technique cannot handle the case of, e.g. the δ− function in the initial condition, as it is in
(21). Instead, it can handle only the case when at least one initial condition is not zero in
the entire domain of interest. We use one of results of [13,14] in this section.

Fix a bounded domain Ω1 ⊂ Rk with ∂Ω1 ∈ C3 such that Ω ⊂⊂ Ω1 and x0 ∈ Ω1�Ω.
Consider a small neighborhood N (∂Ω1) of the boundary ∂Ω1 such that x0 /∈ N (∂Ω1). Let
the function χ (x) ∈ C∞ (Ω1

)
be such that

χ (x) ≥ 0, χ (x) =

{
1 for x ∈ Ω1�N (∂Ω1) ,

0 for x ∈ (∂Ω1) .
(24)

The existence of such functions is known from the Real Analysis course. Let ε > 0 be a
sufficiently small number. Consider the following approximation of the function δ (x− x0)
in the distributions sense

fε (x− x0) = C (ε, χ,Ω1) exp

(
−|x− x0|2

ε2

)
χ (x) , (25)
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where the constant C (ε, χ,Ω1) > 0 is chosen such that

∫

Ω1

fε (x− x0) dx = 1. (26)

We approximate the function u via replacing initial conditions in (21) with

uε (x, 0) = 0, ∂tuε (x, 0) = fε (x− x0) . (27)

Let uε (x, t) be the solution of the Cauchy problem (20), (27) such that
uε (x, t) ∈ H2 (Φ× (0, T )) for any bounded domain Φ ⊂ Rk. It follows from the discussion

in §2 of Chapter 4 of [17] that such a solution exists, is unique and coincides with the “target”
solution uε (x, t) of the Cauchy problem (20), (27), uε (x, t) ≡ uε (x, t). Consider a number
T > 0, which we will define later. Then due to a finite speed of wave propagation (Theorem
2.2 in §2 of Chapter 4 of [17]) there exists a domain Ω2 = Ω2 (T ) with ∂Ω2 ∈ C3 such that
Ω ⊂⊂ Ω1 ⊂⊂ Ω2

uε |∂Ω2×(0,T )= 0 (28)

and
uε (x, t) = 0 in

(
Rk�Ω2

)
× (0, T ) . (29)

Therefore, we can consider the function uε (x, t) as the solution of the initial boundary
value problem (20), (27), (28) in the domain QT = Ω2 × (0, T ) . Hence, repeating arguments
given after the proof of Theorem 4.1 in §4 of Chapter 4 of [17], we obtain the following

Lemma 1. Let the function c (x) satisfies conditions (18), (19) and, in addition, let
c ∈ C5

(
Rk
)
. Let domains Ω,Ω1 satisfy above conditions. Let the function fε (x− x0)

satisfies (25), (26), where the function χ (x) satisfies (24). Let the number T > 0. Let the
domain Ω2 = Ω2 (T ) with ∂Ω2 ∈ C2 be such that (29) is true for the solution uε (x, t) ∈
H2 (Φ× (0, T )) (for any bounded domain Φ ⊂ Rk) of the Cauchy problem (20), (27). Then
in fact the function uε ∈ H6 (QT ). Hence, since k = 2, 3, then by the embedding theorem
uε ∈ C3

(
QT

)
.

We need the smoothness condition uε ∈ C3
(
QT

)
of this lemma because the uniqueness

Theorem 3 requires it.
Theorem 3 [13,14]. Assume that the function fε (x− x0) satisfies (25), (26) and the

function c (x) satisfies conditions (18), (19). In addition, assume that

1

2
+ (x,∇c (x)) ≥ c = const. > 0 in Ω. (30)

Suppose that boundary functions h0 (x, t) , h1 (x, t) are given for (x, t) ∈ ∂Ω× (0, T1) , where
the number T1 is defined in the next sentence. Then one can choose such a sufficiently large
number T1 = T1 (Ω, c, d) > 0 that for any T ≥ T1 there exists at most one pair of functions
(c, v) such that v ∈ C3

(
Ω× [0, T ]

)
and

c (x) vtt = ∆v in Ω× (0, T ) ,
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v (x, 0) = 0, vt (x, 0) = fε (x− x0) ,

v |∂Ω×(0,T )= h0 (x, t) , ∂nv |∂Ω×(0,T )= h1 (x, t) .

