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Bohmian trajectories from a Dynamical Systems point of view

Abstract

Vortices are known to play a key role in the dynamics of thenfuia trajectories de-
fined within the framework of the de Broglie-Bohm formalisiquantum mechanics. It
has been rigourously proved that the motion of a vortex iragsociated velocity field can
induce chaos in these trajectories, and numerical studies éxplored the rich variety of
behaviors that due to their influence can be observed. Inptger, we go one step fur-
ther and show how the theory of dynamical systems can be asmahstruct a general and
systematic classification of such dynamical behaviorss Ehould contribute to establish
some firm grounds on which the studies on the intrinsic stetidity of Bohm’s quantum

trajectories can be based. An application to the two dineeasiisotropic harmonic oscil-
lator is presented as an illustration.
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1 Introduction

Some interpretational difficulties [1] with the standaradsien [2] led David Bohm to develop
in the 1950’s [3] an alternative formulation of quantum meaics. Despite initial criticisms,
this theory has recently received much attention [4, 5],ingexperimented in the past few
years an important revitalization, supported by a new cdatmnally oriented point of view.
In this way, many interesting practical applications, untthg the analysis of the tunnelling
mechanism [6, 7, 8], scattering processes [9, 10, 11], ocldssical-quantum correspondence
[12, 13], just to name a few, have been revisited using thiehmoint of view. Also, the chaotic
properties of these trajectories [14, 15, 16, 17, 18], orarfandamental issues, such as the
extension to quantum field theory [19], or the dynamicaliorimf Born’s probability rule [20]
(one of the most fundamental cornerstones of the quantuomthkave been addressed within
this framework .

Most interesting in Bohmian mechanics is the fact that theoty is based on quantum
trajectories, “piloted” by the de Broglie’s wave which cesa (quantum) potential term addi-
tional to the physical one derived from the actual forcestexy in the system [3]. This term
brings into the theory interpretative capabilities in terafi intuitive concepts and ideas, which
are naturally deduced due to fact that quantum trajectprimade causal connections between
physical events well defined in configuration and time. Omig ileas have been established
as the basis of many numerical studies, it becomes, in oniapiof great importance to pro-
vide firm dynamical grounds that can support the argumersiscban quantum trajectories. For
example, it has been recently discussed that the chaofpepres of quantum trajectories are
critical for a deep understanding of Born’s probability gttan postulate, considering it as an
emergent property [20]. Unfortunately very little proggese. rigorous formally proved math-
ematical results, has taken place along this line due tcaitledf a solid theory that can foster
this possibility. Moreover, there are cases in the litegatiiearly demonstrating the dangers of
not proceeding in this way. One example can be found in Ré&}, [2here a chaotic character
was ascribed to quantum trajectories for the quartic p@tesupporting the argument solely
on the fact that numerically computed neighboring pairsasse exponentially. This analy-
sis was clearly done in a way in which the relative importaotéhe quantum effects could
not be gauged. Something even worse happened with thegesplirted in [22], that were
subsequently proved to be wrong in a careful analysis ofrt#jedtories [23].

Recently, some of the authors have made in Refs. [15, 16, &} we consider a relevant
advance along the line proposed in this paper, by consiglénmrelationship between the even-
tual chaotic nature of quantum trajectories and the vasteoasting in the associated velocity
field which is given by the quantum potential, a possibilitgtthad been pointed out previously
by Frisk [14]. Vortices has always attracted the interestapéntists from many different fields.
They are associated to singularities at which certain nmadtieal properties become infinity or
abruptly change, and play a central role to explain manyeésteng phenomena both in clas-
sical and quantum physics [25]. In these papers it was shbatrguantum trajectories are, in
general, intrinsically chaotic, being the motion of theogtly field vortices a sufficient mecha-
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nism to induce this complexity [15]. In this way, the present a single moving vortex, in an
otherwise classically integrable system, is enough to nqakatum trajectories chaotic. When
two or few vortices exist, the interaction among them maywgmah the annihilation or creation
of them in pairs with opposite vorticities. These phenonmemakes that the size of the regular
regions in phase space grows as vortices disappear [173lIsih has been shown that when
a great number of vortices are present the previous condsisilso hold, and they statistically
combine in such a way that they can be related with a suitafipeld Lyapunov exponent, as a
global numerical indicator of chaos in the quantum trajeeto[16]. Summarizing, this makes
of chaos the general dynamical scenario for quantum ti@jest and this is due to the existence
and motion of the vortices of the associated velocity field.

