SUMMABILITY AND FRACTIONAL LINEAR PARTIAL
DIFFERENTIAL EQUATIONS

SLAWOMIR MICHALIK

ABSTRACT. We consider the Cauchy problem for the Kowalevskaya type frac-
tional linear partial differential equations in two complex variables with con-
stant coefficients. We show that solution is analytically continued in some
directions with exponential growth if and only if the similar properties sat-
isfy the Cauchy data. Applying this result we study the summability of formal
power series solution of a Cauchy problem for general non-Kowalevskian linear
partial differential equations in normal form with constant coefficients. We ob-
tain the necessary and sufficient conditions for the Borel summability in terms
of analytic continuation with an appropriate growth condition of the Cauchy
data. Moreover, we show the similar characterisation of Borel summability in
the case of non-Kowalevskian fractional equations.

1. INTRODUCTION

In 1999 Lutz, Miyake and Schéfke [5] showed the first result in the theory of
summability of formal power series solutions of partial differential equations. They
proved that the formal solution to the Cauchy problem for the 1-dimensional ho-
mogeneous complex heat equation is 1-summable in a direction d if and only if
the Cauchy data ¢(z) can be analytically continued to infinity in some sectors in
directions d/2 and d/2 + 7 and this continuation is of exponential growth of order
at most 2.

This characterisation was generalised to the equation 8Yu—8%u = 0 (with p < q)
by M. Miyake [8], to the quasi-homogeneous equations by K. Ichinobe [4] and to
some linear partial differential equations by S. Michalik [7].

On the other hand, the sufficient condition for the Borel summability of formal
solutions was found by Balser and Miyake [3] (for certain linear PDE with constant
coefficients) and by W. Balser [2] (for general linear PDE with constant coefficients).
In this last paper W. Balser also posed the conjecture that this sufficient condition
for the Borel summability of formal power series solution is also necessary one.

In the paper we prove this conjecture in the case of equations in normal form. In
this way, we also extend the results of M. Miyake [8], K. Ichinobe [4] and S. Michalik
[7] to more general equations.

Namely, we consider the Cauchy problem for the non-Kowalevskian linear partial
differential equation in two complex variables ¢ and z with constant coefficients

p
(1) OFult,z) =Y O Pipl0:)u(t,2), 0Fu(0,2) =n(2), n=0,...p—1,
J=1

2000 Mathematics Subject Classification. 35E15, 35C10, 35C15, 26A33.
Key words and phrases. fractional linear PDE with constant coefficients, formal power series,
Borel summability.



2 SLAWOMIR MICHALIK

where p,q € N, p < q, Pjq/,(&) are polynomials of degree less than or equal to jq/p
(3 =1,...,p), P,(§) is a polynomial of degree ¢ and ¢, (z) (n =0,...,p — 1) are
analytic in some complex neighbourhood of the origin.

In a similar way to [7] we use the operator BU41/k wwhich after appropri-
ate change of variables is equal to the modified k-Borel transform B*. Applying
B 1+1/E t6 the formal solution 4(t, z) of the initial problem (1) we obtain the asso-
ciated function v(¢, z) satisfying the initial value problem for certain Kowalevskaya
type fractional equation related to (1). It means that we can reduce the problem
of summability to the study of this new equation. This concept is a generalisation
of the idea given in [6], where the question about the summability of the formal
solution to the heat equation is reduced to the investigation of the wave equation.

So, after this reduction we study the following fractional equation

2) Oyt 2) = 30T B @i, 2) =

j=1

where deg P;(§) < j, deg P,(§) = m and the initial data (83/’))"@(0,2) = @n(2)
(n=0,...,m—1) are 1/p-analytic in some complex neighbourhood of origin. We
use the integral representation of the solution, which is based on the construction
of Balser and Miyake [3]. Since this equation is in some sense symmetric with
respect to both variables ¢t and z, we obtain the equivalence between the analytic
continuation with appropriate growth condition of the Cauchy data p(z) and the
similar properties of the solution v(t,z) with respect to t. Precisely speaking, we
have

Theorem (see Theorem 1). Let {\1,...,\;} be the set of the characteristic roots
satisfying equation

Z/\m Ipj =0 with p;:= hm Pj(¢)/€.

Jj=1
Then the solution v(t, z) of (2) is analytically continued in a direction d with expo-
nential growth of order s > 1 as t — oo if and only if the Cauchy data ¢, (2) are
analytically continued in directions d + parg \; with exponential growth of order s
as z — 0.

The above result is a generalisation of Theorem 1 in [7] to fractional equations.
We can at last formulate the characterisation of Borel summability of formal
power series solution of (1).

Theorem (see Theorem 2). The formal power series solution i(t, z) of the initial
problem (1) is p/(q — p)-summable in a direction d if and only if the Cauchy data
©o(2), ..., pp—1(2) are analytically continued in directions (d + arga; + 2km)p/q
G =1,.,1, k =0,..,9— 1) with exponential growth of order q/(q — p), where
{ai,...,a;} is the set of the roots of the characteristic equation

P
=Y aPTp; =0 with p; = Jim Pig/p(€) Jei/p,
— 00
j=1
By Theorem 1, we can also show a similar characterisation of Borel summability
of formal power series solutions of the Cauchy problem for the non-Kowalevskian
fractional linear partial differential equation (see Propositions 8-10).
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In the paper we use the following notation. The complex (resp. real) disc in C*
(resp. R™) with a centre at origin and a radius r > 0 is denoted by D"(r) := {z €
C™: |zl <r} (vesp. B™(r):={zx € R": |z| <r}). To simplify notation we write
D(r) for n = 1. A sector in the universal covering space C of C\ {0} is denoted by

S(d,e,R):={2€C: z=re", d—e/2<0<d+¢/2, 0<r < R}

forde R, e >0and 0 < R < +oo. In the case of R = 400, we denote it briefly
by S(d,e). A sector S’ is called a proper subsector of S(d, e, R) if its closure in Cis
contained in S(d, ¢, R).

