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Abstract. We consider the Cauchy problem for the Kowalevskaya type frac-

tional linear partial differential equations in two complex variables with con-

stant coefficients. We show that solution is analytically continued in some
directions with exponential growth if and only if the similar properties sat-

isfy the Cauchy data. Applying this result we study the summability of formal

power series solution of a Cauchy problem for general non-Kowalevskian linear
partial differential equations in normal form with constant coefficients. We ob-

tain the necessary and sufficient conditions for the Borel summability in terms
of analytic continuation with an appropriate growth condition of the Cauchy

data. Moreover, we show the similar characterisation of Borel summability in

the case of non-Kowalevskian fractional equations.

1. Introduction

In 1999 Lutz, Miyake and Schäfke [5] showed the first result in the theory of
summability of formal power series solutions of partial differential equations. They
proved that the formal solution to the Cauchy problem for the 1-dimensional ho-
mogeneous complex heat equation is 1-summable in a direction d if and only if
the Cauchy data ϕ(z) can be analytically continued to infinity in some sectors in
directions d/2 and d/2 + π and this continuation is of exponential growth of order
at most 2.

This characterisation was generalised to the equation ∂pt u−∂qzu = 0 (with p < q)
by M. Miyake [8], to the quasi-homogeneous equations by K. Ichinobe [4] and to
some linear partial differential equations by S. Michalik [7].

On the other hand, the sufficient condition for the Borel summability of formal
solutions was found by Balser and Miyake [3] (for certain linear PDE with constant
coefficients) and by W. Balser [2] (for general linear PDE with constant coefficients).
In this last paper W. Balser also posed the conjecture that this sufficient condition
for the Borel summability of formal power series solution is also necessary one.

In the paper we prove this conjecture in the case of equations in normal form. In
this way, we also extend the results of M. Miyake [8], K. Ichinobe [4] and S. Michalik
[7] to more general equations.

Namely, we consider the Cauchy problem for the non-Kowalevskian linear partial
differential equation in two complex variables t and z with constant coefficients

∂pt u(t, z) =
p∑
j=1

∂p−jt Pjq/p(∂z)u(t, z), ∂nt u(0, z) = ϕn(z), n = 0, ..., p− 1,(1)
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where p, q ∈ N, p < q, Pjq/p(ξ) are polynomials of degree less than or equal to jq/p
(j = 1, . . . , p), Pq(ξ) is a polynomial of degree q and ϕn(z) (n = 0, ..., p − 1) are
analytic in some complex neighbourhood of the origin.

In a similar way to [7] we use the operator B1,1+1/k, which after appropri-
ate change of variables is equal to the modified k-Borel transform Bk. Applying
B1,1+1/k to the formal solution û(t, z) of the initial problem (1) we obtain the asso-
ciated function v(t, z) satisfying the initial value problem for certain Kowalevskaya
type fractional equation related to (1). It means that we can reduce the problem
of summability to the study of this new equation. This concept is a generalisation
of the idea given in [6], where the question about the summability of the formal
solution to the heat equation is reduced to the investigation of the wave equation.

So, after this reduction we study the following fractional equation

(2) (∂1/p
t )mv(t, z)−

m∑
j=1

(∂1/p
t )m−jPj(∂1/p

z )v(t, z) = 0,

where degPj(ξ) ≤ j, degPm(ξ) = m and the initial data (∂1/p
t )nv(0, z) = ϕn(z)

(n = 0, ...,m − 1) are 1/p-analytic in some complex neighbourhood of origin. We
use the integral representation of the solution, which is based on the construction
of Balser and Miyake [3]. Since this equation is in some sense symmetric with
respect to both variables t and z, we obtain the equivalence between the analytic
continuation with appropriate growth condition of the Cauchy data ϕ(z) and the
similar properties of the solution v(t, z) with respect to t. Precisely speaking, we
have

Theorem (see Theorem 1). Let {λ1, ..., λl} be the set of the characteristic roots
satisfying equation

λm −
m∑
j=1

λm−jpj = 0 with pj := lim
ξ→∞

Pj(ξ)/ξj .

Then the solution v(t, z) of (2) is analytically continued in a direction d with expo-
nential growth of order s > 1 as t → ∞ if and only if the Cauchy data ϕn(z) are
analytically continued in directions d + p arg λj with exponential growth of order s
as z →∞.

The above result is a generalisation of Theorem 1 in [7] to fractional equations.
We can at last formulate the characterisation of Borel summability of formal

power series solution of (1).

Theorem (see Theorem 2). The formal power series solution û(t, z) of the initial
problem (1) is p/(q − p)-summable in a direction d if and only if the Cauchy data
ϕ0(z), ..., ϕp−1(z) are analytically continued in directions (d + argαj + 2kπ)p/q
(j = 1, ..., l, k = 0, ..., q − 1) with exponential growth of order q/(q − p), where
{α1, ..., αl} is the set of the roots of the characteristic equation

αp −
p∑
j=1

αp−j p̃j = 0 with p̃j := lim
ξ→∞

Pjq/p(ξ)/ξjq/p.

By Theorem 1, we can also show a similar characterisation of Borel summability
of formal power series solutions of the Cauchy problem for the non-Kowalevskian
fractional linear partial differential equation (see Propositions 8–10).
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In the paper we use the following notation. The complex (resp. real) disc in Cn
(resp. Rn) with a centre at origin and a radius r > 0 is denoted by Dn(r) := {z ∈
Cn : |z| < r} (resp. Bn(r) := {x ∈ Rn : |x| < r}). To simplify notation we write
D(r) for n = 1. A sector in the universal covering space C̃ of C \ {0} is denoted by

S(d, ε,R) := {z ∈ C̃ : z = reiθ, d− ε/2 < θ < d+ ε/2, 0 < r < R}
for d ∈ R, ε > 0 and 0 < R ≤ +∞. In the case of R = +∞, we denote it briefly
by S(d, ε). A sector S′ is called a proper subsector of S(d, ε,R) if its closure in C̃ is
contained in S(d, ε,R).

By O(D) we denote the space of analytic functions on a domain D ⊆ Cn. The
Banach space of analytic functions on D(r), continuous on its closure and equipped
with the norm ‖ϕ‖r := max

|z|≤r
|ϕ(z)| is denoted by E(r).

The space of formal power series

û(t, z) =
∞∑
j=0

uj(z)tj with uj(z) ∈ E(r)

is denoted by E(r)[[t]]. Moreover, we set E[[t]] :=
⋃
r>0

E(r)[[t]].

We denote by Pm(∂t, ∂z) the principal part of the differential operator P (∂t, ∂z)
of order m. In other words, if P (∂t, ∂z) =

∑
j+k≤m

ajk∂
j
t ∂

k
z then Pm(∂t, ∂z) =∑

j+k=m

ajk∂
j
t ∂

k
z .

2. Gevrey formal power series and Borel summability

In this section we recall some fundamental facts about the Gevrey formal power
series and the Borel summability. For more details we refer the reader to [1].

Definition 1. A function u(t, z) ∈ O(S(d, ε) × D(r)) is of exponential growth of
order at most s > 0 as t → ∞ in S(d, ε) if and only if for any r1 ∈ (0, r) and any
ε1 ∈ (0, ε) there exist A,B <∞ satisfying

max
|z|≤r1

|u(t, z)| < AeB|t|
s

for every t ∈ S(d, ε1).