In this paper, we extend and rigorously justify the numeriesults in [16, 17, 15] concern-
ing the behavior of quantum trajectories and its structyrpresenting the general analysis of
a particular problem of general interest, namely a two—dsmanal harmonic oscillator, where
chaos does not arise from classical reasons. In this wayrevéde a systematic classification
of all possible dynamical behaviors of the existing quantuajectories, based on the appli-
cation of dynamical systems theory [24]. This classifiaatioovides a complete “road—map”
which makes possible a deep understanding, put on firm ggwhthe dynamical structure for
the problem being addressed.

2 Bohmian mechanicsand quantum trajectories

The Bohmian mechanics formalism of quantum trajectori@gstrom the suggestion made by
Madelung of writing the wave function in polar form

Y(r,t) = R(r, t)eis(r’t),

where R? = o1 andS = (In+ — In))/(2i) are two real functions of position and time.
For convenience, we sét = 1 throughout the paper, and consider a particle of unit mass.
Substitution of this expression into the time-dependetir&@tinger equation allows to recast
the quantum theory into a “hydrodynamical” form [5], whichgoverned by,

— =V (R vs), (1)
95 (VS)? 1 V2R
a2 VTam: ©)

which are the continuity and the “quantum” Hamilton-Jacedpiations, respectively. The qual-
ifying term in the last expression is customarily includ@tte this equation contains an extra
non-local contribution (determined by the quantum st&je} %VzR/R, called the “quantum”
potential. Together with, this additional term determines the total forces actinghersystem,
and it is responsible for the so-called quantum effectsémynamics of the system.
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Figure 1:lllustration of the dynamical consequences of a time—isiats symmetry.

Similarly to what happens in the standard Hamilton-Jacléoty, Egs. (1) and (2) allow
to define, for spinless particles, quantum trajectoriesisgration of the differential equations
system:i: = —VV (r) — VQ(r). Alternatively, one can consider the velocity vector field

i PVY — YV
2 P
Notice that, in general, this Bohmian vector field is not Héonian, but it may nevertheless
have some interesting properties. In particular, for thengxe considered in this paper it
will be shown that it is time-reversible, this symmetry allag the study of its dynamics in a
systematic way.

Let us recall that a systemt, = X (r,t), is time-reversible if there exists an involution,
r = O(s), that is a change of variables satisfyi®g = Id and© +# Id, such that the new
system results i = DO~ (s)X(6(s),t) = —X(s,t). One of the dynamical consequences
of reversibility is that ifr(¢) is a solution, then so it i®(r(—t)). This fact introduces sym-
metries in the system giving rise to relevant dynamical tanss. For example, let us as-
sume tha(x,y) = (z,—y) is a time-reversible symmetry (see Fig. 1). Then any satutio
r(t) = (z(t),y(t)) defines another solution given Wy(—t), —y(—t)). Let us remark that
this fact constraints the system dynamics since if, for gplam(¢) crosses the symmetry axis
(y = 0 is invariant undeP) then the two solutions must coincide.

We conclude this section by stressing that time-reversygéems generated a lot of interest
during the 80’s due to the fact that they exhibit most of theperties of Hamiltonian systems
(see [26, 27, 28]). In particular, this type of systems cavehguasi-periodic tori which are
invariant under both the flow and the involutién That is, KAM theory fully applies in this
context. Furthermore, some interesting results concgthia splitting of separatrices have been
developed successfully for time-reversible systems [@@lyiding powerful tools for the study
of homoclinic and heteroclinic chaos.

X, =VS = 3)
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3 Model and canonical form

The system that we choose to study is the two dimensionabisictharmonic oscillator. With-
out loss of generality, the corresponding Hamiltonian efrforr = (z,y) can be written in

the form L/ o 52 .
g _ (v v 1. 9 2

In this paper, we consider the particular combination oéeg&atesy,, = 1/+/7 with energy
1, andyy o = 22/ 27, po1 = 2y/+/ 27 with energy2. It can be immediately checked that the
time evolution of the resulting wave function is given by

= <Aeit N 2z Be N 2yCezit)e;(x2+y2)’
NS V2T V2T

wheré A = A+iD, B= B+iF andC = F +iC, subject to the usual normalization condition
|A|2 4 |B|? + |C|*> = 1. In addition, we further assume the conditi®C' # EF in order
to ensure the existence of a unique vortex in the velocitd f&lany time. Accordingly, the
quantum trajectories associated to (4) are solutions afyktem of differential equations:

(4)

—2(BC — EF)y — V2(BD — AE) cost — /2(AB + DE)sint

"o VgD - ©
. 2(BC— EF)z+ V2(AC — DF) cost — \2(DC + AF)sint 5
y - V(ZE,y,t) ) ( )

where

V(v,y,t) = 2(B*+ E*)2® +2(C? + F?)y* + 4BF + EC)xy + D* 4 A
+2V2((AB + DE) cost + (AE — DB)sint)x
+2v2((DC + AF) cost + (AC — DF)sint)y.

To integrate this equation a 7/8—th order Runge-Kuttatbaigl method has been used. More-
over, since the vector field is periodic, the dynamics can bk monitored by using strobo-
scopic sections. In particular, we plot the soluti@rit),y(¢)) at timest = 2mn for n =
1,2,...,10* and for several initial conditions.

In Fig. 2 we show the results of two such stroboscopic sestifs can be seen the left plot
corresponds to completely integrable motions, whereasdnight one sizeable chaotic zones
coexisting with stability islands, this strongly suggegtthe applicability of the KAM scenario.
However, our vector field is neither Hamiltonian nor timegesible, and then the KAM theory
does not directly apply to this case. However, we will showv lacsuitable change of variables

1The choice of notation for the real and imaginary part€ ahay look arbitrary at this point, but it makes
simpler the notation for the canonical form introduced ie tiext section.
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Figure 2: Stroboscopi®r-periodic sections for the quantum trajectories generhte&qs. (5) and (6) for
different values of the normalized constants.

Leftplot: A =0.37,D = —0.02, B=C =0.44andE = —F.

Rightplot: A = 0.4, D = —0.018, B = 0.37 andC = E = 0.49.

can be performed that unveils a time-reversible symmetistiag in our vector field. For this
purpose, we first recall that the structure of gradient vefaetds is preserved under orthogonal
transformations. In this way, if we consider the transfaiorar = Ms, with MT = M1,
applied tor = VS(r,t), we have that = VS(s, ), beingS(s,t) = S(Ms,t). In other words,
any orthogonal transformation can be performed on the wawetion instead of on the vector
field.

Lemma 3.1. If Eq. (4) satisfies the non-degeneracy conditiB’ # EF, then there exist an
orthogonal transformation and a time shift, such that thev&function takes the form

= (fleit N 21 Be 2t N 2yié’ezit)e_;(xz+yz)’
N3 v 2 V2

whered, B,C € R, B > 0, C' # 0 satisfyA? + B2 + C% = 1.

(7)

We will refer to the wave function (7) as the canonical forn{4);, and the rest of the paper
is devoted to the study of this case. For this reason, thentthei coefficients will be omitted,
since it is understood thd? = £ = F = 0. In Table 1 we give the actual values the canonical
coefficients after the transformation corresponding taéselts in Fig. 2.

Proof. For convenience, we consider the complexified phase space + iy, so that the wave
function (4) results in

¥(z,2,t) = (Ae_it + Be Aty 4 (fe_Qitz) e 2%,
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Left plot Right plot
A 0.370540146272978 0.400404795176082
B 0.656772411113622 0.705788460189184
C 0.656772411113622 0.584413081188110

Table 1:Wave function coefficients in the canonical model corresfimpto the results of Fig. 2Hats have
been omitted as discussed in the text.

where\/TA = A+iD,/2nB = B+ C +i(E — F), andy27C = B — C 4+ i(E + F). Then,
it is easy to check that the vortex, i.e. the set of points wiilee wave function vanishes, has
the following position with respect to time

B _‘AHB‘ei(t—b-l—a) + |A“@|e—i(t—c+a)

2yt = =
" 1B]* —[CI?

)

whereA = | A, B = |Ble®® andC = |C|e“. Notice that the vortex is well defined thanks to the
non-degeneracy assumption, and its trajeééolows an ellipse. This ellipse does not appear
in the usual canonical form, but this can be made so by peifgythe rotation:z — ze™* and
the time shift:t — ¢ + A. In this way

_|A||B|ei(t—b+a7u+>\) + |A||é|e—i(t7c+a+u+>\)

2y (T = =
" B> —|C[?

