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Abstract. We consider the Cauchy problem for the general linear partial dif-

ferential equations in two complex variables with constant coefficients. We
obtain the necessary and sufficient conditions for the multisummability of for-

mal solution in terms of analytic continuation with an appropriate growth

condition of the Cauchy data.

1. Introduction and notation

The application of the theory of multisummability to the formal power series
solutions of ordinary differential equations has given very fruitful results. In partic-
ular, it was proved that every formal solution of meromorphic ordinary differential
equation is multisummable (see B.L.J. Braaksma [7] and [8]).

For partial differential equation, we usually can also obtain the formal solutions,
which are power series in one variable, whose coefficients are functions of additional
variables. But in this case the characterisation of multisummability of formal solu-
tions is much more complicated and depends not only on the equation but also on
the Cauchy data.

In the first such result Lutz, Miyake and Schäfke [10] showed that the formal
solution of the heat equation is 1-summable in a direction d if and only if the Cauchy
data can be analytically continued to infinity in directions d/2 and d/2 +π with an
exponential growth of order 2.

This result was extended to more general equations by authors such as W. Balser
[1], [3]–[4], Balser and Malek [5], Balser and Miyake [6], K. Ichinobe [9], S. Malek
[11], S. Michalik [12]–[13] and M. Miyake [14].

The most general result was given by W. Balser [3], who considered the Cauchy
problem for general linear partial differential equations in two variables with con-
stant coefficients

P (∂t, ∂z)u(t, z) = 0, ∂nt u(0, z) = ϕn(z) ∈ O(D) n = 0, ...,m− 1,(1)

where D is some complex neighbourhood of origin and a polynomial P (λ, ξ) satisfies

(2) P (λ, ξ) = λmP (ξ)−
m∑
j=1

λm−jPj(ξ) = P (ξ)(λ− λ1(ξ))m1 ...(λ− λl(ξ))ml .
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W. Balser has constructed the normalized formal solution of (1) and he has found
the sufficient condition for multisummability of that solution in terms of analytic
continuation with appropriate growth conditions of the Cauchy data.

In the paper we will show that this sufficient condition is also necessary. We will
also give another construction of normalized formal solution and another proof of
Balser’s result in a more general framework of fractional equations.

Namely, we will consider the general 1/p-partial differential equation in two
variables with constant coefficients

P (∂1/p
t , ∂1/p

z )u(t, z) = 0, (∂1/p
t )nu(0, z) = ϕn(z) n = 0, ...,m− 1,(3)

where p ∈ N and the Cauchy data are 1/p-analytic (i.e. the functions z 7→ ϕn(zp)
are analytic) in some complex neighbourhood of origin.

We will show that the normalized formal solution û(t, z) = û1(t, z) + ...+ ûl(t, z)
of (3) satisfies

(∂1/p
t − λj(∂1/p

z ))mj ûj(t, z) = 0 for j = 1, ..., l,

where λj(∂
1/p
z ) is a kind of pseudodifferential operator introduced in our previous

paper [13] and λj(ξ) is a function defined by (2) with qj ∈ Q and λj ∈ C \ {0}
satisfying

lim
ξ→∞

λj(ξ)
ξqj

= λj .

We will show that the behaviour of formal solution ûj(t, z) depends on qj and λj
as follows

• For qj < 1 the function t 7→ ûj(t, z) is 1/p-entire function with an expo-
nential growth of order 1/(1− qj) (see Theorem 1).
• For qj = 1 the function t 7→ ûj(t, z) is 1/p-analytic in some complex neigh-

bourhood of origin. Moreover this function is 1/p-analytically continued to
infinity in a direction d with an exponential growth of order s > 1 if and
only if the Cauchy data ϕn(z) are 1/p-analytically continued in a direction
d+ p arg λj with the same growth at infinity (see Theorem 2).
• For qj > 1 the series ûj(t, z) is (qj − 1)-Gevrey formal power series in t1/p.

Moreover ûj(t, z) is (qj − 1)−1-summable in a direction d with respect to
t1/p if and only if the Cauchy data ϕn(z) are 1/p-analytically continued in
directions (d+ p(arg λj + 2πk))/qj with the growth of order qj/(qj − 1) at
infinity (see Theorem 3).

As a consequence, we will obtain the sufficient and necessary condition for multi-
summability of normalized formal solution of (3) in terms of analytic continuation
with an appropriate growth condition of the Cauchy data. The precise formulation
of this main result of our paper is given in Theorem 4.

This result one can treat as a generalisation of our previous paper [13], where k-
summability of some restricted linear partial differential equations has been studied.

In the paper we use the following notation. The complex disc in Cn with a centre
at origin and a radius r > 0 is denoted by Dn

r := {z ∈ Cn : |z| < r}. To simplify
notation, we write Dr for n = 1. A sector in a direction d with an opening ε in the
universal covering space C̃ of C \ {0} is denoted by

S(d, ε,R) := {z ∈ C̃ : z = reiθ, d− ε/2 < θ < d+ ε/2, 0 < r < R}
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for d ∈ R, ε > 0 and 0 < R ≤ +∞. In the case of R = +∞, we denote it briefly by
S(d, ε). Moreover, if the value of opening angle ε is not essential, then we write Sd
for short. A sector S′ is called a proper subsector of S(d, ε,R) if its closure in C̃ is
contained in S(d, ε,R).