By O(D) we denote the space of analytic functions on a domain D C C™. The
Banach space of analytic functions on D(r), continuous on its closure and equipped

with the norm ||¢l|, := Imlix |o(2)| is denoted by E(r).

The space of formal power series
a(t,z) = Zuj(z)tj with  wu;(z) € E(r)
§=0

is denoted by E(r)[[t]]. Moreover, we set E[[t]] := U E(r)[[t]].

>0
We denote by P, (0, d.) the principal part of the differential operator Py, 0.)
of order m. In other words, if P(0;,0,) = Y. a;10/0% then P, (0;,0.) =
j+k<m
> a;x0]0%.
Jjt+k=m

2. GEVREY FORMAL POWER SERIES AND BOREL SUMMABILITY

In this section we recall some fundamental facts about the Gevrey formal power
series and the Borel summability. For more details we refer the reader to [1].

Definition 1. A function u(t,z) € O(S(d,e) x D(r)) is of exponential growth of
order at most s > 0 as t — oo in S(d,€) if and only if for any r; € (0,7) and any
g1 € (0,¢) there exist A, B < oo satisfying
BJt|*®

max |u(t, z)| < Ae

for every t € S(d,e1).
[z]<m1

Analogously, a function ¢(z) € O(S(d,¢)) is of exponential growth of order at
most s > 0 as z — oo in S(d,e) if and only if for any e; € (0,¢) there exist
A, B < oo such that

[o(2)] < AP

for every z € S(d,e1).

Definition 2. Let k£ > 0. A formal power series
0 .

(3) a(t, z) = Zuj(z)tj with  w;(z) € E(r)
§=0

is 1/k-Gevrey formal power series in t if its coefficients satisfy
‘m‘ax luj(2)] < ABT(1+3j/k) for j=0,1,...
z|<r
with some positive constants A and B.
The set of 1/k-Gevrey formal power series in ¢ over E() is denoted by E(r)[[t]]1 /-

We also set E[[t]],/ := TLJOE(T)[[t]]l/k.
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Definition 3. Let £ > 0 and d € R. A formal series u(t, z) € E[[t]], /), defined by
(3) is called k-summable in a direction d if and only if its k-Borel transform

Zuj 1—|—]/k)

is analytic in S(d, ) x D(r) (for some € > 0 and r > 0) and is of exponential growth
of order at most k as ¢t — oo in S(d, ). The k-sum of (¢, z) in the direction d is
represented by the Laplace transform of 9(¢, 2)

1 [ " .
ul(t,z) = I / e~ /05 (s, 2) ds®,
where the integration is taken over any ray eR, := {re? : r > 0} with 6 €
(d—e/2,d+¢/2).

For every k > 0 and d € R, according to the general theory of moment summa-
bility (see Section 6.5 in [1]), a formal series (3) is k-summable in the direction d if
and only if the same holds for the series

o0

ST,
]Z::O“j(z)r(l TR

Consequently, we obtain a characterisation of k-summability (analogous to Defini-
tion 3), if we replace the k-Borel transform by the modified k-Borel transform

gt
o(t, z) == = Z“J (1 +5(1+1/k))

and the Laplace transform by the Ecalle accelemtzon operator

oo ()
W(t.2) = 0 [T s )0 (5 0) s/
0
with 6 € (d — ¢,d + ). Here integration is taken over the ray e’’R, and Ci41/1(C)
is defined by

Cra/k(C) = 1 u 1/ (k1) gu—Cut/ B gy,
2mi J,
with a path of integration v as in the Hankel integral for the inverse Gamma
function (from oo along argu = —7 to some ug < 0, then on the circle |u| = |ug| to

argu = m, and back to oo along this ray).
Hence the k-summability can be characterised as follows

Proposition 1. Let k > 0 and d € R. A formal series u(t,z) given by (8) is
k-summable in a direction d if and only if its modified k-Borel transform

ltj

2:: 1+](1+1/k))

satisfies conditions:
(1) B*a(t,z) € O(D(r1) x D(r3)) (for some r1 >0 and ro > 0), i.e. a(t,z) €

E(r)[[t]]1/x-
(2) B*a(t,z) is analytically continued to S(d,e) x D(r) (for some ¢ > 0 and
r>0)

(3) BFa(t,z) is of exponential growth of order at most k as t — oo in S(d,¢).
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3. a-ANALYTIC FUNCTIONS AND a-DERIVATIVES

In this section we introduce some kind of fractional derivatives 0% of the for-
mal power series in C[[z%]]. These operators are the natural generalisation of the
derivative 0, defined into the space C][[z]]. Namely, we have

Definition 4. Let a > 0. The linear operator on the space of formal power series
97 : C[[z"]] — C[[="]]

given by the formula
o - Un, an - Un+1 an
(4) 82(272 )2272
— I(l+an) — I(1+an)
is called an «-derivative.

Definition 5. We say that a function u(z) is a-analytic on D C C (or, generally,
on D C C") if and only if the function z — u(2'/®) is analytic for every z'/* € D.
The space of a-analytic functions will be denoted by O, (D).

If the formal power series @(z) € C[[z?]] is convergent in some complex neigh-
bourhood of origin, then its sum u(z) is the a-analytic function near the origin.
For such functions we have well defined a-derivative given by (4), which coincides
with the Caputo fractional derivative.

We may also define the a-Taylor series of u(z) € O, (D) by the formula

_ N (09)"u(0) g,
(5) u(z)—gr(1+an)z .
In the case of a-analytic functions, the role of the exponential function e* is
played by

ea(z) := Eqf(2%) = L,
(%) T;)F(l+an)

where F,(z) denotes the Mittag-Leffler function. By the definition of e, (z) and by
the results on the Mittag-Leffler function (see [9]), we have

Proposition 2. The function e, (2) satisfies the following properties:
(1) eq(2) € Ou(CT) and there exists C < oo such that |eq(2)| < Cel?l for every
z € C,
(2) for every a € C we have 0%e,(az) = a%eq(az) (in particular 0%eqs(z) =

ea(?))s

(3) ifa <2 and argz € (7/2,27/a — w/2) then eq(z) — 0 as z — 0.