Analogously, a function ϕ(z) ∈ O(S(d, ε)) is of exponential growth of order at
most s > 0 as z → ∞ in S(d, ε) if and only if for any ε1 ∈ (0, ε) there exist
A,B <∞ such that

|ϕ(z)| < AeB|z|
s

for every z ∈ S(d, ε1).

Definition 2. Let k > 0. A formal power series

û(t, z) :=
∞∑
j=0

uj(z)tj with uj(z) ∈ E(r)(3)

is 1/k-Gevrey formal power series in t if its coefficients satisfy

max
|z|≤r

|uj(z)| ≤ ABjΓ(1 + j/k) for j = 0, 1, . . .

with some positive constants A and B.
The set of 1/k-Gevrey formal power series in t over E(r) is denoted by E(r)[[t]]1/k.

We also set E[[t]]1/k :=
⋃
r>0

E(r)[[t]]1/k.
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Definition 3. Let k > 0 and d ∈ R. A formal series û(t, z) ∈ E[[t]]1/k defined by
(3) is called k-summable in a direction d if and only if its k-Borel transform

ṽ(t, z) :=
∞∑
j=0

uj(z)
tj

Γ(1 + j/k)

is analytic in S(d, ε)×D(r) (for some ε > 0 and r > 0) and is of exponential growth
of order at most k as t → ∞ in S(d, ε). The k-sum of û(t, z) in the direction d is
represented by the Laplace transform of ṽ(t, z)

uθ(t, z) :=
1
tk

∫ ∞(θ)

0

e−(s/t)k

ṽ(s, z) dsk,

where the integration is taken over any ray eiθR+ := {reiθ : r ≥ 0} with θ ∈
(d− ε/2, d+ ε/2).

For every k > 0 and d ∈ R, according to the general theory of moment summa-
bility (see Section 6.5 in [1]), a formal series (3) is k-summable in the direction d if
and only if the same holds for the series

∞∑
j=0

uj(z)
j!Γ(1 + j/k)

Γ(1 + j(1 + 1/k))
tj .

Consequently, we obtain a characterisation of k-summability (analogous to Defini-
tion 3), if we replace the k-Borel transform by the modified k-Borel transform

v(t, z) := Bkû(t, z) :=
∞∑
j=0

uj(z)
j!tj

Γ(1 + j(1 + 1/k))

and the Laplace transform by the Ecalle acceleration operator

uθ(t, z) = t−k/(1+k)

∫ ∞(θ)

0

v(s, z)C1+1/k((s/t)k/(1+k)) dsk/(1+k)

with θ ∈ (d− ε, d+ ε). Here integration is taken over the ray eiθR+ and C1+1/k(ζ)
is defined by

C1+1/k(ζ) :=
1

2πi

∫
γ

u−1/(k+1)eu−ζu
k/(k+1)

du

with a path of integration γ as in the Hankel integral for the inverse Gamma
function (from ∞ along arg u = −π to some u0 < 0, then on the circle |u| = |u0| to
arg u = π, and back to ∞ along this ray).

Hence the k-summability can be characterised as follows

Proposition 1. Let k > 0 and d ∈ R. A formal series û(t, z) given by (3) is
k-summable in a direction d if and only if its modified k-Borel transform

Bkû(t, z) =
∞∑
j=0

uj(z)
j!tj

Γ(1 + j(1 + 1/k))

satisfies conditions:
(1) Bkû(t, z) ∈ O(D(r1)×D(r2)) (for some r1 > 0 and r2 > 0), i.e. û(t, z) ∈

E(r2)[[t]]1/k.
(2) Bkû(t, z) is analytically continued to S(d, ε) × D(r) (for some ε > 0 and

r > 0).
(3) Bkû(t, z) is of exponential growth of order at most k as t→∞ in S(d, ε).
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3. α-Analytic functions and α-derivatives

In this section we introduce some kind of fractional derivatives ∂αz of the for-
mal power series in C[[zα]]. These operators are the natural generalisation of the
derivative ∂z defined into the space C[[z]]. Namely, we have

Definition 4. Let α > 0. The linear operator on the space of formal power series

∂αz : C[[zα]]→ C[[zα]]

given by the formula

(4) ∂αz

( ∞∑
n=0

un
Γ(1 + αn)

zαn
)

=
∞∑
n=0

un+1

Γ(1 + αn)
zαn

is called an α-derivative.

Definition 5. We say that a function u(z) is α-analytic on D ⊂ C (or, generally,
on D ⊂ Cn) if and only if the function z 7→ u(z1/α) is analytic for every z1/α ∈ D.
The space of α-analytic functions will be denoted by Oα(D).

If the formal power series û(z) ∈ C[[zα]] is convergent in some complex neigh-
bourhood of origin, then its sum u(z) is the α-analytic function near the origin.
For such functions we have well defined α-derivative given by (4), which coincides
with the Caputo fractional derivative.

We may also define the α-Taylor series of u(z) ∈ Oα(D) by the formula

(5) u(z) =
∞∑
n=0

(∂αz )nu(0)
Γ(1 + αn)

zαn.

In the case of α-analytic functions, the role of the exponential function ez is
played by

eα(z) := Eα(zα) =
∞∑
n=0

zαn

Γ(1 + αn)
,

where Eα(z) denotes the Mittag-Leffler function. By the definition of eα(z) and by
the results on the Mittag-Leffler function (see [9]), we have

Proposition 2. The function eα(z) satisfies the following properties:
(1) eα(z) ∈ Oα(C) and there exists C <∞ such that |eα(z)| ≤ Ce|z| for every

z ∈ C,
(2) for every a ∈ C we have ∂αz eα(az) = aαeα(az) (in particular ∂αz eα(z) =

eα(z)),
(3) if α < 2 and arg z ∈ (π/2, 2π/α− π/2) then eα(z)→ 0 as z →∞.

Let us assume that α ∈ Q+. Since every q/p-analytic function is also 1/p-
analytic, without loss of generality we may take α = 1/p, where p ∈ N. Observe
that 1/p-analytic function is in fact an analytic function defined on the Riemann
surface of p

√
z. Hence we may find the integral representation

Lemma 1. Let ϕ(z) ∈ O1/p(D(r)). Then for every |z| < ε < r and k ∈ N we have

(∂1/p
z )kϕ(z) =

1
2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

0

ζk/pe1/p(zζ)e−wζ dζ dw

for θ ∈ (argw − π/2, argw + π/2), where
∮ p
|w|=ε denotes that we integrate p times

around the positively oriented circle of radius ε.
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Moreover, there exist % > 0 and A,B <∞ satisfying

sup
|z|<%

|(∂1/p
z )kϕ(z)| ≤ ABk/pΓ(1 + k/p) for k = 0, 1, ...

