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We propose a simple proof of characterization of the eigenspaces
corresponding to the eigenvalues ±m of a supersymmetric Dirac op-
erator H = Q+mτ , where Q is a supercharge, m a positive constant,
and τ the unitary involution. The proof is abstract, but not rele-
vant to the abstract Foldy-Wouthuysen transformation. We then
apply the obtained results to magnetic Dirac operators, and derive
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asymptotic behaviors at infinity of the ±m modes, and sparseness
of vector potentials which give rise to the ±m modes.
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1. Introduction

The introduction is devoted to exhibiting our results as well as to reviewing pre-
vious contributions in connection with the results in the present paper.

This paper is concerned with eigenfunctions at the threshold energies of Dirac
operators with vector potentials

HA = α · (D − A(x)) + mβ, D =
1
i
∇x, x ∈ R3. (1.1)
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2 DIRAC OPERATORS

Here α = (α1, α2, α3) is the triple of 4 × 4 Dirac matrices

αj =

(
0 σj

σj 0

)
(j = 1, 2, 3)

with the 2 × 2 zero matrix 0 and the triple of 2 × 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
,

and

β =

(
I2 0
0 −I2

)
.

The constant m is assumed to be positive.
Throughout the present paper we assume that each component of the vector

potential A(x) = (A1(x), A2(x), A3(x)) is a real-valued measurable function. In
addition to this, we shall later impose three different sets of assumptions on A(x)
under which the operator −α · A(x) is relatively compact with respect to the free
Dirac operator H0 = α · D + mβ. Therefore, under any set of assumptions to be
made, the essential spectrum of the Dirac operator HA is given by the union of the
intervals (−∞, −m] and [m, +∞):

σess(HA) = (−∞, −m] ∪ [m, +∞). (1.2)

Moreover, we shall see in sections 3 – 6 that the discrete spectrum of HA in the
gap (−m, m) is empty, although we should like to mention that this fact is well-
known (cf. Thaller [27]). In other words, there are no isolated eigenvalues with finite
multiplicity in the spectral gap (−m, m). This fact will be obtained as a by-product
of Theorem 2.3 in section 2, where we shall deal with an abstract Dirac operator,
i.e., a supersymmetric Dirac operator. We thus have

σ(HA) = σess(HA) = (−∞, −m] ∪ [m, +∞)

under each set of the assumptions on A(x) in the present paper.
In relation with the relative compactness of −α · A(x) with respect to H0, it is

worthwhile to mention a work by Thaller [27], where he showed that (1.2) is true
under the assumption that |B(x)| → 0 as |x| → ∞. Here B(x) denotes the magnetic
field: B(x) = ∇ × A(x). It is clear that the assumption that |B(x)| → 0 does
not necessarily imply the relative compactness of −α · A(x) with respect to H0. In
Helffer, Nourrigat and Wang [15], they showed that (1.2) is true under much weaker
assumptions on B(x), which do not even need the requirement that |B(x)| → 0 as
|x| → ∞; see also [28, §7.3.2].

It is generally expected that eigenfunctions corresponding to a discrete eigenvalue
of HA decay exponentially at infinity (describing bound states), and that (gener-
alized) eigenfunctions corresponding to an energy inside the continuous spectrum
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(−∞, −m] ∪ [m, +∞) behaves like a plane wave at infinity (describing scattering
states). As for the exponential decay of eigenfunctions, we should like to mention
works by Helffer and Parisse [16], Wang [29], and a recent work by Yafaev [30]. As
for the generalized eigenfunctions, we refer the reader to works by Pickl [19] and
Yamada [32].

It is a common practice in the mathematical treatments of quantum scatter-
ing theory that the edge(s) of the essential spectrum of a quantum Hamiltonian
is excluded. On the other hand, these values of Dirac operators are of particular
importance and of interest from the physics point of view. See Pickl and Dürr [20]
and Pickl [19], where they investigate generalized eigenfunctions near the edges ±m

of the essential spectrum of HA with the emphasis on the famous relativistic effect
of pair creation.

The motivation of the present paper is the following question: What is the asymp-
totic behavior at infinity of eigenfunctions corresponding to the eigenvalue sitting at
one of the edges of the essential spectrum σess(HA)?

Following the idea of Lieb [17], we introduce the terminology of ±m modes.

Definition 1.1. By the threshold energies of HA, we mean the values ±m, the edges
of the essential spectrum σess(HA) = (−∞, −m] ∪ [m, +∞). By an m mode (resp.
a −m mode), we mean any eigenfunction corresponding to the eigenvalue m (resp.
−m) of HA, provided that the threshold energy m (resp. −m) is an eigenvalue of
HA.

The aim of the present paper is to derive a series of new results on ±m modes of
the magnetic Dirac operators HA. Precisely speaking, we shall establish asymptotic
behaviors at infinity of the ±m modes, and show sparseness of vector potentials
which give rise to the ±m modes.