By O(D) we denote the space of analytic functions on a domain D ⊆ Cn. The
Banach space of analytic functions on Dr, continuous on its closure and equipped
with the norm ‖ϕ‖r := max

|z|≤r
|ϕ(z)| is denoted by E(r).

The space of formal power series

û(t, z) =
∞∑
j=0

uj(z)tj with uj(z) ∈ E(r)

is denoted by E(r)[[t]]. Moreover, we set E[[t]] :=
⋃
r>0

E(r)[[t]].

2. Gevrey formal power series and Borel summability

In this section we recall some definitions and fundamental facts about the Gevrey
formal power series, Borel summability and multisummability. For more details we
refer the reader to [2].

Definition 1. A function u(t, z) ∈ O(S(d, ε) × Dr) is of exponential growth of
order at most s > 0 as t → ∞ in S(d, ε) if and only if for any r1 ∈ (0, r) and any
ε1 ∈ (0, ε) there exist A,B <∞ satisfying

max
|z|≤r1

|u(t, z)| < AeB|t|
s

for every t ∈ S(d, ε1).

The space of such functions will be denoted by Os(S(d, ε)×Dr) (or Os(Sd ×Dr)
for short)

Analogously, a function ϕ(z) ∈ O(S(d, ε)) is of exponential growth of order at
most s > 0 as z → ∞ in S(d, ε) if and only if for any ε1 ∈ (0, ε) there exist
A,B <∞ such that

|ϕ(z)| < AeB|z|
s

for every z ∈ S(d, ε1).

The space of such functions will be denoted by Os(S(d, ε)) (or Os(Sd) for short).

Definition 2. Let k > 0. A formal power series

û(t, z) :=
∞∑
j=0

uj(z)tj with uj(z) ∈ E(r)(4)

is 1/k-Gevrey formal power series in t if its coefficients satisfy

max
|z|≤r

|uj(z)| ≤ ABjΓ(1 + j/k) for j = 0, 1, . . .

with some positive constants A and B.
The set of 1/k-Gevrey formal power series in t over E(r) is denoted by E(r)[[t]]1/k.

We also set E[[t]]1/k :=
⋃
r>0

E(r)[[t]]1/k.

Definition 3. Let k > 0 and d ∈ R. A formal series û(t, z) ∈ E[[t]]1/k defined by
(4) is called k-summable in a direction d if and only if its k-Borel transform

ṽ(t, z) :=
∞∑
j=0

uj(z)
tj

Γ(1 + j/k)
∈ Ok(Sd ×Dr).
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The k-sum of û(t, z) in the direction d is represented by the Laplace transform of
ṽ(t, z)

uθ(t, z) :=
1
tk

∫ ∞(θ)

0

e−(s/t)k

ṽ(s, z) dsk,

where the integration is taken over any ray eiθR+ := {reiθ : r ≥ 0} with θ ∈
(d− ε/2, d+ ε/2).

For every k > 0 and d ∈ R, according to the general theory of moment summa-
bility (see Section 6.5 in [2]), a formal series (4) is k-summable in the direction d if
and only if the same holds for the series

∞∑
j=0

uj(z)
j!Γ(1 + j/k)

Γ(1 + j(1 + 1/k))
tj .

Consequently, we obtain a characterisation of k-summability (analogous to Defini-
tion 3), if we replace the k-Borel transform by the modified k-Borel transform

v(t, z) := Bkû(t, z) :=
∞∑
j=0

uj(z)
j!tj

Γ(1 + j(1 + 1/k))

and the Laplace transform by the Ecalle acceleration operator

uθ(t, z) = t−k/(1+k)

∫ ∞(θ)

0

v(s, z)C1+1/k((s/t)k/(1+k)) dsk/(1+k)

with θ ∈ (d− ε, d+ ε). Here integration is taken over the ray eiθR+ and C1+1/k(ζ)
is defined by

C1+1/k(ζ) :=
1

2πi

∫
γ

u−1/(k+1)eu−ζu
k/(k+1)

du

with a path of integration γ as in the Hankel integral for the inverse Gamma
function (from ∞ along arg u = −π to some u0 < 0, then on the circle |u| = |u0| to
arg u = π, and back to ∞ along this ray).

Hence the k-summability can be characterised as follows

Proposition 1. Let k > 0 and d ∈ R. A formal series û(t, z) given by (4) is
k-summable in a direction d if and only if its modified k-Borel transform

Bkû(t, z) =
∞∑
j=0

uj(z)
j!tj

Γ(1 + j(1 + 1/k))

satisfies conditions:
a) Bkû(t, z) ∈ O(D2

r) (for some r > 0), i.e. û(t, z) ∈ E(r)[[t]]1/k.
b) Bkû(t, z) is analytically continued to Sd ×Dr (for some r > 0).
c) Bkû(t, z) is of exponential growth of order at most k as t→∞ in Sd.

We are now ready to define multisummability in some multidirection.

Definition 4. Let k1 > ... > kn > 0. We say that a real vector (d1, ..., dn) is an
admissible multidirection if and only if

|dj − dj−1| ≤ π(1/kj − 1/kj−1)/2 for j = 2, ..., n.

Let k = (k1, ..., kn) ∈ Rn+ and let d = (d1, ..., dn) ∈ Rn be an admissible multidi-
rection. We say that a formal power series û(t, z) given by (4) is k-multisummable
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in a multidirection d if and only if û(t, z) = û1(t, z) + ... + ûn(t, z), where ûj(t, z)
is kj-summable in a direction dj for j = 1, ..., n.