To apply this theorem to our specific case, we assume that the following functions gε, pε
are given instead of functions g and p in (22), (23)

uε |∂Ω×(0,T )= gε (x, t) , ∂nuε |∂Ω×(0,T )= pε (x, t) . (31)

Hence, using Theorem 3 and Lemma 1, we obtain the following uniqueness result
Theorem 4. Suppose that the function c (x) satisfies conditions (18), (19), c ∈ C5

(
Rk
)

and also let the condition (30) be true. Assume that all other conditions of Lemma 1 are
satisfied, except that now we assume that T is an arbitrary number such that T ≥ T1 =
T1 (Ω, c, d) where T1 was defined Theorem 3. Then there exists at most one pair of functions
(c, uε) satisfying (20), (27), (31).

Since in Theorem 4 we have actually replaced δ (x− x0) in (21) with the function
fε (x− x0) , then we cannot apply Theorem 2 directly to the above inverse problem. In-
stead, we formulate

Inverse Problem 2. Suppose that the coefficient c (x) satisfies (18), (19), (30), where
the numbers d, c > 1 are given. In addition, let the function c ∈ C5

(
Rk
)
. Let the function

fε (x− x0) satisfies conditions of Lemma 1. Let T1 = T1 (Ω, c, d) > 0 be the number chosen
in Theorems 3, and T ≥ T1 be an arbitrary number. Consider the solution uε (x, t) ∈
H2 (Φ× (0, T )) (for any bounded domain Φ ⊂ Rk) of the following Cauchy problem

c (x) ∂2
t uε = ∆uε in Rk × (0, T ) , (32)

uε (x, 0) = 0, ∂tuε (x, 0) = fε (x− x0) . (33)

Assume that the coefficient c (x) is unknown in the domain Ω. Determine c (x) for x ∈ Ω,
assuming that the function uε (x, t) is given for (x, t) ∈ ∂Ω × (0, T ) .

For the sake of completeness we formulate now
Theorem 5. Assume that conditions of Inverse Problem 2 are satisfied. Then there

exists at most one solution (c, uε) of this problem.
Proof. By Lemma 1 the solution of the problem (32), (33) uε ∈ C3

(
Ω× [0, T ]

)
. Since

the function c (x) = 1 in Rk�Ω, then, as it was shown above, one can uniquely determine
the function pε (x, t) = ∂nuε |∂Ω×(0,T ) . Hence, Theorem 4 leads to the desired result. �

3.2 Using Theorems 2-5

Following (5), we now construct the regularization functional Jα (c) . Choose a number T ≥
T1 (Ω, c, d) > 0, where T1 was chosen in Theorems 3,4. Let Ω2 = Ω2 (T ) be the domain chosen
in Lemma 1. Because of (29), it is sufficient to work with domains Ω,Ω2 rather than with
Ω and Rk. In doing so, we must make sure that all functions {cn}∞n=1 , which will replace
the sequence {xn}∞n=1 in (7), are such that cn ∈ C5

(
Ω2

)
, satisfy condition (30) and also

10



cn ∈ [1, d] , cn (x) = 1 in Ω2�Ω. To make sure that cn ∈ C5
(
Ω2

)
, we use the embedding

theorem for k = 2, 3. Hence, in our case the Hilbert space H(1) = H7 (Ω2) ⊂ C5
(
Ω2

)
. The

Hilbert space H
(1)
1 should be such that its norm would be stronger than the norm in H(1).

Hence, we set H
(1)
1 := H8 (Ω2) . Obviously H

(1)

1 = H(1) and any bounded set in H
(1)
1 is a

precompact set in H(1). We define the set G(1) ⊂ H(1) as

G(1) =
{
c ∈ H(1) : c ∈ [1, d] , c (x) = 1 in Ω2�Ω, ‖∇c‖C(Ω) ≤ A and (30) holds

}
, (34)

where A > 0 is a constant such that

A ≥ c+ 0.5

maxΩ |x| .