Let us assume that « € Q. Since every g¢/p-analytic function is also 1/p-
analytic, without loss of generality we may take o = 1/p, where p € N. Observe
that 1/p-analytic function is in fact an analytic function defined on the Riemann
surface of ¥z. Hence we may find the integral representation

Lemma 1. Let ¢(z) € Oy/,(D(r)). Then for every |z| < e <r and k € N we have

oo (0)
@) = d ) [ e (0 d
| 0

 2pmi wl=¢

or € (argw — 7/2,argw + w/2), where ¢ __ denotes that we integrate p times
|w|=¢e
around the positively oriented circle of radius €.
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Moreover, there exist o > 0 and A, B < oo satisfying
sup |(8/P)*p(2)| < AB*PT(1 + k/p) for k=0,1,...

[z|<e

Proof. By the Cauchy integral formula on the Riemann surface of ¢z we have

L[ pw)
0) = - dw
2(0) 7{

2pmi Jipj=e W

and more generally for every n € N

(8P p(0) = Wfpl o(w)

2pri wlme W/PTL

= >/mw)<"/” e dgd
= . w e w
2]9’/TZ |w\:5¢ 0 C

with 6 € (argw — 7/2, arg w + 7/2).
Hence, by (5)

"= ;mz p_2pm‘7{w| . / Zf‘l-i-n/p dc

1 D o< ()
= j{ go(w)/o el/p(zC)e_wC dcg.

2pmi Jyw|=e

The first part of the proof is finished by the observation that (6;/ PYeerp(2¢) =
Ck/pel/p(ZC)'

To show the second part, note that by Proposition 2
oo(0) [e’e} %)
‘ / Ck/pel/p(zg)ewa dC’ C’/ CR/Pellzl=Iwhe ge < C/ CkIPe=eC/2 q¢
0 0 0

(14 k/p)

for |z| < e/2, |w| =¢ and § = argw. It means that for ¢ := ¢/2 we have

IN

= C

: c oqr T(1+ k/p) :
sw 07 p(a)] < 5 7{“ (o) a7t dw < ABYPT(1 + /o)

with some positive constants A, B < oo. |

4. OPERATORS B*#

In this section we introduce the operators B*# with o, 8 > 0, which are related
to the modified k-Borel operators B*. Using the operators B*? we can reduce
the question about summability to the study of the solution of the appropriate
Kowalevskaya type equation.

Definition 6. Let «,3 > 0. We define a linear operator on the space of formal
power series

B*7: E[[t°]] — E[[t”]
by the formula

(6) Baﬁ(a( Baﬁ(Z)I‘ 1+an ) Zfl+ﬁn
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Observe that for any formal series 4(t, z) € E[[t]] and k& > 0 holds
B*a(t, z) = B a(t'/*,z) with s=1+1/k.
In particular, taking s = ¢/p and using the operator BL9/7: E[[t]] — E[[t4/?]]

given by
BLq/p( Un( ) Un /e
jz;) n! Z 1+ nq/p

one can reformulate Proposition 1 as follows
Proposition 3. Let p,q € N, p < q. Then the formal series i(t,z) € E[[t] is
p/(q—p)-summable in a direction d if and only if the function v(t, z) := B“4/Pq(t, 2)
satisfies the following properties:

(1) z+ wv(t,2) is analytic in some complex neighbourhood of origin,

(2) t — v(t, 2) is q/p-analytic in some complex neighbourhood of origin,

(3) t — v(t, 2) is q/p-analytically continued to infinity in directions (d+2km)p/q

(k=0,...,q — 1) with exponential growth of order q/(q — p).

The following properties of the operators B*# play crucial role in our study of
summability.

Proposition 4. Let a,8 > 0 and a(t,z) € E[[t%]]. Then operators B*" and
derivatives satisfy the following commutation formulas:
(1) Ba’ﬁaf“ﬂ(t,z) = 8P BPa(t, z);
(2) B*Po.a(t,z) = 6ZB°‘”312(t,z);
(3) Ba’ﬂP(af‘, d.)i(t, z) = P(87,8.)B*Pu(t, z) for any polynomial P(t,() :=
Z Z a7 ¢t with constant coefficients aj € C.
j=li=

Proof. From (6) we see that

a,B (a0 a,B u"+1( ) any _ = un+1(z) Bn
B0t z) = B ( I‘(l—l—om)t )_n_or(1+ﬂn)t
= 0, B (a(t, 2))
and
o, ~ _ s azun(z) Bn __ a,B (.
B*P(0,u(t, 2)) = > 7F(1+ﬁn)t = 0,B*"(u(t, z)).
Consequently

n

B (P07, 0.)ilt, 2)) = B2 (303" (@Y olalt, 2))

j=11=1

aﬂBaﬂ((aa)Jal tz) iiaﬂ 9PV 8 BB (a(t, 2))

j=11=1 j=11=1

By Proposition 4 we have
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Proposition 5. A formal series u(t, z) is a solution of the Cauchy problem (1) for
the non-Kowalevskian linear partial differential equation with constant coefficients
if and only if the formal series 0(t, z) := BY9/P(u(t, z)) satisfies the following frac-
tional equation

(7) @Yo (t,2) =3 (071D Py, ((OP)P)u(t, 2),

j=1
(82/p)jv(0,z) = pn(2) for j =ng,
(9/Y0(0,2) = 0 for j #ng, j < qp, n="0,....p— 1.