3. α-Derivatives, α-analytic functions and operators Bα,β

In this section, in a similar way to [13], we introduce some tools to study divergent
solutions of linear partial differential equations. First, we define some kind of
fractional derivatives ∂αz of the formal power series in C[[zα]]. These operators are
the natural generalisation of the derivative ∂z defined into the space C[[z]]. Namely,
we have

Definition 5. Let α ∈ Q+. The linear operator on the space of formal power series

∂αz : C[[zα]]→ C[[zα]]

given by the formula

(5) ∂αz

( ∞∑
n=0

un
Γ(1 + αn)

zαn
)

=
∞∑
n=0

un+1

Γ(1 + αn)
zαn

is called an α-derivative.

Definition 6. We say that a function u(z) is α-analytic on D ⊂ C (or, generally,
on D ⊂ Cn) if and only if the function z 7→ u(z1/α) is analytic for every z1/α ∈ D.
The space of α-analytic functions will be denoted by Oα(D).

Moreover, analogously to Definition 1, we will denote by Osα(Sd × Dr) (resp.
Osα(Sd)) the space of α-analytic functions on Sd×Dr (resp. Sd) with an exponential
growth of order s.

If the formal power series û(z) ∈ C[[zα]] is convergent in some complex neigh-
bourhood of origin, then its sum u(z) is the α-analytic function near the origin.
For such functions we have well defined α-derivative given by (5), which coincides
with the Caputo fractional derivative.

We may also define the α-Taylor series of u(z) ∈ Oα(D) by the formula

u(z) =
∞∑
n=0

(∂αz )nu(0)
Γ(1 + αn)

zαn.

In the case of α-analytic functions, the role of the exponential function ez is
played by

eα(z) := Eα(zα) =
∞∑
n=0

zαn

Γ(1 + αn)
,

where Eα(z) denotes the Mittag-Leffler function. By the definition of eα(z) and by
the results on the Mittag-Leffler function (see [15]), we have

Proposition 2. The function eα(z) satisfies the following properties:
a) eα(z) ∈ Oα(C) and there exists C <∞ such that |eα(z)| ≤ Ce|z| for every

z ∈ C,
b) for every a ∈ C we have ∂αz eα(az) = aαeα(az),
c) if α < 2 and arg z ∈ (π/2, 2π/α− π/2) then eα(z)→ 0 as z →∞.

Since every q/p-analytic function is also 1/p-analytic, without loss of generality
we may take α = 1/p, where p ∈ N. Observe that 1/p-analytic function is in fact
an analytic function defined on the Riemann surface of p

√
z. Hence we have the

following integral representation



6 S LAWOMIR MICHALIK

Proposition 3 (see Lemma 1 in [13]). Let ϕ(z) ∈ O1/p(Dr). Then for every
|z| < ε < r and k ∈ N we have

(6) (∂1/p
z )kϕ(z) =

1
2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

0

ζk/pe1/p(zζ)e−wζ dζ dw

for θ ∈ (argw − π/2, argw + π/2), where
∮ p
|w|=ε denotes that we integrate p times

around the positively oriented circle of radius ε.
Moreover, there exist % > 0 and A,B <∞ satisfying

sup
|z|<%

|(∂1/p
z )kϕ(z)| ≤ ABk/pΓ(1 + k/p) for k = 0, 1, ...

The formula (6) motivates the introduction of some kind of pseudodifferential
operators on the space of 1/p-analytic functions. To this end, let q(ξ) be an analytic
function for |ξ| > |ζ1/p

0 | with polynomial growth at infinity. Following [13] we define

q(∂1/p
z )e1/p(zζ) := q(ζ1/p)e1/p(zζ).

Hence for every ϕ(z) ∈ O1/p(Dr) we have

(7) q(∂1/p
z )ϕ(z) :=

1
2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

0

q(ζ1/p)e1/p(zζ)e−wζ dζ dw

with θ ∈ (argw − π/2, argw + π/2). Since qn(ξ) is a holomorphic function with
polynomial growth at infinity, the left-hand side of (7) is a well-defined 1/p-analytic
function in some complex neighbourhood of origin.

Now we introduce the operators Bα,β , which are related to the modified k-
Borel operators Bk. Using the operators Bα,β we can reduce the question about
summability to the study of the solution of the appropriate Kowalevskaya type
equation.

Definition 7. Let α, β ∈ Q+. We define a linear operator on the space of formal
power series

Bα,β : E[[tα]]→ E[[tβ ]]
by the formula

Bα,β
(
û(t, z)

)
= Bα,β

( ∞∑
n=0

un(z)
Γ(1 + αn)

tαn
)

:=
∞∑
n=0

un(z)
Γ(1 + βn)

tβn.

Observe that for any formal series û(t, z) ∈ E[[t]] and µ, ν ∈ N, µ > ν, we get

Bkû(t, z) = (B1,µ/ν û)(tν/µ, z) with µ/ν = 1 + 1/k.

Hence for k ∈ Q+ we can reformulate Proposition 1 as follows

Proposition 4. Let µ, ν ∈ N, µ > ν, k = (µ/ν − 1)−1. Then the formal series
û(t, z) ∈ E[[t]] is k-summable in a direction d if and only if the function v(t, z) :=
B1,µ/ν û(t, z) satisfies the following properties:

a) z 7→ v(t, z) is analytic in some complex neighbourhood of origin,
b) t→ v(t, z) is µ/ν-analytic in some complex neighbourhood of origin,
c) t→ v(t, z) is µ/ν-analytically continued to infinity in directions (d+2jπ)ν/µ

(j = 0, ..., µ− 1) with an exponential growth of order k + 1.

