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Abstract

This paper studies the dynamical mechanisms potentially involved in the so-
called atmospheric low-frequency variability, occurring at midlatitudes in the
Northern Hemisphere. This phenomenon is characterised by recurrent non-
propagating and temporally persistent flow patterns, with typical spatial and
temporal scales of 6000-10000 km and 10-50 days, respectively.

We study a low-order model derived from the 2-layer shallow water equa-
tions on a β-plane channel with bottom topography, forced by a zonal wind
profile and including dissipation by momentum diffusion (in both layers) and
linear friction (bottom layer only). The low-order model is obtained by a
Galerkin projection retaining only the Fourier modes with wavenumbers 0,
3 (zonal) and 0, 1, 2 (meridional). Orography height (h0) and magnitude of
zonal wind forcing (U0) are used as control parameters to study the bifurca-
tions of equilibria and periodic orbits.

A systematic analysis of the dynamics of the low-order model is performed
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using techniques and concepts from dynamical systems theory. Along two
curves of Hopf bifurcations an equilibrium loses stability (U0 ≥ 12.5 m/s) and
gives birth to two distinct families of periodic orbits. These periodic orbits
bifurcate into strange attractors along three routes to chaos: period dou-
bling cascades, breakdown of 2-tori by homo- and heteroclinic bifurcations,
or intermittency (U0 ≥ 14.5 m/s and h0 ≥ 800 m).

The observed attractors exhibit spatial and temporal low-frequency pat-
terns comparing well with those observed in the atmosphere. For h0 ≤ 800
m the periodic orbits have a period of about 10 days and patterns in the vor-
ticity field propagate eastward. For h0 ≥ 800 m, the period is longer (30-60
days) and patterns in the vorticity field are non-propagating. The dynamics
on the strange attractors are associated with low-frequency variability: the
vorticity fields show weakening and amplification of non-propagating plane-
tary waves on time scales of 10-200 days. The spatio-temporal characteristics
are “inherited” (by intermittency) from the two families of periodic orbits
and are detected in a relatively large region of the parameter plane. This
scenario differs fundamentally from those proposed in the literature so far,
which mainly rely on theories involving multiple equilibria.

Key words: atmospheric dynamics, low-frequency variability, low-order
models, bifurcations, intermittency, routes to chaos
2010 MSC: 37N10, 37G35, 37D45, 76B60

1. Introduction

Weather and climate are complex natural systems since they involve many
temporal and spatial scales and a large number of physical processes. In this
paper we restrict our attention to large-scale atmospheric flows on time scales
of several days to weeks.

1.1. Statement of the problem

A classical problem in the theory of General Atmospheric Circulation is
the characterisation of the recurrent flow patterns observed at midlatitudes
in the northern hemisphere winters [25]. This issue has been subject of much
scientific attention at least since Baur’s definition of Grosswetterlagen [2], or
Rex’s description of Atlantic blocking [56]. One of the motivations for the
interest is the potential importance of this problem to understand persistence
and predictability of atmospheric motion beyond the timescales of baroclinic
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synoptic disturbances (2 to 5 days). Indeed, it is expected that insight in the
nature of low-frequency regime dynamics will lead to significant progress in
the so-called extended range weather forecasting [55]. At the same time, the
problem is of great relevance in climate science, since it has been proposed
that climate change predominantly manifests itself through changes in the
atmospheric circulation regimes, that is “changes in the PDF (probability
distribution function) of the climate attractor” [19]. As a matter of fact, se-
vere misrepresentation of blocking statistics is widespread in current climate
models [50]: this may have a profound impact on the ability of such models
to reproduce both current climate and climate change.

A very old idea is to associate recurrent flow patterns with stationary
states of the large-scale atmospheric circulation. Such stationary states would
correspond to equilibria in the dynamical equations of atmospheric motion.
Small-scale weather would then act as a sort of random perturbation induc-
ing fluctuations around equilibria and transitions between states. However,
the scientific debate is still very much open on whether a single equilib-
rium [48, 60] or multiple equilibria [6, 18, 34, 47, 58] actually occur. Hansen
and Sutera [33] find bimodality in the statistical distribution of planetary
wave activity in observed data. Orographic resonance theories lend support
to the hypothesis that activity of planetary waves possesses a multimodal
distribution.

A seminal paper in this direction was that by Charney and DeVore in
1979 [18]: they proposed that the interaction between zonal flow and wave
field via form-drag explains the occurrence of multiple (two, to be precise)
equilibria for the amplitude of planetary waves. This idea has been fur-
ther elaborated by Legras and Ghil [40] who found intermittent transitions
between multiple equilibria respresenting blocked and zonal flows. Crom-
melin and coworkers [20, 21, 22] explain this behaviour in terms of homo-
and heteroclinic dynamics. A limitation of the theories based on barotropic
models is that the transitions between the quasi-stable equilibria either in-
volve variations of the zonal wind which of the order of 40 m/s (much larger
than in reality [5, 44]), or require unrealistically low orography (200m). It
has been known since Charney and Eliassen’s work [17] that the interaction
between eddy field and orography on planetary scales is characterised by a
non-propagating amplification of the eddy field: this is one of the common
features observed in many studies of transitions between regimes (see e.g. [46]
and references therein). More recent efforts [45] aimed to develop a theory
allowing for multiple stable equilibria at the same zonal wind speed, in such
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a way that the amplitudes of the corresponding ultralong (planetary scale)
waves differ by values of the order of 100 m of geopotential height.