)

where itis clear that by choosig = ¢ — b and2\ = ¢+ b — 2q, the desired result is obtained.
Then, the corresponding wave function in these new cootekna

Y= <|fl\eit + |Ble %z + \@\eQitz) o o3 gil2a=5)

that can be further simplified since the factit*~":*) plays no role in the Bohmian equations
for the quantum trajectories. Finally, by recovering thefGioients in cartesian coordinates, one
obtainsA = /7| A|, B = \/3(|B| +|C]), C=./3(]B|—|C|])andD = E = F = 0, which
renders Eq. (7). O

4 Study of the canonical form

Throughout the rest of the paper we consider the wave fum@pwith A, C' # 0, B > 0 and
D = F = F = 0. Letus remark that by changing the tihe> —¢, if necessary, we can further

2We use here the term trajectory to refer to the evolution efbrtex, despite the fact that it is not a solution
of the ODE.
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restrict the study to the cage > 0. The corresponding quantum trajectories are then obtained
from the vector field

P —2BCy — V2ABsint 2BCx + V2AC cost
v V(x,y,t) ’ V(x,y,t) ’

(8)

whereV (z,y,t) = 2B%2%+20%y?+2v/2ABx cos t+2v/2ACy sin t+ A%. In these coordinates,
the only vortex of the system follows the trajectory given by

(y(t),yu(1)) = (— écost, —% sint),

which corresponds to an ellipse of semi-anes A/(v/2B) andb = A/(v/2C), respectively.

In Fig. 3 we show some stroboscopic sections correspondirigis (canonical) velocity
field for different values of the parametersandb. As can be seen, a wide variety of dynamical
behaviors, characteristics of a system with mixed dynamscfound. In the left-top panel,
which corresponds to the case in which= b (vortex moving in a circle), we have sections
corresponding to a totally integrable case. As we move frefintd right and top to bottom
some of these tori are broken, and these areas of stochasbeixist with others in which the
motion is regular, this including different chains of istisn Moreover, the size of the chaotic
regions grows as the value bteparates from that af

This variety of results can be well understood and ratiaedby using some standard tech-
niques of the field of dynamical systems, in the following wAithough the vector field (8) is
not Hamiltonian, it is time-reversible with respect to thedlution©(x, y) = (x, —y). This re-
sult is very important for the purpose of the present papecest implies that the KAM theory
applies to our system if we are able to write down our vectdd frethe form X, = X, + <X,

e < 1, being the dynamics corresponding Xy integrable andX; time-reversible. More
specifically, let us assume th&t, does not depend anand X; be 2r-periodic with respect to
t. Moreover, let us assume that f&k there exists a family of periodic orbits whose frequency
varies along the family (non-degeneracy condition). Tloem,result guarantees that when the
effect of the perturbation.X; is considered, most of the previous periodic orbits give t®s
invariant tori of frequenciesél, w), wherew is the frequency of the unperturbed periodic orbit.
Of course, the persistence of these objects is conditian#uktfact that the vectdt, w) satis-
fies certain arithmetic conditions (see [27, 28] for dejaiBince these arithmetic conditions are
fulfilled for a big (in the sense of the Lebesgue measure)fshieoinitial orbits, the important
hypothesis that we have to check in order to ascertain thikcappity of the KAM theory is
the non-degeneracy of the frequency map.

In our problem, two such integrable cases exists. First} if= 0 the vortex is still at
the origin and the time periodic part in the vector field d@egrs. As a consequence, all the
guantum orbits of the system appear as ellipses centerbeé atigin in thexy-plane. It will
be shown in the next section that the corresponding frequeaites monotonically along the
orbits. This case has not been explicitly included in Figug tb its simplicity. Second, and
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Figure 3:Stroboscopi@r-periodic sections corresponding to the quantum trajextgenerated by the canonical
velocity field defined by Eq. (8) for = 0.4 and,b = 0.4,0.44,0.48 and 0.68 from left-top to right-bottom,
respectively.

as will be analyzed in Sect. 6, 8 = C, or equivalentlys = b, that is the vortex moves in

a circle, the vector field is also integrable for any valuelofThe corresponding stroboscopic
sections are shown in the top-left panel of Fig. 3). Heresthecture of the phase space changes
noticeably, since two new periodic orbits, one stable aedther unstable, appear. Moreover,
the obtained integrable vector field dependstoriWe will show that this time dependence
can be eliminated by means of a suitable change of coordinat®wing that our problem
remains in the context described in the previous paragrdjie rest of the panels in Fig. 3
can be understood as the evolution of this structure as ttterpation, here represented by the
difference betwee® andC, as dictated by the KAM theorem.