To this end we first consider a class of supersymmetric Dirac operators (a class
of abstract Dirac operators; see (1.3) below) and provide a new and simple idea to
investigate the eigenspaces corresponding to the eigenvalues ±m. The eigenspaces
corresponding to the eigenvalues ±m of supersymmetric Dirac operators have not
been explicitly formulated in the literature as in the form of Corollary 2.1 to Theo-
rems 2.1, 2.2 in section 2. However, we should like to emphasize that Theorems 2.1,
2.2 are simply abstract restatements of Thaller [28, p. 195, Theorem 7.1], where he
dealt with the magnetic Dirac operators under the assumption that Aj ∈ C∞. The
reason we need to restate [28, Theorem 7.1 ] in an abstract setting is that we deal
with the magnetic Dirac operators under three different sets of assumptions on the
vector potentials A, in all of which no smoothness assumption on A is made, and
one of which even allows A to have local singularities. In addition, we shall give a
sufficient condition on the matrix component of the supercharge such that the spec-
trum of the supersymmetric Dirac operator is given by the union of the intervals
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(−∞, −m]∪ [m, +∞). In relation with our motivation mentioned above, it is worth
to note that the phenomenon, to be illustrated in the applications of our abstract
results to the magnetic Dirac operators HA in sections 3 - 6, seems to appear only
when ±m sit at the edges of the essential spectrum of HA, namely, they are the
threshold eigenvalues of HA.

Explanations should be in order. The supersymmetric Dirac operator H which
we shall consider in the present paper is defined as follows:

H :=

(
0 T ∗

T 0

)
+ m

(
I 0
0 −I

)
on K = H+ ⊕H−, (1.3)

where T is a densely defined operator from a Hilbert space H+ to another Hilbert
H−, and the identity operators in H+ and H− are both denoted by I with an abuse
of notation. We should like to mention that T does not need to be a closed operator,
and that T ∗ does not need to be densely defined; see Theorems 2.1, 2.2 and Corollary
2.1 in section 2. The reason for this is that we focus only on the eigenvalues ±m

and the corresponding eigenspaces in Theorems 2.1, 2.2. With the same reason
we do not need the Foldy-Wouthuysen transformation, which is a major tool in
the standard theory of the supersymmetric Dirac operator. With these respects,
our approach is different from the standard theory of the supersymmetric Dirac
operators; see Thaller [28, Chapter 5] for the standard theory of the supersymmetric
Dirac operator.

By the supercharge Q and the involution τ , we mean the first and the second
term, respectively, on the right hand side of (1.3):

Q =

(
0 T ∗

T 0

)
, τ =

(
I 0
0 −I

)
. (1.4)

Note that the inner product of the Hilbert space K is defined as follows:

(f, g)K := (ϕ+, ψ+)H+ + (ϕ−, ψ−)H− (1.5)

for

f =

(
ϕ+

ϕ−

)
, g =

(
ψ+

ψ−

)
∈ K. (1.6)

With the notation above, we can exhibit a precise assertion of Corollary 2.1:
Ker(H − m) (resp. Ker(H + m)), i.e. the eigenspace of H corresponding to the
eigenvalue m (resp. −m), is given as the direct sum of Ker(T ) (resp. Ker(T ∗)) and
the zero space {0}.

It is straightforward from Corollary 2.1 that Ker(H − m) (resp. Ker(H + m))
is linearly isomorphic to Ker(T ) (resp. Ker(T ∗)). In particular, it follows that
Ker(H ± m) are independent of m.

In connection to our applications to the magnetic Dirac operator HA, it is impor-
tant to consider the case where the Hilbert space H+ coincides with H− and T is
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self-adjoint (T ∗ = T ). In this case, we are able to show that a sufficient condition
for the fact

σ(H) = (−∞, −m] ∪ [m, ∞) (1.7)

is expressed in terms of the spectrum of T as follows: σ(T ) ⊃ (0, ∞); see Theorem
2.3 in section 2. Thus under this condition, ±m are always threshold energies of
the supersymmetric Dirac operator H. We shall provide a simple proof of (1.7)
by using the spectral measure associated with T , and do not exploit the abstract
Fouldy-Wouthuysen transformation (see the proof of Theorem 2.3 in section 2).

As for the abstract Fouldy-Wouthuysen transformation in a general setting, we
refer the reader to Thaller [28, Chapter 5, §5.6]. Here we briefly mention of the
abstract Fouldy-Wouthuysen transformation. Namely, it transforms the supersym-
metric Dirac operator H of the form (1.3) with T = T ∗ into the diagonal form:

UFW H U∗
FW

=

(√
T 2 + m2 0

0 −
√

T 2 + m2

)
,

where UFW is the abstract Fouldy-Wouthuysen transformation, which is a unitary
operator in K. It is possible to prove (1.7) based on this unitary equivalence.

As was mentioned above, the investigations of properties of ±m modes of the
magnetic Dirac operator HA are reduced to the investigations of the corresponding
properties of zero modes (eigenfunctions corresponding to the eigenvalue zero) of
the Weyl-Dirac operator

TA = σ · (D − A(x))

in any one of the three sets of assumptions on A, which will be made in the later
sections.

We have to emphasize the broad applicability of the supersymmetric Dirac oper-
ator. Namely, thanks to the generality of the supersymmetric Dirac operator con-
sidered in the present paper, we are able to utilize most of the existing works on the
zero modes of the Weyl-Dirac operator TA (cf. [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 18])
for the purpose of investigating ±m modes of the Dirac operator HA.