We recall the important properties of the operators Bα,β , which play crucial role
in our study of summability. Namely, immediately from definition we have
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Proposition 5 (see also Proposition 4 in [13]). Let α, β ∈ Q+ and û(t, z) ∈ E[[tα]].
Then operators Bα,β and derivatives satisfy the following commutation formulas:

a) Bα,β∂αt û(t, z) = ∂βt B
α,β û(t, z);

b) Bα,β∂zû(t, z) = ∂zB
α,β û(t, z);

c) Bα,βP (∂αt , ∂z)û(t, z) = P (∂βt , ∂z)Bα,β û(t, z) for any polynomial P (τ, ζ)
with constant coefficients.

At the end of this section we extend the notion of Gevrey orders and Borel
summability to formal power series in t1/p.

Definition 8. Let γ ∈ Q+. The Banach space of γ-analytic functions on Dr,
continuous on its closure and equipped with the norm ‖ϕ‖r := max

|z|≤r
|ϕ(z)| is denoted

by Eγ(r).

Definition 9. Let k > 0 and γ ∈ Q+. A formal power series

û(t, z) :=
∞∑
j=0

uj(z)tj/p with uj(z) ∈ Eγ(r)

is 1/k-Gevrey formal power series in t1/p if its coefficients satisfy

max
|z|≤r

|uj(z)| ≤ ABj/pΓ(1 + j/kp) for j = 0, 1, . . .

with some positive constants A and B.
The set of 1/k-Gevrey formal power series in t1/p over Eγ(r) is denoted by

Eγ(r)[[t1/p]]1/k. We also set Eγ [[t1/p]]1/k :=
⋃
r>0

Eγ(r)[[t1/p]]1/k.

Definition 10. Let k > 0 and d ∈ R. A formal series û(t, z) ∈ Eγ [[t1/p]]1/k is
called k-summable in a direction d if and only if the series

ŵ(t, z) := û(tp, z)

is kp-summable in a direction d/p.

Let us suppose that

û(t, z) =
∞∑
j=0

uj(z)
Γ(1 + j/p)

tj/p.

Then

ŵ(t, z) =
∞∑
j=0

uj(z)
Γ(1 + j/p)

tj .

Using kp-Borel transform of ŵ(t, z) we obtain the series
∞∑
j=0

uj(z)
Γ(1 + j/p)Γ(1 + j/kp)

tj .

By the general theory of moment summability, we may replace this one by the
following 1/p-modified kp-Borel transform of ŵ(t, z), which is defined by

Bkp1/pŵ(t, z) :=
∞∑
j=0

uj(z)
Γ(1 + j(1 + 1/k)/p)

tj .
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Observe that this modified transform is connected with the operator B1/p,(1+1/k)/p

by the formula

Bkp1/pŵ(t, z) = (B1/p,(1+1/k)/pû)(tkp/(k+1), z).

Hence, similarly to Proposition 5, we have the following characterisation of k-
summability by the operators Bα,β .

Proposition 6. Let µ, ν ∈ N, µ > ν, k = (µ/ν − 1)−1 and d ∈ R. The formal
series û(t, z) ∈ E1/p[[t1/p]] is k-summable in a direction d if and only if the function
v(t, z) := B1/p,µ/νpû(t, z) satisfies the following conditions:

a) z 7→ v(t, z) is 1/p-analytic in some complex neighbourhood of origin in C,
b) t 7→ v(t, z) is µ/νp-analytic in some complex neighbourhood of origin in C,
c) t 7→ v(t, z) is µ/νp-analytically continued to infinity in directions (d +

2jπ)ν/µ (j = 0, ..., µ− 1) with an exponential growth of order k + 1.

4. Normalized formal solutions

In this section we construct some special solution of (3), which is called the
normalized formal solutions. Another construction of such solutions (in case p = 1)
was given earlier by W. Balser [3]–[4].

Fix p ∈ N. We consider the general fractional linear partial differential equation
in two variables with constant coefficients

(8) P (∂1/p
t , ∂1/p

z )u(t, z) = 0.

It means that

P (∂1/p
t , ∂1/p

z ) := (∂1/p
t )mP (∂1/p

z )−
m∑
j=1

(∂1/p)m−jt Pj(∂z)

with some m ∈ N and polynomials P (ξ), Pj(ξ). Without loss of generality we may
assume that P (ξ) and Pm(ξ) are not identically zero. Let g := degP (ξ). Observe
that the formal power series solution of (8) with the Cauchy data on t = 0

(∂1/p
t )nu(0, z) = ϕn(z) ∈ O1/p(Dr) for n = 0, ...,m− 1(9)

is uniquely determined if and only if g = 0 (see Proposition 1 in [4] for more details).
For g ≥ 1, in a similar way to W. Balser [4], we will construct the normalized formal
solution of (8) satisfying the initial data (9).

First, we consider the difference equation

(10) P (ξ)qn(ξ) =
m∑
j=1

Pj(ξ)qn−j(ξ).

with the initial conditions

q0(ξ) = 1 and q−1(ξ) = ... = q−m+1(ξ) = 0.