Hence, the inequality ‖∇c‖C(Ω) ≤ A does not contradict (30). Clearly, G(1) is a closed set

which can be obtained as a closure of an open set.
To correctly introduce the operator F , we should carefully work with appropriate Hilbert

spaces. This is because we should keep in mind the classical theory of hyperbolic initial
boundary value problems, which guarantees smoothness of solutions of these problems [17].

Consider first the operator F̂ : G(1) → H2 (QT ) defined as

F̂ (c) = uε (x, t, c) , (x, t) ∈ QT ,

where uε (x, t, c) is the solution of the problem (32), (33) with this specific coefficient c.
Lemma 2. Let T ≥ T1 (Ω, c, d) > 0, where T1 was chosen in Theorems 3 and 4. Let

Ω2 = Ω2 (T ) be the domain chosen in Lemma 1 and QT = Ω2 × (0, T ). Then the operator F̂
is Lipschitz continuous on G(1).

Proof. Consider two functions c1, c2 ∈ G(1). Denote c̃ = c1 − c2, ũ (x, t) = uε (x, t, c1) −
uε (x, t, c2) . Then (28), (32) and (33) imply

c1ũtt −∆ũ = −c̃∂2
t uε (x, t, c2) in QT ,

ũ (x, 0) = ũt (x, 0) = 0, (35)

ũ | ∂Ω2×(0,T ) = 0.

Let f (x, t) = −c̃∂2
t uε (x, t, c2) be the right hand side of equation (35). Since in fact uε ∈

H6 (QT ) (Lemma 1), then
∂k
t f ∈ L2 (QT ) , k = 0, ..., 4. (36)

Hence, using Theorem 4.1 of Chapter 4 of [17], we obtain

‖ũ‖H2(QT ) ≤ B1 ‖c̃‖C(Ω)
(∥∥∂2

t uε (x, t, c2)
∥∥
L2(QT )

+
∥∥∂3

t uε (x, t, c2)
∥∥
L2(QT )

)
, (37)

where the constant B = B (A, d) > 0 depends only on numbers A, d. Since By the embedding
theorem H7 (Ω) ⊂ C5

(
Ω
)
and ‖·‖C5(Ω) ≤ C ‖·‖H7(Ω) with a constant C > 0 depending

11



only on Ω. Since c̃ ∈ H7 (Ω) and the norm ‖c̃‖C(Ω) is weaker than the norm ‖c̃‖C5(Ω) ,

then it is sufficient now to estimate norms ‖∂2
t uε (x, t, c2)‖L2(QT ) , ‖∂3

t uε (x, t, c2)‖L2(QT ) from

the above uniformly for all functions c2 ∈ G, i.e. by a constant, ‖∂2
t uε (x, t, c2)‖L2(QT ) +

‖∂3
t uε (x, t, c2)‖L2(QT ) ≤ B2,where B2 = B2

(
G(1)

)
> 0 is a constant depending only on the

set G(1). And the latter estimate follows from Theorem 4.1 of Chapter 4 of [17] and the
discussion after it. �

Remark 2. Using (37) as well as the discussion presented after Theorem 4.1 of Chap-
ter 4 of [17], one might try to estimate ũ in a stronger norm. However, since the function
c̃∂3

t uε (x, 0, c2) = c̃∆fε (x− x0) 6= 0 in Ω, then this attempt would require a higher smooth-
ness of functions c1, c̃. In any case, the estimate (37) is sufficient for our goal.