To conclude the paper, let us now discuss in detail the tweghable cases in the next two
sections.
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5 Theintegrable autonomous case

ForA =0, B # 0 andC # 0 itis easily seen that the vector field (8) is integrable. Adty
the orbits of the quantum trajectories in thg-plane are ellipses around the origin (position
at which the vortex is fixed). Also, the frequency of the cep@nding trajectories approaches
infinity as they get closer to the vortex position. Let us n@mpute the frequency of these
solutions. First, we introduce a new time variableatisfyingdt /dr = B*x* + C*y?, and then
solve the resulting system, thus obtaining

z(7) = acos(BCT + B3), y(r) = asin(BCT + (), 9)

whereq is the distance from the vortex. Next, we recover the origiinae, ¢, by solving the
differential equation defining the previous change of \@aa

dt  ,B*+C>  ,B2—(”

— = 2B 2
i 5 +« 5 cos(2BCT + 203),
whose solution is given by
2 B? - (C?
S S - in(28B 2(3).
B 00 T yBr orype mEBOT +20)
— ~ }r o
v

Notice that this equation is invertible sin@BC§| < 1, and thenr = vt + f(2BCHt), f being
a 2m-periodic function. Finally, introducing this expressiomo (9), one can conclude that the
solution has a frequency given by

2BC
QQ(BQ + 02)
that varies monotonically with respect to the distance owbrtex. Then, forA < 1, the
existence of invariant tori around the vortex is guaranteed

w=BCy =

6 Theintegrable non-autonomous case

Let us consider now the case of non-vanishing valuds ef C for any A # 0. In this case, we
havea = b # 0, and system (8) can be written as
—y —asin(t) =+ acos(t))

Xw(x,y,t):< Viz,y,t)  V(z,y,t)

(10)

whereV (z,y,t) = (z + acos(t))? + (y + asin(t))%. This vector field corresponds to the
following Hamiltonian

1 ~
H(z,y,t)= —3 InV(z,y,t),

that it is actually integrable.
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Lemma 6.1. Let us considee (energy), the symplectic variable conjugate tand define the
autonomous Hamiltoniak(, (x, y,t,e) = H(z,y,t) + e, then we have that

Ho(x,y,t) = \7(x, Y, t)e_”CQ_y2
Is a first integral ofH1, in involution and functionally independent. As a consegegifa =
b # 0 the system is completely integrable.

Proof. It is straightforward to see that the Poisson bracket wiipeet to the canonical form
dzx N dy + dt A de satisfies{’H;, H>} = 0. Moreover,H, does not depend an so that it is an
independent first integral. O

Taking these results into account, one can completely stetedt the picture presented in
the top-left plot of Fig. 3. Since the system is integralilés foliated by invariant tori, despite
the two periodic orbits that are created by a resonancedunt@d when parameter changes
from A = 0to A # 0. Next, we characterize these two periodic orbits:

Lemma6.2. If A > 0, the system has two periodic orbits given by
re(t) = (21(t), y£(t)) = (ax cost, axsint),

where the coefficients, anda_ are given bya, = —efve+d V2“2+4 Moreover, the orbit-_(¢) is
hyperbolic with characteristic exponentga® — 1)'/2, andr, (¢) is elliptic with characteristic
exponentsti(1l — ai)l/Q. If A < 0the same result holds just switching the roles pfanda_ .

Proof. It is known that if the set§H,'(c), ¢ € R} are bounded differentiable submanifolds,
their connected components carry quasi-periodic dynamiésreover, the critical points of
H, determine the periodic orbits of the system. Thereforesetperiodic orbits are given by

expressionsﬂx\N/ = %—‘;, and2yl7 = %, which can also be written as

z((z+acost)® + (y +asint)’) =+ acost,

y((x +acost)’ + (y +asint)?) =y +asint.
from which we obtain our two periodic orbits:, () = a4 cost, andy.(t) = a sint, with
ay = 1/(ay + a). In addition, it is easy to check that > 1 anda? < 1, respectively.

