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We consider a coefficient inverse problems for the Maxwell’ system in 3-D. The coefficient
of interest is the dielectric permittivity function. Only backscattering single measurement
data are used. The problem is formulated as an optimization problem. The key idea is to use
the adaptive finite element method for the solution. Both analytical and numerical results
are presented. Similar ideas for inverse problems for the complete time dependent Maxwell’s
system were not considered in the past.
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1. Introduction

In this work we consider an adaptive hybrid finite element/difference method for
an electromagnetic coefficient inverse problem (CIP) in the form of a parameter
identification problem. Our goal is reconstruct dielectric permittivity ǫ of the me-
dia under condition that magnetic permeability µ = 1. We consider the case of a
single measurement and use the backscattering data only to reconstruct this coef-
ficient ǫ. Potential applications of our algorithm are in airport security, imaging of
land mines, imaging of defects in non-destructive testing, etc.. This is because the
dielectric constants of explosives are much higher than ones of regular materials,
see tables in http://www.clippercontrols.com/info/dielectric constants.html.

To solve our inverse problem numerically, we seek to minimize the Tikhonov
functional:

F (E, ǫ) =
1

2
‖E − Ẽ‖2 +

1

2
γ‖ǫ− ǫ0‖2. (1.1)

Here E is the vector of the electric field satisfying Maxwell´s equations and Ẽ is
observed data at a finite set of observation points at the backscattering side of
the boundary, ǫ0 is the initial guess for ǫ, γ is regularization parameter (Tikhonov
regularization), and ‖ · ‖ is the discrete L2 norm. The data Ẽ in our computations
are generated in experiments, where short electromagnetic impulses are emitted
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on the part of the boundary of the surrounding media. The goal is to recover the
unknown spatially distributed function ǫ from the recorded boundary data Ẽ.

The minimization problem is reformulated as the problem of finding a stationary
point of a Lagrangian involving a forward equation (the state equation), a back-
ward equation (the adjoint equation) and an equation expressing that the gradient
with respect to the coefficient ǫ vanishes. To approximately obtain the value of ǫ,
we arrange an iterative process via solving in each step the forward and backward
equations and updating the coefficient ǫ. In our numerical example the regular-
ization parameter γ [13, 32, 33] is chosen experimentally on the basis of the best
performance. An analytical study of the question of the choice of the regularization
parameter is outside of the scope of this publication. We refer to [17] for a detailed
analysis of this interesting topic for the adaptivity technique.

The aim of this work is to derive a posteriori error estimate for our CIP and
present a numerical example of an accurate reconstruction using adaptive error
control. Following Johnson et al. [4, 5, 14, 16, 22], and related works, we shall
derive a posteriori error estimate for the Lagrangian involving the residuals of
the state equation, adjoint state equation and the gradient with respect to ǫ. In
this work we use the called all-at-once approach to find Frechét derivative for the
Tikhonov functional. Rigorous derivation of the Frechét derivatives for state and
adjoint problems as well as of the Frechét derivative of the Tikhonov functional
with respect to the coefficient can be performed similarly with [7, 8] and will be
done in a forthcoming publication.

Given a finite element mesh, a posteriori error analysis shows subdomains where
the biggest error of the computed solution is. Thus, one needs to refine mesh in
those subdomains. It is important that a posteriori error analysis does not need
a priori knowledge of the solution. Instead it uses only an upper bound of the
solution. In the case of classic forward problems, upper bounds are obtained from
a priori estimates of solutions [1]. In the case of CIPs, upper bounds are assumed
to be known in advance, which goes along well with the Tikhonov concept for
ill-posed problems [13, 33].

A posteriori error analysis addresses the main question of the adaptivity: Where
to refine the mesh? In the case of classic forward problems this analysis provides
upper estimates for differences between computed and exact solutions locally, in
subdomains of the original domain, see, e.g. [1, 14–16, 31]. In the case of a forward
problem, the main factor enabling to conduct a posteriori error analysis is the well-
posedness of this problem. However, every CIP is non-linear and ill-posed. Because
of that, an estimate of the difference between computed and exact coefficients is
replaced by a posteriori estimate of the accuracy of either the Lagrangian [3, 6, 17]
or of the Tikhonov functional [7]. Nevertheless, it was shown in the recent publica-
tions [4, 8] that an estimate of the accuracy of the reconstruction of the unknown
coefficient is possible in CIPs (in particular, see subsection 2.3 and Theorems 7.3
and 7.4 of [8]).

An outline of the work is following: in Section 2.1 we recall Maxwell´s equations
and in Section 2.2 we present the constrained formulation of Maxwell´s equations.
In Section 3 we formulate our CIP and in Section 4 we introduce the finite element
discretization. In Section 5 we present a fully discrete version used in the computa-
tions. Next, in Section 6 we establish a posteriori error estimate and formulate the
adaptive algorithm. Finally, in Section 7 we present computational results demon-
strating the effectiveness of the adaptive finite element/difference method on an
inverse scattering problem in three dimensions.



2. Statements of forward and inverse problems

2.1. Maxwell’s equations

The electromagnetic equations in an inhomogeneous isotropic case in the bounded
domain Ω ⊂ Rd, d = 2, 3 with boundary ∂Ω are described by the first order system
of partial differential equations

∂D

∂t
−∇×H = −J, in Ω × (0, T ),

∂B

∂t
+ ∇×E = 0, in Ω × (0, T ),

D = ǫE,

B = µH,

E(x, 0) = E0(x),

H(x, 0) = H0(x),

(2.1)

where E(x, t),H(x, t),D(x, t), B(x, t) are the electric and magnetic fields and the
electric and magnetic inductions, respectively, while ǫ(x) > 0 and µ(x) > 0 are the
dielectric permittivity and magnetic permeability that depend on x ∈ Ω, t is the
time variable, T is some final time, and J(x, t) ∈ Rd is a (given) current density.