We define the operator F (1) : G(1) → L2 (∂Ω × (0, T )) as

F (1) (c) (x, t) := gε = uε |∂Ω×(0,T )∈ L2 (∂Ω× (0, T )) . (38)

Lemma 3. The operator F (1) is Lipschitz continuous and one-to-one on the set G(1).
Proof. The Lipschitz continuity follows immediately from the trace theorem and Lemma

2. We prove now that F (1) is one-to-one. Suppose that F (1) (c1) = F (1) (c2) . Hence,
uε (x, t, c1) |∂Ω×(0,T )= uε (x, t, c2) |∂Ω×(0,T ) . Let ũ (x, t) = uε (x, t, c1) − uε (x, t, c2) . Since
c1 = c2 = 1 in Rk�Ω, then we have

ũtt −∆ũ = 0 in
(
Rk�Ω

)
× (0, T ) ,

ũ (x, 0) = ũt (x, 0) = 0, in Rk�Ω,

ũ | ∂Ω×(0,T ) = 0.

Hence, ũ (x, t) = 0 in
(
Rk�Ω

)
× (0, T ) . Hence, we obtain

ũ |∂Ω×(0,T )= ∂nũ |∂Ω×(0,T )= 0. (39)

Since by Lemma 1 both functions uε (x, t, c1) , uε (x, t, c2) ∈ C3
(
Ω× [0, T ]

)
, then (39) and

Theorem 4 imply that c1 (x) ≡ c2 (x) . �

Suppose that there exists the exact solution c∗ ∈ H
(1)
1 ∩G(1) of the equation

F (1) (c∗) = g∗ (x, t) := uε (x, t, c
∗) |∂Ω×(0,T ) . (40)

Then for a given function g∗ (x, t) this solution is unique by Lemma 3. Let the function
g̃ (x, t) ∈ L2 (∂Ω × (0, T )) be such that

g̃ (x, t) = uε (x, t, c
∗) |∂Ω×(0,T ) +gδ (x, t) , (x, t) ∈ ∂Ω× (0, T ) , (41)

where the function gδ (x, t) represents the error in the data,

‖gδ‖L2(∂Ω×(0,T )) ≤ δ. (42)

12



Let the function c0 ∈ H
(1)
1 ∩G(1) be a first guess for c∗. We now introduce the regularization

functional J
(1)
α as

J (1)
α (c) =

T∫

0

∫

∂Ω

(uε (x, t, c)− g̃ (x, t))2 dSxdt+ α ‖c− c0‖2H8(Ω) ; c, c0 ∈ G, (43)

where the dependence α = α (δ) = δ2µ, µ ∈ (0, 1) is the same as in (9), also see Remark 1.

Let m = m (δ) = inf
H

(1)
1 ∩G(1) J

(1)
α (c) and {cn}∞n=1 ⊂ H

(1)
1 ∩ G(1) be the corresponding

minimizing sequence, limn→∞ Jα (cn) = m (δ) . Similarly with (10) we introduce the set

K(1) (δ, x0) ⊂ H
(1)
1 , which is a precompact set in H(1),

K(1) (δ, c0) =

{
c ∈ G(1) : ‖c‖1 ≤

√
δ2(1−µ) + ‖c∗ − c0‖21 + ‖c0‖1

}
. (44)

Let K
(1)

= K
(1)

(δ, c0) ⊂ H(1) be the closure of the set K(1) (δ, c0) in the norm of the space

H(1). Hence, K
(1)

(δ, c0) is a closed compact in the space H(1).

Theorem 6. Let Hilbert spaces H(1), H
(1)
1 be ones defined above and the set G(1) be the

one defined in (34). Let the number T1 = T1 (Ω, c, d) > 0 be the one chosen in Theorems 3,4

and T ≥ T1. Assume that there exists the exact solution c∗ ∈ H
(1)
1 ∩ G(1) of equation (40)

and let c0 ∈ H
(1)
1 ∩G(1) be a first approximation for this solution. Suppose that (41) and (42)

hold. Let m = m (δ) = inf
H

(1)
1 ∩G(1) J

(1)
α (c) and {cn}∞n=1 ⊂ H

(1)
1 ∩ G(1) be the corresponding

minimizing sequence, limn→∞ J
(1)
α(δ) (cn) = m (δ) , where the functional J

(1)
α(δ) is defined in (43)

and the dependence α = α (δ) is given in (9) (also, see Remark 1). Then for any number
ξ ∈ (0, 1) there exists a sufficiently small number δ0 = δ0 (ξ) ∈ (0, 1) such that for all
δ ∈ (0, δ0) the following inequality holds

‖cn − c∗‖H(1) ≤ ξ ‖c0 − c∗‖
H

(1)
1

.