Proof. By the Cauchy integral formula on the Riemann surface of p
√
z we have

ϕ(0) =
1

2pπi

∮ p

|w|=ε

ϕ(w)
w

dw

and more generally for every n ∈ N

(∂1/p
z )nϕ(0) =

Γ(1 + n/p)
2pπi

∮ p

|w|=ε

ϕ(w)
wn/p+1

dw

=
1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

0

ζn/pe−wζ dζ dw

with θ ∈ (argw − π/2, argw + π/2).
Hence, by (5)

ϕ(z) =
∞∑
n=0

(∂1/p
z )nϕ(0)

Γ(1 + n/p)
zn/p =

1
2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

0

∞∑
n=0

(zζ)n/p

Γ(1 + n/p)
e−wζ dζ

=
1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

0

e1/p(zζ)e−wζ dζ.

The first part of the proof is finished by the observation that (∂1/p
z )ke1/p(zζ) =

ζk/pe1/p(zζ).
To show the second part, note that by Proposition 2∣∣∣ ∫ ∞(θ)

0

ζk/pe1/p(zζ)e−wζ dζ
∣∣∣ ≤ C

∫ ∞
0

ζk/pe(|z|−|w|)ζ dζ ≤ C
∫ ∞

0

ζk/pe−εζ/2 dζ

= C
Γ(1 + k/p)
(ε/2)k/p+1

.

for |z| < ε/2, |w| = ε and θ = argw. It means that for % := ε/2 we have

sup
|z|<%

|(∂1/p
z )kϕ(z)| ≤ C

2pπ

∮ p

|w|=ε
|ϕ(w)|Γ(1 + k/p)

(ε/2)k/p+1
dw ≤ ABk/pΓ(1 + k/p)

with some positive constants A,B <∞. �

4. Operators Bα,β

In this section we introduce the operators Bα,β with α, β > 0, which are related
to the modified k-Borel operators Bk. Using the operators Bα,β we can reduce
the question about summability to the study of the solution of the appropriate
Kowalevskaya type equation.

Definition 6. Let α, β > 0. We define a linear operator on the space of formal
power series

Bα,β : E[[tα]]→ E[[tβ ]]
by the formula

(6) Bα,β
(
û(t, z)

)
= Bα,β

( ∞∑
n=0

un(z)
Γ(1 + αn)

tαn
)

:=
∞∑
n=0

un(z)
Γ(1 + βn)

tβn.
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Observe that for any formal series û(t, z) ∈ E[[t]] and k > 0 holds

Bkû(t, z) = B1,sû(t1/s, z) with s = 1 + 1/k.

In particular, taking s = q/p and using the operator B1,q/p : E[[t]] → E[[tq/p]]
given by

B1,q/p
( ∞∑
j=0

un(z)
n!

tn
)

=
∞∑
n=0

un(z)
Γ(1 + nq/p)

tnq/p,

one can reformulate Proposition 1 as follows

Proposition 3. Let p, q ∈ N, p < q. Then the formal series û(t, z) ∈ E[[t]] is
p/(q−p)-summable in a direction d if and only if the function v(t, z) := B1,q/pû(t, z)
satisfies the following properties:

(1) z 7→ v(t, z) is analytic in some complex neighbourhood of origin,
(2) t→ v(t, z) is q/p-analytic in some complex neighbourhood of origin,
(3) t→ v(t, z) is q/p-analytically continued to infinity in directions (d+2kπ)p/q

(k = 0, ..., q − 1) with exponential growth of order q/(q − p).

The following properties of the operators Bα,β play crucial role in our study of
summability.

Proposition 4. Let α, β > 0 and û(t, z) ∈ E[[tα]]. Then operators Bα,β and
derivatives satisfy the following commutation formulas:

(1) Bα,β∂αt û(t, z) = ∂βt B
α,β û(t, z);

(2) Bα,β∂zû(t, z) = ∂zB
α,β û(t, z);

(3) Bα,βP (∂αt , ∂z)û(t, z) = P (∂βt , ∂z)Bα,β û(t, z) for any polynomial P (τ, ζ) :=
m∑
j=1

n∑
l=1

ajlτ
jζl with constant coefficients ajl ∈ C.

Proof. From (6) we see that

Bα,β(∂αt û(t, z)) = Bα,β
( ∞∑
n=0

un+1(z)
Γ(1 + αn)

tαn
)

=
∞∑
n=0

un+1(z)
Γ(1 + βn)

tβn

= ∂βt B
α,β(û(t, z))

and

Bα,β(∂zû(t, z)) =
∞∑
n=0

∂zun(z)
Γ(1 + βn)

tβn = ∂zB
α,β(û(t, z)).

Consequently

Bα,β(P (∂αt , ∂z)û(t, z)) = Bα,β
( m∑
j=1

n∑
l=1

ajl(∂αt )j∂lzû(t, z)
)

=
m∑
j=1

n∑
l=1

ajlB
α,β
(

(∂αt )j∂lzû(t, z)
)

=
m∑
j=1

n∑
l=1

ajl(∂
β
t )j∂lzB

α,β(û(t, z))

= P (∂βt , ∂z)B
α,β(û(t, z)).

�

By Proposition 4 we have
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Proposition 5. A formal series û(t, z) is a solution of the Cauchy problem (1) for
the non-Kowalevskian linear partial differential equation with constant coefficients
if and only if the formal series v̂(t, z) := B1,q/p(û(t, z)) satisfies the following frac-
tional equation

(∂1/p
t )qpv(t, z) =

p∑
j=1

(∂1/p
t )q(p−j)Pjq/p((∂1/p

z )p)v(t, z),(7)

(∂1/p
t )jv(0, z) = ϕn(z) for j = nq,

(∂1/p
t )jv(0, z) = 0 for j 6= nq, j < qp, n = 0, ..., p− 1.

5. The solution of fractional equation

In this section we consider the initial value problem to fractional equation

P (∂1/p
t , ∂1/p

z )v(t, z) = 0,(8)

(∂1/p
t )nv(0, z) = ϕn(z) ∈ O1/p(D(r)) for some r > 0 (n = 0, ...,m− 1),(9)

where

P (∂1/p
t , ∂1/p

z ) := (∂1/p
t )m −

m∑
j=1

(∂1/p
t )m−jPj(∂1/p

z )

with degPj(ξ) ≤ j and degPm(ξ) = m. We would like to find the relation between
the Cauchy data and solution. For this purpose we will use an integral represen-
tation of the solution of (8) with the initial data ϕn(z) given by the recurrence
relations

ϕ0(z) := ϕ(z), ϕn(z) :=
∑n
j=1 Pj(∂

1/p
z )ϕn−j(z) for n = 1, ...,m− 1,(10)

where ϕ(z) ∈ O1/p(D(r)). The construction of this integral representation is based
upon the results of Balser and Miyake [3]. This method is also similar to that
used in our previous paper [7], where the case of differential equations (p = 1) was
considered.

We start with the following version of the Cauchy-Kowalevskaya theorem

Lemma 2. The formal power series solution

(11) v̂(t, z) =
∞∑
n=0

vn(z)
tn/p

Γ(1 + n/p)

of (8) with the initial data (9) is convergent in some neighbourhood of origin.