Observe that the solution qn(ξ) is a rational function, so we may assume that it is
a holomorphic function for sufficiently large |ξ| (say, |ξ| > |ζ1/p

0 |).
Fix ϕ(z) ∈ O1/p(Dr). Applying (7) we define the coefficients un(z) (n = 0, 1, ...)

by

(11) un(z) = qn(∂1/p
z )ϕ(z) =

1
2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

qn(ζ1/p)e1/p(zζ)e−wζ dζ dw



ON THE MULTISUMMABILITY OF DIVERGENT SOLUTIONS 9

with θ ∈ (− argw − π/2,− argw + π/2).
Observe that the coefficients un(z) satisfy the recursion formula

P (∂1/p
z )un(z) =

m∑
j=1

Pj(∂1/p
z )un−j(z) for n ≥ m.

It means that

û(t, z) =
∞∑
n=0

un(z)
Γ(1 + n/p)

tn/p

is a normalized formal solution of (8) with the initial data

ϕn(z) = qn(∂1/p
z )ϕ(z) for n = 0, 1, ...,m− 1.

Moreover, by the principle of superpositions of solutions of linear equations, we
may construct the normalized formal solution for any initial condition (9).

To show more exactly the shape of normalized formal solution, we will consider
the characteristic equation of (10)

(12) P (ξ)λm =
m∑
j=1

Pj(ξ)λm−j .

We may assume that for sufficiently large |ξ|, say |ξ| > |ζ1/p
0 |, the characteristic

equation has exactly l distinct holomorphic solutions λ1(ξ), ..., λl(ξ) of multiplicity
m1, ...,ml (m1 + ...+ml = m). According to the theory of difference equations, we
have

qn(ξ) =
l∑

j=1

mj−1∑
k=0

cjk(ξ)nkλnj (ξ),

where the coefficients cjk(ξ) are holomorphic with polynomial growth for sufficiently
large |ξ| (|ξ| > |ζ1/p

0 |, say).
It means that

(13) û(t, z) =
l∑

j=1

ûj(t, z) :=
l∑

j=1

mj∑
k=1

rk(t, ∂1/p
t )ûjk(t, z),

where
r(t, ∂1/p

t ) := p((∂1/p
t )pt− 1)

and

ûjk(t, z) =
∞∑
n=0

tn/p

Γ(1 + n/p)
×

1
2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

cjk(ζ1/p)λnj (ζ1/p)e1/p(zζ)e−wζ dζ dw.(14)

By the direct computation we obtain

Lemma 1 (see Lemma 4 in [13]). The formal power series ûj(t, z) defined by (13)
and (14) satisfies the pseudodifferential equation

(∂1/p
t − λj(∂1/p

z ))mjuj(t, z) = 0.

Hence we may define the normalized formal solution as follows
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Definition 11. The solution û(t, z) of (8) with the initial data (9) is called a
normalized formal series solution if and only if û(t, z) satisfies the pseudodifferential
equation

(∂1/p
t − λ1(∂1/p

z ))m1 ...(∂1/p
t − λl(∂1/p

z ))mlu(t, z) = 0.

5. Gevrey estimates

In this section we study the Gevrey order of normalized formal solution. First,
we define a pole order qj ∈ Q and a leading term λj ∈ C \ {0} of the characteristic
root λj(ξ) as the numbers satisfying formula

lim
ξ→∞

λj(ξ)
ξqj

= λj for j = 1, ..., l.

We are now ready to show

Theorem 1. Let û(t, z) =
∑l
j=1 ûj(t, z) be a normalized formal solution of (8)

with ûj(t, z) satisfying the pseudodifferential equation

(∂1/p
t − λj(∂1/p

z ))mjuj(t, z) = 0.

and let qj ∈ Q be a pole order of characteristic root λj(ξ). Then the formal power
series ûj(t, z) for j = 1, ..., l is characterised as follows:

• For qj < 1 the series ûj(t, z) is convergent to the 1/p-entire function of
order 1/(1− qj).
• For qj = 1 the series ûj(t, z) is convergent in some neighbourhood of origin.
• For qj > 1 the series ûj(t, z) is a Gevrey series of order qj − 1.

Proof. Without loss of generality we may assume that ûj(t, z) is defined by (13)
and (14). So, it is sufficient to estimate the coefficients of the formal series

ûjk(t, z) :=
∞∑
n=0

ujkn(z)
Γ(1 + n/p)

tn/p

given by

ujkn(z) :=
1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞
ζ0

cjk(ζ1/p)λnj (ζ1/p)e1/p(zζ)e−wζ dζ dw.

Since cjk(ζ1/p) is of polynomial growth at infinity, we may assume that for |ζ| > |ζ0|
there exists a ∈ N such that |cjk(ζ1/p)| ≤ |ζ|a. In a similar way we may assume
that |λj(ζ1/p)| ≤ 2|λj ||ζ|qj/p for |ζ| > |ζ0|. Hence, by Proposition 2, we have∣∣∣ ∫ ∞(θ)

ζ0

cjk(ζ1/p)λnj (ζ1/p)e1/p(zζ)e−wζ dζ
∣∣∣

≤
∫ ∞
|ζ0|

sa2n|λnj |snqj/pe1/p(|z|s)e−|w|s ds

≤ ABn
∫ ∞

0

sasnqj/pe(|z|−|w|)s ds ≤ ABn Γ(1 + a+ nqj/p)
(|w| − |z|)a+nqj/p

≤ ÃB̃n
Γ(1 + nqj/p)

(|w| − |z|)a+nqj/p
.
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It means that for z ∈ Dε/2 we have

|ujkn(z)| ≤ 1
2pπ

∮ p

|w|=ε
|ϕ(z)|ÃB̃n Γ(1 + nqj/p)

(|w| − |z|)a+nqj/p
d|w|

≤ ÃB̃n
Γ(1 + nqj/p)
(ε/2)a+nqj/p

≤ CDn/pΓ(1 + nqj/p).

