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Abstract

We show that the minimization problem of any non–convex and non–lower
semi–continuous functional on a compact convex subset of a locally convex
real topological vector space can be studied via an associated convex and
lower semi–continuous functional Γ (h). This observation uses the notion of
Γ–regularization as a key ingredient. As an application we obtain, on any
locally convex real space, a generalization of the Lanford III–Robinson theo-
rem which has only been proven for separable real Banach spaces. The latter
is a characterization of subdifferentials of convex continuous functionals.
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1. Introduction and Main Results

Minimization problems inf h (K) on compact convex subsets K of a lo-
cally convex real (topological vector) space1 X are extensively studied for
convex and lower semi–continuous real functionals h.
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Such variational problems are, however, not systematically studied for
non–convex and non–lower semi–continuous real functionals h, except for a
few specific functionals. The aim of this paper is to show that – independently
of convexity or lower semi–continuity of functionals h – the minimization
problem inf h (K) on compact convex subsets K of a locally convex real
space X can be analyzed via another minimization problem inf Γ (h) (K)
associated with a convex and lower semi–continuous functional Γ (h), for
which various methods of analysis are available.

We are particularly interested in characterizing the following set of gen-
eralized minimizers of any real functional h on a compact convex set K:

Definition 1.1 (Set of generalized minimizers).
Let K be a (non–empty) compact convex subset of a locally convex real space
X and h : K → (−∞,∞] be any real functional. Then the set Ω (h, K) ⊂ K
of generalized minimizers of h is the closure of the set

Ω (h, K) :=
{

x ∈ K : ∃{xi}i∈I ⊂ K with xi → x and lim
I

h(xi) = inf h(K)
}

of all limit points of approximating minimizers of h.

Here, {xi}i∈I ⊂ K is per definition a net of approximating minimizers when

lim
I

h(xi) = inf h(K).

Note that, for any compact set K, Ω (h, K) is non–empty because any net
{xi}i∈I ⊂ K converges along a subnet.

In order to motivate the issue here, observe that inf h (K) can always
be studied via a minimization problem associated with a (possibly not con-
vex, but) lower semi–continuous functional h0, known as the lower semi–
continuous hull of h:

Lemma 1.2 (Minimization of real functionals – I).
Let K be any (non–empty) compact, convex, and metrizable subset of a locally
convex real space X and h : K → [k,∞] be any real functional with k ∈ R.
Then there is a lower semi–continuous functionals h0 : K → [k,∞] such that

inf h (K) = inf h0 (K) and Ω (h0, K) = Ω (h, K) .
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By lower semi–continuity, note that Ω (h0, K) corresponds to the set of usual
minimizers of h0. Note further that Lemma 1.2 implies – in the case K is
metrizable – that Ω (h, K) is closed, again by lower semi–continuity of h0.
The proof of this lemma is straightforward and is given in Section 2.1 for
completeness.

This result has two drawbacks: The compact convex set K must be
metrizable in the elementary proof we give here and, more important, the
lower semi–continuous hull h0 of h is generally not convex. We give below a
more elaborate result and show that both problems mentioned above can be
overcome by using the so–called Γ–regularization of real functionals. The last
is defined from the space A (X ) of all affine continuous real valued functionals
on a locally convex real space X as follows (cf. [1, Eq. (1.3) in Chapter I]):

Definition 1.3 (Γ–regularization of real functionals).
For any real functional h : K → [k,∞] defined on a (non–empty) compact
convex subset K ⊂ X , its Γ–regularization Γ (h) on K is the functional
defined as the supremum over all affine and continuous minorants m : X → R

of h, i.e., for all x ∈ K,

Γ (h) (x) := sup {m(x) : m ∈ A (X ) and m|K ≤ h} .

Since the Γ–regularization Γ (h) of a real functional h is a supremum over
continuous functionals, Γ (h) is a convex and lower semi–continuous func-
tional on K. For convenience, note that we identify real functionals g only
defined on a convex compact subset K ⊂ X of the locally convex real space
X with its (trivial) extension gext to the whole space X defined by

gext(x) :=

{

g(x)
∞

for x ∈ K.
else.

With this prescription g is lower semi–continuous (resp. convex) on K iff g
is lower semi–continuous (resp. convex) on X .

We prove in Section 2.2 the main result of this paper:

Theorem 1.4 (Minimization of real functionals – II).
Let K be any (non–empty) compact convex subset of a locally convex real
space X and h : K → [k,∞] be any real functional with k ∈ R. Then we
have that:
(i)

inf h (K) = inf Γ (h) (K) .
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(ii) The set M of minimizers of Γ (h) over K equals the closed convex hull
of the set Ω (h, K) of generalized minimizers of h over K, i.e.,

M = co (Ω (h, K)).

This general fact related to the minimization of non–convex and non–
lower semi–continuous real functionals on compact convex sets has not been
observed2 before, at least to our knowledge. It turns out to be extremely
useful. It is, for instance, an essential argument in the proof given in [2] of
the validity of the so–called Bogoliubov approximation on the level of states
for a class of models for fermions on the lattice. This problem, well–known
in mathematical physics, was first addressed by Ginibre [3, p. 28] in 1968
and is still open for many physically important models.