Proof. By the principle of superposition of solutions of linear equations, we may
assume that the initial data satisfy (10). Note that coefficients vn(z) satisfy the
recurrence relation

vn(z) =
m∑
j=1

Pj(∂1/p
z )vn−j(z) for n = 1, 2, ...

with v−m+1(z) = ... = v−1(z) = 0 and v0(z) = ϕ(z). It means that

vn(z) = qn(∂1/p
z )ϕ(z) for n = 1, 2, ...,(12)
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where qn(ξ) is a solution of the difference equation

(13) qn(ξ) =
m∑
j=1

Pj(ξ)qn−j(ξ)

with the initial conditions

q0(ξ) = 1 and q−1(ξ) = ... = q−m+1(ξ) = 0.(14)

Observe that qn(ξ) is a polynomial of degree less than or equal to n, so qn(ξ) =∑n
k=0 qnkξ

k with some constant coefficients qnk.
Put Qn(ξ) :=

∑n
k=0 |qnk|ξk. Since Qn(ξ) is a polynomial of degree n, there exists

K > 0 such that

|Qn(ξ)| ≤ (K1/pξ)n for every n ∈ N and ξ > 1.(15)

By Lemma 1, there exist % > 0 and A,B <∞ satisfying

sup
|z|<%

|v̂n(z)| ≤
n∑
k=0

|qnk| sup
|z|<%

|(∂1/p
z )kϕ(z)| ≤

n∑
k=0

|qnk|ABk/pΓ(1 + k/p)

≤ AΓ(1 + n/p)Qn(B1/p) ≤ A(KB)n/pΓ(1 + n/p).

Therefore, the formal series (11) is convergent for |t| < (KB)−1 and |z| < %. �

Lemma 3. Let s > 1, d ∈ R and (t, z) ∈ D2(r) (for some r > 0). Suppose that
v(t, z) is a solution of (8) with the initial data (10) and that {λ1, ..., λl} is the set
of the roots of the characteristic equation

Pm(λ, 1) = λm −
m∑
j=1

λm−jpj = 0 with pj := lim
ξ→∞

Pj(ξ)/ξj .

Then v(t, z) =
∑l
j=1 vj(t, z), where vj(t, z) ∈ O1/p(D2(r)) satisfy the following

property: if ϕ(z) ∈ O1/p(S(d + arg λj , δ̃)) (for some δ̃ > 0) with an exponential
growth of order s in infinity then vj(t, z) ∈ O1/p(S(d, δ) × D(r)) (for some δ > 0
and r > 0) with the same exponential growth as t→∞.

Proof. By Lemma 2, for sufficiently small t and z, the power series (11) is con-
vergent. Hence, using (12) and applying Lemma 1, one can choose ε > 0 such
that

(16) v(t, z) =
∞∑
n=0

tn/p

Γ(1 + n/p)

n∑
k=0

qnk(∂1/p
z )kϕ(z) =

1
2pπi

∮ p

|w|=ε
ϕ(w)k(t, w, z) dw,

where the kernel function is defined by

k(t, w, z) :=
∞∑
n=0

tn/p

Γ(1 + n/p)

n∑
k=0

qnk

∫ ∞(θ)

0

ζk/pe1/p(zζ)e−wζ dζ

=
∫ ∞(θ)

0

q(t, ζ)e1/p(zζ)e−wζ dζ

with θ = − argw and

q(t, ζ) :=
∞∑
n=0

tn/p

Γ(1 + n/p)

n∑
k=0

qnkζ
k/p =

∞∑
n=0

tn/p

Γ(1 + n/p)
qn(ζ1/p).
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By (15) we may estimate

|q(t, ζ)| ≤
∞∑
n=0

|t|n/p(K|ζ|)n/p

Γ(1 + n/p)
= e1/p(K|t||ζ|).

Hence, by Proposition 2, q(t, ζ) ∈ O1/p(C2) is of exponential order 1. Moreover,
for |z| < |w| and θ = − argw we have∣∣∣∣ ∫ ∞(θ)

0

q(t, ζ)e1/p(zζ)e−wζ dζ
∣∣∣∣ <∞ for K|t|+ |z| < |w|.

It means that under above conditions on w and z, the function t → k(t, w, z) is
1/p-analytic on the set {t ∈ C : K|t|+ |z| < |w|}.

On the other hand, using the characteristic equation

(17) P (λ, ξ) = λm −
m∑
j=1

Pj(ξ)λm−j = 0

one can find the solution of (13). We may assume that for sufficiently large |ξ|,
say |ξ| > |ζ1/p

0 |, the characteristic equation (17) has exactly l distinct holomorphic
solutions λ1(ξ), ..., λl(ξ) of multiplicity m1, ...,ml (

∑l
j=1mj = m). Since Pm(ξ) 6=

0, we conclude that λj(ξ) 6≡ 0. Moreover, degPj(ξ) ≤ j and degPm(ξ) = m, which
gives

(18) lim
ξ→∞

λj(ξ)/ξ = λj ∈ C \ {0},

where λj are the roots of the characteristic equation

Pm(λ, 1) = λm −
m∑
j=1

pjλ
m−j = 0 with pj := lim

ξ→∞
Pj(ξ)/ξj .(19)

Note that λj are not necessarily the distinct roots of (19). From (18) we can also
assume that for |ξ| > |ζ1/p

0 | the functions λj(ξ) are invertible, where the inverse
functions λ−1

j (τ) are the roots of the characteristic equation P (τ, λ−1) = 0.
Using the roots of the characteristic equation (17) one can find m linear inde-

pendent solutions of the difference equation (13)

λnj (ξ), nλnj (ξ), ..., nmj−1λnj (ξ) for j = 1, ..., l.

Hence for |ζ| > |ζ0| and ζ1/p = ξ, the solution of (13) is given by

(20) qn(ζ1/p) =
l∑

j=1

mj−1∑
k=0

cjk(ζ1/p)nkλnj (ζ1/p).

We can calculate the coefficients cjk(ζ1/p) using the initial conditions (14) and
solving the system of linear equations. Observe that for sufficiently large |ζ|, say
|ζ| > |ζ0|, the coefficients cjk(ζ1/p) are holomorphic with polynomial growth as
|ζ| → ∞.

Moreover, since

ntn/p = ((∂1/p
t )pt− 1)ptn/p =: r(t, ∂1/p

t )tn/p,
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we have

q(t, ζ) =
l∑

j=1

mj−1∑
k=0

cjk(ζ1/p)rk(t, ∂1/p
t )e1/p(tλ

p
j (ζ

1/p)) for |ζ| > |ζ0|.

Hence

k(t, w, z) =
∫ ζ0

0

q(t, ζ)e1/p(zζ)e−wζ dζ

+
l∑

j=1

mj−1∑
k=0

∫ ∞(θ)

ζ0

cjk(ζ1/p)(pt(∂1/p
t )p)ke1/p(tλ

p
j (ζ

1/p))e1/p(zζ)e−wζ dζ.