The electric and magnetic inductions satisfy the relations

∇ ·D = ρ, ∇ ·B = 0 in Ω × (0, T ), (2.2)

where ρ(x, t) is a given charge density.
Eliminating B andD from (2.1), we obtain two independent second order systems

of partial differential equations

ǫ
∂2E

∂t2
+ ∇× (µ−1∇× E) = −j, (2.3)

µ
∂2H

∂t2
+ ∇× (ǫ−1∇×H) = ∇× (ǫ−1J), (2.4)

where j = ∂J
∂t

. System (2.3)-(2.4) should be completed with appropriate initial and
boundary conditions.

2.2. Constrained formulation of Maxwell´s equations

To discretize Maxwell’s equations are available different formulation. Examples are
the edge elements of Nédélec [27], the node-based first-order formulation of Lee
and Madsen [24], the node-based curl-curl formulation with divergence condition
of Paulsen and Lynch [29], the node-based interior-penalty discontinuous Galerkin
FEM [18]. Edge elements are probably the most satisfactory from a theoretical
point of view [25]; in particular, they correctly represent singular behavior at
reentrant corners. However, they are less attractive for time dependent computa-
tions, because the solution of a linear system is required at every time iteration.
Indeed, in the case of triangular or tetrahedral edge elements, the entries of the
diagonal matrix resulting from mass-lumping are not necessarily strictly positive
[12]; therefore, explicit time stepping cannot be used in general. In contrast, nodal



elements naturally lead to a fully explicit scheme when mass-lumping is applied
[12, 23].

In this work we consider Maxwell’s equations in convex geometry without reen-
trant corners and with smooth coefficient ǫ where value of ǫ does not varies much.
Since we consider applications of our method in airport security and imaging of
land mines such assumptions are natural. Thus, we are able use the node-based
curl-curl formulation with divergence condition of Paulsen and Lynch [29]. Direct
application of standard piecewise continuous [H1(Ω)]3- conforming FE for the nu-
merical solution of Maxwell’s equations can result in spurious solutions. Following
[29] we supplement divergence equations for electric and magnetic fields to en-
force the divergence condition and reformulate Maxwell equations as a constrained
system:

ǫ
∂2E

∂t2
+ ∇× (∇× E) − s∇(∇ · E) = −j, (2.5)

and

∂2H

∂t2
+ ∇× (ǫ−1∇×H) − s∇(ǫ−1∇ ·H) = ∇× (ǫ−1J), (2.6)

respectively, where s > 0 denotes the penalty factor. Here and below we assume
that electric permeability µ = 1.

For simplicity, we consider the system (2.5) – (2.6) with homogeneous initial
conditions

∂E

∂t
(x, 0) = E(x, 0) = 0, in Ω, (2.7)

∂H

∂t
(x, 0) = H(x, 0) = 0, in Ω, (2.8)

and perfectly conducting boundary conditions

E × n = 0, on ∂Ω × (0, T ), (2.9)

H · n = 0. on ∂Ω × (0, T ), (2.10)

where n is the outward normal vector on ∂Ω. The choice of the parameter s depends
on how much emphasis one places on the gauge condition; the optimal choice is
s = 1 [21, 29].

2.3. Statements of forward and inverse problems

In this work as the forward problem we consider Maxwell equation for electric field
with homogeneous initial conditions and perfectly conducting boundary conditions

ǫ
∂2E

∂t2
+ ∇× (∇× E) − s∇(∇ · E) = −j, x ∈ Ω, 0 < t < T,

∇ · (ǫE) = 0, x ∈ Ω, 0 < t < T,

∂E

∂t
(x, 0) = E(x, 0) = 0, in Ω,

E × n = 0, on ∂Ω × (0, T ).

(2.11)



The inverse problem for (2.6), (2.8), (2.10) can be formulated similarly and is
not considered in this work. Let Ω ⊂ R3 be a convex bounded domain with the
boundary ∂Ω ∈ C3. We assume that the coefficient ǫ (x) of equation (2.11) is such
that

ǫ (x) ∈ [1, d] , d = const. > 1, ǫ (x) = 1 for x ∈ R3 \ Ω, (2.12)

ǫ (x) ∈ C2
(R3

)

. (2.13)

We consider the following
Inverse Problem. Suppose that the coefficient ǫ (x) satisfies (2.12) and (2.13),

where the number d > 1 is given. Assume that the function ǫ (x) is unknown in the
domain Ω. Determine the function ǫ (x) for x ∈ Ω, assuming that the following
function Ẽ (x, t) is known

E (x, t) = Ẽ (x, t) ,∀ (x, t) ∈ ∂Ω × (0,∞) . (2.14)

A priori knowledge of upper and lower bounds of the coefficient ǫ (x) corresponds
well with the Tikhonov concept about the availability of a priori information for an
ill-posed problem [13, 33]. In applications the assumption ǫ (x) = 1 for x ∈ R3 \ Ω
means that the target coefficient ǫ (x) has a known constant value outside of the
medium of interest Ω. The function Ẽ (x, t) models time dependent measurements
of the electric wave field at the boundary of the domain of interest. In practice
measurements are performed at a number of detectors. In this case the function
Ẽ (x, t) can be obtained via one of standard interpolation procedures, a discussion
of which is outside of the scope of this publication.

3. Tikhonov functional and optimality conditions

We reformulate our inverse problem as an optimization problem, where one seek the
permittivity ǫ(x), which result in a solution of equations (2.11) with best fit to time
domain observations Ẽ, measured at a finite number of observation points. Denote
QT = Ω × (0, T ) , ST = ∂Ω × (0, T ) . Our goal is minimize Tikhonov functional

F (E, ǫ) =
1

2

∫

ST

(E|ST
− Ẽ)2zδ(t)dxdt +

1

2
γ

∫

Ω
(ǫ− ǫ0)

2 dx, (3.1)

where Ẽ is the observed electric field, E satisfies the equations (2.11) and thus
depends on ǫ, and γ is regularization parameter. Here zδ(t) is a cut-off function,
which is introduced to ensure that compatibility conditions at ST ∩ {t = T} are
satisfied, and δ > 0 is a small number. So, we choose such a function zδ that

zδ ∈ C∞ [0, T ] , zδ (t) =







1 fort ∈ [0, T − δ] ,

0 for t ∈
(

T − δ
2 , T

]

,

0 < zδ < 1 for t ∈
(

T − δ, T − δ
2

)

.