The plan of the paper is as follows. In section 2, we shall deal with a super-
symmetric Dirac operator. In section 3, examples of vector potentials A(x) which
yield ±m modes of magnetic Dirac operators HA are given. These examples, due to
Loss and Yau [18], and to Adami, Muratori and Nash [1], were originally given as
the exapmles of vector potentials which give rise to zero modes of the Weyl-Dirac
operators. In section 4 we utilize a result by Saitō and Umeda [25] to investigate
asymptotic behaviors at infinity of ±m modes. Sparseness of the set of vector po-
tentials A(x) which yield ±m modes of HA will be discussed in section 5 where we
make use of a work by Balinsky and Evans [5], and also discussed in section 6 where
we appeal to results by Elton [10]. Accordingly, we shall get deep and multifaceted
understandings of ±m modes of the magnetic Dirac operator HA defined by (1.1).
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Finally in section 7 we shall compare the three sets of assumptions on the vector
potentials A(x) posed in the present paper.

2. Supersymmetric Dirac operators

This section is devoted to a discussion about spectral properties of a class of
supersymmetric Dirac operators. We should like to emphasize that our approach
appears to be in the reverse direction in the sense that we start with two Hilbert
spaces, and introduce a supersymmetric Dirac operator on the direct sum of the two
Hilbert spaces. We find this approach convenient for our purpose.

Let H± be Hilbert spaces, and let K = H+ ⊕H−. Note that the inner product of
K is defined as in (1.5), (1.6). The main object in this section is a supersymmetric
Dirac operator H in K:

H :=

(
0 T ∗

T 0

)
+ m

(
I 0
0 −I

)
(2.1)

with domain D(H) = D(T ) ⊕ D(T ∗), where T is a densely defined operator from
H+ to H−, m is a positive constant, and the identity operators in H+ and H− are
both denoted by I.

We now state the main results in this section, which reveal the nature of eigen-
vectors of the supersymmetric Dirac operator (2.1) at the eigenvalues ±m.

Theorem 2.1. Suppose that T is a densely defined operator from H+ to H−. Let
H be a supersymmetric Dirac operator defined by (2.1).

(i) If f = t(ϕ+, ϕ−) ∈ Ker(H − m), then ϕ+ ∈ Ker(T ) and ϕ− = 0.

(ii) Conversely, if ϕ+ ∈ Ker(T ), then f = t(ϕ+, 0) ∈ Ker(H − m).

Theorem 2.2. Assume that T and H are the same as in Theorem 2.1.

(i) If f = t(ϕ+, ϕ−) ∈ Ker(H + m), then ϕ+ = 0 and ϕ− ∈ Ker(T ∗).

(ii) Conversely, if ϕ− ∈ Ker(T ∗), then f = t(0, ϕ−) ∈ Ker(H + m).

As immediately consequences, we have

Corollary 2.1. Assume that T and H are the same as in Theorem 2.1. Then

(i) Ker(H − m) = Ker(T ) ⊕ {0}, dim
(
Ker(H − m)

)
= dim

(
Ker(T )

)
.

(ii) Ker(H + m) = {0} ⊕ Ker(T ∗), dim
(
Ker(H + m)

)
= dim

(
Ker(T ∗)

)
.

We should like to emphasize that comparison between Corollary 2.1 above and
[28, p. 144, (5.23)] (i.e. Ker(Q) = Ker(T ) ⊕ Ker(T ∗)) indicates the importance of
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the presence of the involution (
I 0
0 −I

)
. (2.2)

Also, we should like to emphasize that Corollary 2.1 has a significant implication:
the eigenspaces of H corresponding to the eigenvalue ∓m are independent of m.

Proof of Theorem 2.1 . We first prove assertion (i). Let f = t(ϕ+, ϕ−) ∈ Ker(H−
m). We then have(

0 T ∗

T 0

)(
ϕ+

ϕ−

)
+ m

(
I 0
0 −I

) (
ϕ+

ϕ−

)
= m

(
ϕ+

ϕ−

)
, (2.3)

hence T ∗ϕ− + mϕ+ = mϕ+

Tϕ+ − mϕ− = mϕ−,
(2.4)

which immediately implies that T ∗ϕ− = 0 and Tϕ+ = 2mϕ−. It follows that

∥Tϕ+∥2
H− = (Tϕ+, Tϕ+)H−

= (Tϕ+, 2mϕ−)H−

= (ϕ+, 2mT ∗ϕ−)H+

= 0.

(2.5)

Thus we see that ϕ+ ∈ Ker(T ), and that ϕ− = (2m)−1 Tϕ+ = 0.
We next prove assertion (ii). Let ϕ+ ∈ Ker(T ) and put f := t(ϕ+, 0). Then it

follows that Hf = t(mϕ+, Tϕ+) = m t(ϕ+, 0) = mf . ¤

We omit the proof of Theorem 2.2, which is quite similar to that of Theorem 2.1.
In the rest of this paper, we only deal with the case where H+ = H− := H and T

is a self-adjoint operator in H. In this case, the supersymmetric operator H becomes
of the form

H =

(
0 T

T 0

)
+ m

(
I 0
0 −I

)
(2.6)

in the Hilbert space K = H⊕H, and it follows from Theorems 2.1 and 2.2 that the
operator H of the form (2.6) possesses of an important equivalence:

T has a zero mode ⇐⇒ m is an eigenvalue of H

⇐⇒ −m is an eigenvalue of H,
(2.7)

which is actually a well-known fact: see Thaller [28, p. 155, Corollary 5.14]. Here we
say that T has a zero mode if T has an eigenvector corresponding to the eigenvalue
0. In other words, the fact that T has a zero mode is equivalent to the fact that
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0 is an eigenvalue of T . Furthermore, Theorems 2.1 and 2.2 imply the following
equivalence for a zero mode ϕ of T :

Tϕ = 0 ⇐⇒ H

(
ϕ

0

)
= m

(
ϕ

0

)
⇐⇒ H

(
0
ϕ

)
= −m

(
0
ϕ

)
(2.8)

The equivalences (2.7) and (2.8) are particularly interesting in the context of the
following theorem, where ±m are the thresholds.

Theorem 2.3. Let T be a self-adjoint operator in the Hilbert space H. Suppose that
σ(T ) ⊃ [0, +∞). Then

σ(H) = (−∞, −m] ∪ [m, +∞).

In particular, σd(H) = ∅, i.e., the set of discrete eigenvalues of H with finite multi-
plicity is empty.

Proof. It follows from (2.6) that D(H2) = D(T 2) ⊕D(T 2) and that

H2 =

(
T 2 + m2I 0

0 T 2 + m2I

)
≥ m2

(
I 0
0 I

)
. (2.9)

This inequality implies that σ(H) ⊂ (−∞, −m] ∪ [m, +∞).
To complete the proof, we shall prove the fact that σ(H) ⊃ (−∞, −m]∪[m, +∞).

To this end, suppose λ0 ∈ (−∞,−m]∪ [m, +∞) be given. Since
√

λ2
0 − m2 ≥ 0, we

see, by the assumption of the theorem, that
√

λ2
0 − m2 ∈ σ(T ). Therefore, we can

find a sequence {ψn}∞n=1 ⊂ H such that

∥ψn∥H = 1, ψn ∈ Ran
(
ET (ν0 −

1
n

, ν0 +
1
n

)
)
, ν0 :=

√
λ2

0 − m2 (2.10)

for each n, where ET (·) is the spectral measure associated with T :

T =
∫ ∞

−∞
λ dET (λ). (2.11)

Here we have used a basic property of the spectral measure: see, for example, Reed
and Simon [23, p. 236, Proposition]. It is straightforward to see that

∥(T − ν0)ψn∥H → 0 as n → ∞. (2.12)

We shall construct a sequence {fn} ⊂ D(H) = D(T )⊕D(T ) satisfying ∥fn∥K = 1
and ∥(H − λ0)fn∥K → 0 as n → ∞. To this end, we choose a pair of real numbers
a and b so that

a2 + b2 = 1 (2.13)

and that (
m ν0

ν0 −m

)(
a

b

)
= λ0

(
a

b

)
. (2.14)
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This is possible because the 2 × 2 symmetric matrix in (2.14) has eigenvalues ±λ0.
We now put

fn :=

(
aψn

bψn

)
. (2.15)

It is easy to see that ∥fn∥K = 1. By using (2.13) and (2.14), we can show that

∥(H − λ0)fn∥2
K =∥(m − λ0)aψn + bTψn∥2

H

+ ∥aTψn − (m + λ0)bψn∥2
H

=∥b(−ν0 + T )ψn∥2
H + ∥a(T − ν0)ψn∥2

H

=∥(T − ν0)ψn∥2
H → 0 as n → ∞.

We thus have shown that λ0 ∈ σ(H). ¤

In all the later sections, we shall apply the obtained results on the supersymmetric
Dirac operator to the magnetic Dirac operator HA of the form (1.1) in the Hilbert
space K =

[
L2(R3)

]4, where we take T to be the Weyl-Dirac operator

TA = σ · (D − A(x)) (2.16)

acting in the Hilbert space H =
[
L2(R3)

]2.

3. Vector potentials yielding ±m modes

This section is devoted to examples of vector potentials A(x) which yield ±m

modes of Dirac operators HA = α · (D −A(x)) + mβ. The basic idea in this section
is to exploit the equivalences (2.7) and (2.8). Thus we shall apply the results in
section 2 in the way described in the last paragraph of section 2. It turns out that
beautiful spectral properties are in common to all the examples of Dirac operators
in this section. See properties (i) – (iii) of Example 3.1.

Example 3.1 (Loss-Yau). Let

ALY (x) = 3〈x〉−4
{
(1 − |x|2)w0 + 2(w0 · x)x + 2w0 × x

}
(3.1)

where 〈x〉 =
√

1 + |x|2 , φ0 = t(1, 0) (φ0 can be any unit vector in C2), and

w0 = φ0 · (σφ0) :=
(
(φ0, σ1φ0)C2 , (φ0, σ2φ0)C2 , (φ0, σ3φ0)C2

)
. (3.2)

Here w0 · x and w0 × x denotes the inner product and the exterior product of R3

respectively, and (φ0, σ1φ0)C2 etc. denotes the inner product of C2. Then the Dirac
operator

HLY := HALY
= α · (D − ALY (x)) + mβ

has the following properties:

(i) σ(HLY ) = σess(HLY ) = (−∞, −m] ∪ [m, ∞);
(ii) The point spectrum of HLY consists only of ±m, i.e. σp(HLY ) = {−m, m};
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(iii) HLY is absolutely continuous on (−∞, −m) ∪ (m, ∞).