In this paper we adopt a different strategy, involving a shallow water
model instead of the more traditional quasi-geostrophic models. The advan-
tage is that physically relevant values can be examined for the parameter
representing orography: this parameter, indeed, is bound to be small in
quasi-geostrophic models, due to the perturbative nature of orography in
quasi-geostrophic theory (see e.g. [1]). Here, a low-order model is derived
from the two-layer shallow water equations, where each layer has a constant
density and a variable thickness. This reduced model provides a highly sim-
plified model for the atmospheric circulation. The dynamical equations of
the 2-layer shallow water model are given by a system of 6 partial differen-
tial equations for the fields uℓ, vℓ, and hℓ for ℓ = 1, 2, where the thickness
in layer ℓ is denoted by hℓ and the horizontal velocity field is denoted by
(uℓ, vℓ). The model is forced by relaxation to an apparent westerly wind and
includes orography in the bottom layer. The low-order model is obtained
by expanding the fields uℓ, vℓ, and hℓ in Fourier modes satisfying the bound-
ary conditions. Only Fourier modes with lowest wave numbers are retained
in this Fourier expansion. By an orthogonal projection we obtain ordinary
differential equations for the time-dependent Fourier coefficients. The orog-
raphy height and the forcing wind strength are controlled by parameters h0

and U0 respectively, which are used for bifurcation analysis in the numerical
investigation of the low-order model.

1.2. Summary of the results

The dynamics of the model is stationary for U0 ≤ 12.2 m/s and every
value of h0, due to the presence of a stable equilibrium. This equilibrium
corresponds to a steady westerly wind with meanders due to interaction
with the orography. This steady flow becomes unstable through mixed baro-
clinic/barotropic instabilities (represented by Hopf bifurcations) as the forc-
ing U0 increases. This gives rise to two distinct types of stable waves: for
lower orography (about 800 m), the period is about 10 days and there is
eastward propagation in the bottom layer; for more pronounced orography,
the period is longer (30-60 days) and the waves are non-propagating. These
waves remain stable in relatively large parameter domains and bifurcate into
strange attractors through a number of scenarios (see below) roughly for
U0 ≥ 14.5 m/s and h0 ≥ 850 m. The dynamics on these strange attractors
is associated with irregularly recurring flow patterns. Characteristic time
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Figure 1: Top: Lyapunov diagram for the attractors of the system. Bottom: bifurcation
diagram of attractors of the low-order model in the (U0, h0) parameter plane (same pa-
rameter window as above). The marked locations are codimension-2 bifurcations. See
Table 1 for the colour coding.
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Colour Lyapunov exponents Attractor type

green 0 > λ1 ≥ λ2 ≥ λ3 equilibrium
blue λ1 = 0 > λ2 ≥ λ3 periodic orbit
magenta λ1 = λ2 = 0 > λ3 2-torus
cyan λ1 > 0 ≥ λ2 ≥ λ3 strange attractor
white escaping orbit

Colour Bifurcation type Bifurcating attractor

green saddle-node bifurcation equilibrium
red Hopf bifurcation equilibrium
magenta Hopf-Nĕımark-Sacker bifurcation periodic orbit
grey period doubling bifurcation periodic orbit
blue saddle-node bifurcation periodic orbit

Table 1: Colour coding for the Lyapunov diagram and bifurcation diagram in Figure 1.

scales are in the range of 10-200 days, where the lower frequency compo-
nents (60-200 days) can be interpreted as harmonics of the higher frequency
components (10-60 days). In addition, patterns in the vorticity field are
inherited from the periodic orbit that gives birth to the strange attractor.

The Lyapunov diagram (top panel of Figure 1) shows a classification
of the dynamical behaviour in the different regions of the (U0, h0)-plane.
Bifurcations of equilibria and periodic orbits (bottom panel) explain the main
features of the Lyapunov diagram. The two Hopf curves H1,2 give birth to
stable periodic orbits. In turn, these periodic orbits bifurcate into strange
attractors through three main routes to chaos:

• Period doubling cascade of periodic orbits (the curves P1,2,3);

• Hopf-Nĕımark-Sacker bifurcation of periodic orbits (the curve T2), fol-
lowed by the breakdown of a 2-torus;

• Saddle-node bifurcation of periodic orbits taking place on a strange
attractor (the curve SP4), the so-called intermittency route [51].

These routes have been detected in many studies of low-order atmospheric
models [11, 40, 43, 61, 63].

An outline of the rest of the paper is now given. The derivation of the
low-order model from the 2-layer shallow water equations is presented in
Section 2. The bifurcation diagram of the low-order model is discussed in
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Section 3.1, followed by analysis of the routes to chaos in Section 3.2. Some
remarks on the involved mathematics are made in Section 3.3. Finally, the
interpretation of our results in terms of atmospheric low-frequency variability
is given in Section 3.4.

2. Model

We consider atmospheric flow in two layers. In each layer the velocity
field (u, v) is 2-dimensional. The thickness h of each layer is variable, which
is the only 3-dimensional aspect of this model. The governing equations are
given by a system of six partial differential equations. By means of truncated
Fourier expansions and a Galerkin projection we obtain a low-order model
which consists of a 46-dimensional system of ordinary differential equations.