To solve this minimization problem we introduce the Lagrangian

L(u) = F (E, ǫ) −
∫

ΩT

ǫ
∂λ

∂t

∂E

∂t
dxdt +

∫

ΩT

(∇× E)(∇× λ) dxdt

+

∫

ΩT

∇ · (ǫE)λ dxdt+ s

∫

ΩT

(∇ ·E)(∇ · λ) dxdt+

∫

ΩT

jλ dxdt,

(3.2)

where u = (E,λ, ǫ), and search for a stationary point with respect to u satisfying
∀ū = (Ē, λ̄, ǭ)

L′(u; ū) = 0, (3.3)

where L′(u; ·) is the Jacobian of L at u.
We assume that λ (x, T ) = ∂tλ (x, T ) = 0 and seek to impose such conditions

on the function λ that in (3.2) L (E,λ, ǫ) := L (u) = F (E, ǫ) . In other words, the
sum of integral terms in (3.2) should be equal to zero. Then we will come up with
the formulation of the so-called adjont problem for the function λ.

To proceed further we use the fact that λ(x, T ) = ∂λ
∂t

(x, T ) = 0 and E(x, 0) =
∂E
∂t

(x, 0) = 0, together with perfectly conducting boundary conditions n × E =
n× λ = 0 and n · (∇ · E) = n · E = n · (ǫE) = 0 and n · (∇ · λ) = n · λ = 0 on ∂Ω.
The equation (3.3) expresses that for all ū,

0 =
∂L

∂λ
(u)(λ̄) = −

∫

ΩT

ǫ
∂λ̄

∂t

∂E

∂t
dxdt+

∫

ΩT

(∇× E)(∇× λ̄) dxdt

+ s

∫

ΩT

(∇ ·E)(∇ · λ̄) dxdt +

∫

ΩT

∇ · (ǫE)λ̄ dxdt +

∫

ΩT

jλ̄ dxdt,

(3.4)

0 =
∂L

∂E
(u)(Ē) =

∫

ΩT

(E − Ẽ) Ē zδ dxdt

−
∫

ΩT

ǫ
∂λ

∂t

∂Ē

∂t
dxdt +

∫

ΩT

(∇× λ)(∇× Ē) dxdt

+ s

∫

ΩT

(∇ · λ)(∇ · Ē) dxdt−
∫

ΩT

ǫ∇λĒ dxdt,

(3.5)

0 =
∂L

∂ǫ
(u)(ǭ) = −

∫

ΩT

∂λ

∂t

∂E

∂t
ǭ dxdt−

∫

ΩT

E∇λǭ dxdt+ γ

∫

Ω
(ǫ− ǫ0)ǭ dx, x ∈ Ω,

(3.6)
The equation (3.4) is the weak formulation of the state equation (2.5) and the



equation (3.5) is the weak formulation of the following adjoint problem

ǫ
∂2λ

∂t2
+ ∇× (∇× λ) − s∇(∇ · λ) = −(E − Ẽ)zδ, x ∈ Ω, 0 < t < T,

∇ · (ǫλ) = 0, x ∈ Ω, 0 < t < T,

λ(·, T ) =
∂λ

∂t
(·, T ) = 0,

λ× n = 0 on ST .

(3.7)

Further, (3.6) expresses stationarity with respect to ǫ.

4. Finite element discretization

We discretize Ω × (0, T ) denoting by Kh = {K} a partition of the domain Ω into
tetrahedra K (h = h(x) being a mesh function defined as h|K = hK representing
the local diameter of the elements), and we let Jk be a partition of the time interval
(0, T ) into time intervals J = (tk−1, tk] of uniform length τ = tk − tk−1. We assume
also a minimal angle condition on the Kh [9].

To formulate the finite element method for (3.3) we introduce the finite element
spaces Vh, WE

h and W λ
h defined by :

Vh := {v ∈ L2(Ω) : v ∈ P0(K),∀K ∈ Kh},

WE := {w ∈ [H1(Ω × I)]3 : w(·, 0) = 0, w × n|∂Ω = 0},

WE
h := {w ∈WE : w|K×J ∈ [P1(K) × P1(J)]3,∀K ∈ Kh,∀J ∈ Jk},

W λ := {w ∈ [H1(Ω × I)]3 : w(·, T ) = 0, w × n|∂Ω = 0},

W λ
h := {w ∈W λ : w|K×J ∈ [P1(K) × P1(J)]3,∀K ∈ Kh,∀J ∈ Jk},

where P1(K) and P1(J) are the set of continuous piecewise linear functions on K
and J , respectively.

We define Uh = WE
h × W λ

h × Vh. The finite element method now reads: Find
uh ∈ Uh, such that

L′(uh)(ū) = 0 ∀ū ∈ Uh. (4.1)

5. Fully discrete scheme

We expand E,λ in terms of the standard continuous piecewise linear functions
ϕi(x) in space and ψi(t) in time and substitute this into (2.11) and (3.7) to obtain
the following system of linear equations:

M(Ek+1 − 2Ek + Ek−1) = −τ2F k − τ2KEk − sτ2CEk − τ2BEk,

M(λk+1 − 2λk + λ
k−1) = −τ2Sk − τ2Kλ

k − sτ2Cλ
k − τ2Bλ

k,
(5.1)



with initial conditions :

E(·, 0) = ∂E
∂t

(·, 0) = 0, (5.2)

λ(·, T ) = ∂λ
∂t

(·, T ) = 0. (5.3)

Here, M is the block mass matrix in space, K is the block stiffness matrix corre-
sponding to the rotation term, C and B are the stiffness matrices corresponding
to the divergence terms, F k and Sk are the load vectors at time level tk, Ek and
λ

k denote the nodal values of E(·, tk) and λ(·, tk), respectively, τ is the time step.
The explicit formulas for the entries in system (5.1) at each element e can be

given as:

Me
i,j = (ǫ ϕi, ϕj)e,

Ke
i,j = (

1

µ
∇× ϕi,∇× ϕj)e,

Ce
i,j = (

1

µ
∇ · ϕi,∇ · ϕj)e,

Be
i,j = (∇ · (ǫϕi), ϕj)e,

F e
j,m = ((j, ϕjψm))e×J ,

Se
j,m = ((E − Ē, ϕjψm))e×J ,

(5.4)

where (·, ·)e denotes the L2(e) scalar product.
To obtain an explicit scheme we approximate M with the lumped mass matrix

ML – see [10, 20, 23]. Next, we multiply (5.1) with (ML)−1 and get the following
explicit method:

Ek+1 = − τ2(ML)−1F k + 2Ek − τ2(ML)−1KEk

− sτ2(ML)−1CEk − τ2(ML)−1BEk − Ek−1,

λ
k−1 = − τ2(ML)−1Sk + 2λk − τ2(ML)−1Kλ

k

− sτ2(ML)−1Cλ
k − τ2(ML)−1Bλ

k − λ
k+1.

(5.5)

Finally, to approximate coefficient ǫ can be used one of the gradient-like methods
with an appropriate initial guess value ǫ0. The discrete version of gradient with
respect to the coefficient (3.6) takes the form:

gh = −
∫

0

T ∂λk
h

∂t

∂Ek
h

∂t
dxdt−

∫ T

0
Ek

h∇λk
hdt+ γ(ǫkh − ǫ0). (5.6)

Here, λk
h and EK

h are computed values of the adjoint and forward problems at
time moment k using explicit scheme (5.5), and ǫkh is approximated value of the
coefficient.



6. An a posteriori error estimate for the Lagrangian and an adaptive

algorithm

6.1. A posteriori error estimate

Following [3] we now present the main framework in the proof of an a posteriori
error estimate for the Lagrangian. Let C denote various constants of moderate size.
We write an equation for the error e in the Lagrangian as

e = L(u) − L(uh)

=

∫ 1

0

d

dǫ
L(uǫ+ (1 − ǫ)uh)dǫ

=

∫ 1

0
L′(uǫ+ (1 − ǫ)uh)(u− uh)dǫ

= L′(uh)(u− uh) +R,

(6.1)

where R denotes (a small) second order term. For full details of the arguments we
refer to [2] and [14].

Next, we use the splitting u − uh = (u − uI
h) + (uI

h − uh) where uI
h denotes an

interpolant of u, the Galerkin orthogonality (4.1) and neglect the term R to get
the following error representation:

e ≈ L′(uh)(u− uI
h) = (I1 + I2 + I3), (6.2)

where

I1 = −
∫

ΩT

(

ǫh
∂(λ− λI

h)

∂t

∂Eh

∂t
dxdt+

∫

ΩT

(∇× (λ− λI
h))(∇ ×Eh) dxdt

+ s

∫

ΩT

(∇ · Eh)(∇ · (λ− λI
h)) dxdt

+

∫

ΩT

∇ · (ǫhEh)(λ− λI
h) dxdt +

∫

ΩT

j(λ − λI
h) dxdt,

(6.3)

I2 =

∫

ST

(Eh − Ẽ) (E − EI
h) zδ dxdt−

∫

ΩT

ǫh
∂λh

∂t

∂(E − EI
h)

∂t
dxdt

+

∫

ΩT

(∇× λh)(∇× (E − EI
h)) dxdt

−
∫

ΩT

ǫh∇λh(E − EI
h) dxdt + s

∫

ΩT

(∇ · λh)(∇ · (E − EI
h)) dxdt,

(6.4)

I3 = −
∫

ΩT

∂λh

∂t

∂Eh

∂t
(ǫ−ǫIh) dxdt−

∫

ΩT

Eh∇λh(ǫ−ǫIh) dxdt+γ

∫

Ω
(ǫh−ǫ0)(ǫ−ǫIh) dx.

(6.5)
To estimate (6.3) we integrate by parts in the first, second and third terms to



get:

I1 =

∫

ΩT

(

ǫh
∂2Eh

∂t2
+ ∇× (∇×Eh) − s∇(∇ ·Eh) + ∇ · (ǫhEh) + j

)

(λ− λI
h) dx dt

+
∑

k

∫

Ω
ǫh

[∂Eh

∂t
(tk)

]

(λ− λI
h)(tk) dx−

∑

K

∫ T

0

∫

∂K

(

nK × (∇× Eh)
)

(λ− λI
h) dsdt

+ s
∑

K

∫ T

0

∫

∂K

(∇ · Eh) (nK · (λ− λI
h)) dS dt = J1 + J2 + J3 + J4,

(6.6)

where Ji, i = 1, ..., 4 denote integrals that appear on the right of (6.6). In particular,
J2, J3 result from integration by parts in space, whereas

[

∂Eh

∂t

]

appears during the
integration by parts in time and denotes the jump of the derivative of Eh in time.
Here nK denotes the exterior unit normal to element K.

To estimate J3 we sum over the element boundaries where each internal side
S ∈ Sh occurs twice. Let Es denote the function Eh in one of the normal directions
of each side S and ns is outward normal vector on S. Then we can write

∑

K

∫

∂K

(

nK×(∇×Eh)
)

(λ−λI
h) dS =

∑

S

∫

S

[

nS×(∇×ES)
]

(λ−λI
h) dS, (6.7)

where
[

nS × (∇× Es)
]

is the tangential jump of ∇× Eh computed from the two

elements sharing S. We distribute each jump equally to the two sharing triangles
and return to a sum over all element edges ∂K as :

∑

S

∫

S

[

nS×(∇×Es)
]

(λ−λI
h) dS =

∑

K

1

2
h−1

K

∫

∂K

[

nS×(∇×Es)
]

(λ−λI
h)hK dS.