We shall show these properties one-by-one. It is easy to see that −σ · ALY (x) is
relatively compact perturbation of σ · D, hence the Weyl-Dirac operator

TLY := TALY
= σ · (D − ALY (x))

is a self-adjoint operator in the Hilbert space H =
[
L2(R3)

]2 with the domain[
H1(R3)

]2. By Hs(R3), we mean the Sobolev space of order s:

Hs(R3) =
{

u
∣∣ ∥〈D〉su∥L2(R3) < +∞

}
,

where 〈D〉 =
√

1 −△. Since the spectrum of the operator σ · D equals the whole
real line, we see that σ(TLY ) = R. Property (i) immediately follows from Theorem
2.3.

We shall show property (ii). According to Loss and Yau [18, section II], the
Weyl-Dirac operator TLY has a zero mode ϕLY defined by

ϕLY (x) = 〈x〉−3
(
I2 + iσ · x

)
φ0. (3.3)

It follows from (2.7) and (2.8) that t(ϕLY , 0) (resp. t(0, ϕLY )) is an eigenfunction of
the Dirac operator HLY corresponding to the threshold eigenvalue m (resp. −m).
Hence σp(HLY ) ⊃ {−m, m}. On the other hand, it follows from Yamada [31] that
HLY has no eigenvalue in (−∞,−m)∪ (m, ∞). (Note that the vector potential ALY

satisfies the assumption of [31, Proposition 2.5].) This fact, together with property
(i), implies that σp(HLY ) ⊂ {−m, m}. Summing up, we get property (ii).

Property (iii) is a direct consequence of Yamada [31, Corollary 4.2]. As for ab-
solutely continuity and limiting absorption principle for Dirac operators, see also
Yamada [32], Balslev and Helffer [8], and Pladdy, Saitō and Umeda [22].

Remark 3.1. Since ALY is C∞, one can apply Thaller [28, p. 195, Theorem 7.1] to
conclude that t(ϕLY , 0) (resp. t(0, ϕLY )) is an eigenfunction of HLY corresponding
to the eigenvalue m (resp. −m). Actually, this fact was already mentioned in Thaller
[27].

Example 3.2 (Adam-Muratori-Nash). In the same spirit as in Example 3.1, we
can show the existence of countably infinite number of vector potentials with which
the Dirac operators have the properties (i) – (iii) in Example 3.1.

In fact, we shall exploit a result on the Weyl-Dirac operator by Adam, Muratori
and Nash [1], where they construct a series of vector potentials A(ℓ) (ℓ = 0, 1, 2,
· · · ), each of which gives rise a zero mode ψ(ℓ) of the Weyl-Dirac operator T (ℓ) :=
σ · (D−A(ℓ)(x)). The idea of [1] is an extension of that of Loss and Yau [18, section
II]; Indeed A(0) and ψ(0) give the same vector potential and zero mode as in (3.1)
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and (3.3). For ℓ ≥ 1, the construction of the zero mode ψ(ℓ)(x) is based on an anzatz
(see (7) in section II of [1]) and the definition of A(ℓ) is given by

A(ℓ)(x) =
h(ℓ)(x)

|ψ(ℓ)(x)|2
{ψ(ℓ)(x) · (σψ(ℓ)(x))}, (3.4)

where h(ℓ)(x) is a real valued function and ψ(ℓ)(x) · (σψ(ℓ)(x)) is defined in the same
way as in (3.2). For ℓ = 1, the zero mode is given by

ψ(1)(x) = 〈x〉−5
{
(1 − 5

3
|x|2)I2 + (

5
3
− |x|2)iσ · x

}
φ0. (3.5)

By the same arguments as in Example 3.1, we can deduce that the Dirac operator
H(ℓ) := α · (D − A(ℓ)(x)) + mβ, ℓ = 0, 1, 2, · · · , has the properties (i) – (iii) of
Example 3.1.

4. Asymptotic limits of ±m modes

In the previous section, we have seen there exists infinitely many A’s such that
the corresponding magnetic Dirac operators HA have the threshold eigenvalues ±m.
In this section, we consider a class of magnetic Dirac operators HA under Assump-
tion(SU) below, and will focus on the asymptotic behaviors at infinity of ±m modes
of HA.

Assumption(SU).
Each element Aj(x) (j = 1, 2, 3) of A(x) is a measurable function satisfying

|Aj(x)| ≤ C〈x〉−ρ (ρ > 1), (4.1)

where C is a positive constant.

It is easy to see that under Assumption(SU) the Dirac operator HA is a self-adjoint
operator in the Hilbert space K =

[
L2(R3)

]4 with Dom(HA) = [H1(R3)]4. Also it is
easy to see that under Assumption(SU) the Weyl-Dirac operator TA is a self-adjoint
operator in the Hilbert space H =

[
L2(R3)

]2 with Dom(TA) =
[
H1(R3)

]2. Since the
operator −σ · A(x) is relatively compact with respect to the operator T0 := σ · D,
and since σ(T0) = R, it follows that σ(TA) = R. Recalling that

HA =

(
0 TA

TA 0

)
+ m

(
I 0
0 −I

)
, (4.2)

we apply Theorem 2.3 to HA, and get

σ(HA) = σess(HA) = (−∞, −m] ∪ [m, +∞).