Then, by using the theory of compact convex subsets of locally convex
real spaces X (see, e.g., [1]), Theorem 1.4 yields a characterization of the set
Ω (h, K) of all generalized minimizers of h over K. Indeed, one important
observation concerning locally convex real spaces X is that any compact
convex subset K ⊂ X is the closure of the convex hull of the (non–empty)
set E(K) of its extreme points, i.e., of the points which cannot be expressed as
(non–trivial) convex combinations of other elements in K. This is the Krein–
Milman theorem, see, e.g., [4, Theorems 3.4 (b) and 3.23]. In fact, among all
subsets Z ⊂ K generating K, E(K) is – in a sense – the smallest one. This
is the Milman theorem, see, e.g., [4, Theorem 3.25]. It follows from Theorem
1.4 together with [4, Theorems 3.4 (b), 3.23, 3.25] that extreme points of
the compact convex set3 M of minimizers of Γ (h) over K are generalized
minimizers of h:

Theorem 1.5 (Minimization of real functionals – III).
Let K be any (non–empty) compact convex subset of a locally convex real
space X and h : K → [k,∞] be any real functional with k ∈ R. Then
extreme points of the compact convex set M belong to the set of generalized
minimizers of h, i.e., E (M ) ⊆ Ω (h, K).

This last result makes possible a full characterization of the closure of the
set Ω (h, K) in the following sense: Since M is compact and convex, we

2Assertion (i) is, however, trivial.
3The compacticity and convexity of M are direct consequences of the lower semi–

continuity and convexity of Γ (h) on the compact convex set K.
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can study the minimization problem inf h (KM ) for any closed (and hence
compact) convex subset KM ⊂ M . Applying Theorem 1.4 we get

inf h (KM ) = inf Γ (h|KM
) (KM ) . (1)

If
inf h (KM ) = inf h (K)

then, by Theorem 1.5,

E (MKM
) ⊆ Ω (h|KM

, KM ) ⊆ Ω (h, K),

where MKM
is the compact convex set of minimizers of Γ (h|KM

) over KM ⊂
M . In general, E (MKM

) \E (M ) 6= ∅ because MKM
is not necessarily a face

of M . Thus we discover in this manner new points of Ω (h, K) not contained
in E (M ). Choosing a sufficiently large family {KM} of closed convex subsets
of M we can exhaust the set Ω (h, K) through the union ∪ {E (MKM

)}. Note
that this construction can be performed in an inductive way: For each set
MKM

of minimizers consider further closed convex subsets K ′
M

⊂ MKM
. The

art consists in choosing the family {KM} appropriately, i.e., it should be
as small as possible and the extreme points of MKM

should possess some
reasonable characterization. The latter is of course heavily dependant on the
functional h and on particular properties of the compact convex set K (e.g.,
density of E(K), metrizability, etc.).

To close this section we recall that the Γ–regularization Γ (h) of a func-
tional h on K equals its twofold Legendre–Fenchel transform – also called
the biconjugate (functional) of h. Indeed, Γ (h) is the largest lower semi–
continuous and convex minorant of h (cf. Corollary 3.2). However, in con-
trast to the Γ–regularization the notion of Legendre–Fenchel transform re-
quires the use of dual pairs (cf. Definition 4.2). Since, for any locally convex
real space X together with its dual space X ∗ equipped with the weak∗–
topology, (X ,X ∗) is a dual pair, the Legendre–Fenchel transform can be
defined on any locally convex real space X as follows:

Definition 1.6 (The Legendre–Fenchel transform).
Let K be a (non–empty) compact convex subset of a locally convex real space
X . For any real functional h : K → (−∞,∞], its Legendre–Fenchel trans-
form h∗ is the convex weak∗–lower semi–continuous functional from X ∗ to
(−∞,∞] defined, for any x∗ ∈ X ∗, by

h∗ (x∗) := sup
x∈K

{x∗ (x) − h (x)} .
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Note that, together with its weak∗–topology, the dual space X ∗ of any locally
convex space X is also a locally convex space, see [4, Theorems 3.4 (b) and
3.10]. Therefore, in case nothing is further specified, the space X ∗ is always
equipped with its weak∗–topology.

The Legendre–Fenchel transform is strongly related to the notion of sub-
differentials:

Definition 1.7 (Subdifferentials).
Let h : X → (−∞,∞] be any real functional on a real topological vector space
X . A linear functional dhx ∈ X ∗ is said to be a subgradient (or tangent) of
the functional h at x ∈ X iff, for all x′ ∈ X , h(x+x′) ≥ h(x)+dhx(x

′). The
set ∂h(x) ⊂ X ∗ of subgradients of h at x is called subdifferential of h at x.

Therefore, Theorem 1.4 establishes a link between generalized minimizers
and subdifferentials:

Theorem 1.8 (Subdifferentials of continuous convex functions – I).
Let K be any (non–empty) compact convex subset of a locally convex real
space X and h : K → [k,∞] be any real functional with k ∈ R. Then the
subdifferential ∂h∗(x∗) ⊂ X of h∗ at the point x∗ ∈ X ∗ is the (non–empty)
compact convex set

∂h∗(x∗) = co (Ω (h − x∗, K)).

This last result – proven in Section 2.3 – generalizes the Lanford III–Robinson
theorem [5, Theorem 1] which has only been proven for separable real Banach
spaces X and continuous convex functionals h : X → R, cf. Theorem 4.8.