(6.8)
We formally set dx = hKdS and replace the integrals over the element boundaries
∂K by integrals over the elements K, to get:

∣

∣

∣

∑

K

1

2
h−1

K

∫

∂K

[

nS×(∇×Es)
]

(λ−λI
h)hK dS

∣

∣

∣
≤ C

∫

Ω
max
S⊂∂K

h−1
K

∣

∣

∣

[

nK×(∇×Eh)
]∣

∣

∣
·
∣

∣

∣
λ−λI

h

∣

∣

∣
dx,

(6.9)

with
[

nK × (∇×Eh)
]
∣

∣

∣

K
= maxS⊂∂K

[

nS × (∇×Es)
]
∣

∣

∣

S
. Here and later we denote

by C different constants of moderate size.
In a similar way we can estimate J4 in (6.6):

J4 = s
∑

K

∫

∂K

(∇ ·Eh) (nK · (λ− λI
h)) as

= s
∑

S

∫

S

[∇ · Es] [nS · (λ− λI
h)] dS

= s
∑

K

1

2
h−1

K

∫

∂K

[∇ · Es] [nS · (λ− λI
h)]hK dS.

(6.10)

Again, replacing the integrals over the boundaries by integrals over the elements



we get the following estimate for J4:

∣

∣

∣
J4

∣

∣

∣
≤ s C

∫

Ω
max
S⊂∂K

h−1
K

∣

∣

∣
[∇ ·Eh]

∣

∣

∣
·
∣

∣

∣
[nK · (λ− λI

h)]
∣

∣

∣
dx, (6.11)

with [∇ ·Eh]
∣

∣

∣

K
= maxS⊂∂K [∇ ·Es]

∣

∣

∣

S
. J2 is estimated similarly with J3, J4.

We substitute expressions for J2, J3 and J4 in (6.6) to get:

∣

∣I1
∣

∣ ≤
∫

ΩT

∣

∣

∣

(

ǫh
∂2Eh

∂t2
+ ∇× (∇× Eh) − s∇(∇ · Eh) + ∇ · (ǫhEh) + j

)
∣

∣

∣
·
∣

∣

∣
λ− λI

h

∣

∣

∣
dx dt

+C

∫

ΩT

ǫhτ
−1 ·

∣

∣

[

∂Eht

]
∣

∣ ·
∣

∣λ− λI
h

∣

∣ dxdt

+C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

∣

[

nK × (∇× Eh)
]∣

∣

∣
·
∣

∣

∣
λ− λI

h

∣

∣

∣
dxdt

+ s C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

[

∇ · Eh

]
∣

∣ ·
∣

∣

∣

[

nK · (λ− λI
h)

]
∣

∣

∣
dxdt.

(6.12)

where

[∂Eht] = [∂Ehtk
] on Jk

and [∂Ehtk
] is defined as the maximum of the two jumps in time on each time

interval Jk:

[∂Ehtk
] = max

Jk

([

∂Eh

∂t
(tk)

]

,

[

∂Eh

∂t
(tk+1)

])

. (6.13)

Next, we use a standard interpolation estimate [3] for λ− λI
h to get

∣

∣I1
∣

∣ ≤
∫

ΩT

∣

∣

∣

(

ǫh
∂2Eh

∂t2
+ ∇× (∇× Eh) − s∇(∇ · Eh) + ∇ · (ǫhEh) + j

)
∣

∣

∣
·
(

τ2

∣

∣

∣

∣

∂2λ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xλ

∣

∣

)

dx dt

+C

∫

ΩT

ǫhτ
−1 ·

∣

∣

[

∂Eht

]
∣

∣ ·
(

τ2

∣

∣

∣

∣

∂2λ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xλ

∣

∣

)

dxdt

+C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

∣

[

nK × (∇× Eh)
]
∣

∣

∣
·
(

τ2

∣

∣

∣

∣

∂2λ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xλ

∣

∣

)

dxdt

+ s C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

[

∇ · Eh

]∣

∣ ·
[

nK ·
(

τ2

∣

∣

∣

∣

∂2λ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xλ

∣

∣

)]

dxdt.

(6.14)

Next, in (6.14) the terms ∂2Eh

∂t2
,∇ × (∇ × Eh),∇(∇ · Eh) vanish, since Eh is

continuous piecewise linear function. We then estimate ∂2λ
∂t2

≈
[

∂λh

∂t

]

τ
and D2

xλ ≈



[

∂λh

∂n

]

h
to get:

∣

∣I1
∣

∣ ≤ C

∫

ΩT

∣

∣j + ∇ · (ǫhEh)
∣

∣ ·
(

τ2
∣

∣

∣

[

∂λh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂λh

∂n

]

h

∣

∣

∣

)

dxdt

+ C

∫

ΩT

ǫhτ
−1

∣

∣

[

∂Eht

]∣

∣ ·
(

τ2
∣

∣

∣

[

∂λh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂λh

∂n

]

h

∣

∣

∣

)

dxdt

+ C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

∣

[

nK × (∇× Eh)
]
∣

∣

∣
·
(

τ2
∣

∣

∣

[

∂λh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂λh

∂n

]

h

∣

∣

∣

)

dxdt

+ s C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

[

∇ ·Eh

]
∣

∣ ·
[

nK ·
(

τ2
∣

∣

∣

[

∂λh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂λh

∂n

]

h

∣

∣

∣

)]

dxdt.

(6.15)

We estimate I2 similarly:

∣

∣I2
∣

∣ ≤
∫

ΩT

∣

∣

∣

(

ǫh
∂2λh

∂t2
+ ∇× (∇× λh) − ǫhλh − s∇(∇ · λh)

)

∣

∣

∣
·
∣

∣

∣
E − EI

h

∣

∣

∣
dxdt

+

∫

ST

∣

∣

∣
Eh − Ẽ

∣

∣

∣
·
∣

∣

∣
E − EI

h

∣

∣

∣
zδ dxdt+

∣

∣

∣

∑

k

∫

Ω
ǫh

[∂λh

∂t
(tk)

]

(E − EI
h)(tk) dx

∣

∣

∣

+
∣

∣

∣

∑

K

∫ T

0

∫

∂K

(

nK × (∇× λh)
)

(E −EI
h) dSdt

∣

∣

∣

+ s
∑

K

∫ T

0

∫

∂K

(∇ · λh) (nK · (E −EI
h)) dS dt

∣

∣

∣
.