5. THE SOLUTION OF FRACTIONAL EQUATION

In this section we consider the initial value problem to fractional equation
(8) P(@,'",0Y/7)o(t,2) = 0,
(9) (8151/17)"1)(07 z) = pn(2) € O1/,(D(r)) forsomer >0 (n=0,..,m—1),

where
m

P(atl/P781/p) :: 1/17 Z 1/17 m— ]P al/p)
Jj=1
with deg P;(§) < j and deg P, (§) = m. We would like to find the relation between
the Cauchy data and solution. For this purpose we will use an integral represen-
tation of the solution of (8) with the initial data ¢,(z) given by the recurrence
relations

(10) @o(2) == 0(2), n(2) = X5y P01 o () form=1,...m—1,

where p(2) € Oy,,(D(r)). The construction of this integral representation is based
upon the results of Balser and Miyake [3]. This method is also similar to that
used in our previous paper [7], where the case of differential equations (p = 1) was
considered.

We start with the following version of the Cauchy-Kowalevskaya theorem

Lemma 2. The formal power series solution
tn/p

(1) Z”“ T+ n/p)

of (8) with the initial data (9) is convergent in some neighbourhood of origin.

Proof. By the principle of superposition of solutions of linear equations, we may
assume that the initial data satisfy (10). Note that coefficients v, (z) satisfy the
recurrence relation

m

(2 ZP Pyo,_j(z) for n=1,2,..

with v_pm41(2) = ... =v_1(2) = 0 and vy(2) = ¢(z). It means that
(12) U (2) = @u(0YP)p(z) for n=1,2,..,
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where ¢,,(§) is a solution of the difference equation
(13) Z P;(€)dn-s(

with the initial conditions

(14) 0() =1 and q_1(§) = ... = ¢-m+1(§) = 0.

Observe that g,(§) is a polynomial of degree less than or equal to n, so ¢,(§) =
ZZ:O gneE* with some constant coefficients gy,y.

Put Q, (&) :=>"1_, |qnk|EF. Since Q,, (&) is a polynomial of degree n, there exists
K > 0 such that

(15) 1Qn (&) < (KYPE)™  for every nmeNand € > 1.
By Lemma 1, there exist o > 0 and A, B < oo satisfying

sup |0 (2)] Z |ani| sup [(D2/7) ()] <Y lgnk| ABF/PT (1 + k/p)
lz|<e k=0 lz|<e k=0

AT(1+ n/p)Qu(BY?) < AKB)"PT(1 + n/p).
Therefore, the formal series (11) is convergent for |t| < (KB)~! and |z| < o. O

IN

IN

Lemma 3. Let s > 1, d € R and (t,z) € D*(r) (for some r > 0). Suppose that
v(t, z) is a solution of (8) with the initial data (10) and that {A1,...,\;} is the set
of the roots of the characteristic equation
Pu(\1) =X" =) N"Up; =0 with p; = Jim P;(€)/¢.
= —00

Then v(t,z) = 3"

i=1v5(t,2), where v(t,z) € O1/,(D?(r)) satisfy the following
property: if p(z) € Oy/,(S(d + arg 2j,8)) (for some § > 0) with an exponential
growth of order s in infinity then v;(t,z) € Oy,,(S(d,d) x D(r)) (for some 6 > 0

and r > 0) with the same exponential growth as t — oco.

Proof. By Lemma 2, for sufficiently small ¢ and z, the power series (11) is con-
vergent. Hence, using (12) and applying Lemma 1, one can choose ¢ > 0 such
that

>0 n/p n P
(16) v(t,z) = Z ! Zan p(z) = ! ]{ p(w)k(t,w, z) dw,

= I'(1+n/p) 2p7i Jjp)=e

where the kernel function is deﬁned by

n/p "

k(t,w,z) = ZF T 0/p) Zan/ Ck/pe1/p(zC)e_w< d¢

oo (0)
_ /0 a(t, Qe pp(20)e S dC

with § = —argw and

_ - ¢/ - k/p _ S /e 1/p
=3 a2 T = gy
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By (15) we may estimate

tn/p[( n/p
t<|_2" FS P — eyt

Hence, by Proposition 2, ¢(t,¢) € Ol/p((C ) is of exponential order 1. Moreover,
for |z| < |w| and § = — argw we have

0o (0)
[ 0ene0e e dd <00 tor Kl 412 < ol
0

It means that under above conditions on w and z, the function ¢t — k(t,w,z) is
1/p-analytic on the set {t € C: K|t| + |z| < |w|}.
On the other hand, using the characteristic equation

(17) POV =" =3 PO =0

one can find the solution of (13). We may assume that for sufficiently large ||,
say €| > |CO/ P]. the characteristic equation (17) has exactly [ distinct holomorphic
solutions A1 (&), ..., A(§) of multiplicity my, ..., my (Z;Zl mj; = m). Since Pp,(§) #
0, we conclude that A;(§) # 0. Moreover, deg P;(¢) < j and deg P,,,(§) = m, which
gives

(18) Jim A,(€)/€ = Ay € C\ {0},

where A; are the roots of the characteristic equation

(19) Pu(M1) = A" =) " pA" 7 =0 with p; = Jim. P;(€)/€7.
j=1

Note that \; are not necessarily the distinct roots of (19). From (18) we can also

assume that for [£| > |(3/ P] the functions \;(£) are invertible, where the inverse
functions )\;1(7) are the roots of the characteristic equation P(7,A~%) = 0.

Using the roots of the characteristic equation (17) one can find m linear inde-
pendent solutions of the difference equation (13)

NHE),nAT(E), .yn™ TIAT(E) for j=1,..,1L

Hence for |¢| > |¢o| and ¢1/P = ¢, the solution of (13) is given by

1 my—1

(20) a4, (CP) = ZZ (CPYRENT (P,

We can calculate the coefficients cjx(¢'/?) using the initial conditions (14) and
solving the system of linear equations. Observe that for sufficiently large ||, say
I¢| > |ol, the coefficients c;jx(C'/P) are holomorphic with polynomial growth as
[¢] — oo.

Moreover, since

ni™/P — ((83/1))1)75 _ 1)ptn/17 =:r(t, 83/P)tn/p,
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we have

0(t,0) =3 > SV, 0P )er s, (tND(CHP)) for (€] > (ol

Co
Kt w, 2) = /0 a(t, Oerp (20)e " d

PR
I /4 ein(CP) POV er (D (CHP) e (2C)e ™ dC.