Hence ±m are the threshold energies of the operator HA. Assuming that ±m are
the eigenvalues of HA, we should emphasize here that the eigenspaces corresponding
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to the eigenvalues ±m of HA are given as the direct sum of Ker(TA) and the zero
space {0} (cf. Corollary 2.1), and that these two eigenspaces themselves as well as
their dimensions are independent of m.

Theorem 4.1. Suppose that Assumption(SU) is verified, and that m (resp. −m) is
an eigenvalue of HA. Let f be an m mode (resp. a −m modes) of HA. Then there
exists a zero mode ϕ+ (resp. ϕ−) of TA such that for any ω ∈ S2

lim
r→∞

r2f(rω) =

(
u+(ω)

0

) (
resp.

(
0

u−(ω)

))
, (4.3)

where

u±(ω) =
i

4π

∫
R3

{(
ω · A(y)

)
I2 + iσ ·

(
ω × A(y)

)}
ϕ±(y) dy, (4.4)

and the convergence is uniform with respect to ω.

Theorem 4.1 is a direct consequence of Corollary 2.1, together with Saitō and
Umeda [25, Theorem 1.2]. Note that under Assumption(SU) every eigenfunction of
HA corresponding to either one of eigenvalues ±m is a continuous function of x (cf.
Saitō and Umeda [26, Theorem 2.1]), therefore the expression f(rω) in (4.3) makes
sense for each ω.

5. Sparseness of vector potentials yielding ±m modes

In this section, we shall discuss the sparseness of the set of vector potentials
A which give rise to ±m modes of magnetic Dirac operators HA, in the sprit of
Balinsky and Evans [4] and [5], where they investigated Pauli operators and Weyl-
Dirac operators respectively.

We shall make the following assumption:

Assumption(BE).
Aj ∈ L3(R3) for j = 1, 2, 3.

Under Assumption(BE) Balinsky and Evans [5, Lemma 2] showed that −σ · A is
infinitesimally small with respect to T0 = σ ·D with Dom(T0) =

[
H1(R3)

]2 (see (5.5)
below). This fact enables us to define the self-adjoint realization TA in the Hilbert
space H =

[
L2(R3)

]2 as the operator sum of T0 and −σ · A, thus Dom(TA) =[
H1(R3)

]2. It turns out that under Assumption(BE) −α · A is infinitesimally small
with respect to H0 := α ·D+mβ, and hence we can define the self-adjoint realization
HA in the Hilbert space K =

[
L2(R3)

]4 as the operator sum of H0 and −α ·A, thus
Dom(HA) =

[
H1(R3)

]4. Therefore we can regard HA as a supersymmetric Dirac
operator, and shall apply the results in section 2 to HA. (Recall (4.2) again.)
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Proposition 5.1. Let Assumption (BE) be satisfied. Then σ(TA) = R.

We shall prepare a few lemmas for the proof of Proposition 5.1.

Lemma 5.1. Let z ∈ C \ R. Then 〈D〉1/2(T0 − z)−1 is a bounded operator in H.
Moreover we have

Ran
(
〈D〉1/2(T0 − z)−1

)
⊂

[
H1/2(R3)

]2
. (5.1)

Proof. It is sufficient to show the conclusions of the lemma for z = −i. Let ϕ ∈
Dom(T0). Then we have

∥(T0 + i)ϕ∥2
H =

∫
R3

∣∣((σ · ξ) + iI2

)
ϕ̂(ξ)

∣∣2
C2 dξ

=
∫

R3

(|ξ|2 + 1)
∣∣ϕ̂(ξ)

∣∣2
C2 dξ

= ∥〈D〉ϕ∥2
H,

(5.2)

where we have used the anti-commutation relation σjσk + σkσj = 2δjkI2 in the
second equality. It follows from (5.2) that

∥ϕ∥H = ∥〈D〉(T0 + i)−1ϕ∥H (5.3)

for all ϕ ∈ H. Furthermore, we see that

∥〈D〉1/2(T0 + i)−1ϕ∥H ≤ ∥〈D〉1/2(T0 + i)−1ϕ∥[H1/2(R3)]2

= ∥〈D〉(T0 + i)−1ϕ∥H
= ∥ϕ∥H.

(5.4)

It is evident that (5.4) proves the conclusions of the lemma for z = −i. ¤

Lemma 5.2. If ϕ ∈
[
H1/2(R3)

]2, then (σ · A)〈D〉−1/2ϕ ∈ H.