(6.16)

Next, we can estimate (6.16) similarly with (6.15) as

∣

∣I2
∣

∣ ≤
∫

ΩT

∣

∣

∣

∣

(

ǫh
∂2λh

∂t2
+ ∇× (∇× λh) − ǫh∇λh − s∇(∇ · λh)

)
∣

∣

∣

∣

·
∣

∣E − EI
h

∣

∣ dxdt

+

∫

ST

∣

∣Eh − Ẽ
∣

∣ ·
∣

∣E − EI
h

∣

∣ zδ dxdt

+ C

∫

ΩT

ǫhτ
−1 ·

∣

∣

[

∂λht

]
∣

∣ ·
∣

∣E − EI
h

∣

∣ dxdt

+ C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

∣

[

nK × (∇× λh)
]
∣

∣

∣
·
∣

∣

∣
E − EI

h

∣

∣

∣
dxdt

+ s C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

[

∇ · λh

]
∣

∣ ·
∣

∣

∣

[

nK · (E − EI
h)

]
∣

∣

∣
dxdt.

(6.17)

Again, the terms ∂2λh

∂t2
,∇× (∇× λh),∇(∇ · λh) vanish, since λh is also continuous



piecewise linear function. Finally we get

∣

∣I2
∣

∣ ≤
∫

ΩT

∣

∣ǫh∇λh

∣

∣ ·
(

τ2
∣

∣

∣

[

∂Eh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂Eh

∂n

]

h

∣

∣

∣

)

dxdt

+

∫

ST

∣

∣Eh − Ẽ
∣

∣ ·
(

τ2
∣

∣

∣

[

∂Eh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂Eh

∂n

]

h

∣

∣

∣

)

zδ dxdt

+ C

∫

ΩT

ǫhτ
−1 ·

∣

∣

[

∂λht

]
∣

∣ ·
(

τ2
∣

∣

∣

[

∂Eh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂Eh

∂n

]

h

∣

∣

∣

)

dxdt

+ C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

∣

[

nK × (∇× λh)
]∣

∣

∣
·
(

τ2
∣

∣

∣

[

∂Eh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂Eh

∂n

]

h

∣

∣

∣

)

dxdt

+ s C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

[

∇ · λh

]∣

∣ ·
[

nK ·
(

τ2
∣

∣

∣

[

∂Eh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂Eh

∂n

]

h

∣

∣

∣

)]

dxdt.

(6.18)

To estimate I3 we use a standard approximation estimate in the form ǫ − ǫIh ≈
hDxǫ to get:

∣

∣

∣
I3

∣

∣ ≤ C

∫

ΩT

∣

∣

∣

∂λh

∂t

∣

∣

∣
·
∣

∣

∣

∂Eh

∂t

∣

∣

∣
· h

∣

∣Dxǫ
∣

∣ dxdt +C

∫

ΩT

∣

∣

∣
Eh

∣

∣

∣
·
∣

∣

∣
∇λh

∣

∣

∣
· h

∣

∣Dxǫ
∣

∣ dxdt

+ γ C

∫

Ω
|ǫh − ǫ0| · h

∣

∣

∣
Dxǫ

∣

∣

∣
dx

≤ C

∫ T

0

∫

Ω

∣

∣

∣

∂λh

∂t

∣

∣

∣
·
∣

∣

∣

∂Eh

∂t

∣

∣

∣
· h

∣

∣

∣

[ǫh]

h

∣

∣

∣
dxdt+ C

∫

ΩT

∣

∣

∣
Eh

∣

∣

∣
·
∣

∣

∣
∇λh

∣

∣

∣
· h

∣

∣

∣

[ǫh]

h

∣

∣

∣
dxdt

+ γ C

∫

Ω
|ǫh − ǫ0| · h

∣

∣

∣

[ǫh]

h

∣

∣

∣
dx

≤ C

∫ T

0

∫

Ω

∣

∣

∣

∂λh

∂t

∣

∣

∣
·
∣

∣

∣

∂Eh

∂t

∣

∣

∣
·
∣

∣[ǫh]
∣

∣ dxdt + C

∫

ΩT

∣

∣

∣
Eh

∣

∣

∣
·
∣

∣

∣
∇λh

∣

∣

∣
·
∣

∣

∣
[ǫh]

∣

∣

∣
dxdt

+ γ C

∫

Ω
|ǫh − ǫ0| ·

∣

∣[ǫh]
∣

∣ dx.

(6.19)

We therefore obtain the following:



Theorem 5.1 Let L(u) = L(E,λ, ǫ) be the Lagrangian defined in (3.2), and
let L(uh) = L(Eh, λh, ǫh) be the approximation of L(u). Then the following error
representation formula for the error e = L(u) − L(uh) in the Lagrangian holds:

∣

∣e
∣

∣ ≤
3

∑

i=1

∫

ΩT

REi
σλ1

dxdt +

∫

ΩT

RE4
σλ2

dxdt +

∫

ST

Rλ1
σE1

zδ dxdt

+
4

∑

i=2

∫

ΩT

Rλi
σE1

dxdt +

∫

ΩT

Rλ5
σE2

dxdt +
3

∑

i=1

∫

ΩT

Rǫi
σǫ dxdt,

(6.20)