Finally, the stability of these orbits can be obtained bysidering the following associated
variational equations,

()= (i e (). a

Solutions for this equation can be easily obtained by usiegcbmplex variable = w; + iws,

and solving: = —ie%*a? z. We have the following set of fundamental solutions

wi(t) = eVl ((1 —a?)cost F y/at — 1sint>,
wsy(t) = eV al-1 ((1 —a?)sint £ y/a* — lcost),
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for the hyperbolic case, and

wy(t) = cos(j:t\/l — ai)(j:\/l — a4 cost — (1+a?)sint)

+sin(ty/1 —at)(£4/1 — ad cost + (1 + a2 ) sint),

wo(t) = Cos(:lzt\/l — ai)(j:\/l — a4 sint + (1 +a?) cost)

+sin(£t4/1 — at)(£4/1 — al sint — (1 + a2) cost),

for the elliptic one. Finally, the corresponding charaistér exponents can be obtained by a
straightforward computation of the monodromy matrix. ]

Remark 6.3. Notice that the chaotic sea observed in Fig. 3 is associaid¢td intersection of
the invariant manifolds of the hyperbolic periodic orbiatiwe have computed.

Now, and in order to apply KAM theorem, we compute locally fregjuency map of this
unperturbed system around the vortex and the elliptic periorbit. To this end, we perform a
symplectic change of coordinates in a neighborhood of thegects in order to obtain action-
angle variables up to third order in the action.

Ingeneral, let(x, y,t,e) = H(z,y,t)+e be a Hamiltonian that i8r-periodic with respect
to ¢ and has a first integraF/(z, y, t). Let us consider the generating functicﬁ(;c, t,1,E) =
tE + S(xz,t, 1), determining a symplectic change of variablesy, t,e) — (I,0,t, E') defined
implicitly by

0S S a8
Y= 2 e=FE+ 0 0= a7
whered is also2xr-periodic. This transformation is introduced in such a waattthe new
Hamiltonian depends only oh

oS aS
i (:c %,t) + 5 = h(l). (12)

Since a first integral of the system is known, we can define thesponding action as
]zF(x,y,lﬁ)zF(:p,g—i,t). (13)

From Eg. (13), we obtain locally the equati@ﬁ = f(x,t,I), so that we haves(z,t,1) =
[ f(x,t, I)dx+ g(t, I). Introducing this expression into (12), we obtain the failog equation

for g:
D - gt - [ Lo (14
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and can conclude that, singanust be2rr-periodic with respect to, thenh (1) has to satisfy

h(l) = <H(x, fit)+ / g—{dx> = (H(z, f,1)), (15)

where(-) denotes average with respecttd-inally, we notice that sincg'is a first integral, we
can defingy so that) becomegr-periodic.

Computations are simplified observing that the left hané sidEq. (14) does not depend
on z (we use the fact thak' is a first integral), so we can set= 0. According to this, we
have to solve’(f,t) = I, whereF'(-.t) = F(0,-,t) and then we have to compute the average
h(I) = (H(f,t)), whereH(-,t) = H(0,-,1).

First, let us consider a neighborhood of the vortex for- 0. To this end, we introduce
the new variables = —acost + A, andy = —asint + A, so that the Hamiltoniai/,, =
H,(A,, Ay, t) and the first integral, = F,(A,, Ay, t) are

1
H, = ~3 In(A2 + Az) —al, cost —al,sint, (16)
F, = (A2 + Az) exp(—a® + 2aA, cost + 2aA\, sint — A2 — A§)>

Proposition 6.4. There exist a symplectic change of varialllés, A, t, e) — (I,0,t, E), with
0 € T, setting the vortex at = 0, such that the new Hamiltonian becomes

1 2 a2[ 2 2a2
ho(I) = — - @ -1 Sae

2
5 5 5 5 I7 + O3(1).

Proof. According to the above discussion, we ha\gf,, t) = f2e=*"t2efesini=fi — [ Then,
by introducing this expression in (16) ones obtains

. 1 a2 £2
Hy(fot) = =5l = = - %
Finally, we only have to compute the first terms in the expamsif ff obtaining
/2= eI — 2ae?™ sint 1% + 6a%e* sin®t I + . ..
and use thatsin t) = 0 and(sin*t) = 1. O

On the other hand, a neighborhood of the elliptic periodlwtdor A > 0 can be studied
by means of the variables= a, cost + A, andy = a. sint + A,. One thus obtains that the
Hamiltonian and the first integral are given by