Fix w, z ∈ C such that |z| is small relative to |w| = ε. It means that |w| − |z| ≈ |w|
and arg(w− z) ≈ argw. To show analytic continuation of k(t, w, z) with respect to
t, we will consider the function

aj(t, z, w) =
∫ ∞(θ)

ζ0

e1/p(tλ
p
j (ζ

1/p))e1/p(zζ)e−wζ dζ.(21)

To estimate aj(t, w, z) for j = 1, ..., l, observe that by (15), (18) and (20) we
have |λj | < K1/p and consequently the function t 7→ aj(t, w, z) is analytic on
{t ∈ C : |t| < |w|/K} for j = 1, ..., l. Moreover, by (18), for sufficiently large ζ we
have arg λpj (ζ

1/p) ≈ arg ζ + p arg λj . Now we want to replace a direction θ in (21)
by θj satisfying:

(1) arg t+ p arg λj + θj ∈ (π2 , 2pπ−
π
2 ) modulo 2pπ (in this case by Proposition

2 we have e1/p(tλ
p
j (ζ

1/p))→ 0 as ζ →∞, arg ζ = θj),
(2) argw + θj ∈ (−π2 ,

π
2 ) modulo 2π (in this case there exists ε > 0 such that

|e1/p(zζ)e−wζ | ≤ e−ε|ζ| as ζ →∞, arg ζ = θj).
Observe that these requirements may be together satisfied under the condition that
arg t + p arg λj 6= arg z modulo 2pπ. Therefore the function t 7→ aj(t, w, z) is 1/p-
analytically continued to {t ∈ C̃ : arg t 6= argw − p arg λj modulo 2pπ} with
exponential growth of order 1. It means that also the function

t→ kj(t, w, z) :=
mj−1∑
k=0

∫ ∞(θj)

ζ0

cjk(ζ1/p)rk(t, ∂1/p
t )e1/p(tλ

p
j (ζ

1/p))e1/p(zζ)e−wζ dζ

is 1/p-analytically continued to the same sector with exponential growth of order 1.
By the Cauchy theorem

1
2pπi

∮ p

|w|=ε
ϕ(w)

∫ ζ0

0

q(t, ζ)e1/p(zζ)e−wζ dζ dw = 0.

Hence, by (16), for t and z close to origin, |z| < ε and sufficiently small ε > 0, the
solution of (8) with the initial conditions (10) satisfies

v(t, z) =
1

2pπi

∮ p

|w|=ε
ϕ(w)k(t, w, z) dw =

l∑
j=1

1
2pπi

∮ p

|w|=ε
ϕ(w)kj(t, w, z) dw

=
l∑

j=1

vj(t, z),
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where

vj(t, z) :=
1

2pπi

∮ p

|w|=ε
ϕ(w)×

×
mj−1∑
k=0

∫ ∞(θj)

ζ0

cjk(ζ1/p)rk(t, ∂1/p
t )e1/p(tλ

p
j (ζ

1/p))e1/p(zζ)e−wζ dζ dw.(22)

To estimate vj(t, z), fix z such close to the origin, that arg(w− z) ≈ argw along
a circle |w| = ε. Repeating the proof of Theorem 3.1 in [3], we split this circle into
2 arcs γ and γ̃, where γ extends between points of argument d+ p arg λj − δ̃/3 and
d + p arg λj + δ̃/3. Finally, since ϕ(z) ∈ O1/p(S(d + p arg λj , δ̃)), we may deform
γ into a path γR along the ray argw = d + arg λj − δ̃/3 to a point with modulus
R (which can be chosen arbitrarily large), then along the circle |w| = R to the ray
argw = d+ arg λj + δ̃/3 and back along this ray to the original circle. So, we have

vj(t, z) =
1

2pπi

∮ p

|w|=ε
ϕ(w)kj(t, w, z) dw

=
1

2pπi

∮
γR

ϕ(w)kj(t, w, z) dw +
1

2pπi

∮
γ̃

ϕ(w)kj(t, w, z) dw.

Note that R may be chosen arbitrarily large and the function t 7→ kj(t, w, z) is
analytic on |t| < |w|/K, where |z| is small relative to |w|. Hence, one can find δ > 0
such that the first integral on the right-hand side is 1/p-analytically continued to
S(d, δ) ×D(r). Estimating this integral we see that it is of exponential growth of
order at most s as t→∞.

Moreover, since the function t 7→ kj(t, w, z) is analytically continued into the
region {t ∈ C̃ : arg t 6= argw − p arg λj modulo 2pπ}, we see that the second
integral on the right-hand side is also 1/p-analytically continued to S(d, δ)×D(r)
with appropriate estimation as t → ∞. It means that vj(t, z) is 1/p-analytically
continued to S(d, δ)×D(r) with exponential growth of order s as t→∞. �

Now, in a similar way to [7], we introduce some kind of the pseudodifferential
operators connected with 1/p-derivative. To this end, let λ(ζ1/p) be a non-vanishing
1/p-analytic function for |ζ| ≥ |ζ0| with a polynomial growth in infinity. Moreover,
we assume that ϕ(w) ∈ O1/p(D(r̃)) (with some r̃ > 0), f(ζ, t, w) ∈ O1/p(C×D(r)×
D(r̃)) (with some r > 0 and r̃ > 0) and a function

v(t, z) =
1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

f(ζ, t, w)e1/p(zζ) dζ dw

is well-defined and 1/p-analytic in some complex neighbourhood of origin. Then
we can define a pseudodifferential operator λ(∂1/p

z ) acting on v(t, z) as follows

(23) λ(∂1/p
z )v(t, z) :=

1
2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

λ(ζ1/p)f(ζ, t, w)e1/p(zζ) dζ dw.

Remark 1. Let s > 1. Observe that v(t, z) ∈ O1/p(D(r)×S(d, δ)) with exponential
growth of order s if and only if λ(∂1/p

z )v(t, z) has the same properties.

Remark 2. Using the pseudodifferential operators we can write

P (∂1/p
t , ∂1/p

z )v(t, z) = (∂1/p
t − λ1(∂1/p

z ))m1 ...(∂1/p
t − λl(∂1/p

z ))mlv(t, z) = 0.
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We show

Lemma 4. The functions vj(t, z) given by (22) are the solutions of pseudodiffer-
ential equations

(∂1/p
t − λj(∂1/p

z ))mjvj(t, z) = 0 for j = 1, ..., l.

Proof. By (22) and (23) we have

(∂1/p
t − λj(∂1/p

z ))mjvj(t, z)

=
1

2pπi

∮
|w|=ε

ϕ(w)
∫ ∞(θj)

ζ0

mj−1∑
k=0

cjk(ζ1/p)bjk(t, ζ)e1/p(zζ)e−wζ dζ dw,

where

bjk(t, ζ) = (∂1/p
t − λj(ζ1/p))mj

∞∑
n=0

nkλnj (ζ1/p)tn/p

Γ(1 + n/p)
.

Next, for any fixed k ∈ N0 we define the family of polynomials

Pk,0(n) := nk, Pk,j(n) := Pk,j−1(n+ 1)− Pk,j−1(n) for j ∈ N.

Observe that degPk,j(ξ) = max{k − j,−1}, where degPk,j(ξ) = −1 if and only if
Pk,j(ξ) ≡ 0.

Using these polynomials we can write

bjk(t, ζ) = (∂1/p
t − λj(ζ1/p))mj

∞∑
n=0

Pk,0(n)λnj (ζ1/p)tn/p

Γ(1 + n/p)
= ...

= (∂1/p
t − λj(ζ1/p))mj−k−1

∞∑
n=0

Pk,k+1(n)λn+k
j (ζ1/p)tn/p

Γ(1 + n/p)
= 0.