In addition, if a regularized solution xα(δ) exists for a certain δ ∈ (0, δ0) , i.e. Jα(δ)

(
cα(δ)

)
=

m (δ) , then ∥∥cα(δ) − c∗
∥∥
H(1) ≤ ξ ‖c∗ − c0‖H(1)

1
.

Proof. Let K
(1)

be the above closed compact. It follows from Theorem 1 and Lemma

3 that the operator
(
F (1)

)−1
: F (1)

(
K

(1)
)
→ K

(1)
exists and is continuous. Let ωF (1) be its

modulus of the continuity. Then similarly with the proof of Theorem 2 we obtain

‖cn − c∗‖H(1) ≤ ωF (1)

(√
δ2 + δ2µ ‖c∗ − c0‖2H(1)

1
+ δ
)
.

The rest of the proof repeats the corresponding part of the proof of Theorem 2. �
Remarks 3:
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1. When applying the technique of [7,11-15] for proofs of uniqueness theorems for CIPs,
like, e.g. Theorem 3, it is often possible to obtain Hölder or even Lipschitz estimates for
the modulus of the continuity of the corresponding operator. The Hölder estimate means
ωF (z) ≤ Czν , ν ∈ (0, 1) and the Lipschitz estimate means ωF (z) ≤ Cz with a constant
C > 0. This is because Carleman estimates imply at least Hölder estimates, see Chapter 2 in
[14]. This thought was used in [9] for a purpose, which is different from the one of this paper
(see some comments in Introduction). In particular, the Lipschitz stability for a similar
inverse problem for the equation utt = div (a(x)∇u) was obtained in [15]. So, in the case of,
e.g. the Lipschitz stability and under a reasonable assumption that δ ≤ δµ ‖c∗ − c0‖2H(1)

1
(see

(4)) the last estimate of the proof of Theorem 6 would become

‖cn − c∗‖H(1) ≤ Cδµ ‖c∗ − c0‖2H(1)
1

.

Since it is usually assumed that δµ << 1, then this is an additional indication of the fact that
the accuracy of a regularized solution is significantly better than the accuracy of the first
guess c0 even for a single value of the regularization parameter, as opposed to the limiting
case of δ, α (δ) → 0 of the classical regularization theory. The only reason why we do not
provide such detailed estimates here is that it would be quite space consuming to do so.

2. A conclusion, which is very similar to the above first remark, can be drawn for the
less restrictive finite dimensional case considered in subsection 3.3. Since all norms in a
finite dimensional space are equivalent, then in this case norms ‖cn − c∗‖H(1) , ‖c∗ − c0‖H(1)

1

can be replaced with ‖cn − c∗‖L2(Ω) , ‖c∗ − c0‖L2(Ω) , which is more convenient, see Theorem
7 in subsection 3.3.

3. The smoothness requirement cn ∈ H8 (Ω2) is an inconvenient one. However, given
the absence of proper uniqueness results for the original Inverse Problem 1, there is nothing
what can be done at this point. Also, this smoothness requirement is imposed only to make
sure that Lemma 1 is valid and we need the smoothness of Lemma 1 for Theorem 3. In
the next subsection we present a scenario, which is more realistic from the computational
standpoint. However, instead of relying on the rigorously established (in [13,14]) uniqueness
Theorem 3, we only assume in subsection 3.3 that the uniqueness holds.