Proof. By Balinsky and Evans [5, Lemma 2], we see that for any ϵ > 0, there exists
a constant kϵ > 0 such that for all ϕ ∈ Dom(T0)

∥(σ · A)ϕ∥H ≤ ϵ∥T0ϕ∥H + kϵ∥ϕ∥H. (5.5)

By virtue of the fact that 〈D〉−1/2ϕ ∈ Dom(T0) for ϕ ∈
[
H1/2(R3)

]2, it follows from
(5.5) that

∥(σ · A)〈D〉−1/2ϕ∥H ≤ ϵ∥(T0 + i)〈D〉−1/2ϕ∥H + kϵ∥〈D〉−1/2ϕ∥H
≤ ϵ∥〈D〉1/2ϕ∥H + kϵ∥ϕ∥H < +∞,

where we have used (5.2) and the fact that ∥〈D〉1/2ϕ∥H = ∥ϕ∥[H1/2(R3)]2 . ¤

Lemma 5.3. 〈D〉−1(σ · A)〈D〉−1/2 is a compact operator in H.
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Proof. One can make a factorization

〈D〉−1(σ · A)〈D〉−1/2

=
( |D|1/2

〈D〉

)( 1
|D|1/2

(σ · A)
1

|D|1/2

)( |D|1/2

〈D〉1/2

)
.

(5.6)

It is obvious that the first term and the last term on the right hand side of (5.6)
are bounded operators in H. Then it follows from (5.6) and Balinsky and Evans [5,
Lemma 1] that the conclusion of the lemma holds true. ¤

Lemma 5.4. Let z ∈ C \ R. Then (TA − z)−1〈D〉
∣∣∣
[H1(R3)]2

can be extended to a

bounded operator R̃A(z) in H. Moreover

(TA − z)−1ϕ = R̃A(z)〈D〉−1ϕ for ∀ϕ ∈ H. (5.7)

Proof. We first show that 〈D〉(T − z)−1 is a closed operator in H. To this end,
suppose that {ϕj} is a sequence in H such that ϕj → 0 in H and 〈D〉(T−z)−1ϕj → ψ

in H as j → ∞. Then {(T − z)−1ϕj} is a Cauchy sequence in
[
H1(R3)

]2, hence
there exists a ψ̃ ∈

[
H1(R3)

]2 such that

(T − z)−1ϕj → ψ̃ in
[
H1(R3)

]2 as j → ∞. (5.8)

Since the topology of
[
H1(R3)

]2 is stronger than that of H, (5.8) implies that

(T − z)−1ϕj → ψ̃ in H as j → ∞. (5.9)

On the other hand, since ϕj → 0 in H, and since (T − z)−1 is a bounded operator
in H, we see that

(T − z)−1ϕj → 0 in H (5.10)

as j → ∞. Combining (5.9) and (5.10), we see that ψ̃ = 0. This fact, together with
(5.8), 〈D〉(T − z)−1ϕj → 0 in H as j → ∞. Hence ψ = 0. We have thus shown
that 〈D〉(T − z)−1 is a close operator. Noting that Dom(〈D〉(T − z)−1) = H, we can
conclude from the Banach closed graph theorem that 〈D〉(T − z)−1 is a bounded
operator in H, which will be denoted by QA(z).

We now put R̃A(z) := QA(z)∗, where QA(z)∗ denotes the adjoint operator of
QA(z). Then for any ϕ ∈ H and any ψ ∈

[
H1(R3)

]2, we have

(ϕ, R̃A(z)ψ)H = (QA(z)ϕ, ψ)H

= (〈D〉(T − z)−1ϕ, ψ)H

= (ϕ, (T − z)−1〈D〉ψ)H.

(5.11)

It follows from (5.11) that

R̃A(z)ψ = (T − z)−1〈D〉ψ (5.12)

for all ψ ∈
[
H1(R3)

]2. Replacing ψ in (5.12) with 〈D〉−1ϕ, ϕ ∈ H, we get (5.7). ¤
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Proof of Proposition 5.1. Since σ(T0) = σess(T0) = R, it is sufficient to show
that

σess(TA) = σess(T0). (5.13)

To this end, we shall prove that the difference (TA + i)−1 − (T0 + i)−1 is a compact
operator in H. Then, this fact implies (5.13); see Reed and Simon [24, p.113,
Corollary 1].

We see that

(TA + i)−1 − (T0 + i)−1

=(TA + i)−1(σ · A)(T0 + i)−1

=R̃A(−i){〈D〉−1(σ · A)〈D〉−1/2}{〈D〉1/2(T0 + i)−1}, (5.14)

where we have used Lemma 5.4 in (5.14). It follows from Lemmas 5.1–5.4 that (5.14)
makes sense as a product of three bounded operators in H and that the product is
a compact operator in H. ¤

Proposition 5.1, together with Theorem 2.3, gives the following result on the
spectrum of the magnetic Dirac operator HA.

Theorem 5.1. Let Assumption (BE) be satisfied. Then

σ(HA) = σess(HA) = (−∞, −m] ∪ [m, ∞).

We now state the main results in this section, which are concerned with the
eigenspaces corresponding to the threshold eigenvalues of magnetic Dirac operators
HA.

Theorem 5.2. Let Assumption (BE) be satisfied. Then

(i) Ker(HA −m) is non-trivial if and only if Ker(HA + m) is non-trivial; in other
words, {

A ∈
[
L3(R3)

]3 ∣∣ Ker(HA − m) ̸= {0}
}

=
{

A ∈
[
L3(R3)

]3 ∣∣ Ker(HA + m) ̸= {0}
}
.