Fix w, z € C such that |z| is small relative to |w| = e. It means that |w| — |z| = |w|
and arg(w — z) ~ argw. To show analytic continuation of k(t,w, z) with respect to
t, we will consider the function

oo (6)
(21) a;j(t,z,w) = / e1/p(EAE(CHP)) e p(2Q)e " dC.
Co
To estimate a;(t,w,z) for j = 1,...,1, observe that by (15), (18) and (20) we
have |\;] < K'/P and consequently the function ¢ — a;(t,w,2) is analytic on
{teC: |t| < |w|/K} for j =1,...,]. Moreover, by (18), for sufficiently large ¢ we
have arg A?(Cl/p) ~ arg( + parg A;. Now we want to replace a direction 6 in (21)
by 0; satisfying:
(1) argt+parg\; +0; € (5,2pm — §) modulo 2pr (in this case by Proposition
2 we have el/p(t)\ij(gl/p)) — 0 as ¢ — oo, arg( = 0;),
(2) argw +60; € (=%, %) modulo 27 (in this case there exists € > 0 such that
le1/p(20)e™ ¢ < el as ¢ — oo, arg¢ = 0;).
Observe that these requirements may be together satisfied under the condition that
argt + parg \; # argz modulo 2pm. Therefore the function ¢t — a;(t, w, 2) is 1/p-
analytically continued to {t € C : argt # argw — parg\; modulo 2pr} with
exponential growth of order 1. It means that also the function

E o byt w, 2) = Z / (G (1, 0P )e s (INE(CHP)) e (2C)e S dC

is 1/p-analytically continued to the same sector with exponential growth of order 1.
By the Cauchy theorem

g Co
. j{ so(w)/o q(t, {)ersp(2C)e™" d¢ dw = 0.

2pmi Jyw|=e

Hence, by (16), for ¢ and z close to origin, |z| < £ and sufficiently small & > 0, the
solution of (8) with the initial conditions (10) satisfies

P

1
v(t,z) = 2pﬂfj o(w)k thdw—Zme _ k;(t,w, z) dw

w|=¢e

!
Zvj(t, z),
j=1
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where
1 P
wt) = g f e
L roo(6)) .
(22) x> /C (PR (8,077 )er 1 (1N (CM/7) e jp (20D dC dw.
k=0 0

To estimate v;(t, z), fix z such close to the origin, that arg(w — z) ~ arg w along
a circle |[w| = €. Repeating the proof of Theorem 3.1 in [3], we split this circle into
2 arcs vy and 7, where v extends between points of argument d +parg \; — B /3 and
d + parg\; 4+ 6/3. Finally, since ¢(z) € O1/p(S(d + parg Aj, 4)), we may deform
< into a path yr along the ray argw = d + arg A\; — 5/3 to a point with modulus
R (which can be chosen arbitrarily large), then along the circle |w| = R to the ray
argw = d+arg \; + 5/3 and back along this ray to the original circle. So, we have

1 p
vi(t,z) = Spri j{w—g e(w)k;(t,w, z) dw

1

= ki(t d
st Pk 4w+

]iﬂﬁ(w)kg‘(t,w,z) dw.

Note that R may be chosen arbitrarily large and the function t — k;(t,w, 2) is
analytic on |t| < |w|/K, where |z| is small relative to |w|. Hence, one can find § > 0
such that the first integral on the right-hand side is 1/p-analytically continued to
S(d,d) x D(r). Estimating this integral we see that it is of exponential growth of
order at most s as t — oco.

Moreover, since the function ¢ — k;(t,w,2) is analytically continued into the

2pmi

region {t € C : argt # argw — parg\; modulo 2pr}, we see that the second
integral on the right-hand side is also 1/p-analytically continued to S(d,d) x D(r)
with appropriate estimation as t — oo. It means that v;(t, z) is 1/p-analytically
continued to S(d,d) x D(r) with exponential growth of order s as t — oo. O

Now, in a similar way to [7], we introduce some kind of the pseudodifferential
operators connected with 1/p-derivative. To this end, let A(¢'/?) be a non-vanishing
1/p-analytic function for || > |(p| with a polynomial growth in infinity. Moreover,
we assume that p(w) € O, (D(7)) (with some 7 > 0), f((,t,w) € Oy ,(Cx D(r) x
D(7)) (with some r > 0 and 7 > 0) and a function

D oo ()
! 7{ o(w) / F(Cotyw)er p(0) dC duw

B 2pmi wl=¢e

v(t, 2)

is well-defined and 1/p-analytic in some complex neighbourhood of origin. Then
we can define a pseudodifferential operator )\(8;/ Py acting on v(t, z) as follows

D oo(0)
(23)  A@YP)u(t, ) = — ]f () / ACYPY (¢t w)en p(2) dC du.

2pmi S| =e
Remark 1. Let s > 1. Observe that v(t, z) € Oy,(D(r) x S(d,)) with exponential
growth of order s if and only if /\(8;/ PYu(t, z) has the same properties.
Remark 2. Using the pseudodifferential operators we can write

PP, 0YP)o(t,2) = (9,7 — M (OYP)™ (87 — N(8/P)) ™o (t, z) = 0.
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We show

Lemma 4. The functions v;(t,z) given by (22) are the solutions of pseudodiffer-
ential equations

0}/ = X\ (OMP) v (t,2) =0 for j=1,..,1.
Proof. By (22) and (23) we have

(0777 — Ay (8X/P)) ™y (¢, z)

my—1
1 ) »
= 2pmi f{ﬂ . /co > er(CPYbjk(t, Ceryp(2¢)e ™ dC du,

k=0

where
y ) 0o k)\”(cl/p)t"/p
bar(t:0) = 01 =M™ D Ry

Next, for any fixed k € Ny we define the family of polynomials
Pk,o(n) = nk, PkJ(n) = Pk,j_l(n + 1) - P;w»_l(n) for j € N.