3.3 The finite dimensional case

Because of a number of inconveniences of the infinitely dimensional case mentioned in sub-
section 2.2 and in Remark 3, we now consider the finite dimensional case, which is more
realistic for computations. Fix a certain sufficiently large number T > 0 and let Ω2 = Ω2 (T )
be the domain chosen in Lemma 1. Since in the works [2-6,16] and in the numerical section
4 only standard triangular or tetrahedral finite elements are applied and these elements form
a finite dimensional subspace of piecewise linear functions in the space L2 (Ω) , we assume
in this subsection that

c ∈ C
(
Ω2

)
∩H1 (Ω2) and derivatives cxi

are bounded in Ω2, i = 1, ..., k, (45)

c (x) ∈ [1, d] in Ω, c (x) = 1 in Ω2�Ω. (46)
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LetH(2) ⊂ L2 (Ω2) be a finite dimensional subspace of the space L2 (Ω2) in which all functions
satisfy conditions (45). Define the set G(2) as

G(2) =
{
c ∈ H(2) satisfying (46)

}
. (47)

Since norms ‖·‖C(Ω) and ‖·‖L2(Ω) are equivalent in the finite dimensional space H(2) and G(2)

is a closed bounded set in C
(
Ω
)
, then G(2) is also a closed set in H(2).

Let θ ∈ (0, 1) be a sufficiently small number. We follow [4,6] by replacing the function
δ (x− x0) in (21) with the function δθ (x− x0) ,

δθ (x− x0) =

{
Cθ exp

(
1

|x−x0|2−θ2

)
, |x− x0| < θ,

0, |x− x0| ≥ θ,

where the constant Cθ is such that
∫

Rk

δθ (x− x0) dx = 1.

We assume that θ is so small that

δθ (x− x0) = 0 for x ∈ Ω ∪
(
Rk�Ω1

)
. (48)

Let T > 0 be a certain number. For any function c ∈ G(2) consider the solution uθ (x, t) of
the following Cauchy problem

c (x) ∂2
t uθ = ∆uθ in Rk × (0, T ) , (49)

uθ (x, 0) = 0, ∂tuθ (x, 0) = δθ (x− x0) . (50)

Similarly with the Cauchy problem (20), (27) we conclude that because of (48), there exists
unique solution of the problem (49), (50) such that uθ ∈ H2 (Φ× (0, T )) for any bounded
domain Φ ⊂ Rk. In addition, uθ (x, t) = 0 in

(
Rk�Ω2

)
× (0, T ) .

Similarly with (38) we introduce the operator F (2) : G(2) → L2 (∂Ω × (0, T )) as

F (2) (c) (x, t) := gθ = uθ |∂Ω×(0,T3)∈ L2 (∂Ω × (0, T )) . (51)

Analogously to Lemma 3 one can prove
Lemma 4 (see Lemma 7.1 of [6] for an analogous result). The operator F (2) is Lipschitz

continuous.
Unlike the previous two subsections, there is no uniqueness result for the operator F (2).

The main reason of this is that δθ (x− x0) = 0 in Ω, unlike the function fε (x− x0) , see
Introduction for the discussion of uniqueness results. In addition the function c (x) is not
sufficiently smooth now. Hence, we simply impose the following

Assumption. The operator F (2) : G(2) → L2 (∂Ω × (0, T )) is one-to-one.
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Similarly with (40)-(42) we assume that there exists the exact solution c∗ ∈ G(2) of the
equation

F (2) (c∗) = g∗ (x, t) := uθ (x, t, c
∗) |∂Ω×(0,T ) . (52)

It follows from assumption that, for a given function g∗ (x, t) , this solution is unique. Let
the function g (x, t) ∈ L2 (∂Ω × (0, T )) . We assume that

g (x, t) = uθ (x, t, c
∗) |∂Ω×(0,T ) +gδ (x, t) , (x, t) ∈ ∂Ω× (0, T ) , (53)

where the function gδ (x, t) represents the error in the data,

‖gδ‖L2(∂Ω×(0,T )) ≤ δ. (54)

Let α = α (δ) = δ2µ, µ ∈ (0, 1) be the same as in (9), also see Remark 1. We now introduce

the regularization functional J
(2)
α as

J (2)
α (c) =

T∫

0

∫

∂Ω

(uθ (x, t, c)− g (x, t))2 dSxdt+ α ‖c− c0‖2L2(Ω) ; c, c0 ∈ G(2). (55)

Obviously this functional is more convenient to work with than the functional J
(1)
α (c) in