2.1. The 2-layer shallow water equations

The constants H1 and H2 denote the mean thickness of each layer, and
the fields η′

1 and η′

2 denote deviations from the mean thickness, where primes
indicate that the variable is dimensional. The thickness fields of the two
layers are given by

h′

1 = H1 + η′

1 − η′

2, (1)

h′

2 = H2 + η′

2 − h′

b, (2)

where hb denotes the bottom topography profile; see Figure 2. The pressure
fields are related to the thickness fields by means of the hydrostatic relation

p′1 = ρ1g(h′

1 + h′

2 + h′

b), (3)

p′2 = ρ1gh′

1 + ρ2g(h′

2 + h′

b), (4)

where the constants ρ1 and ρ2 denote the density of each layer.
The governing equations are nondimensionalised using scales L, U , L/U ,

D, and ρ0U
2 for length, velocity, time, depth, and pressure, respectively, and
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Figure 2: Layers in the shallow water model.

are given by

∂uℓ

∂t
+ uℓ

∂uℓ

∂x
+ vℓ

∂uℓ

∂y
= −∂pℓ

∂x
+ (Ro−1 + βy)vℓ

− σµ(uℓ − u∗

ℓ) + Ro−1EH∆uℓ − σrδℓ,2uℓ

∂vℓ

∂t
+ uℓ

∂vℓ

∂x
+ vℓ

∂vℓ

∂y
= −∂pℓ

∂y
− (Ro−1 + βy)uℓ

− σµ(vℓ − v∗

ℓ ) + Ro−1EH∆vℓ − σrδℓ,2vℓ

∂hℓ

∂t
+ uℓ

∂hℓ

∂x
+ vℓ

∂hℓ

∂y
= −hℓ

(
∂uℓ

∂x
+

∂vℓ

∂y

)

(5)

where uℓ and vℓ are eastward and northward components of the 2-dimensional
velocity field, respectively. In addition, the nondimensional pressure terms
are given by

p1 =
ρ1

ρ0
F (h1 + h2 + hb),

p2 =
ρ1

ρ0

Fh1 +
ρ2

ρ0

F (h2 + hb).

In the governing equations several nondimensional numbers appear: the ad-
vective timescale σ, the nondimensional β-parameter, the Rossby number
Ro, the horizontal Ekman number EH , and the inverse Froude number F .
These parameters have the following expressions in terms of the dimensional
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parameters:

σ =
L

U
, β =

β0L
2

U
, Ro =

U

f0L
, EH =

AH

f0L2
, F =

gD

U2
.

Standard values of the dimensional parameters are listed in Table 2.
The dynamical equations will be considered on the zonal β-plane channel

0 ≤ x ≤ Lx/L, 0 ≤ y ≤ Ly/L.

Suitable boundary conditions have to be imposed: we require all fields to be
periodic in the x-direction. At y = 0, Ly/L we impose the conditions

∂uℓ

∂y
=

∂hℓ

∂y
= vℓ = 0.

The model is forced by relaxation to an apparent westerly wind given by the
profile

u∗

1(x, y) = α1U0U
−1(1 − cos(2πyL/Ly)), v∗

1(x, y) = 0,

u∗

2(x, y) = α2U0U
−1(1 − cos(2πyL/Ly)), v∗

2(x, y) = 0,

where the dimensional parameter U0 controls the strength of the forcing and
the nondimensional parameters α1 and α2 control the vertical shear of the
forcing. For the bottom topography we choose a profile with zonal wave
number 3:

hb(x, y) = h0D
−1(1 + cos(6πxL/Lx)),

where the dimensional parameter h0 controls the amplitude of the topogra-
phy. We require that the bottom topography is contained entirely in the
bottom layer which implies the restriction h0 ≤ H2/2.

2.2. The low-order model

The governing equations in (5) form a dynamical system with an infinite-
dimensional state space. We reduce the infinite-dimensional system to a
system of finitely many ordinary differential equations by means of a Galerkin
projection. This amounts to an expansion of the unknown fields uℓ, vℓ, hℓ in
terms of known basis functions, depending only on spatial variables, with
unknown coefficients, depending only on time. An orthogonal projection
onto the space spanned by the basis functions gives a set of finitely many
ordinary differential equations for the expansion coefficients.

9



Parameter Meaning Value Unit

AH momentum diffusion coefficient 1.0 × 102 m2 s−1

µ relaxation coefficient 1.0 × 10−6 s−1

r linear friction coefficient 1.0 × 10−6 s−1

f0 Coriolis parameter 1.0 × 10−4 s−1

β0 planetary vorticity gradient 1.6 × 10−11 m−1 s−1

ρ0 reference density 1.0 kg m−3

ρ1 density (top layer) 1.01 kg m−3

ρ2 density (bottom layer) 1.05 kg m−3

g gravitational acceleration 9.8 m s−2

α1 zonal velocity forcing strength (top layer) 1.0
α2 zonal velocity forcing strength (bottom layer) 0.5
Lx channel length 2.9 × 107 m
Ly channel width 2.5 × 106 m
H1 mean thickness (top layer) 5.0 × 103 m
H2 mean thickness (bottom layer) 5.0 × 103 m
L characteristic length scale 1.0 × 106 m
U characteristic velocity scale 1.0 × 101 m s−1

D characteristic depth scale 1.0 × 103 m

Table 2: Standard values of the fixed parameters.
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As basis functions we will use the Fourier modes with half wave numbers.
For an integer k ≥ 0 and a real number α > 0 these functions are given by

ck(ξ; α) :=





1√
α

k = 0
√

2

α
cos

(
kπξ

α

)
k > 0,

sk(ξ; α) :=

√
2

α
sin

(
kπξ

α

)
,

(6)

where ξ ∈ [0, α], and the numerical factors serve as normalisation constants.
Deciding which Fourier modes to retain in the Galerkin projection is a

non-trivial problem. A priori it is not known which choice captures the
dynamics of the infinite-dimensional system in the best possible way. In [52,
53, 54] this problem has been addressed in the setting of a Rayleigh-Bénard
convection problem by checking qualitative changes in dynamical behaviour
and quantitative information on the location of branches of equilibria and
their bifurcations, while increasing the number of retained modes. Such an
approach is beyond the scope of the present paper, and here we choose an ad
hoc approach. In [6] it was shown that atmospheric low-frequency behaviour
manifests itself at zonal wavenumbers less than 5. To keep the dimension
of the low-order model as low as possible we only retain the wave numbers
m = 0, 3 in the zonal direction, and the wave numbers n = 0, 1, 2 in the
meridional direction. Let