Observe that deg Py ;(§) = max{k — j, —1}, where deg P ;(§) = —1 if and only if
P,(§) = 0.
Using these polynomials we can write

&) Pk O(n)/\’rp(gl/p)tn/p

bin(t,Q) = (@7 = NP Y e =
" Lo —  TQ+n/p)
R Y (S L
p— 1/p_ . 1/p mJ k 1 k7k+1 J =
= (8,7 =X(¢TP) g:o Ny 0.

O

Lemma 5. Let v(t,z) € Oy/,(D?(r)) with some r > 0. Then v(t,z) satisfies the
pseudodifferential equation

(24) (ag/” - Aj(a;/p))u@, 2 =0
if and only if v(t, z) is a solution of
(25) (al/P ; (81/p)>v(t, ) =0.

Proof. Since the equations (24) and (25) are symmetric, it is sufficient to show
one-way implication. So, let us assume that v(t, z) is a solution of (24). Then

A (027)p(2)

(1 +n/p)

(26) w(t,z) = Z

n=0

"7 with  ¢(z) = v(0,2) € Oy, (D(r)).

Since

1 P 00 (0)
O = g e [ e (e i,
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by (26) we have

1 P oo(0) &0 )\;}(Cl/p)tn/p
= - —w(
U<t7 Z) 2pmi j{w=e (p(w) /Co nzzo L'(1+n/p) el/p(ZC)e e duw
1

D oo (0)
- ;f () / 1/ (CP)t)erp(2C)e " dC dw,

2pmi w|=e o

Using the substitution 7 := A?(¢*/?) we obtain

1 D
t =
W) = g et

OO(G) —p(1/p
X / e1p(Tt)erp(2A;P(TH/P))e ™ (r/ VNP (7P duw.

0

with éj = 0; +parg \;. Hence we have

DL/t 2) = 1,?I§p o(w) x

2pmt Jjw)=e

oo(9) —P( /P —
X / /\j_l(Tl/p)el/p(Tt)el/p(z/\j_p(rl/p))e_w% (r )d/\j (7P dw
To

A7 @t 2).
O

Lemma 6. Let v(t,z) € Oy),(D?(r)) with some r > 0. Then for every n € N,
v(t, z) satisfies the pseudodifferential equation

(07 = X (047)) "ot 2) = 0

if and only if v(t, z) is a solution of

(017 =271 @1') ol 2) = 0,
Proof. The proof is by induction on n. By Lemma 5, the statement holds for n = 1.
So, we may assume that assertion holds for n = k. We have
(07 = N (@Y7 o(t,2) = 0 =

(07 = N (97t 2) = 0 with 3(t, 2) := (8" — \; (92/)) u(t, 2)
by Lcmma 5 1/ 1/p - _

(0.7 =\, L0 PN o(t, 2) = 0 <=
(0,77 = X (0X7))¥5(t, 2) = 0 with T(t, 2) == (917 = A71(9,/"))o(t, 2)

by the 1nduc<g§> assumption (81/p (al/p)) (t, Z) — 0 e—

(O =271 7)) (L, 2) =
[l

Theorem 1. Let s > 1 and d € R. Suppose that v(t, z) is a solution of (8) with the
initial data (9). Moreover, suppose that {\1,...,\/} is the set of the characteristic
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roots of

Po(A\1) = A" — Zx" Ip; =0 with p;:= Jim. P;(£) /€.
Jj=1
Then v(t, z) € O1,,(S(d,0) x D(r)) (for some 6 > 0 and r > 0) with erponential
growth of order s as t — oo if and only if for every j =1,....,1 andn =0,...,m—1,
on(z) € O1/p(S(d+parg A, 8)) (with some & > 0) with e:zrponential growth of order
s as z — 0o.

Proof. (<=) Without loss of generality we may assume that the initial data satisfy
(10) for ¢(z) € Oy ,(S(d+parg \;,d)) with exponential growth of order s as z — oc.
By Lemma 3, v(t,z) = 25‘:1 v;(t, z), where v;(t,2) € O1,,(S(d,d) x D(r)) with
exponential growth of order s as t — co. It means that also v(t, z) € Oy ,,(5(d, §) x
D(r)) with the same growth condition.

(=) Ifu(t, 2) € O1/,(S(d, ) x D(r)) is a solution of (8) and is of exponential
growth of order s, then v(t,z) also satisfies the following Cauchy problem in z-
direction

P(9,'?,0Y7)u(t,2) =0, (9;/")"v(t,0) = ¢u(t) forn=0,.,m—1,
where 9, (t) € Oy/,(S(d,d)) with exponential growth of order s and

PO 017) = @ =@ B 0)

Jj=1

(G Z (81/Py™=3 P, (8}/7))
=1

with some polynomials 15]- (&) satisfying deg Pj (€) < j and deg P, (€) = m.
As in a previous case, we may put
Wo(t) = (1) € 07, (5(d,0)), u(t) =Y B0 )i (1) (n=1,.om—1)

for some 1 (t) € O1,,(S(d, §)) with exponential growth of order s as ¢ — oc.
Interchanging the roles of coordinates (¢, z) and repeating the proof of Lemma 3
we obtain

(27) U(t,Z) = Zf}j(th)a

j=1
where
1 P
v;(t,z) = - P(s) X
(t,2) o 7{ (s)
oo(f;) M
/ Z Gk (z, 8/ Jer/p(2A; P(r 1/p))el/p(t7)e_” drds.

Moreover, since

d — arg( lim )\;p(Tl/p)/T) =d—arg)\;’ =d+parg);,

we conclude that 9;(t,z) € Oy,,(D(7) x S(d+parg\;, 4)) with exponential growth
of order s as z — oo.
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By Lemmas 4 and 6, 9;(¢, z) satisfies the formula
(28) 0} = X;(OMP) ™5t 2) =0 for j=1,...,1.
In a similar way to [4] we define for j =1, ...,1
1
P07, 017 = (" =\ @yt T @7 = a@m)m
k=1, k#j
and
v(t,2) = P;(9,'", 8P )u(t, 2).
Observe that by (27) and (28)
v;(t,2) = P;(0,/7, 01/7)i; (1, 2)
and, in consequence, U;(t,z) € Oy,,(D(7) x S(d + parg /\j,S)) with exponential

growth of order s as z — oo.
Without loss of generality we may assume that

(83/’7)"11(0, z)=0forn<m—1, (85/1))"‘_111(0, z) = p(2).