Indeed, for any real map h from a compact convex subset K ⊂ X of a
locally convex real space X to (−∞,∞], let

Y∗ := {x∗ ∈ X ∗ : h∗ has a unique subgradient dh∗
x∗ ∈ X at x∗} .

For all x∗ ∈ X ∗ and any open neighborhood V of {0} ⊂ X ∗, we also define
the set

Tx∗,V :=
{

dh∗
y∗ : y∗ ∈ Y∗ ∩ (x∗ + V)

}

⊂ X (2)

and denote by Tx∗ the intersection

Tx∗ :=
⋂

V∋0 open

Tx∗,V . (3)
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Then we observe first that Theorem 1.8 implies that the set ∂h∗(x∗) ⊂ X of
subgradients of h∗ at the point x∗ ∈ X ∗ is included in the closed convex hull
of the set Tx∗ provided Y∗ is dense in X ∗ (cf. Section 2.4):

Corollary 1.9 (Subdifferentials of continuous convex functions – II).
Let K be any (non–empty) compact convex subset of a locally convex real
space X and h : K → [k,∞] be any real functional with k ∈ R. If Y∗ is
dense in X ∗ then, for any x∗ ∈ X ∗,

∂h∗(x∗) ⊆ co (Tx∗).

This last result applied on separable Banach spaces yields, in turn, the fol-
lowing assertion (cf. Section 2.5):

Corollary 1.10 (The Lanford III–Robinson theorem).
Let X be a separable Banach space and h : X → R be any convex functional
which is globally Lipschitz continuous. If the set

Y := {x ∈ X : h has a unique subgradient dhx ∈ X ∗ at x}

is dense in X ∗ then the subdifferential ∂h(x) of h, at any x ∈ X , is the
weak∗–closed convex hull of the set Zx. Here, at fixed x ∈ X , Zx is the set
of functionals x∗ ∈ X ∗ such that there is a net {xi}i∈I in Y converging to x
with the property that the unique subgradient dhxi

∈ X ∗ of h at xi converges
towards x∗ in the weak∗–topology.

Recall that the Mazur theorem shows that the set Y on which a continuous
convex functional h is Fréchet differentiable, i.e., the set Y for which h has
exactly one subgradient dhx ∈ X ∗ at any x ∈ Y , is dense in a separable
Banach space X , cf. Theorem 4.6 and Remark 4.7. Therefore, for globally
Lipschitz continuous and convex functionals, the Lanford III–Robinson the-
orem [5, Theorem 1] (cf. Theorem 4.8) directly follows from Corollary 1.10.
Observe that, in which concerns subdifferentials of convex continuous func-
tionals on Banach spaces, the case of global Lipschitz continuous functionals
is already the most general case: For any continuous convex functional h on a
Banach space X and any x ∈ X , there are ε > 0 and a globally Lipschitz con-
tinuous convex functional g such that g (y) = h (y) whenever ‖x − y‖ < ε.
In particular, g and h have the same subgradients at x. Remark, indeed,
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that continuous convex functionals h on a Banach space X are locally Lips-
chitz continuous and an example of such a global Lipschitz continuous convex
functional is given by

g (x) := inf {z ∈ R : (x, z) ∈ [epi (h) + Cα]} ,

for sufficiently small α > 0. Here,

Cα := {(x, z) ∈ X × R : z ≥ 0, ‖x‖ ≤ αz}

and epi (h) is the epigraph of h defined by

epi (h) := {(x, z) ∈ X × R : z ≥ f (x)} .

The rest of the paper is structured as follows. Section 2 gives the detailed
proofs of Lemma 1.2, Theorems 1.4, 1.8, and Corollaries 1.9–1.10. Then,
Section 3 discusses an additional observation which is relevant in the context
of minimization of non–convex or non–semi–continuous functionals and which
does not seem to have been observed before. Indeed, Lemma 3.4 gives an
extension of the Bauer maximum principle (Lemma 3.3). Finally, Section 4 is
a concise appendix about locally convex real spaces, dual pairs, barycenters
in relation with the Γ–regularization, the Mazur theorem, and the Lanford
III–Robinson theorem.

2. Proofs

This section gives the detailed proofs of Lemma 1.2, Theorems 1.4, 1.8,
and Corollaries 1.9–1.10. Up to Corollary 1.10, we will always assume that
K is a (non–empty) compact convex subset of a locally convex real space X
and h : K → [k,∞] is any real functional with k ∈ R. In Lemma 1.2 the
metrizability of the topology on K is also assumed. In Corollary 1.10 X is a
separable Banach space and h : X → R is any globally Lipschitz continuous
convex functional.