R = {(0, 0), (0, 1), (0, 2), (3, 0), (3, 1), (3, 2)}

denote the set of retained wave number pairs. Moreover, set a = Lx/L and
b = Ly/L. Then all nondimensional fields are expanded as

uℓ(x, y, t) =
∑

(m,n)∈R

[
ûc

ℓ,m,n(t)c2m(x; a) + ûs
ℓ,m,n(t)s2m(x; a)

]
cn(y; b),

vℓ(x, y, t) =
∑

(m,n)∈R

[
v̂c

ℓ,m,n(t)c2m(x; a) + v̂s
ℓ,m,n(t)s2m(x; a)

]
sn(y; b),

hℓ(x, y, t) =
∑

(m,n)∈R

[
ĥc

ℓ,m,n(t)c2m(x; a) + ĥs
ℓ,m,n(t)s2m(x; a)

]
cn(y; b).

In this way the truncated expansions satisfy the boundary conditions.
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By substituting the truncated expansions in (5) and projecting (with re-
spect to the standard inner product) the governing equations on the Fourier
modes, we obtain a system of ordinary differential equations for the time-
dependent Fourier coefficients. With the above choice of the retained wave-
numbers, we need 9, 6, and 9 coefficients for the fields uℓ, vℓ, and hℓ, respec-
tively. However, due to conservation of mass, it turns out that the coefficients
ĥℓ,0,0 are constant in time and therefore they can be treated as a constant.
Hence, the low-order model is 46-dimensional. Formulas to compute the
coefficients of the low-order model are presented in Appendix B.

3. Results

We here investigate the dynamics of the low-order model, starting from
a description of the bifurcations in Figure 1 (Section 3.1). It is shown how
low-frequency dynamical behaviour is linked to strange attractors, which oc-
cur in a relatively large parameter domain. The onset of chaotic dynamics is
explained in terms of bifurcation scenarios (“routes to chaos”, Section 3.2).
Lastly, physical interpretation of the dynamics is given in terms of atmo-
spheric low-frequency variability (Section 3.4).

3.1. Organisation of the parameter plane

In this section we give a detailed description of the bifurcation diagram
and we explain how this clarifies various parts of the Lyapunov diagram. The
bifurcations detected in our model are standard, and they are discussed in
detail in, e.g., [39].

Lyapunov diagram. The top panel of Figure 1 contains the Lyapunov dia-
gram of the attractors of the low-order model. This is produced by scanning
the (U0, h0)-parameter plane from left to right and classifying the detected
attractor by means of Lyapunov exponents, see [12, 13] for details. Along
each line of constant h0 we start with a fixed initial condition when U0 = 12
m/s. For the next parameter values on this line we take the last point of the
previous attractor as an initial condition for the next one.

We do not exclude the possibility of coexisting attractors, but this can
not be detected by our procedure. By means of more refined procedures,
with varying initial conditions, coexistence of attractors can be detected as
well. For large values of the parameter U0 orbits can escape to infinity (see
the white parts in Figure 1), but this also depends on the chosen initial
condition. These unbounded orbits have also been detected in [42].
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Bifurcations of equilibria. The transition from stationary to periodic be-
haviour in the Lyapunov diagram (Figure 1) is explained by Hopf bifurcations
where an equilibrium loses stability. A stable equilibrium is found for U0 = 0
m/s and remains stable up to U0 = 12.2 m/s. The equilibrium undergoes one
or more Hopf bifurcations for U0 > 12.2 m/s approximately: loss of stability
occurs at curves H1 and H2 in Figure 1 (we only focus on bifurcations leading
to loss of stability here). Periodic orbits born at the H1 curve have periods
of about 10 days, whereas periodic orbits born at the H2 curve have periods
in the range of 30 – 60 days; see Figure 3 and Figure 4, respectively1.

A pair of degenerate Hopf points occur at the tangencies between the
Hopf curves H1,2 and the curves SP1 and SP2 of saddle-node bifurcations of
periodic orbits. The bifurcation type on H1,2 changes from supercritical to
subcritical at the degenerate Hopf points. Two branches of stable periodic
orbits are thus formed on either of SP1,2 or H1,2.

Two curves SN1 and SN2 of saddle-node bifurcations of equilibria meet
in a cusp. This leads to a domain in the parameter plane for which three
equilibria coexist. The boundaries of this domain are tangent to the Hopf
curves H1 and H2 at three different Hopf-saddle-node bifurcation points.
Moreover, a Bogdanov-Takens point occurs along one of the saddle-node
curves, where one additional real eigenvalue crosses the imaginary axis.