Hence also 7;(0, z) = ¢(z) and we conclude that ¢(z) € Oy ,(S(d+arg A, 5)) with
exponential growth of order s for j =1,...,1. O

6. SUMMABILITY OF SOLUTIONS TO LINEAR PDE WITH CONSTANT COEFFICIENTS

In this section we apply Theorem 1 to show the Borel summability properties
for linear pde with constant coefficients given by (1).
By Theorem 1 we have

Proposition 6. Let v(t,z) be the solution of the initial value problem (7) and let
s = q/(q —p). Then v(t,z) satisfies the properties 1.-3. in Proposition 3 if and
only if the Cauchy data on(z) € O(S((d + arga; + 2km)p/q,8)) (for some § > 0)
with exponential growth of order s form=0,...,p—1,j=1,..,1, k=0,....,q — 1,
where {aq, ...,y } is the set of the characteristic roots satisfying

p
(29) af =Y aPp; =0 with p; = Jim Py p(Q) /Y.
j=1

Proof. (=) Observe that v(t,z) € Oy,,(S((d + 2km)p/q,6) x D(r)) (for some
0,7 > 0) with exponential growth of order s as t — co. According to Theorem 1,
©n(2) is 1/p-analytic on S((d+2km)p/q+parg \;,0)) (for some &) with exponential
growth of order s forn =0, ...,p—1, k=0, ...,¢q—1 and j = 1, ..., [, where A, A
is the set of the roots of the characteristic equation

P
(30) NP4 Z )\(p*j)qp}. —0.
j=1

Note that A is the root of (30) if and only if a = A? satisfies (29). It means
that ¢, (2) € Oy/,(S((d + arga; + 27k)p/q, §)) with exponential growth of order
s. Moreover, since p,(z) € O(D(7)) (for some ¥ > 0), we have also ¢,(z) €
O(S((d+ arga; + omk)p/q,0)) forn=0,...p—1,k=0,...,¢g—land j=1,...,1.

(=) If pn(z) € O1,,(S((d + 27k + arg ;)p/q,0)) with exponential growth
of order s then also ¢, (2) € O1/,(S((d + 27k)p/q + parg Aj,0)) with the same
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growth (n = 0,...p—1, k =0,...,q—1, j = 1,...,l~), where {A1,...,A\;} is the
set of the characteristic roots of (30). Therefore by Theorem 1 we have v(t, z) €
O1p(S(d + 27k)p/q,6) x D(r)) with exponential growth of order s as t — oo.
Moreover, since ¢p,(z) € O(D(7)), the Cauchy data in (7) are non-vanishing only
for multiplicity of (8,51/p)q—derivative of v(0, z) and the linear operator P((’?tl/p7 5;/’7)
in (7) depends only on ((’“)tl/p)q and (8;/1))? we obtain the desired conclusion. [

Combining Propositions 3, 5 and 6 we have

Theorem 2 (Main theorem). Let i(t, z) be a formal power series solution of the
inatial value problem

Za _JP‘I/p ) (t7z)7 an(O,Z):SOn(Z) forn:ov'“?p_la

where t,z € C; p,q € N7 p<gq, dequ/p( ) < ]Q/p (] = 13"'ap); degpq(g) =q
and p,(z) are analytic in a complex neighbourhood of the origin.

Then the formal series u(t,z) is p/(q — p)-summable in a direction d if and
only if the Cauchy data <pn( ) are analytically continued to the set S((d+ arga; +
27k)p/q, ) (with some 5> 0) for k = 0,. —1, 7 =1,...,1 and this analytic
continuation is of exponential growth of order q/(q—p) as z — 00, where {aq, ..., }
is the set of the roots satisfying the characteristic equation (29).

7. SUMMABILITY OF SOLUTION TO FRACTIONAL LINEAR PDE WITH CONSTANT
COEFFICIENTS

In this section we will consider the non-Kowalevskian fractional linear pde in
two complex variables with constant coefficients. As in the previous section, we
apply Theorem 1 to study the summability property for formal solutions of these
equations. First, we shall extend the definition of summability to the wider class
of formal power series.

Definition 7. Let v > 0. The Banach space of «y-analytic functions on D(r),
continuous on its closure and equipped with the norm |||, := Im‘ix |o(2)| is denoted
z|<r

by E,(r).
The space of formal power series

2) =Y ui(2)t! with u;(z) € By (r)
j=0

is denoted by E. (7)[[t]]. Moreover, we set E,[[t]] := U E,(r)[[t]].
>0

Definition 8. Let o,y > 0, k > 0 and d € R. We say that a(t, z) € E,[[t*]] is
k-summable in directions d + 2jm/a (j € Z) if and only if the formal power series
W(t, z) := w(t'/*, z) is k/a-summable with respect to ¢ in a direction ad.

Let us suppose that (t, z) = ZJOOO 7F(1+('2j) . Then w(t, 2) = Zjoo 0 71‘(1+(a)])tj
Using k/a-Borel transform of (¢, z) we obtain the series 372, W((Zl)ﬂw/k)
By the theory of moment summability, we may replace this one by the following
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a-modified k/a-Borel transform of w(t, z), which is defined by

Bk/o“tz J

o0
]z::or 1+]a1+1/k))t

Observe that this modified transform is connected with the operator B®(1+1/k)
by the formula

Blg/aw(t’z) B o (141/k) o (tk:/(oz(k-‘rl)) Z)
It means that we have the following characterisation of k-summability

Proposition 7. The formal series (t,z) € E[[t*]] is k-summable in directions
d+2jm/a (j € Z) if and only if the function v(t,z) := B®*UH/R4(t, 2) satisfies
the following conditions:

(1) z— v(t,2) is y-analytic in some complex neighbourhood of origin in C,

(2) t — v(t, 2) is a(1+1/k)-analytic in some complex neighbourhood of origin in
C and is a(1 + 1/k)-analytically continued to infinity in directions d‘fﬂ%a

(j € Z) with exponential growth of order k + 1.