where residuals are defined by

RE1
=

∣

∣j + ∇ · (ǫhEh)
∣

∣, RE2
= ǫhτ

−1
∣

∣

[

∂Eht

]
∣

∣, RE3
= max

S⊂∂K
h−1

K

∣

∣

∣

[

nK × (∇× Eh)
]
∣

∣

∣
,

RE4
= s max

S⊂∂K
h−1

K

∣

∣

[

∇ · Eh

]
∣

∣,

Rλ1
=

∣

∣Eh − Ẽ
∣

∣, Rλ2
= |ǫh∇λh|, Rλ3

= ǫhτ
−1

∣

∣

[

∂λht

]
∣

∣,

Rλ4
= max

S⊂∂K
h−1

K

∣

∣

∣

[

nK × (∇× λh)
]∣

∣

∣
, Rλ5

= s max
S⊂∂K

h−1
K

∣

∣

[

∇ · λh

]∣

∣,

Rǫ1 =

∣

∣

∣

∣

∂λh

∂t

∣

∣

∣

∣

·
∣

∣

∣

∣

∂Eh

∂t

∣

∣

∣

∣

, Rǫ2 = |Eh| · |∇λh|, Rǫ3 = γ |ǫh − ǫ0|,

and interpolation errors are

σλ1
= C

(

τ
∣

∣

∣

[∂λh

∂t

]∣

∣

∣
+ h

∣

∣

∣

[∂λh

∂n

]∣

∣

∣

)

, σλ2
= C

[

nK ·
(

τ
∣

∣

∣

[∂λh

∂t

]∣

∣

∣
+ h

∣

∣

∣

[∂λh

∂n

]∣

∣

∣

)]

,

σE1
= C

(

τ
∣

∣

∣

[∂Eh

∂t

]∣

∣

∣
+ h

∣

∣

∣

[∂Eh

∂n

]∣

∣

∣

)

, σE2
= C

[

nK ·
(

τ
∣

∣

∣

[∂Eh

∂t

]∣

∣

∣
+ h

∣

∣

∣

[∂Eh

∂n

]∣

∣

∣

)]

,

σǫ = C
∣

∣[ǫh]
∣

∣.

Remark 5.1

If solutions λh and Eh to the adjoint and state equations are computed
with good accuracy, then we can neglect terms

∑4
i=1

∫

ΩT

REi
σλ1

dxdt +
∑5

i=1

∫

ΩT

Rλi
σE1

dxdt +
∫

ΩT

Rǫ2σǫ dxdt in a posteriori error estimation (6.20).
Thus the term

N(ǫh) =
∣

∣

∣

∫ T

0

∂λh

∂t

∂Eh

∂t
dt+ γ (ǫh − ǫ0)

∣

∣

∣
(6.21)

dominates. This fact is also observed numerically (see next section) and will be
explained analytically in forthcoming publication.

Mesh refinement recommendation

From the Theorem 5.1 and Remark 5.1 follows that the mesh should be refined
in such subdomain of the domain Ω where values of the function N(ǫh) are close
to the number

max
Ω

|N(ǫh)| = max
Ω

∣

∣

∣

∫ T

0

∂λh

∂t

∂Eh

∂t
dt+ γ (ǫh − ǫ0)

∣

∣

∣
. (6.22)



6.2. The Adaptive algorithm

In this section we outline our adaptive algorithm using the mesh refinement recom-
mendation of section 5. So, on each mesh we should find an approximate solution
of the equation N(ǫh) = 0. In other words, we should approximately solve the
following equation with respect to the function ǫh (x) ,

∫ T

0

∂λh

∂t

∂Eh

∂t
dt+ γ (ǫh − ǫ0) = 0. (6.23)

For each new mesh we first linearly interpolate the function ǫ0(x) on it. On every
mesh we iteratively update approximations ǫmh of the function ǫh, where m is the
number of iteration in optimization procedure. To do so, we use the quasi-Newton
method with the classic BFGS update formula with the limited storage [28]. Denote

gm(x) = γ(ǫmh − ǫ0) (x) +

∫ T

0
(Ehtλht) (x, t, ǫmh ) dt,

where functions Eh (x, t, ǫmh ) , λh (x, t, ǫmh ) are computed via solving state and ad-
joint problems with ǫ := ǫmh .

Based on the mesh refinement recommendation of section 5, we use the following
adaptivity algorithm in our computations:

Adaptive algorithm

Step 0. Choose an initial mesh Kh in Ω and an initial time partition J0 of the time
interval (0, T ) . Start with the initial approximation ǫ0h = ǫ0 and compute the
sequence of ǫmh via the following steps:

Step 1. Compute solutions Eh (x, t, ǫmh ) and λh (x, t, ǫmh ) of state and adjoint problems
of ( 2.11) and (3.7) on Kh and Jk.

Step 2. Update the coefficient ǫh := ǫm+1
h on Kh and Jk using the quasi-Newton

method, see details in [3, 28]

ǫm+1
h = ǫmh + αgm(x),

where α is step-size in gradient update [30].
Step 3. Stop computing ǫmh and obtain the function ǫh if either ||gm||L2(Ω) ≤ θ or

norms ||gm||L2(Ω) are stabilized. Otherwise set m := m+1 and go to step 1. Here
θ is the tolerance in quasi-Newton updates.

Step 4. Compute the function Bh (x) ,

Bh(x) =
∣

∣

∣

∫ T

0

∂λh

∂t

∂Eh

∂t
dt+ γ (ǫh − ǫ0)

∣

∣

∣
.

Next, refine the mesh at all points where

Bh (x) ≥ β1 max
Ω

Bh (x) . (6.24)

Here the tolerance number β1 ∈ (0, 1) is chosen by the user.
Step 5. Construct a new mesh Kh in Ω and a new time partition Jk of the time

interval (0, T ). On Jk the new time step τ should be chosen in such a way that
the CFL condition is satisfied. Interpolate the initial approximation ǫ0 from the
previous mesh to the new mesh. Next, return to step 1 and perform all above
steps on the new mesh.



Step 6. Stop mesh refinements if norms defined in step 3 either increase or stabilize,
compared with the previous mesh.