�

Lemma 5. Let v(t, z) ∈ O1/p(D2(r)) with some r > 0. Then v(t, z) satisfies the
pseudodifferential equation

(24)
(
∂

1/p
t − λj(∂1/p

z )
)
v(t, z) = 0

if and only if v(t, z) is a solution of

(25)
(
∂1/p
z − λ−1

j (∂1/p
t )

)
v(t, z) = 0.

Proof. Since the equations (24) and (25) are symmetric, it is sufficient to show
one-way implication. So, let us assume that v(t, z) is a solution of (24). Then

v(t, z) =
∞∑
n=0

λnj (∂1/p
z )ϕ(z)

Γ(1 + n/p)
tn/p with ϕ(z) := v(0, z) ∈ O1/p(D(r)).(26)

Since

λj(∂1/p
z )ϕ(z) =

1
2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

λj(ζ1/p)e1/p(zζ)e−wζ dζ dw,
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by (26) we have

v(t, z) =
1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

∞∑
n=0

λnj (ζ1/p)tn/p

Γ(1 + n/p)
e1/p(zζ)e−wζ dζ dw

=
1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

e1/p(λ
p
j (ζ

1/p)t)e1/p(zζ)e−wζ dζ dw.

Using the substitution τ := λpj (ζ
1/p) we obtain

v(t, z) =
1

2pπi

∮ p

|w|=ε
ϕ(w)×

×
∫ ∞(θ̃)

τ0

e1/p(τt)e1/p(zλ
−p
j (τ1/p))e−wλ

−p
j (τ1/p) dλ−pj (τ1/p) dw.

with θ̃j = θj + p arg λj . Hence we have

∂1/p
z v(t, z) =

1
2pπi

∮ p

|w|=ε
ϕ(w)×

×
∫ ∞(θ̃)

τ0

λ−1
j (τ1/p)e1/p(τt)e1/p(zλ

−p
j (τ1/p))e−wλ

−p
j (τ1/p) dλ−pj (τ1/p) dw

= λ−1
j (∂1/p

z )v(t, z).

�

Lemma 6. Let v(t, z) ∈ O1/p(D2(r)) with some r > 0. Then for every n ∈ N,
v(t, z) satisfies the pseudodifferential equation(

∂
1/p
t − λj(∂1/p

z )
)n
v(t, z) = 0

if and only if v(t, z) is a solution of(
∂1/p
z − λ−1

j (∂1/p
t )

)n
v(t, z) = 0.

Proof. The proof is by induction on n. By Lemma 5, the statement holds for n = 1.
So, we may assume that assertion holds for n = k. We have

(∂1/p
t − λj(∂1/p

z ))k+1v(t, z) = 0⇐⇒

(∂1/p
t − λj(∂1/p

z ))ṽ(t, z) = 0 with ṽ(t, z) := (∂1/p
t − λj(∂1/p

z ))kv(t, z)
by Lemma 5⇐⇒ (∂1/p

z − λ−1
j (∂1/p

t ))ṽ(t, z) = 0⇐⇒

(∂1/p
t − λj(∂1/p

z ))kv(t, z) = 0 with v(t, z) := (∂1/p
z − λ−1

j (∂1/p
t ))v(t, z)

by the inductive assumption⇐⇒ (∂1/p
z − λ−1

j (∂1/p
t ))kv(t, z) = 0⇐⇒

(∂1/p
z − λ−1

j (∂1/p
t ))k+1v(t, z) = 0.

�

Theorem 1. Let s > 1 and d ∈ R. Suppose that v(t, z) is a solution of (8) with the
initial data (9). Moreover, suppose that {λ1, ..., λl} is the set of the characteristic
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roots of

Pm(λ, 1) = λm −
m∑
j=1

λm−jpj = 0 with pj := lim
ξ→∞

Pj(ξ)/ξj .

Then v(t, z) ∈ O1/p(S(d, δ) × D(r)) (for some δ > 0 and r > 0) with exponential
growth of order s as t→∞ if and only if for every j = 1, ..., l and n = 0, ...,m− 1,
ϕn(z) ∈ O1/p(S(d+p arg λj , δ̃)) (with some δ̃ > 0) with exponential growth of order
s as z →∞.

Proof. (⇐=) Without loss of generality we may assume that the initial data satisfy
(10) for ϕ(z) ∈ O1/p(S(d+p arg λj , δ̃)) with exponential growth of order s as z →∞.
By Lemma 3, v(t, z) =

∑l
j=1 vj(t, z), where vj(t, z) ∈ O1/p(S(d, δ) × D(r)) with

exponential growth of order s as t→∞. It means that also v(t, z) ∈ O1/p(S(d, δ)×
D(r)) with the same growth condition.

(=⇒) If v(t, z) ∈ O1/p(S(d, δ) ×D(r)) is a solution of (8) and is of exponential
growth of order s, then v(t, z) also satisfies the following Cauchy problem in z-
direction

P (∂1/p
t , ∂1/p

z )v(t, z) = 0, (∂1/p
t )nv(t, 0) = ψn(t) for n = 0, ...,m− 1,

where ψn(t) ∈ O1/p(S(d, δ)) with exponential growth of order s and

P (∂1/p
t , ∂1/p

z ) = (∂1/p
t )m −

m∑
j=1

(∂1/p
t )m−jPj(∂1/p

z )

= c((∂1/p
z )m −

m∑
j=1

(∂1/p
z )m−jP̃j(∂

1/p
t ))

with some polynomials P̃j(ξ) satisfying deg P̃j(ξ) ≤ j and deg P̃m(ξ) = m.
As in a previous case, we may put

ψ0(t) := ψ(t) ∈ Os1/p(S(d, δ)), ψn(t) :=
∑n
j=1 P̃j(∂

1/p
t )ψn−j(t) (n = 1, ...,m− 1)

for some ψ(t) ∈ O1/p(S(d, δ)) with exponential growth of order s as t→∞.
Interchanging the roles of coordinates (t, z) and repeating the proof of Lemma 3

we obtain

(27) v(t, z) =
l∑

j=1

ṽj(t, z),

where

ṽj(t, z) =
1

2pπi

∮ p

|s|=ε
ψ(s)×

×
∫ ∞(θ̃j)

τ0

mj−1∑
k=0

c̃jk(τ1/p)rk(z, ∂1/p
z )e1/p(zλ

−p
j (τ1/p))e1/p(tτ)e−sτ dτ ds.

Moreover, since

d− arg( lim
τ→∞

λ−pj (τ1/p)/τ) = d− arg λ−pj = d+ p arg λj ,

we conclude that ṽj(t, z) ∈ O1/p(D(r̃)×S(d+p arg λj , δ̃)) with exponential growth
of order s as z →∞.
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By Lemmas 4 and 6, ṽj(t, z) satisfies the formula

(∂1/p
t − λj(∂1/p

z ))mj ṽj(t, z) = 0 for j = 1, ..., l.(28)

In a similar way to [4] we define for j = 1, ..., l

Pj(∂
1/p
t , ∂1/p

z ) := (∂1/p
t − λj(∂1/p

z ))mj−1
l∏

k=1, k 6=j

(∂1/p
t − λk(∂1/p

z ))mk

and
vj(t, z) := Pj(∂

1/p
t , ∂1/p

z )v(t, z).
Observe that by (27) and (28)

vj(t, z) = Pj(∂
1/p
t , ∂1/p

z )ṽj(t, z)

and, in consequence, vj(t, z) ∈ O1/p(D(r̃) × S(d + p arg λj , δ̃)) with exponential
growth of order s as z →∞.