Now, we can prove

Proposition 8. Let o € (0,1), m € N and 4(t, z) be a formal power series solution
of the Cauchy problem

(@)™ ult, 2) = ()" Py(@:)ult,2), (97)"u(0,2) = @u(z) n=0,.im 1,

j=1

where deg P;(§) < j, deg P, (§) = m and ¢,(z) are analytic in some complex
neighbourhood of origin. Then u(t, z) is o/ (1—«a)-summable in directions d+2j7/a
(7 € Z) if and only if p,(z) are analytically continued in directions ad + arg A
with exponential growth of order 1/(1 — «) for every A satisfying the characteristic
equation

(31) ZX" Ip;i =0 with p;:= Jim. P;(£) /€.
=1
Proof. By Proposition 7, 4(t, z) € E[[t*]] is a/(1 — a)-summable in directions d +
2j7/a if and only if the function v(t, z) := B¥(t,z) € O(S(ad,d) x D(r)) (for
some 6 > 0 and r > 0) with exponential growth of order 1/(1 — «) as t — oo. By
Proposition 4, v(t, z) is a solution of the Cauchy problem
Ou(t,2) = 07 I P (0:)v(t 2), Opv(0,2) = pn(z) n=0,..,m—1.
j=1

By Theorem 1, v(t,z) € O(S(ad,d) x D(r)) (for some § > 0 and r > 0) with
exponential growth of order 1/(1 — ) as t — oo if and only if ¢, (2) € O(S(ad +
arg A;,0)) (with some § > 0) for every n = 0,...,m — 1 and j = 1,...,], where
{A1, ..., Ar} is the set of the characteristic roots of (31) and ¢, (z) is of exponential
growth of order 1/(1 — a). O

Corollary 1. Let § € (0,2). The formal solution u(t,z) of the fractional wave-
diffusion equation

OPu(t,z) = ®u(t,z), u(0,z) = p(z) € OD(r)) with somer >0
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is B/(2 — B)-summable in directions d + 2j7/B (j € Z) if and only if v(z) €
O(S(Bd/2,6) U S(Bd/2 + ,0)) (for some § > 0) with exponential growth of order

2/(2- ).

Proof. 1t is sufficient to apply Proposition 8 with « = 3/2, m = 2, P,(§) = 0,
Py(€) = €2, ¢o(2) = ¢(z) and ¢;(2) = 0. Observe that A; = 1 and Ay = —1 are the
roots of the characteristic equation. ([

Moreover, in a similar way to [6] one can generalise this result to the n-dimen-
sional diffusion-wave equation (n > 1) as follows

Corollary 2. Let § € (0,2), A, := 82 + ...+ 82 . The formal solution u(t,z) of
the fractional wave-diffusion equation

A u(t,z) = ALu(t,2), u(0,2) = p(z) € O(D™(r)) with some r > 0
is B8/(2 — B)-summable in directions d + 2jm /B (j € Z) if and only if the function
Jogny ¢z +tx)dS(x) if nis odd
Do (t,2) = { 5" (1)

(z+tz ) dz . .
an W e if  n is even
is analytically continued to infinity in some sectors in directions fd/2 and Bd/2+w
(with respect to t) and to some ball with a centre at origin (with respect to z) and
this continuation is of exponential growth of order at most 2/(2 — f3) as t — oo.

Proof. By Proposition 7, a(t,z) € E[[t?]] is 8/(2 — 3)-summable in directions
d+ 2jn/B (j € 7Z) if and only if the function v(t,z) := B?2u(t,z) is analyti-
cally continued to (S(8d/2,6) U S(Bd/2 + 7,d)) x D™(F)) (for some J,7 > 0) with
exponential growth of order 2/(2 — 3) as t — oc.

On the other hand, v(t, z) is a solution of the wave equation

OPv(t,z) = Au(t, z), ©(0,2) = @(2), v:(0,2) =0.

The assertion follows by the generalisation of the Kirchhoff and Poisson formula for
the solution of the wave equation. ([

We can also apply the similar methods to the fractional equation with respect
to z. Namely, we have

Proposition 9. Let m,p,q € N, p > q and 0(t, z) be a formal power series solution
of the Cauchy problem

@y ult,z) = Z 0,7y By (0 MYu(t, =),

(8,51/p)"u(0,z) = @n(z) for n=0,....m—1,

where deg P;(€) < j, deg P (§) = m and ¢, (2) are 1/q-analytic in some complex
neighbourhood of origin. Then u(t, z) is q/(p — q)-summable in a direction d if and
only if on(z) are 1/q-analytically continued in directions q(d/p + arg \) with expo-
nential growth of order p/(p — q) for every X\ satisfying the characteristic equation

(31).

Proof. We repeat the proof of Proposition 8 with v(t, z) :== BY/P:V/a4(t, 2). O
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Proposition 10. Let g € N and « € (0,1/q), m € N and 4(t, z) be a formal power
series solution of the Cauchy problem

(07)"u(t, z) = Z(af‘)mfjpj(ai/q)u(tvz)v
09)"u(0,2) = @np(2) for n=0,...,m—1,

where deg P;(€) < j, deg P, (§) = m and ¢, (2) are 1/qg-analytic in some complex
neighbourhood of origin. Then u(t, z) is qo/(1 — qav)-summable in directions d +
2jm/a (j € Z) if and only if on(z) are 1/q-analytically continued in directions
q(ad + arg A\) with exponential growth of order 1/(1 — qa) for every A satisfying the
characteristic equation (31).

Proof. As in a previous case, we repeat the proof of Proposition 8 with v(¢, z) :=
BV aqg(t, 2). 0
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