Bifurcations of periodic orbits born at H1 or SP1. The periodic orbits born
at the curves H1 or SP1 lose stability through either Hopf-Nĕımark-Sacker or
saddle-node bifurcations. The Hopf-Nĕımark-Sacker curve T1 originates from
a Hopf-Hopf point at the curve H1, where two pairs of complex eigenvalues
cross the imaginary axis. The saddle-node curves SP3,4 are joined in a cusp,
and the curve SP4 forms part of a boundary between periodic and chaotic
behaviour in the Lyapunov diagram. Moreover, the curve SP4 becomes tan-
gent to the Hopf-Nĕımark-Sacker curve T1 at a Hopf-saddle-node bifurcation
point of periodic orbits.

Bifurcations of periodic orbits born at H2 or SP2. The periodic orbits born
at the curves H2 or SP2 may lose stability through either a period doubling
bifurcation or Hopf-Nĕımark-Sacker bifurcations. The former occurs on curve

1Unless specified otherwise, attractors are plotted on directions of maximal amplitude.
See Section A.3 for details. Since the projection is computed numerically, labels for the
axes are omitted.
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Figure 3: Periodic orbit born at Hopf bifurcation H1 (U0 = 13.32 m/s, h0 = 800 m) and
its power spectrum. The period is approximately 10 days.
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Figure 4: Periodic orbit born at Hopf bifurcation H2 (U0 = 14.64 m/s, h0 = 1400 m) and
its power spectrum. The period is approximately 60 days.

P1, which is the first of a cascade leading to a chaotic attractor, see the next
section. Hopf-Nĕımark-Sacker bifurcations occur on curves T2 and T3 in
Figure 1: T2 originates from a Hopf-saddle-node bifurcation point of periodic
orbits, and T3 is tangent to the period doubling curve P1 at a 1:2-resonance
point.

3.2. Routes to chaos

We have identified three different routes from orderly to chaotic be-
haviour. All of them involve one or more bifurcations of the stable periodic
orbits described in the previous section.

Period doublings. The periodic orbits born at the Hopf bifurcation H2 lose
stability through a period doubling bifurcation (see previous section). Three
period doubling curves P1,2,3 are shown in Figure 1, and we expect that they
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Figure 5: Magnification of the Lyapunov diagram in Figure 1; see Table 1 for the colour
coding.

are the first of an infinite cascade. Indeed, a magnification of the Lyapunov
diagram (Figure 5) reveals a large chaotic region at the right of P3, inter-
rupted by narrow domains of periodic behaviour. Occurrence of these win-
dows of periodicity is confirmed in the diagrams in Figure 6. However, these
gaps disappear for lower values of the parameter h0, and chaotic behaviour
seems to be persistent on a continuum.

Figure 7 shows a twice-doubled stable periodic orbit along the cascade
and a strange attractor after the end of the cascade. The dynamics on the
strange attractor exhibits low-frequency behaviour in the range 20-200 days
(see the power spectrum in Figure 7). The peaks around 100 and 200 days
are ‘inherited’ from the twice-doubled periodic orbit. In turn, these originate
from the same branch of periodic orbits as in Figure 4: just before the first
period doubling bifurcation P1 (U0 = 13.9 m/s, h0 = 1200 m) this stable
periodic orbit has a period of approximately 50 days (not shown).
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Figure 6: The three largest Lyapunov exponents λ1 ≥ λ2 ≥ λ3 (non-dimensional) as a
function of U0. The value of the parameter h0 is fixed at h0 = 800 m (top left), h0 = 1000
m (top right), h0 = 1200 m (bottom left), and h0 = 1400 m (bottom right).

Broken torus. Two-torus attractors occur in a narrow region separating peri-
odic from chaotic behaviour in the Lyapunov diagram (Figure 5). The 2-torus
attractors branch off from periodic orbits at the Hopf-Nĕımark-Sacker bifur-
cations on curve T2. The periodic orbits losing stability here belong to the
branch created at the Hopf curve H2 (see previous section). The 2-torus
attractors quickly break down giving rise to a strange attractor (Figure 8).
This strange attractor exhibits low-frequency behaviour in the range 10-100
days. The main spectral peaks at 56 and 11 days are inherited from the
2-torus, which has two frequencies ω1 = 0.0178 days−1 and ω2 = 0.0888
days−1 for parameters right after the Hopf-Nĕımark-Sacker bifurcation. In
turn the torus inherits one of the frequencies from the periodic orbit, which
has a period of approximately 56 days just before the Hopf-Nĕımark-Sacker
bifurcation (U0 = 14.74 m/s, h0 = 900 m, not shown).

The process leading to the creation of the above strange attractor involves
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Figure 7: Attractors (left panels, same projection) and their power spectra (right) for
h0 = 1200 m. Top: periodic orbit after two period doublings (U0 = 14.48 m/s). Bottom:
strange attractor after a period doubling cascade (U0 = 15 m/s).
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Figure 8: Same as Figure 7 for h0 = 900 m: a 2-torus attractor (top, U0 = 14.75 m/s) and
a strange attractor after the 2-torus breakdown (bottom, U0 = 14.78 m/s).
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transition through a number of phase-locking windows as U0 is increased.
Figure 9 shows Poincaré sections for U0 = 14.750 m/s up to U0 = 14.780 m/s
with step 0.001 m/s with h0 = 900 m fixed. Densely filled invariant circles
and periodic points in the Poincaré section correspond to quasi-periodic 2-
tori and periodic orbits of the flow, respectively. Periodicity windows with
with periods 16, 25, 34, 9, and 11 are crossed as U0 is increased, until the
invariant circle breaks up and the quasi-periodic dynamics is replaced by
chaotic dynamics. The size of the attractor is growing rapidly in phase space
as U0 is changed. The breakdown of a 2-torus often involves homo- and
heteroclinic bifurcations; see Section 3.3 for details.