2.1. Proof of Lemma 1.2

Because the subset K ⊂ X is metrizable and compact, it is sequentially
compact and we can restrict ourselves to sequences instead of more general
nets. Using any metric d(x, y) on K generating the topology we define, at
fixed δ > 0, the real map hδ from K to [k,∞] by

hδ (x) := inf h(Bδ (x))
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for any x ∈ K, where

Bδ (x) := {y ∈ K : d(x, y) < δ} (4)

is the ball (in K) of radius δ > 0 centered at x ∈ K. The family {hδ (x)}δ>0

of real functionals is clearly increasing as δ ց 0 and is bounded from above
by h(x). Therefore, for any x ∈ K, the limit of hδ (x) ≥ k as δ ց 0 exists
and defines a real map

x 7→ h0 (x) := lim
δց0

hδ (x)

from K to [k,∞].
In fact, this construction is well–known and the functional h0 is called the

lower semi–continuous hull of h as it is a lower semi–continuous real map
from K to [k,∞]. Indeed, for all δ > 0 and any sequence {xn}

∞
n=1 ⊂ K

converging to x ∈ K, there is Nδ > 0 such that, for all n > Nδ, xn ∈ Bδ/2 (x)
which implies that Bδ/2 (xn) ⊂ Bδ (x). In particular, hδ (x) ≤ hδ/2 (xn) for
all δ > 0 and n > Nδ. Since the family {hδ (x)}δ>0 defines an increasing
sequence as δ ց 0, it follows that

hδ (x) ≤ lim inf
n→∞

h0 (xn)

for any δ > 0 and x ∈ K. In the limit δ ց 0 the latter yields the lower
semi–continuity of the real functional h0 on K. Moreover,

h0 (x) ≥ hδ (x) ≥ inf h(K) ≥ k > −∞ (5)

for any x ∈ K and δ > 0.
We observe now that h and h0 have the same infimum on K:

inf h0 (K) = inf h(x). (6)

This can be seen by observing first that there is y ∈ K such that

inf h0 (K) = h0 (y) (7)

because of the lower semi–continuity of h0. Since hδ ≤ h on K for any δ > 0,
we have h0 ≤ h on K, which combined with (5) and (7) yields Equality (6).

Additionally, for all δ > 0 and any minimizer y ∈ K of h0 over K, there is
a sequence {xδ,n}

∞
n=1 ⊂ Bδ (y) of approximating minimizers of h over Bδ (y),

that is,
hδ (y) := inf h(Bδ (y)) = lim

n→∞
h(xδ,n) ≤ h(y).
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We can assume without loss of generality that

d(xδ,n, y) ≤ δ and |h(xδ,n) − hδ (y) | ≤ 2−n

for all n ∈ N and all δ > 0. Note that hδ (y) → h0 (y) as δ ց 0. Thus,
by taking any function p(δ) ∈ N satisfying p(δ) > δ−1 we obtain that xδ,p(δ)

converges to y ∈ K as δ ց 0 with the property that h(xδ,p(δ)) converges to
h0 (y). Using Equalities (6) and (7) we obtain that all minimizers of (7) are
generalized minimizers of h, i.e.,

Ω (h0, K) ⊆ Ω (h, K) .

The converse inclusion
Ω (h, K) ⊆ Ω (h0, K)

is straightforward because one has the inequality h0 ≤ h on K as well as
Equality (6).

2.2. Proof of Theorem 1.4

The assertion (i) of Theorem 1.4 is a standard result. Indeed, by Defini-
tion 1.3, Γ (h) ≤ h on K and thus

inf Γ (h) (K) ≤ inf h (K) .

The converse inequality is derived by restricting the supremum in Definition
1.3 to constant maps m from X to R with k ≤ m ≤ h on K.

By Definition 1.3, we also observe that Γ (h) is a lower semi–continuous
functional. This implies that the variational problem inf Γ (h) (K) has min-
imizers and the set M = Ω (Γ (h) , K) of all minimizers of Γ (h) is compact.
Moreover, again by Definition 1.3, the functional Γ (h) is convex which obvi-
ously yields the convexity of the set M .

For any y ∈ Ω (h, K), there is a net {xi}i∈I ⊂ K of approximating mini-
mizers of h on K converging to y. In particular, since the functional Γ (h) is
lower semi–continuous and Γ (h) ≤ h on K, we have that

Γ (h) (y) ≤ lim inf
I

Γ (h) (xi) ≤ lim
I

h(xi) = inf h(K) = inf Γ (h) (K),

i.e., y ∈ M . As M is convex and compact, we obtain that

M ⊃ co (Ω (h, K)). (8)
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So, we prove now the converse inclusion. We can assume without loss of
generality that co (Ω (h, K)) 6= K since otherwise there is nothing to prove.
We show next that, for any x ∈ K\co (Ω (h, K)), we have x /∈ M .

As co (Ω (h, K)) is a closed set of a locally convex real space X , for any
x ∈ K\co (Ω (h, K)), there is an open and convex neighborhood Vx ⊂ X of
{0} ⊂ X which is symmetric, i.e., Vx = −Vx, and which satisfies

Gx ∩ [{x} + Vx] = ∅

with
Gx := K ∩

[

co (Ω (h, K)) + Vx

]

.

This follows from [4, Theorem 1.10] together with the fact that each neighbor-
hood of {0} ⊂ X contains some open and convex neighborhood of {0} ⊂ X
because X is locally convex. Observe also that any one–point set {x} ⊂ X
is compact.

For any neighborhood Vx of {0} ⊂ X in a locally convex real space, there
is another convex, symmetric, and open neighborhood V ′

x of {0} ⊂ X such
that [V ′

x + V ′
x] ⊂ Vx, see proof of [4, Theorem 1.10]. Let

G′
x := K ∩

[

co (Ω (h, K)) + V ′
x

]

.