(ii) There exists a constant c such that

dim
(
Ker(HA − m)

)
= dim

(
Ker(HA + m)

)
≤ c

∫
R3

|A(x)|3 dx. (5.15)

Moreover, the dimension of Ker(HA ∓ m) is independent of m.

(iii) The set
{

A ∈
[
L3(R3)

]3 ∣∣ Ker(HA ∓ m) = {0}
}

contains an open dense
subset of

[
L3(R3)

]3.
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Proof. By Corollary 2.1, we see that

Ker(TA) is trivial ⇐⇒ Ker(HA − m) is trivial

⇐⇒ Ker(HA + m) is trivial.
(5.16)

Assertion (i) is equivalent to (5.16). Assertion (ii) follows from Corollary 2.1 and
Balinsky and Evans [5, Theorem 3]. Assertion (iii) follows from Corollary 2.1 and
Balinsky and Evans [5, Theorem 2]. ¤

Remark 5.1. Assertions (i) and (ii) of Theorem 5.2 mean the following facts: The
threshold energy m is an eigenvalue of HA if and only if the threshold energy −m is
an eigenvalue of HA. If this is the case, their multiplicity are the same.

Remark 5.2. As for the best constant in (5.15), see Balinsky and Evans [5, Theorem
3].

6. The structure of the set of vector potentials yielding ±m modes

In this section, we shall discuss a property of non-locality of magnetic vector
potentials as well as the sparseness of the set of vector potentials A which give rise
to ±m modes of HA in the sprit of Elton [10], where he investigated Weyl-Dirac
operators. We make the following assumption:

Assumption(E).
Each Aj (j = 1, 2, 3) is a real-valued continuous function such that Aj(x) = o(|x|−1)
as |x| → ∞.

It is straightforward to see that under Assumption(E), −σ · A is a bounded self-
adjoint operator in the Hilbert space H =

[
L2(R3)

]2. Hence we can define the
self-adjoint realization TA with Dom(TA) =

[
H1(R3)

]2 as the operator sum of T0

and −σ · A.
Also, it is straightforward to see that −α ·A is a bounded self-adjoint operator in

the Hilbert space K =
[
L2(R3)

]4, hence we can define the self-adjoint realization HA

with Dom(HA) =
[
H1(R3)

]4 in K as the operator sum of H0 and −α·A. Therefore, in
the same way as in section 5, we can regard HA as a supersymmetric Dirac operator,
and apply the results in section 2 to HA.

We note that under Assumption(E) (−σ · A)(T0 + i)−1 is a compact operator in
H. Hence in the same way as in the proof of Proposition 5.1 we can show that
σ(TA) = R. This fact, together with Theorem 2.3, implies the following result.
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Theorem 6.1. Let Assumption (E) be satisfied. Then

σ(HA) = σess(HA) = (−∞, −m] ∪ [m, ∞).

To state the main results in this section, we need to introduce the following
notation:

A := {A |A satisfies Assumption(E) }. (6.1)

We regard A as a Banach space with the norm

∥A∥A = sup
x
{〈x〉|A(x)|}

Theorem 6.2. Let Assumption(E) be satisfied. Define

Z±
k = {A ∈ A | dim(Ker(H ∓ m)) = k }

for k = 0, 1, 2, · · · . Then

(i) Z+
k = Z−

k for all k.

(ii) Z±
0 is an open and dense subset of A.

(iii) For any k and any open subset Ω( ̸= ∅) of R3 there exists an A ∈ Z±
k such

that A ∈
[
C∞

0 (Ω)
]3.

Proof. Assertion (i) is a direct consequence of Corollary 2.1. Assertions (ii) and (iii)
follows from Corollary 2.1 and Elton [10, Theorem 1]. ¤

It is of some interest to point out a conclusion following from Theorem 4.1 and
Assertion (iii) of Theorem 6.2. Namely, there are (at least) countably infinite number
of vector potentials A with compact support such that the corresponding Dirac
operators HA have ±m modes f± with the property (4.4). The ±m modes f± behave
like |f±(x)| ∼ |x|−2 for |x| → ∞, in spite of the fact that the vector potentials and
the corresponding magnetic fields vanish outside bounded regions. It is obvious that
this phenomenon describes a certain kind of non-locality.

7. A concluding remark

Section 4 is based upon our results on supersymmetric Dirac operators in section
2 of the present paper and those of Saitō and Umeda [26]. Section 5 is based upon
our results on supersymmetric Dirac operators in section 2 and those of Balinsky and
Evans [5]. Section 6 is based upon our results on supersymmetric Dirac operators
and those of Elton [10]. The combinations of our abstract results and those existing
works broaden the understandings of ±m modes (threshold eigenfunctions) of the
magnetic Dirac operators.
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In each section from section 4 to section 6, we have made a different assumption
on the vector potential. It is important to compare these assumptions to each other.
To this end, mimicking (6.1), we introduce the following notation

ASU :={A |A satisfies Assumption(SU) },
ABE :={A |A satisfies Assumption(BE) }.

We then have

ASU ⊂ ABE , ABE \ ASU ̸= ∅,
A \ ASU ̸= ∅, ASU \ A ̸= ∅,
A \ ABE ̸= ∅, ABE \ A ̸= ∅.
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