Without loss of generality we may assume that

(∂1/p
t )nv(0, z) = 0 for n < m− 1, (∂1/p

t )m−1v(0, z) = ϕ(z).

Hence also vj(0, z) = ϕ(z) and we conclude that ϕ(z) ∈ O1/p(S(d+ arg λj , δ̃)) with
exponential growth of order s for j = 1, ..., l. �

6. Summability of solutions to linear pde with constant coefficients

In this section we apply Theorem 1 to show the Borel summability properties
for linear pde with constant coefficients given by (1).

By Theorem 1 we have

Proposition 6. Let v(t, z) be the solution of the initial value problem (7) and let
s = q/(q − p). Then v(t, z) satisfies the properties 1.–3. in Proposition 3 if and
only if the Cauchy data ϕn(z) ∈ O(S((d + argαj + 2kπ)p/q, δ̃)) (for some δ̃ > 0)
with exponential growth of order s for n = 0, ..., p − 1, j = 1, ..., l, k = 0, ..., q − 1,
where {α1, ..., αl} is the set of the characteristic roots satisfying

αp −
p∑
j=1

αp−j p̃j = 0 with p̃j := lim
ζ→∞

Pjq/p(ζ)/ζjq/p.(29)

Proof. (=⇒) Observe that v(t, z) ∈ O1/p(S((d + 2kπ)p/q, δ) × D(r)) (for some
δ, r > 0) with exponential growth of order s as t → ∞. According to Theorem 1,
ϕn(z) is 1/p-analytic on S((d+2kπ)p/q+p arg λj , δ̃)) (for some δ̃) with exponential
growth of order s for n = 0, ..., p−1, k = 0, ..., q−1 and j = 1, ..., l̃, where {λ1, ..., λl̃}
is the set of the roots of the characteristic equation

(30) λpq −
p∑
j=1

λ(p−j)qp̃j = 0.

Note that λ is the root of (30) if and only if α = λq satisfies (29). It means
that ϕn(z) ∈ O1/p(S((d + argαj + 2πk)p/q, δ̃)) with exponential growth of order
s. Moreover, since ϕn(z) ∈ O(D(r̃)) (for some r̃ > 0), we have also ϕn(z) ∈
O(S((d+ argαj + 2πk)p/q, δ̃)) for n = 0, ..., p− 1, k = 0, ..., q − 1 and j = 1, ..., l.

(⇐=) If ϕn(z) ∈ O1/p(S((d + 2πk + argαj)p/q, δ̃)) with exponential growth
of order s then also ϕn(z) ∈ O1/p(S((d + 2πk)p/q + p arg λj , δ̃)) with the same
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growth (n = 0, ..., p − 1, k = 0, ..., q − 1, j = 1, ..., l̃), where {λ1, ..., λl̃} is the
set of the characteristic roots of (30). Therefore by Theorem 1 we have v(t, z) ∈
O1/p(S(d + 2πk)p/q, δ) × D(r)) with exponential growth of order s as t → ∞.
Moreover, since ϕn(z) ∈ O(D(r̃)), the Cauchy data in (7) are non-vanishing only
for multiplicity of (∂1/p

t )q-derivative of v(0, z) and the linear operator P (∂1/p
t , ∂

1/p
z )

in (7) depends only on (∂1/p
t )q and (∂1/p

z )p we obtain the desired conclusion. �

Combining Propositions 3, 5 and 6 we have

Theorem 2 (Main theorem). Let û(t, z) be a formal power series solution of the
initial value problem

∂pt u(t, z) =
p∑
j=1

∂p−jt Pjq/p(∂z)u(t, z), ∂nt u(0, z) = ϕn(z) for n = 0, ..., p− 1,

where t, z ∈ C, p, q ∈ N, p < q, degPjq/p(ξ) ≤ jq/p (j = 1, . . . , p), degPq(ξ) = q
and ϕn(z) are analytic in a complex neighbourhood of the origin.

Then the formal series û(t, z) is p/(q − p)-summable in a direction d if and
only if the Cauchy data ϕn(z) are analytically continued to the set S((d+ argαj +
2πk)p/q, δ̃) (with some δ̃ > 0) for k = 0, ..., q − 1, j = 1, ..., l and this analytic
continuation is of exponential growth of order q/(q−p) as z →∞, where {α1, ..., αl}
is the set of the roots satisfying the characteristic equation (29).

7. Summability of solution to fractional linear pde with constant
coefficients

In this section we will consider the non-Kowalevskian fractional linear pde in
two complex variables with constant coefficients. As in the previous section, we
apply Theorem 1 to study the summability property for formal solutions of these
equations. First, we shall extend the definition of summability to the wider class
of formal power series.

Definition 7. Let γ > 0. The Banach space of γ-analytic functions on D(r),
continuous on its closure and equipped with the norm ‖ϕ‖r := max

|z|≤r
|ϕ(z)| is denoted

by Eγ(r).
The space of formal power series

û(t, z) =
∞∑
j=0

uj(z)tj with uj(z) ∈ Eγ(r)

is denoted by Eγ(r)[[t]]. Moreover, we set Eγ [[t]] :=
⋃
r>0

Eγ(r)[[t]].

Definition 8. Let α, γ > 0, k > 0 and d ∈ R. We say that û(t, z) ∈ Eγ [[tα]] is
k-summable in directions d+ 2jπ/α (j ∈ Z) if and only if the formal power series
ŵ(t, z) := û(t1/α, z) is k/α-summable with respect to t in a direction αd.

Let us suppose that û(t, z) =
∑∞
j=0

uj(z)
Γ(1+αj) t

αj . Then ŵ(t, z) =
∑∞
j=0

uj(z)
Γ(1+αj) t

j .

Using k/α-Borel transform of ŵ(t, z) we obtain the series
∑∞
j=0

uj(z)
Γ(1+αj)Γ(1+αj/k) t

j .
By the theory of moment summability, we may replace this one by the following
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α-modified k/α-Borel transform of ŵ(t, z), which is defined by

Bk/αα ŵ(t, z) :=
∞∑
j=0

uj(z)
Γ(1 + jα(1 + 1/k))

tj .

Observe that this modified transform is connected with the operator Bα,α(1+1/k)

by the formula
Bk/αα ŵ(t, z) = Bα,α(1+1/k)û(tk/(α(k+1)), z).

It means that we have the following characterisation of k-summability

Proposition 7. The formal series û(t, z) ∈ Eγ [[tα]] is k-summable in directions
d + 2jπ/α (j ∈ Z) if and only if the function v(t, z) := Bα,α(1+1/k)û(t, z) satisfies
the following conditions:

(1) z 7→ v(t, z) is γ-analytic in some complex neighbourhood of origin in C,
(2) t 7→ v(t, z) is α(1+1/k)-analytic in some complex neighbourhood of origin in

C and is α(1 + 1/k)-analytically continued to infinity in directions d+2jπ/α
1+1/k

(j ∈ Z) with exponential growth of order k + 1.