Then the following inclusions hold:

co (Ω (h, K)) ⊂ G′
x ⊂ G′

x ⊂ Gx ⊂ Gx ⊂ K\{x}. (9)

Since K, Vx, V
′
x, and co (Ω (h, K)) are all convex sets, Gx and G′

x are also
convex. Seen as subsets of K they are open neighborhoods of co (Ω (h, K)).

By Definition 4.1 and [4, Theorem 1.12], the set X is a Hausdorff space
and thus any compact subset K of X is a normal space. By Urysohn lemma,
there is a continuous function

fx : K → [inf h(K), inf h(K\G′
x)]

satisfying fx ≤ h and

fx (y) =

{

inf h(K) for y ∈ G′
x.

inf h(K\G′
x) for y ∈ K\Gx.

By compacticity of K\G′
x and the inclusion Ω (h, K) ⊂ G′

x, observe that

inf h(K\G′
x) > inf h(K).
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Then we have per construction that

fx(co (Ω (h, K))) = {inf h(K)} (10)

and
f−1

x (inf h(K)) = Ω (fx, K) ⊂ Gx (11)

for any x ∈ K\co (Ω (h, K)).
We use now the Γ–regularization Γ (fx) of fx on the set K and denote

by Mx = Ω (Γ(fx), K) its non–empty set of minimizers over K. Applying
Theorem 4.5, for any y ∈ Mx, we have a probability measure µy ∈ M+

1 (K)
on K with barycenter y such that

Γ (fx) (y) =

∫

K

dµy(z) fx (z) . (12)

As y ∈ Mx, i.e.,

Γ (fx) (y) = inf Γ (fx) (K) = inf fx(K), (13)

we deduce from (12) that

µy(Ω (fx, K)) = 1

and it follows that y ∈ co (Ω (fx, K)), by Theorem 4.4. Using (11) together
with the convexity of the open neighborhood Gx of co (Ω (h, K)) we thus
obtain

Mx ⊂ co (Ω (fx, K)) ⊂ Gx (14)

for any x ∈ K\co (Ω (h, K)).
We remark now that the inequality fx ≤ h on K yields Γ (fx) ≤ Γ (h) on

K because of Corollary 3.2. As a consequence, it results from (i) and (10)
that the set M of minimizers of Γ (h) over K is included in Mx, i.e., M ⊂ Mx.
Hence, by (9) and (14), we have the inclusions

M ⊂ Gx ⊂ K\{x}. (15)

Therefore, we combine (8) with (15) for all x ∈ K\co (Ω (h, K)) to obtain
the desired equality in the assertion (ii) of Theorem 1.4.
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2.3. Proof of Theorem 1.8

The proof of Theorem 1.8 is a simple consequence of Theorem 1.4 together
with the following lemma:

Lemma 2.1 (Subgradients as minimizers).
Let (X ,X ∗) be a dual pair and h be any real functional from a (non–empty)
convex subset K ⊆ X to (−∞,∞]. Then the subdifferential ∂h∗(x∗) ⊂ X of
h∗ at the point x∗ ∈ X ∗ is the (non–empty) set Mx∗ of minimizers over K of
the map

y 7→ Γ (h) (y) − x∗ (y)

from K ⊆ X to (−∞,∞].

Proof. The proof is standard and simple, see, e.g., [6, Theorem I.6.6].
Indeed, any subgradient x ∈ X of the Legendre–Fenchel transform h∗ at the
point x∗ ∈ X satisfies the inequality:

x∗ (x) + h∗ (y∗) − y∗ (x) ≥ h∗ (x∗) (16)

for any y∗ ∈ X ∗, see Definition 1.7. Since h∗ = h∗∗∗ and Γ (h) = h∗∗ (cf.
Corollary 3.2 and [7, Proposition 51.6]), we have (16) iff

x∗ (x)+ inf
y∗∈X ∗

{h∗ (y∗) − y∗ (x)} = x∗ (x)−Γ (h) (x) ≥ sup
y∈K

{x∗ (y) − Γ (h) (y)} ,

see Definition 1.6.

We combine now Theorem 1.4 with Lemma 2.1 to characterize the sub-
differential ∂h∗(x∗) ⊂ X of h∗ at the point x∗ ∈ X ∗ as the closed convex
hull of the set Ω (h − x∗, K) of generalized minimizers of h over a compact
convex subset K, see Definition 1.1. Indeed, for any x∗ ∈ X ∗,

Γ (h − x∗) = Γ (h) − x∗,

see Definition 1.3.