In a consequence we see that the formal series

ûjk(t, z) =
∞∑
n=0

ujkn(z)
Γ(1 + n/p)

tn/p

is a Gevrey series of order qj − 1. It means that this one is divergent for qj > 1,
convergent in some neighbourhood of origin for qj = 1 and 1/p-entire function for
qj < 1. In the last case, by Proposition 2, we have

|ujk(t, z)| ≤
∞∑
n=0

CDn/pΓ(1 + nqj/p)
Γ(1 + n/p)

|t|n/p ≤
∞∑
n=0

CDn

Γ(1 + (1− qj)n/p)
|t|n/p

≤ Ce(1−qj)/p(D̃|t|1/(1−qj)) ≤ C̃eD̃|t|
1/(1−qj)

.

Finally, observe that the similar properties satisfies also the formal series ûj(t, z).
�

6. Analytic solution

In this section we study the properties of terms ûj(t, z) of the normalized formal
solution û(t, z), which are determined by the characteristic roots λj(ξ) with the pole
order qj = 1. In this case, by Theorem 1, ûj(t, z) satisfies the Cauchy-Kowalevskaya
type theorem. Moreover, we show that t 7→ ûj(t, z) is analytically continued in some
direction with an exponential growth of order s > 1 if and only if the Cauchy data
satisfy the similar properties. To this end, we shall use two auxiliary lemmas,
following [13].

Lemma 2 (see Lemma 3 in [13]). Let us assume that λ(ξ) is analytic for |ξ| > |ζ0|
and lim

ξ→∞
λ(ξ)/ξ = λ ∈ C \ {0}. Moreover, let ϕ(z) ∈ Os1/p(Dr ∪ Sd+p arg λ). Then

the function

v(t, z) :=
1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

e1/p(tλp(ζ1/p))e1/p(zζ)e−wζ dζ dw

is 1/p-analytic in some complex neighbourhood of origin and is 1/p-analytically
continued to the set Sd ×Dr′ with an exponential growth of order s.

Lemma 3 (see Lemma 6 in [13]). Let u(t, z) ∈ O1/p(D2
r) with some r > 0. Then

for every n ∈ N, u(t, z) satisfies the pseudodifferential equation(
∂

1/p
t − λj(∂1/p

z )
)n
u(t, z) = 0

if and only if u(t, z) is a solution of(
∂1/p
z − λ−1

j (∂1/p
t )

)n
u(t, z) = 0.

Now, we are ready to prove
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Theorem 2. Let s > 1, d ∈ R and let û(t, z) = û1(t, z) + ... + ûl(t, z) be a
normalized formal solution of (8) with the initial data (9), where ûj(t, z) satisfies
the pseudodifferential equation

(∂1/p
t − λj(∂1/p

z ))mjuj(t, z) = 0

and λ1(ξ),...,λl(ξ) are the characteristic roots of (12). We also assume that there
exists l̃ ∈ {1, ..., l} such that

lim
ξ→∞

λj(ξ)
ξ

= λj ∈ C \ {0} for j = 1, ..., l̃.(15)

Then the formal series ûj(t, z) is convergent to uj(t, z) ∈ O1/p(D2
r) for j = 1, ..., l̃.

Moreover, ϕn(z) ∈ Os1/p(Sd+p arg λj
) (n = 0, ...,m − 1, j = 1, ..., l̃) if and only if

ũ(t, z) := u1(t, z) + ...+ ul̃(t, z) ∈ Os1/p(Sd ×Dr).

Proof. The first part of the proof is given by (15) and Theorem 1.
(=⇒) Without loss of generality we may assume that the Cauchy data satisfy

ϕn(z) = qn(∂1/p
z )ϕ(z) for ϕ(z) ∈ Os1/p(Sd+p arg λj

), n = 0, ...,m− 1, j = 1, ..., l̃,

where qn(∂1/p
z ) is a pseudodifferential operator defined by (11).

Repeating the construction of normalized formal solution we see that û(t, z) =
û1(t, z) + ...+ ûl(t, z), where

ûj(t, z) =
mj∑
k=1

r(t, ∂1/p
t )kûjk(t, z)

and

ûjk(t, z) =
∞∑
n=0

tn

n!
1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

cjk(ζ1/p)λnj (ζ1/p)e1/p(zζ)e−wζ dζ dw.

By Theorem 1, the formal power series ûj(t, z) is convergent in D2
r to the function

uj(t, z) :=
1

2pπi

∮ p

|w|=ε
ϕ(w)×

×
mj−1∑
k=0

∫ ∞(θj)

ζ0

cjk(ζ1/p)rk(t, ∂1/p
t )e1/p(tλ

p
j (ζ

1/p))e1/p(zζ)e−wζ dζ dw

for j = 1, .., l̃.
Furthermore, by Lemma 2, if ϕ(z) ∈ Os1/p(Sd+p arg λj

) then uj(t, z) ∈ Os1/p(Sd ×
Dr). Hence also ũ(t, z) = u1(t, z) + ...+ ul̃(t, z) ∈ Os1/p(Sd ×Dr).