(43). This is because the H8 (Ω) norm of (43) is replaced with the L2 (Ω) norm in (55).
However, unlike the previous subsection where the one-to-one property of the operator F (1)

was rigorously guaranteed, here we only assume this property for the operator F (2).
Theorem 7. Let H(2) ⊂ L2 (Ω2) be the above finite dimensional subspace of the space

L2 (Ω2) , in which all functions satisfy conditions (45). Let the set G(2) ⊂ H(2) be the one
defined in (47). Let the function uθ be the solution of the Cauchy problem (49), (50) such
that uθ ∈ H2 (Φ× (0, T )) for any bounded domain Φ ⊂ Rk. Let F (2) be the operator defined
in (51) and let Assumption be true. Assume that there exists the exact solution c∗ ∈ G(2) of
equation (52) and let c0 ∈ G(2) be a first guess for this solution. Suppose that (53) and (54)

hold. Let m = m (δ) = min
G

(2) J
(2)
α (c) . Then a regularized solution cα(δ) ∈ G(2) exists, i.e.

m = m (δ) = min
G(2)

J (2)
α (c) = J (2)

α

(
cα(δ)

)
. (56)

Also, for any number ξ ∈ (0, 1) there exists a sufficiently small number δ0 = δ0 (ξ) ∈ (0, 1)
such that for all δ ∈ (0, δ0) the following inequality holds

∥∥cα(δ) − c∗
∥∥
L2(Ω)

≤ ξ ‖c∗ − c0‖L2(Ω) .

Proof. Since G(2) ⊂ H(2) is a closed bounded set then the existence of a minimizer
cα(δ) of the functional J

(2)
α (c) is obvious even for any value of α > 0. The set G(2) ⊂ H(2)

is a closed compact. Hence, it follows from Theorem 1 and Assumption that the operator
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(
F (2)

)−1
: F (2)

(
G(2)

)
→ G(2) exists and is continuous. Let ωF (2) be its modulus of the

continuity. Then similarly with the proof of Theorem 2 we obtain

∥∥cα(δ) − c∗
∥∥
L2(Ω)

≤ ωF (2)

(√
δ2 + δ2µ ‖c∗ − c0‖2L2(Ω) + δ

)
.

The rest of the proof is the same as the corresponding part of the proof of Theorem 2. �
Although the existence of a regularized solution is established in Theorem 7, it is still

unclear how many such solutions exist and how to obtain them in practical computations.
We show now that if the function c0 is sufficiently close to the exact solution c∗, then the
regularized solution is unique and can be found by a version of the gradient method without
a risk of coming up with a local minima or a ravine. In doing so we use results of [6].

Let µ1 ∈ (0, 1) be such a number that

2µ ∈ (0,min (µ1, 2 (1− µ1))) , (57)

where the number µ was defined in (9). Assume that

‖c0 − c∗‖L2(Ω) ≤ δµ1. (58)

Let the number β ∈ (0, 1) be independent on δ. Denote

V(1+
√
2)δµ1 (c

∗) =
{
c ∈ G(2) : ‖c− c∗‖L2(Ω) <

(
1 +

√
2
)
δµ1

}
,

Vβδ2µ
(
cα(δ)

)
=

{
c ∈ G(2) :

∥∥c− cα(δ)
∥∥
L2(Ω)

< βδ2µ
}
.

Note that it follows from (57) that βδ2µ >> δµ1 for sufficiently small δ, since
limδ→0

(
βδ2µ/δµ1

)
= ∞. The following theorem can be derived from a simple reformula-

tion of Theorem 7.2 of [6] for our case.
Theorem 8. Assume that conditions of Theorem 7 hold. Also, let (57) and (58) be

true. Let cα(δ) be a regularized solution defined in (56). Then there exists a sufficiently small
number δ1 ∈ (0, 1) and a number β ∈ (0, 1) independent on δ such that for any δ ∈ (0, δ1]

the set V(1+
√
2)δµ1 (c

∗) ⊂ Vβδ2µ
(
cα(δ)

)
, the functional J

(2)
α(δ) (c) is strongly convex on the set

Vβδ2µ
(
cα(δ)