2.4. Proof of Corollary 1.9

For x∗ ∈ X ∗ and any open neighborhood V of {0} ⊂ X ∗, we define the
map gV ,x∗ from X to [k,∞] with k ∈ R by

gV ,x∗ (x) :=

{

Γ (h) (x)
∞

for x = dh∗
y∗ with y∗ ∈ Y∗ ∩ (x∗ + V).

else.
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For any y∗ ∈ Y∗ ∩ (x∗ + V), one has the equality g∗
V ,x∗ (y∗) = h∗ (y∗). This

easily follows from the fact that

h∗ (y∗) = sup
z∈K

{y∗ (z) − Γ (h) (z)} = y∗ (x) − Γ (h) (x)

= sup
z∈K

{y∗ (z) − gV ,x∗ (z)} = g∗
V ,x∗ (y∗)

with x := dh∗
y∗ , see proof of Lemma 2.1. Let W be any open neighborhood

of {0} ⊂ X ∗. Then, for any z ∈ K, the set

{δ∗(z) : δ∗ ∈ W} ⊂ R

is bounded, by continuity of the linear map δ∗ 7→ δ∗(z). From the the
principle of uniform boundedness for compact convex sets, i.e., the variant
of the Banach–Steinhaus theorem stated, for instance, in [4, Theorem 2.9],
the set

{δ∗(z) : δ∗ ∈ W, z ∈ K} ⊂ R

is also bounded. Thus, for any z∗ ∈ X ∗,

lim
sց0

sup {|h∗ (z∗) − h∗ (z∗ + δ∗) | : δ∗ ∈ sW} = 0,

lim
sց0

sup
{

|g∗
V ,x∗ (z∗) − g∗

V ,x∗ (z∗ + δ∗) | : δ∗ ∈ sW
}

= 0.

This implies the continuity of h∗ and g∗
V ,x∗. Hence, from the density of Y∗,

h∗ = g∗
V ,x∗ on the open neighborhood (x∗ + V) of {x∗} ⊂ X ∗. In particular,

h∗ and g∗
V ,x∗ have the same subgradients at the point x∗. From Theorems 1.5

and 1.8, for each open neighborhood V of {0} ⊂ X ∗, the extreme subgradients
of h∗ at x∗ are all contained in the set Tx∗,V defined by (2). Corollary 1.9
thus follows.

2.5. Proof of Corollary 1.10

Note that h∗∗ = h because the functional h is continuous and convex. By
the global Lipschitz continuity of h,

h (x) = sup
x∗∈X ∗

{x∗ (x) − h∗ (x∗)} = sup
x∗∈K

{x∗ (x) − h∗ (x∗)}

with K := BR (0) ⊂ X ∗ being some ball of sufficiently large radius R > 0
centered at 0. The set K is weak∗–compact, by the Banach–Alaoglu theorem.
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Now, for any fixed x ∈ X and all x∗ ∈ Zx ⊂ X ∗, by definition of the set
Zx, there is a net {xi}i∈I in Y converging to x with the property that the
unique subgradient x∗

i := dhxi
∈ X ∗ of h at xi converges towards x∗ in the

weak∗–topology. Therefore, by continuity of h, for any fixed x ∈ X and all
x∗ ∈ Zx,

h (x) = sup
y∗∈X ∗

{y∗ (x) − h∗ (y∗)} = lim
I

h (xi) = lim
I

{x∗
i (x) − h∗ (x∗

i )} ,

with {x∗
i }i∈I converging to x∗. In other words,

Zx ⊂ Ω (h∗ − x, K) ,

see Definition 1.1. Thus, by Theorem 1.8 and Corollary 1.9, it suffices to
prove that Tx ⊂ Zx.

By density of Y in X , observe that the set

Tx,V := {dhy : y ∈ Y ∩ (x + V)} ⊂ X ∗

is non–empty for any open neighborhood V of {0} ⊂ X . Meanwhile, the
weak∗–compact set K is metrizable with respect to (w.r.t.) the weak∗–
topology, by separability of X , see [4, Theorem 3.16]. In particular, K is
sequentially compact and we can restrict ourselves to sequences instead of
more general nets. In particular, by (2)–(3), one has

Tx =
⋂

n∈N

Tx,B1/n(0) (17)

with Bδ (x) being the ball (in K) of radius δ > 0 centered at x ∈ K. Here,
Bδ (x) is defined by (4) for any metric d on K generating its weak∗–topology.
For any x∗ ∈ Tx ⊂ K and any n ∈ N, there are per definition a sequence
{x∗

n,m}
∞
m=1 converging to x∗ in K as m → ∞ and an integer Nn > 0 such

that, for all m ≥ Nn, d(x∗, x∗
n,m) ≤ 2−n and x∗

n,m = dhxn,m for some xn,m ∈
Y ∩ [x + B1/n (0)]. Taking any function p(n) ∈ N satisfying p(n) > Nn and
converging to ∞ as n → ∞ we obtain a sequence {x∗

n,p(n)}
∞
n=1 converging to

x∗ ∈ Zx as n → ∞. This yields the inclusion Tx ⊂ Zx.

3. Further Remarks

We give here an additional observation which is not necessarily directly
related to the main results of the paper. It concerns an extension of the
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Bauer maximum principle [1, Theorem I.5.3.]. See [2] for an application to
statistical mechanics.

First, recall that the Γ–regularization Γ (h) of a real functional h is a
convex and lower semi–continuous functional on a compact convex subset K.
Moreover, every convex and lower semi–continuous functional on K equals
its own Γ–regularization on K (see, e.g., [1, Proposition I.1.2.]):

Proposition 3.1 (Γ–regularization of lower semi–cont. conv. maps).
Let h be any functional from a (non–empty) compact convex subset K ⊂ X
of a locally convex real space X to (−∞,∞]. Then the following statements
are equivalent:
(i) Γ (h) = h on K.
(ii) h is a lower semi–continuous convex functional on K.