Intermittency. The saddle-node curve SP4 in Figure 1 forms one of the
boundaries between the regions of periodic and chaotic behaviour in the
Lyapunov diagram. Figure 10 (top left panel) shows a stable periodic orbit
born at the curve SP1; the period is 10 days. When the parameters cross the
saddle-node curve SP4, the stable periodic disappears and a strange attractor
is found; see Figure 10 (bottom left panel).

The dynamics on the attractor seems to consist of a sequence of passages
close to heteroclinic orbits between different objects. The attractor coexists
with (at least) the following objects.

• An unstable periodic orbit with a 2-dimensional unstable manifold (due
to one pair of complex conjugate Floquet multipliers in the right half-
plane).

• Three unstable equilibria with unstable manifolds of dimension 4, 3,
and 2 (due to two, one, and one pair(s) of complex conjugate eigenval-
ues in the right half plane, respectively).

Figure 11 shows that the dynamics on the attractor consists of different
regimes.

• Regimes of nearly regular periodic behaviour correspond to intermit-
tency near the formerly existing stable periodic orbit, which disap-
peared through the saddle-node curve SP4.

• Regimes of nearly stationary behaviour are observed when the orbit
approaches one of the three equilibria mentioned above.

• The previous two regimes are alternated with irregular behaviour.
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Figure 10: Same as Figure 7 for h0 = 800 m. Top row: stable periodic orbit before
the saddle-node bifurcation (U0 = 14.87 m/s). Bottom row: strange attractor after the
saddle-node bifurcation (U0 = 15 m/s).

The intermittency regimes often occur directly after the orbit approached
one the equilibria, but this is not always the same equilibrium. We have
tested this by computing a large number of orbits, for which the initial con-
ditions are random points in the tangent space to the unstable manifold of the
equilibrium. The intermittency regime can be reached immediately by start-
ing near the equilibria with the 4-dimensional and 3-dimensional unstable
manifolds. When starting near the equilibrium with the 2-dimensional un-
stable manifold, however, the orbit shows irregular behaviour before reaching
the intermittency regime.

Orbits on the attractor never approach the unstable periodic orbit within
a small distance. Again we have computed a large number of orbits, for
which the initial conditions are random points in the tangent space of the
unstable manifold of the periodic orbit. In general, first a long transient of
irregular behaviour is observed, and then the orbit reaches the intermittency
regime.
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and distance to the unstable periodic orbit (magenta). Black bars underneath mark time
intervals of intermittency near either the periodic orbit or an equilibrium.

3.3. Theoretical remarks

The results of the previous subsections are now interpreted in terms of
known theory.

Bifurcations of equilibria and periodic orbits. The codimension-1 bifurcations
of equilibria and periodic orbits we have found are standard and have been
described extensively in the literature; see, for instance, [7, 16, 32, 39] and
the references therein. For each bifurcation a (truncated) normal form can
be derived by restricting the vector field to an approximation of a centre
manifold. This normal form can be used to check the appropriate generic-
ity and transversality conditions and to study different unfolding scenarios.
This methodology is described in detail in [39], see [59] for other methods of
computing normal forms.
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The codimension-2 bifurcations of equilibria (Bogdanov-Takens, Hopf-
Hopf, and Hopf-saddle-node) have been described in detail in [39]. In this
case, however, the truncated normal forms only provide partial information
on the dynamics near the bifurcation. The Hopf-saddle-node bifurcation for
diffeomorphisms has been studied extensively in [12, 13].

Period doubling route. This scenario for the birth of strange attractors is
theoretically well-understood, see for example [10, 23] and references therein.
Strange attractors obtained from infinite period doublings in one direction
may be reached at once by homo- and heteroclinic tangencies from another
direction [49]. When curves of period doubling bifurcations form unnested
islands, the chaotic region can be reached by a variety of routes, including the
breakdown of a 2-torus or the sudden appearance of a chaotic attractor [64].

2-tori and their breakdown. It is well known that 2-torus attractors of dissipa-
tive systems generically occur as families of quasi-periodic attractors param-
eterised over a Cantor set (of positive 1-dimensional Hausdorff measure) in
a Whitney-smooth way, see [7, 8, 16]. These attractors are often a transient
stage between periodic and chaotic dynamics.

The birth and death of periodic orbits on an invariant torus occur when
the parameters move across Arnol′d resonance tongues. These are regions
in the parameter plane bounded by pairs of curves of saddle-node bifurca-
tions originating from a common resonant Hopf-Nĕımark-Sacker bifurcation.
For parameters inside a tongue the dynamics on the torus is phase locked,
meaning that the invariant circle of the Poincaré map (defined by a section
transversal to the torus) is the union of a stable periodic point and the unsta-
ble manifolds of an unstable periodic point (see, for example, the top right
panel in Figure 9). The circle can be destroyed by homoclinic tangencies
between the stable and unstable manifolds of the unstable periodic point,
or the circle can interact with other objects via heteroclinic tangencies. See
[9, 10] for an extensive discussion.

Intermittency. The phenomenon of intermittency near a saddle-node bifurca-
tions is well-known, but it only explains a part of the dynamics on the strange
attractor in Figure 10. Furthermore, the geometrical structure of the strange
attractor remains unclear. In many systems, strange attractors are formed
by the closure of the unstable manifold of a saddle-like object. This Ansatz is
discussed in several works, see e.g. [10, 16] and references therein. However,
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the structure of the attractor in Figure 10 seems to be more complicated, in-
volving interaction with several nearby invariant objects (equilibria, periodic
orbits) of saddle type.