(⇐=) Fix j ∈ {1, ..., l̃}. Since uj(t, z) ∈ O1/p(D2
r) satisfies the equation

(∂1/p
t − λj(∂1/p

z ))mjuj(t, z) = 0,

by Lemma 3 the function uj(t, z) satisfies also

(∂1/p
z − λ−1

j (∂1/p
t ))mjuj(t, z) = 0.
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Hence the function ũ(t, z) = u1(t, z) + ... + ul̃(t, z) is a solution of the Cauchy
problem in z-direction

P̃ (∂1/p
t , ∂1/p

z )ũ(t, z) = 0,

(∂1/p
t )nũ(t, 0) = ψn(t) with some ψn(t) ∈ Os1/p(Sd) (n = 0, ..., m̃− 1),

where

P̃ (∂1/p
t , ∂1/p

z ) := (∂1/p
z )m̃ −

m̃∑
j=1

(∂1/p
z )m̃−jP̃j(∂

1/p
t )

= (∂1/p
z − λ−1

1 (∂1/p
t ))m1 ...(∂1/p

z − λ−1

l̃
(∂1/p
t ))ml̃

and m̃ := m1 + ...+ml̃.
Without loss of generality we may assume that ψ0(t) = ψ(t) ∈ Os1/p(Sd) and

ψn(t) =
∑n
j=1 P̃j(∂

1/p
t )ψn−j(t) for n = 1, ..., m̃− 1. Hence repeating the construc-

tion of normalized formal solution with replaced variables we conclude that

ũ(t, z) = ũ1(t, z) + ...+ ũl̃(t, z),

where

ũj(t, z) :=
mj−1∑
k=0

rk(z, ∂1/p
z )

1
2pπi

∮ p

|s|=ε
ψ(s)×

×
∫ ∞(θ̃j)

τ0

c̃jk(τ1/p)e1/p(zλ
−p
j (τ1/p))e1/p(tτ)e−sτ dτ ds.

Since lim
ξ→∞

λ−1
j (ξ)/ξ = λ−1

j , we have ũj(t, z) ∈ Os1/p(Dr × Sd+p arg λj
) by Lemma 2.

Moreover, by Lemmas 1 and 3, ũj(t, z) satisfies the formula

(∂1/p
t − λj(∂1/p

z ))mj ũj(t, z) = 0 for j = 1, ..., l̃.

In a similar way to [9] we define for j = 1, ..., l̃

Pj(∂
1/p
t , ∂1/p

z ) := (∂1/p
t − λj(∂1/p

z ))mj−1
l̃∏

k=1, k 6=j

(∂1/p
t − λk(∂1/p

z ))mk

and

uj(t, z) := Pj(∂
1/p
t , ∂1/p

z )ũ(t, z) = Pj(∂
1/p
t , ∂1/p

z )ũj(t, z) ∈ Os1/p(Dr × Sd+p arg λj
).

Without loss of generality we may assume that

(∂1/p
t )nũ(0, z) = 0 for n < m̃− 1, (∂1/p

t )m−1ũ(0, z) = ϕ(z).

Hence also uj(0, z) = ϕ(z) and we conclude that ϕ(z) ∈ Os1/p(Sd+p arg λj
), which

proves the theorem. �
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7. Multisummability of normalized formal solutions

In the last section we consider the terms ûj(t, z) of the normalized formal so-
lution, which are determined by the characteristic roots λj(ξ) with the pole order
qj > 1. In this case, by Theorem 1, ûj(t, z) is a (qj − 1)-Gevrey formal power series
in t1/p. In this section, we shall be concerned with summability properties of the
formal series ûj(t, z).

To this end, we apply the operators Bα,β to the formal solution û(t, z). By
Proposition 5 with ∂z replaced by ∂1/νp

z , we have

Proposition 7. Let µ, ν ∈ N, µ > ν. A series û(t, z) is a normalized formal
solution of (8) with the initial data (9) if and only if the formal series v̂(t, z) :=
B1/p,µ/νpû(t, z) satisfies the following fractional equation

P̃ (∂1/νp
t , ∂1/νp

z )v(t, z) = 0,(16)

(∂1/νp
t )jv(0, z) = ϕn(z) ∈ O1/p(Dr) for j = nµ, n = 0, ...,m− 1,

(∂1/νp
t )jv(0, z) = 0 for j 6= nµ, j < mµ, n = 0, ...,m− 1,

where

P̃ (∂1/νp
t , ∂1/νp

z ) = P ((∂1/νp
t )µ, (∂1/νp

z )ν)

= (∂1/νp
t )µmP ((∂1/νp

z )ν)−
m∑
j=1

(∂1/νp
t )µ(m−j)Pj((∂1/νp

z )ν).

Now we are ready to prove

Proposition 8. Let µ, ν ∈ N, µ > ν, s > 1, d ∈ R and let û(t, z) = û1(t, z) +
...+ ûl(t, z) be a normalized formal solution of (8) with the initial data (9), where
ûj(t, z) satisfies the pseudodifferential equation

(∂1/p
t − λj(∂1/p

z ))mjuj(t, z) = 0

and λ1(ξ),...,λl(ξ) are the characteristic roots of (12). We also assume that there
exists l̃ ∈ {1, ..., l} such that

lim
ξ→∞

λj(ξ)
ξµ/ν

= λj ∈ C \ {0} for j = 1, ..., l̃.