7. Numerical example

We test the performance of the adaptive algorithm formulated above on the solu-
tion of an inverse electromagnetic scattering problem in three dimensions. In our
computational example we consider the domain Ω = [−9.0, 9.0] × [−10.0,−12.0] ×
[−9.0, 9.0] with an unstructured mesh consisting of tetrahedra. The domain Ω is
split into inner domain Ω1 which contains scatterer, and surrounding outer domain
Ω2 such that Ω = Ω1∪Ω2. The spherical part of the boundary of the domain Ω1 we
denote as ∂Ω1 and the boundary of the domain Ω we denote as ∂Ω. The domain
Ω1 is a cylinder covered by spherical surface from top, see Figure 1-a). We set
ǫ (x) = 10 inside of the inclusion depicted on Figure 1-b) and ǫ (x) = 1 outside of
it. Hence, the inclusion/background contrast in the dielectric permittivity coeffi-
cient is 10 : 1. In our computational test we chose a time step τ according to the
Courant-Friedrichs-Levy (CFL) stability condition

τ ≤
√
ǫmaxh√

3
, (7.1)

where h is the minimal local mesh size, ǫmax is an upper bound for the coefficient
ǫ.

The forward problem in our test is

ǫ
∂2E

∂t2
+ ∇× (∇× E) − s∇(∇ ·E) = 0, x ∈ Ω, 0 < t < T,

∇ · (ǫE) = 0, x ∈ Ω, 0 < t < T,

∂E

∂t
(x, 0) = E(x, 0) = 0, in Ω,

E × n = f(t), on ∂Ω1 × [0, t1],

E × n = 0, on ∂Ω1 × (t1, T ],

E × n = 0, on ∂Ω × [0, T ].

(7.2)

Let Ω1 ⊂ R3 be a convex bounded domain which is split into upper Ωup and
lower Ωdown domains such that Ω1 = Ωup ∪ Ωdown. We assume that we need to
reconstruct coefficient ǫ(x) only in Ωdown from back reflected data at ∂Ω1. In other
words we assume that the coefficient ǫ (x) of equation (7.2) is such that

ǫ (x) ∈ [1, d] , d = const. > 1, ǫ (x) = 1 for x ∈ R3 \ Ωdown, (7.3)

ǫ (x) ∈ C2
(R3

)

. (7.4)

In the following example we consider the electrical field which is given as

f(t) = −((sin (100t − π/2) + 1)/10) × n, 0 ≤ t ≤ 2π

100
. (7.5)

We initialize (7.5) at the spherical boundary ∂Ω1 and propagate it into Ω. The ob-
servation points are placed on ∂Ω1. We note, that in actual computations applying



adaptive algorithm the number of the observations points on ∂Ω1 increases from
coarse to finer mesh.

As follows from Theorem 5.1, to estimate the error in the Lagrangian we need
to compute approximated values of (Eh, λh, ǫh) together with residuals and inter-
polation errors. Since the residuals Rǫ1 , Rǫ3 dominate we neglect computations of
others terms in a posteriori error estimate appearing in (6.20), see also Remark 5.1.
We seek the solution of the optimization problem in an iterative process, where we
start with a coarse mesh shown in Fig. 1, refine this mesh as in step 6 of Algorithm
in section 6, and construct a new mesh and a new time partition.

To generate the data at the observation points, we solve the forward problem
(7.2), with function f(t) given by (7.5) in the time interval t = [0, 36.0] with the
exact value of the parameters ǫ = 10.0, µ = 1 inside scatterer, and ǫ = µ = 1.0
everywhere else in Ω. We start the optimization algorithm with guess values of the
parameter ǫ = 1.0 at all points in Ω. The solution of the inverse problem needs to
be regularized since different coefficients can correspond to similar wave reflection
data on ∂Ω1. We regularize the solution of the inverse problem by introducing an
regularization parameter γ (small).

The computations were performed on four adaptively refined meshes. In Fig. 2-b)
we show a comparison of Rǫ1 over the time interval [25, 36] on different adaptively
refined meshes. Here, the smallest values of the residual Rǫ1 are shown on the
corresponding meshes.

The L2-norms in space of the adjoint solution λh on different optimization it-
erations on adaptively refined meshes are shown in Fig. 2-a). Here, we solved the
adjoint problem backward in time from t = 36.0 down to t = 0.0. The L2-norms are
presented on the time interval [25, 36] since the solution does not vary much on the
time interval [0, 25). We observe, that the norm of the adjoint solution decreases
faster on finer meshes.

The reconstructed parameter ǫ on different adaptively refined meshes at the final
optimization iteration is presented in Fig. 3. We show isosurfaces of the parameter
field ǫ(x) with a given parameter value. We observe that the qualitative value of
the reconstructed parameter ǫ is acceptable only using adaptive error control on
finer meshes although the shape of the inclusion is reconstructed sufficiently good
on the coarse mesh.

However, since the quasi-Newton method is only locally convergent, the values of
the identified parameters are very sensitive to the guess values of the parameters in
the optimization algorithm and also to the values of the regularization parameter
γ. We use cut-off constrain on the computed parameter ǫ, as also a smoothness
indicator to update new values of the parameter ǫ by local averaging over the
neighbouring elements. Namely, minimal and maximal values of the coefficient ǫ in
box constraints belongs to the following set of admissible parameters ǫ ∈ P = {ǫ ∈
C(Ω)|1 ≤ ǫ(x) ≤ 10}.

8. Conclusions

We present and adaptive finite element method for an inverse electromagnetic
scattering problem. The adaptivity is based on a posteriori error estimate for the
associated Lagrangian in the form of space-time integrals of residuals multiplied
by weights. We illustrate usefulness of a posteriori error indicator on an inverse
electromagnetic scattering problem in three dimensions.



a) Computational mesh b) Scatterer to be reconstructed

Figure 1. Computational domain Ω
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Figure 2. Comparison of a) ||λh|| and b) Rǫ1
on different adaptively refined meshes. Here the horizontal

x-axis denotes time steps.
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a) 22205 nodes, ǫ ≈ 3.19 b) 23033 nodes, ǫ ≈ 4.84

c) 24517 nodes, ǫ ≈ 6.09 d) 25744 nodes, ǫ ≈ 7

Figure 3. Isosurfaces of the parameter ǫ on different adaptively refined meshes.
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