We consider it as an interesting problem for future research to investi-
gate the structure of the attractor in Figure 10 in more detail. At least the
stable and unstable manifolds of the equilibria and the periodic orbit should
be computed, in order to gain more insight in the structure of the attractor.
Next, the ‘genealogy’ of the attractor should be determined, e.g., by identify-
ing whether the present shape is created through a sequence of bifurcations.
For a more thorough analysis it might be necessary to derive a simpler model
for this attractor, having a state space with the lowest possible dimension.

3.4. Physical interpretation

In this section we investigate the physical aspects (mainly instability and
wave propagation) associated with the attractors analysed in the previous
section. Hopf bifurcations are first interpreted in terms of geophysical fluid
dynamical instabilities, giving rise to planetary waves. The structure of these
waves is then studied through Hovmöller diagrams of the vorticity field [35].
This allows us to visualise structural differences and changes, such as the
onset of large-scale meanders in the westerly wind.

Hopf bifurcations. A fluid is said to be hydrodynamically unstable when
small perturbations of the flow can grow spontaneously, drawing energy from
the mean flow. At a Hopf bifurcation an equilibrium loses its stability and
gives birth to a periodic orbit. In the context of a fluid this can be interpreted
as a steady flow becoming unstable to an oscillatory perturbation (such as a
travelling wave). Two wave instabilities are well-known in geophysical fluid
dynamics: barotropic and baroclinic instabilities. The fundamental differ-
ence lies in the source of energy: perturbations derive their energy from the
horizontal shear of the mean flow in a barotropically unstable flow. In a
baroclinically unstable flow, perturbations derive their kinetic energy from
the potential energy of the mean flow associated with the existence of vertical
shear in the velocity field. The reader is referred to standard textbooks on
geophysical fluid dynamics for a full discussion on this subject [28, 29, 36].

At a Hopf bifurcation the Jacobian matrix of the vector field has two
eigenvalues ±ωi on the imaginary axis. Let Φ1 ± iΦ2 denote corresponding
eigenvectors, then

P (t) = cos(ωt) Φ1 − sin(ωt) Φ2 (7)
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Figure 12: Patterns of layer thickness associated with the eigenvectors at the Hopf bifur-
cation H1, for U0 = 12.47 m/s and h0 = 800 m. The scale is arbitrary, since any scalar
multiple of (7) is a solution of the linearised vector field.
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Figure 13: Same as Figure 12 at Hopf curve H2, for U0 = 13.31 m/s and h0 = 1200 m.
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is a periodic orbit of the vector field obtained by linearisation around the
equilibrium undergoing the Hopf bifurcation. This can be interpreted as a
wave-like response to a perturbation of the equilibrium. The propagation of
the physical pattern associated to this wave can be followed by looking at the
physical fields at the phases P (−π/2ω) = Φ2 and P (0) = Φ1. Figure 12 shows
the layer thickness associated with the eigenvectors at the Hopf bifurcation
H1. Clearly, positive and negative anomalies are opposite in each layer.
Moreover, this is accompanied by vertical shear in the velocity fields (not
shown in the figure). Hence, we interpret this Hopf bifurcation as a mixed
barotropic/baroclinic instability. The same plot for the Hopf bifurcation H2

is given in Figure 13. Here, we see again that positive and negative anomalies
are opposite in each layer. Therefore, we interpret this Hopf bifurcation also
as a mixed barotropic/baroclinic instability.

The periodic orbits. The physical patterns associated with periodic dynamics
change with the parameters U0 and h0. Namely the propagation features of
the periodic orbits in Figures 3 and 4 differ from those at the Hopf bifurca-
tions that gave birth to these orbits. The vorticity field associated with the
periodic orbit in Figure 3 propagates eastward in the bottom layer, whereas
it does not propagate in the top layer, see the Hovmöller diagram in Fig-
ure 14. Also, the variability is stronger in the top layer. The vorticity field
associated with the periodic orbit in Figure 4 is non-propagating in both
layers (Figure 15).

Period doublings. The strange attractor after the period doubling sequence is
associated with non-propagating wave behaviour in both layers (Figure 16).
The characteristic time scale is approximately 100 days. Again the variability
is stronger in the upper layer.

Broken torus. The dynamics on the broken 2-torus attractor corresponds to
non-propagating wave behaviour in both layers (Figure 17). The dominant
time scale in the top layer (approximately 50 days) is longer than in the
bottom layer (5 to 10 days). Both time scales are represented by peaks in
the power spectrum (Figure 8).

Intermittency. The strange attractor in Figure 10 is characterised by inter-
mittent transitions between long time episodes of nearly stationary behaviour
and episodes with eastward propagating waves in the bottom layer and non-
propagating waves in the top layer, see Figure 18.
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Figure 14: Hovmöller diagram of the periodic orbit of Figure 3. The magnitude of the
vorticity field is plotted as a function of time and longitude while keeping the latitude
fixed at y = 1250 km. Observe the eastward propagation in the bottom layer.
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Figure 15: Same as Figure 14 for the periodic orbit of Figure 4. Observe that this wave is
non-propagating in both layers.
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Figure 16: Same as Figure 14 for the strange attractor of Figure 7. The non-propagating
nature is inherited from the periodic orbit of Figure 3. Observe the irregular variability in
the bottom layer. This is due to the harmonics induced by the period doubling bifurcations.
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Figure 17: Same as Figure 14 for the strange attractor of Figure 8. Again, the non-
propagating nature is inherited from the periodic orbit of Figure 3. The two fundamental
frequencies (11 and 56 days) of the formerly existing 2-torus can still be identified.
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Figure 18: Hovmöller diagrams of the strange attractor of Figure 10 for two different
time intervals. The magnitude of the vorticity field is plotted as a function of time and
longitude while keeping the latitude fixed at y = 1250 km. The lower panels correspond to
the intermittency regime near the vanished periodic orbit. The propagating nature in the
bottom layer is inherited from the periodic orbit of Figure 4. The top panels are associated
with a stationary regime, where the orbit approaches one of the nearby equilibria.