Then the formal series v̂j(t, z) := B1/p,µ/νpûj(t, z) is convergent to a function
vj(t, z), where t 7→ vj(t, z) ∈ Oµ/νp(Dr) and z 7→ vj(t, z) ∈ O1/p(Dr). Moreover,
ϕn(z) ∈ Os1/p(S(d+p arg λj+2kπ)ν/µ) (n = 0, ...,m− 1, j = 1, ..., l̃, k = 0, ..., µ− 1) if
and only if t 7→ ṽ(t, z) ∈ Osµ/νp(S(d+2kπ)ν/µ) (k = 0, ..., µ − 1) and z 7→ ṽ(t, z) ∈
O1/p(Dr), where ṽ(t, z) := v1(t, z) + ...+ vl̃(t, z).

Proof. By Proposition 7, the series v̂(t, z) := B1/p,µ/νpû(t, z) is a normalized for-
mal solution of (16). Moreover, v̂(t, z) = v̂1(t, z) + ... + v̂l(t, z), where v̂j(t, z) :=
B1/p,µ/νpûj(t, z) satisfies the equation

((∂1/νp
t )µ − λj(∂1/p

z ))mjvj(t, z) = 0

On the other hand

(∂1/νp
t )µ − λj(∂1/p

z ) = (∂1/νp
t − σ0λ

1/µ
j ((∂1/νp

z )ν))...(∂1/νp
t − σµ−1λ

1/µ
j ((∂1/νp

z )ν))

= (∂1/νp
t − λ̃j1(∂1/νp

z ))...(∂1/νp
t − λ̃jµ(∂1/νp

z )),
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where σ0, ..., σµ−1 are the complex roots of zµ = 1 and λ̃jk(ξ) := σkλ
1/µ
j (ξν) for

j = 1, ..., l and k = 0, ..., µ− 1.
It means that

v̂(t, z) :=
l∑

j=1

µ−1∑
k=0

v̂jk(t, z),

where v̂jk(t, z) satisfies

(∂1/νp
t − λ̃jk(∂1/νp

z ))mjvjk(t, z) = 0.

Moreover, we have for j = 1, ..., l̃, k = 0, ..., µ− 1

lim
ξ→∞

λ̃jk(ξ)
ξ

= lim
ξ→∞

σk

(λj(ξν)
ξµ

)1/µ

= σkλ
1/µ
j =: λ̃jk

and
arg λ̃jk = (arg λj + 2kπ)/µ.

Applying Theorem 2 to v̂(t, z), we conclude that v̂j(t, z) is convergent to vj(t, z) ∈
O1/νp(Dr). On the other hand t 7→ v̂j(t, z) is a formal power series in tµ/νp and
z 7→ v̂j(t, z) is a formal power series in z1/p. Hence t 7→ vj(t, z) ∈ Oµ/νp(Dr)
and z 7→ vj(t, z) ∈ O1/p(Dr). Moreover, also by Theorem 2, we have ϕn(z) ∈
Os1/νp(S(d+p arg λj+2kπ)ν/µ) (n = 0, ...,m− 1, j = 1, ..., l̃, k = 0, ..., µ− 1) if and only
if v(t, z) ∈ Os1/νp(S(d+2kπ)ν/µ ×Dr) (k = 0, ..., µ− 1). Since t 7→ v̂(t, z) is a formal
power series in tµ/νp and z 7→ v̂(t, z) is a formal power series in z1/p, we obtain the
desired conclusion. �

Combining Propositions 6 and 8 we have

Theorem 3. Let µ, ν ∈ N, µ > ν, k = (µ/ν − 1)−1, d ∈ R and let û(t, z) =
û1(t, z) + ... + ûl(t, z) be a normalized formal solution of (8) with the initial data
(9), where ûj(t, z) satisfies the pseudodifferential equation

(∂1/p
t − λj(∂1/p

z ))mj ûj(t, z) = 0

and λ1(ξ),...,λl(ξ) are the characteristic roots of (12). We also assume that there
exists l̃ ∈ {1, ..., l} such that

lim
ξ→∞

λj(ξ)
ξµ/ν

= λj ∈ C \ {0} for j = 1, ..., l̃.

Then ϕn(z) ∈ Ok+1
1/p (S(d+p arg λj+2kπ)ν/µ) (n = 0, ...,m−1, j = 1, ..., l̃, k = 0, ..., µ−

1) if and only if ũ(t, z) := û1(t, z) + ...+ ûl̃(t, z) is k-summable in a direction d.

Hence, finally we obtain the main theorem

Theorem 4. Let us assume that

{λji(ξ) : j = 1, ..., ñ, i = 1, ..., lj}
is the set of characteristic roots of P (λ, ξ) = 0 satisfying

lim
ξ→∞

λji(ξ)
ξqj

= λji ∈ C \ {0} for j = 1, ..., ñ, i = 1, ..., lj .

We also assume that there exist exactly n pole orders of characteristic roots, which
are greater than 1, say 1 < q1 < ... < qn < ∞. Moreover, let µj , νj ∈ N and
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kj > 0 be such that µj/νj = qj and kj = (qi − 1)−1 for j = 1, ..., n. Then the nor-
malized formal solution û(t, z) of (8) is (k1, ..., kn)-multisummable in an admissible
multidirection (d1, ..., dn) if and only if the initial values ϕk(z) satisfy

ϕk(z) ∈ Okj+1

1/p (S(j)) for j = 1, ..., n, k = 0, ...,m− 1,

where

S(j) := Dr ∪
lj⋃
i=1

µj−1⋃
α=0

S(dj+p arg λji+2απ)/qj
.
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