This proposition is a standard result. The compacticity of K is in fact not
necessary but K should be a closed convex set. This result can directly be
proven without using the fact that the Γ–regularization Γ (h) of a functional
h on K equals its twofold Legendre–Fenchel transform – also called the bicon-
jugate (functional) of h. Indeed, Γ (h) is the largest lower semi–continuous
and convex minorant of h:

Corollary 3.2 (Largest lower semi–cont. convex minorant of h).
Let h be any functional from a (non–empty) compact convex subset K ⊂ X
of a locally convex real space X to (−∞,∞]. Then its Γ–regularization Γ (h)
is its largest lower semi–continuous convex minorant on K.

Proof. For any lower semi–continuous convex real functional f defined on
K satisfying f ≤ h, we have, by Proposition 3.1, that

f (x) = sup {m(x) : m ∈ A (X ) and m|K ≤ f ≤ h} ≤ Γ (h) (x)

for any x ∈ K.

In particular, if (X ,X ∗) is a dual pair and h is any functional from K to
(−∞,∞] then Γ (h) = h∗∗, see [7, Proposition 51.6].

Proposition 3.1 has another interesting consequence: An extension of the
Bauer maximum principle [1, Theorem I.5.3.] which, in the case of convex
functionals, is:
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Lemma 3.3 (Bauer maximum principle).
Let X be a locally convex real space. An upper semi–continuous convex real
functional h over a compact convex subset K ⊂ X attains its maximum at
an extreme point of K, i.e.,

sup h (K) = max h (E(K)) .

Here, E(K) is the (non–empty) set of extreme points of K.

Indeed, by combining Proposition 3.1 with Lemma 3.3 it is straightforward
to check the following statement which does not seem to have been observed
before:

Lemma 3.4 (Extension of the Bauer maximum principle).
Let h± be two convex real functionals from a locally convex real space X
to (−∞,∞] such that h− and h+ are respectively lower and upper semi–
continuous. Then the supremum of the sum h := h− + h+ over a compact
convex subset K ⊂ X can be reduced to the (non–empty) set E(K) of extreme
points of K, i.e.,

sup h (K) = sup h (E(K)) .

Proof. We first use Proposition 3.1 in order to write h− = Γ (h−) as a
supremum over affine and continuous functionals. Then we commute this
supremum with the one over K and apply the Bauer maximum principle to
obtain that

sup h (K) = sup {sup [m + h+] (E(K)) : m ∈ A (X ) and m|K ≤ h−|K} .

The lemma follows by commuting again both suprema and by using h− =
Γ (h−).

Observe, however, that under the conditions of the lemma above, the supre-
mum of h = h− + h+ is generally not attained on E(K).

4. Appendix

For the reader’s convenience we give here a short review on the following
subjects:

• Dual pairs and locally convex real spaces, see, e.g., [4];
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• Barycenters and Γ–regularization of real functionals, see, e.g., [1];

• The Mazur and Lanford III–Robinson theorems, see [5, 8].

These subjects are rather standard. Therefore, we keep the exposition as
short as possible and only concentrate on results used in this paper.

4.1. Dual Pairs and Locally Convex Real Spaces

The definition of topological vector space used here corresponds to Rudin’s
definition [4, Section 1.6]:

Definition 4.1 (Topological vector spaces).
A topological vector space X is a vector space equipped with a topology τ for
which the vector space operations of X are continuous and every point of X
defines a closed set.

The fact that each point of X is a closed set is not part of the definition of
topological vector spaces in many textbooks. It is used here because it is
satisfied in most applications and in this case, the space X is automatically
a Hausdorff space, by [4, Theorem 1.12].

The notion of dual pairs is defined as follow:

Definition 4.2 (Dual pairs).
For any locally convex space (X , τ), let X ∗ be its dual space, i.e., the set of all
continuous linear functionals on X . Let τ ∗ be any locally convex topology on
X ∗. (X ,X ∗) is called a dual pair iff, for all x ∈ X , the functional x∗ 7→ x∗(x)
on X ∗ is continuous w.r.t. τ ∗, and all linear functionals which are continuous
w.r.t. τ ∗ have this form.

By [4, Theorems 3.4 (b) and 3.10], a typical example of a dual pair (X ,X ∗)
is given by any locally convex real space X equipped with a topology τ and
X ∗ equipped with the σ(X∗, X)–topology τ ∗, i.e., the weak∗–topology. We
also observe that if (X ,X ∗) is a dual pair w.r.t. τ and τ ∗ then (X ∗,X ) is a
dual pair w.r.t. τ ∗ and τ .
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4.2. Barycenters and Γ–regularization

The theory of compact convex subsets of a locally convex real (topological
vector) space X is standard. For more details, see, e.g., [1]. An important
observation is the Krein–Milman theorem (see, e.g., [4, Theorems 3.4 (b)
and 3.23]) which states that any compact convex subset K ⊂ X is the clo-
sure of the convex hull of the (non–empty) set E(K) of its extreme points.
Restricted to finite dimensions this theorem corresponds to a classical re-
sult of Minkowski which, for any x ∈ K in a (non–empty) compact convex
subset K ⊂ X , states the existence of a finite number of extreme points
x̂1, . . . , x̂k ∈ E(K) and positive numbers µ1, . . . , µk ≥ 0 with Σk

j=1µj = 1
such that

x =

k
∑

j=1

µjx̂j . (1)

To this simple decomposition we can associate a probability measure, i.e., a
normalized positive Borel regular measure, µ on K.