Now, we can prove

Proposition 8. Let α ∈ (0, 1), m ∈ N and û(t, z) be a formal power series solution
of the Cauchy problem

(∂αt )mu(t, z) =
m∑
j=1

(∂αt )m−jPj(∂z)u(t, z), (∂αt )nu(0, z) = ϕn(z) n = 0, ...,m− 1,

where degPj(ξ) ≤ j, degPm(ξ) = m and ϕn(z) are analytic in some complex
neighbourhood of origin. Then û(t, z) is α/(1−α)-summable in directions d+2jπ/α
(j ∈ Z) if and only if ϕn(z) are analytically continued in directions αd + arg λ
with exponential growth of order 1/(1− α) for every λ satisfying the characteristic
equation

λm −
m∑
j=1

λm−jpj = 0 with pj := lim
ξ→∞

Pj(ξ)/ξj .(31)

Proof. By Proposition 7, û(t, z) ∈ E[[tα]] is α/(1 − α)-summable in directions d +
2jπ/α if and only if the function v(t, z) := Bα,1û(t, z) ∈ O(S(αd, δ) × D(r)) (for
some δ > 0 and r > 0) with exponential growth of order 1/(1 − α) as t → ∞. By
Proposition 4, v(t, z) is a solution of the Cauchy problem

∂mt v(t, z) =
m∑
j=1

∂m−jt Pj(∂z)v(t, z), ∂nt v(0, z) = ϕn(z) n = 0, ...,m− 1.

By Theorem 1, v(t, z) ∈ O(S(αd, δ) × D(r)) (for some δ > 0 and r > 0) with
exponential growth of order 1/(1 − α) as t → ∞ if and only if ϕn(z) ∈ O(S(αd +
arg λj , δ̃)) (with some δ̃ > 0) for every n = 0, ...,m − 1 and j = 1, ..., l, where
{λ1, ..., λl} is the set of the characteristic roots of (31) and ϕn(z) is of exponential
growth of order 1/(1− α). �

Corollary 1. Let β ∈ (0, 2). The formal solution û(t, z) of the fractional wave-
diffusion equation

∂βt u(t, z) = ∂2
zu(t, z), u(0, z) = ϕ(z) ∈ O(D(r)) with some r > 0
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is β/(2 − β)-summable in directions d + 2jπ/β (j ∈ Z) if and only if ϕ(z) ∈
O
(
S(βd/2, δ) ∪ S(βd/2 + π, δ)

)
(for some δ > 0) with exponential growth of order

2/(2− β).

Proof. It is sufficient to apply Proposition 8 with α = β/2, m = 2, P1(ξ) = 0,
P2(ξ) = ξ2, ϕ0(z) = ϕ(z) and ϕ1(z) = 0. Observe that λ1 = 1 and λ2 = −1 are the
roots of the characteristic equation. �

Moreover, in a similar way to [6] one can generalise this result to the n-dimen-
sional diffusion-wave equation (n > 1) as follows

Corollary 2. Let β ∈ (0, 2), ∆z := ∂2
z1 + ... + ∂2

zn
. The formal solution û(t, z) of

the fractional wave-diffusion equation

∂βt u(t, z) = ∆zu(t, z), u(0, z) = ϕ(z) ∈ O(Dn(r)) with some r > 0

is β/(2− β)-summable in directions d+ 2jπ/β (j ∈ Z) if and only if the function

Φn(t, z) :=

{ ∫
∂Bn(1)

ϕ(z + tx) dS(x) if n is odd∫
Bn(1)

ϕ(z+tx) dx√
1−|x|2

if n is even

is analytically continued to infinity in some sectors in directions βd/2 and βd/2+π
(with respect to t) and to some ball with a centre at origin (with respect to z) and
this continuation is of exponential growth of order at most 2/(2− β) as t→∞.

Proof. By Proposition 7, û(t, z) ∈ E[[tβ ]] is β/(2 − β)-summable in directions
d + 2jπ/β (j ∈ Z) if and only if the function v(t, z) := Bβ,2u(t, z) is analyti-
cally continued to (S(βd/2, δ) ∪ S(βd/2 + π, δ))×Dn(r̃)) (for some δ, r̃ > 0) with
exponential growth of order 2/(2− β) as t→∞.

On the other hand, v(t, z) is a solution of the wave equation

∂2
t v(t, z) = ∆zv(t, z), v(0, z) = ϕ(z), vt(0, z) = 0.

The assertion follows by the generalisation of the Kirchhoff and Poisson formula for
the solution of the wave equation. �

We can also apply the similar methods to the fractional equation with respect
to z. Namely, we have

Proposition 9. Let m, p, q ∈ N, p > q and û(t, z) be a formal power series solution
of the Cauchy problem

(∂1/p
t )mu(t, z) =

m∑
j=1

(∂1/p
t )m−jPj(∂1/q

z )u(t, z),

(∂1/p
t )nu(0, z) = ϕn(z) for n = 0, ...,m− 1,

where degPj(ξ) ≤ j, degPm(ξ) = m and ϕn(z) are 1/q-analytic in some complex
neighbourhood of origin. Then û(t, z) is q/(p− q)-summable in a direction d if and
only if ϕn(z) are 1/q-analytically continued in directions q(d/p+ arg λ) with expo-
nential growth of order p/(p− q) for every λ satisfying the characteristic equation
(31).

Proof. We repeat the proof of Proposition 8 with v(t, z) := B1/p,1/qû(t, z). �
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Proposition 10. Let q ∈ N and α ∈ (0, 1/q), m ∈ N and û(t, z) be a formal power
series solution of the Cauchy problem

(∂αt )mu(t, z) =
m∑
j=1

(∂αt )m−jPj(∂1/q
z )u(t, z),

(∂αt )nu(0, z) = ϕn(z) for n = 0, ...,m− 1,

where degPj(ξ) ≤ j, degPm(ξ) = m and ϕn(z) are 1/q-analytic in some complex
neighbourhood of origin. Then û(t, z) is qα/(1 − qα)-summable in directions d +
2jπ/α (j ∈ Z) if and only if ϕn(z) are 1/q-analytically continued in directions
q(αd+ arg λ) with exponential growth of order 1/(1− qα) for every λ satisfying the
characteristic equation (31).

Proof. As in a previous case, we repeat the proof of Proposition 8 with v(t, z) :=
Bα,1/qû(t, z). �

References

1. W. Balser, Formal power series and linear systems of meromorphic ordinary differential equa-

tions, Springer-Verlag, New York, 2000.

2. , Summability of formal power-series solutions of partial differential equations with
constant coefficients, Journal of Mathematical Sciences 124 (2004), no. 4, 5085–5097.

3. W. Balser and M. Miyake, Summability of formal solutions of certain partial differential equa-
tions, Acta Sci. Math. (Szeged) 65 (1999), 543–551.

4. K. Ichinobe, Integral representation for Borel sum of divergent solution to a certain non-

Kovalevski type equation, Publ. RIMS, Kyoto Univ. 39 (2003), 657–693.
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