)
and has the unique minimizer cα(δ) on the set V(1+

√
2)δµ1 (c

∗) . Furthermore,

cα(δ) = cα(δ). Hence, since by (58) c0 ∈ V(1+
√
2)δµ1 (c

∗) , then any gradient-like method of the

minimization of the functional J
(2)
α(δ) (c) , which starts from the first guess c0, converges to

the regularized solution cα(δ).
Remarks 4:
1. Thus, Theorems 7 and 8 emphasize once again the importance of obtaining a good first

approximation for the exact solution, i.e. the importance of globally convergent numerical
methods. Indeed, if such a good approximation is available, Theorem 8 guarantees conver-
gence of any gradient-like method to the regularized solution and Theorem 7 guarantees that
this solution is more accurate than the first approximation.
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2. As it was mentioned in Introduction, global convergence theorems of [2,3] in com-
bination with Theorems 7 and 8 guarantee that the two-stage numerical procedure of [2-6]
converges globally. Another confirmation of this can be found in first and second Remarks
3.

4 Numerical Example

We now briefly describe a numerical example for Inverse Problem 1. The sole purpose of
this section is to illustrate how Theorems 7 and 8 work. Figures 1-a), 1-b) and 1-c) of
this example are published in [4], and we refer to this reference for details. So, first we
apply the globally convergent numerical method of [2,3]. As a result, we obtain a good first
approximation for the solution of Inverse Problem 1. Next, we apply the locally convergent
adaptivity technique for refinement. In doing so, we use the solution obtained on the first
stage as the starting point. In this example we use the incident plane wave rather than the
point source. This is because the case of the plane wave works better numerically than the
point source. In fact, we have used the point source in our theory both here and in [2-6] only
to obtain a certain asymptotic behavior of the Laplace transform of the function u (x, t), see
Lemma 2.1 in [2]. We need this behavior for some theoretical results. However, in the case
of the plane wave we verify this asymptotic behavior computationally, see subsection 7.2 in
[2]. As it was stated above, numerical studies were conducted using the standard triangular
finite elements when solving Inverse Problem 1.

The big square on Figure 1-a) depicts the domain Ω. Two small squares display two
inclusions to be imaged. In this case we have

c (x) =

{
4 in small squares,

1 outside of small squares.
(59)

The plane wave falls from the top. The scattered wave g (x, t) = u |∂Ω×(0,T ) in (22) is known
at the boundary of the big square. The multiplicative random noise of the 5% level was
introduced in the function g (x, t) . Hence, in our case δ ≈ 0.05. We have used α = 0.01 in
(55). This value of the regularization parameter was chosen by trial and error. Our algorithm
does not use a knowledge of background values of the function c (x) , i.e. it does not use a
knowledge of c (x) outside of small squares.

Figure 1-b) displays the result of the performance of the first stage of our two-stage
numerical procedure. The computed function cglob (x) := c0 (x) has the following values: the
maximal value of c0 (x) within each of two imaged inclusions is 3.8. Hence, we have only 5%
error (4/3.8) in the imaged inclusion/background contrast, see (59). Also, c0 (x) = 1 outside
of these imaged inclusions. Figure 1-c) displays the final image. It is obvious that the image
of Figure 1-b) is refined, just as it was predicted by Theorem 7. Indeed, locations of both
imaged inclusions are accurate. Let cα (x) be the computed coefficient. Its maximal value is
max cα (x) = 4 and it is achieved within both imaged inclusions. Also, cα (x) = 1 outside of
imaged inclusions.
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a) b) c)

Figure 1: See details in the text of section 4. a) The big square depicts the domain Ω. Two small squares

display two inclusions to be imaged, see (59) for values of the function c (x) . The plane falls from the top. The

scattered wave is known at the boundary of the big square. b) The result obtained by the globally convergent

first stage of the two-stage numerical procedure of []. c) The result obtained after applying the second stage.

A very good refinement is achieved, just as predicted by Theorem 7. Both locations of two inclusions and

values of the function c (x) inside and outside of them are imaged with a very good accuracy.
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