1
H, = —3 InVy 4+ ay A, cost +aypAysint,
F. =V, exp(—ai —2a, Ay cost — 2a, Ay sint — A2 — Az),

whereV, = (a + a;)*(1+ 2a4 A, cost + 2a, Ay sint + a? A2 + a3 A?).
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Proposition 6.5. There exist a symplectic change of varial{lés, A, ¢, e) — (1,6, t, E), with
0 € T, setting the periodic orbit af = (a; + a)Qe‘a2, such that the new Hamiltonian becomes

1 -1 1+ 211,

hi(I) = —In(a +ay)® + 5 1 J?+ 04(1),
where we have introduced the notation
a2
gL
(ay + a)?
and also
m, — 1 I, — a*(41a® — 88a® + 119a* — 54a® + 18).

V1—adl’ 36v1 —a*(a® + 1 —2a*)(1+ a?)

Proof. As before, we consider a solutigh (1, ¢) for the equatior?’, (f,.t) = I. For conve-
nience, we introduce the notatidn= (a. + a)2e~%* (1 — .J) in order to set the periodic orbit at
J = 0. Then, it turns out that the expression

R 8 R R
(1 — a2 cos(2t)) fF + (a+(1 +a?)sint — gai’r sin® t) 24 04(f4) =1,

approximates the previous equation ﬁ;rand that the following expansion in terms.of

A

f2 = au(t)J + azp(t) T 4+ as(t)J* + ..

holds, where
B 1
" 1—a%cos2t’

—ay(1+a%)sint 4 5a? sin® ¢t

aq (t)

t) =
y2(t) (1 — a? cos(2t))5/? ’
t) 3 (ay(1+ay)?sint — 3a? sin®t)?
@2\ = (1 — a2 cos2t)*

Hence, we have to compute the average of

2
2

~ ~

Ay(frrt) =~ Mo, +a)? — S In(1 — )

that follows from the fact thafo) = II;, (a32) = 0 and(ay) = II,. These averages are
computed easily by using the method of residues. O
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Time Stroboscopic
Integrable Hamiltonian Reversible sections
A=0,B#0,C#0 yes no yes Ellipses
around origin
A#0,B=C yes yes yes Top-left panel
in Fig. 3
A#0,B#C no no yes Rest of panels
in Fig. 3

Table 2: Dynamical characteristics of the quantum trajectoriesegatied from the different possibilities in the
canonical model (8) for the pilot wave function (4).

7 Conclusion

In this paper we present an scheme to study in a systematith&agtrinsic stochasticity and

general complexity of the quantum trajectories that arebts#s of quantum mechanics in the
formalism developed by Bohm in the 1950’s. In our opiniorstapproach, which based on
the ideas and results of the dynamical systems theory, cenushky contribute to establish firm

grounds that foster the importance of the conclusions afréustudies relying on such trajec-
tories, thus avoiding errors and ambiguities that has haggbén the past. As an illustration
we have considered the simplest, non—trivial combinati@igenstates of the two dimensional
isotropic harmonic oscillator.

The corresponding velocity field is put in a so—called cacalrform, and the characteristics
of the corresponding quantum trajectories studied in Heliais proved that only one vortex
and two periodic orbits, one elliptic and the other hypeidabrganize the full dynamics of
the system. In it, there exist invariant tori associatedhi® tortex and the elliptic periodic
orbit. Moreover, there is a chaotic sea associated to therbgppc periodic orbit. The KAM
theory has been applied to this scenario by resorting to taldaitime-reversible symmetry,
that is directly observed in the canonical form for the vélotield determining the quantum
trajectories of the system. It should be remarked that theltereported here concerning the
hyperbolic periodic orbit constitute a generalization lmbge previously reported in [15], in
the sense that here a more concise and constructive appimadch associated dynamics, is
presented. We summarize the dynamical characteristickeotlifferent possibilities arising
from the canonical velocity field (8) in Table 2, that reprgsea true road—map to navigate
across the dynamical system, i.e. quantum trajectoriatatie defined based on the pilot effect
[3] of the wave function (4). Also, note that the generic mode. whenFE| F' or G do not
vanish, does not satisfy any of the properties considerétkitable.

Finally, the method presented here is, in principle, gdizaiale to other more complicated
situations in which more vortex and effective dimensionisteXSome methods have been de-
scribed in the literature that can be applied to these sms{30]. This will be the subject of
future work.
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