Borel sets of any set K are elements of the σ–algebra B generated by
closed – or open – subsets of K. Positive Borel regular measures are the
positive countably additive set functions µ over B satisfying

µ (B) = sup {µ (C) : C ⊂ B, C closed} = inf {µ (O) : B ⊂ O, O open}

for any Borel subset B ∈ B of K. If K is compact then any positive Borel
regular measure µ (one–to–one) corresponds to an element of the set M+(K)
of Radon measures with µ (K) = ‖µ‖, and we write

µ (h) =

∫

K

dµ(x̂) h (x̂) (2)

for any continuous functional h on K. A probability measure µ ∈ M+
1 (K) is

per definition a positive Borel regular measure µ ∈ M+(K) which is normal-
ized : ‖µ‖ = 1.

Therefore, using the probability measure µx ∈ M+
1 (K) on K defined by

µx =

k
∑

j=1

µjδx̂j

19



with δy being the Dirac – or point – mass4 at y, Equation (1) can be seen as
an integral defined by (2) for the probability measure µx ∈ M+

1 (K):

x =

∫

K

dµx(x̂) x̂ . (3)

The point x is in fact the barycenter of the probability measure µx. This
notion is defined in the general case as follows (cf. [1, Eq. (2.7) in Chapter
I]):

Definition 4.3 (Barycenters of probability measures in convex sets).
Let K ⊂ X be any (non–empty) compact convex subset of a locally convex
real space X and let µ ∈ M+

1 (K) be a probability measure on K. We say that
x ∈ K is the barycenter5 of µ if, for all z∗ ∈ X ∗,

z∗ (x) =

∫

K

dµ(x̂) z∗ (x̂) .

Barycenters are well–defined for all probability measures in convex compact
subsets of locally convex real spaces (cf. [4, Theorems 3.4 (b) and 3.28]):

Theorem 4.4 (Well-definiteness and uniqueness of barycenters).
Let K ⊂ X be any (non–empty) compact subset of a locally convex real
space X such that co (K) is also compact. Then, for any probability measure
µ ∈ M+

1 (K) on K, there is a unique barycenter xµ ∈ co (K).

Note that Barycenters can also be defined in the same way via affine contin-
uous functionals instead of continuous linear functionals, see, e.g., [1, Propo-
sition I.2.2.] together with [4, Theorem 1.12].

It is natural to ask whether, for any x ∈ K in the compact convex set
K, there is a (possibly not unique) probability measure µx on K (pseudo–)
supported on E(K) with barycenter x. Equation (3) already gives a first
positive answer to that problem in the finite dimensional case. The general
case, which is a remarkable refinement of the Krein–Milman theorem, has
been proven by Choquet–Bishop–de Leeuw (see, e.g., [1, Theorem I.4.8.]).

4δy is the Borel measure such that, for any Borel subset B ∈ B of K, δy(B) = 1 if
y ∈ B and δy(B) = 0 if y /∈ B.

5Other terminologies existing in the literature: “x is represented by µ”, “x is the
resultant of µ”.
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We conclude now by a crucial property concerning the Γ–regularization of
real functionals in relation with the concept of barycenters (cf. [1, Corollary
I.3.6.]):

Theorem 4.5 (Barycenters and Γ–regularization).
Let K ⊂ X be any (non–empty) compact convex subset of a locally convex real
space X and h : K → (−∞,∞] be a continuous real functional. Then, for
any x ∈ K, there is a probability measure µx ∈ M+

1 (K) on K with barycenter
x such that

Γ (h) (x) =

∫

K

dµx(x̂) h (x̂) .

This theorem is a very important statement used to prove Theorem 1.4.

4.3. The Mazur and Lanford III–Robinson Theorems

If X is a separable real Banach space and h is a continuous convex real
functional on X then it is well–known that h has, on each point x ∈ X , at
least one subgradient dh ∈ X ∗. The Mazur theorem describes the set Y on
which a continuous convex functional h is Fréchet differentiable, i.e., the set
Y for which h has exactly one subgradient dhx ∈ X ∗ at any x ∈ Y :

Theorem 4.6 (Mazur).
Let X be a separable real Banach space and let h : X → R be a continuous
convex functional. The set Y ⊂ X of elements where h is Fréchet differen-
tiable is residual, i.e., a countable intersection of dense open sets.

Remark 4.7. By Baire category theorem, the set Y is dense in X .

The Lanford III–Robinson theorem [5, Theorem 1] completes the Mazur the-
orem by characterizing the subdifferential ∂h(x) ⊂ X ∗ at any x ∈ X :

Theorem 4.8 (Lanford III – Robinson).
Let X be a separable real Banach space and let h : X → R be a continuous
convex functional. Then the subdifferential ∂h(x) ⊂ X ∗ of h, at any x ∈ X ,
is the weak∗–closed convex hull of the set Zx. Here, at fixed x ∈ X , Zx is the
set of functionals x∗ ∈ X ∗ such that there is a net {xi}i∈I in Y converging to
x with the property that the unique subgradient dhxi

∈ X ∗ of h at xi converges
towards x∗ in the weak∗–topology.
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