29



4. Summary and discussion

In this paper we investigated the dynamical mechanisms underlying the
phenomenon of low-frequency atmospheric behaviour. Our results indicate
that the basic process consists of planetary scale mixed baroclinic/barotropic
instabilities. A fundamental role is played by the interaction of the westerly
flow with orography at zonal wavenumber three. Characteristic timescales
are in the range 10-200 days, where the lower frequency components (60-200
days) can be interpreted as harmonics of dominant frequencies in the range
10-60 days. The above features largely agree with previous studies based on
observations and orographic resonance theories [5, 6, 33, 34].

We considered a low-order model derived from the 2-layer shallow water
equations. Low-frequency behaviour is exhibited by the model for physically
meaningful parameter values. Here the model dynamics is chaotic, taking
place on a strange attractor, and is associated with irregularly recurring flow
patterns. The dominant time scales and the spatial patterns are inherited
from two branches of periodic orbits that gave birth to the strange attractor
through various bifurcation scenarios. This intermittent behaviour is found
in a relatively large domain of physically relevant parameter values.

The dynamics of the low-order model is analysed and interpreted using
techniques from the theory of dynamical systems. A bifurcation study is
carried out using orography height and magnitude of zonal wind forcing as
control parameters. Many codimension two bifurcations of equilibria and
periodic orbits act as organising centres of the parameter plane. A stable
equilibrium exists for small U0. Stable periodic orbits appear for U0 larger
than 12.5 m/s due to Hopf bifurcations, and they are persistent in a large
domain of the parameter plane. Strange attractors occur in the region near
U0 ≥ 14.5 m/s and h0 ≥ 850 m, and are created from the periodic orbits
through various scenarios: period doubling cascades, Hopf-Nĕımark-Sacker
bifurcations followed by breakdown of a 2-torus attractor, and saddle-node
bifurcations taking place on strange attractors.

Comparison with the literature. The temporal and spatial scales identified in
our study agree with the observational evidence (see e.g. [6, 30, 33]), indicat-
ing that low-frequency variability in the Northern Hemisphere is concentrated
in the spectral region corresponding to periods of 10 days or larger and zonal
wavenumbers less than 5.

However, the dynamical mechanisms identified in our work (see above)
are novel. Many studies invoke the ‘multiple-equilibria theory’ of Charney
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and DeVore [18] and are based on barotropic models. The dynamics typically
involves a Shil′nikov homoclinic bifurcation near a Hopf-saddle-node bifurca-
tion of an equilibrium, see [15] for an overview. Crommelin et al. [22] propose
the multiple equilibrium approach in the presence of a Shil′nikov homoclinic
bifurcation. Low-frequency variability is explained in terms of intermittent
transitions between two preferred flow patterns. However, this requires pa-
rameters to be near both a Shil′nikov bifurcation and a saddle-node bifurca-
tion of equilibria. This restricts the validity to a neighbourhood of an isolated
point in a 2-dimensional parameter plane. In our model, low-frequency vari-
ability arises from periodic orbits bifurcating into strange attractors. This is
accomplished via different routes and persists in a large parameter domain.
From the physical viewpoint, our model does not suffer from the limitations
of barotropic models, the most serious one being that the source of energy
of the instabilities is the kinetic rather than the available potential energy.
We believe that this is the main point of advantage of our approach, which
has allowed us to capture the mixed barotropic/baroclinic character of the
phenomenon. In addition, by deriving the low-order model from the shallow
water equations, these instabilities occur at the correct parameter values.

Open physical questions. The Hopf bifurcations have been interpreted in
terms of hydrodynamic instabilities by examining the physical patterns ob-
tained from the eigenvectors at the bifurcation. A more complete physical
interpretation would also involve an analysis of the energy cycle along the
lines of [41].

The periodic orbits inherit their physical patterns from the Hopf bifur-
cations at which they are born. However, the physical patterns associated
with the periodic orbits will change with the parameters, further away from
the Hopf bifurcations. Studying these changes in a systematic way is an
interesting subject for future research.

Open mathematical questions. Reduction of infinite-dimensional systems to
finite-dimensional systems is a challenging problem. On the one hand there
are computational procedures such as discretisation by means of finite-differences
or Galerkin-like projections. On the other hand there exist conceptual reduc-
tions to lower-dimensional models such as restrictions to invariant manifolds
containing attractors. However, often the available theorems are not con-
structive. The challenge lies in reconciling the computational methods with
the conceptual methods. The study presented in this paper is a first step
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in the coherent analysis of the (infinite-dimensional) shallow water model.
There are two important open questions.

1. Which dynamical features of the low-order model persist as the number
of retained Fourier modes is increased in the Galerkin projection?

2. Which dynamical features of the low-order model persist in the infinite-
dimensional shallow water model?

For the first, one can think of the approach used in [52, 53, 54] for a Rayleigh-
Bénard convection problem. A strongly related issue is the investigation of
models with an increasing number of layers in the vertical direction.

A rigorous mathematical investigation of the infinite-dimensional system
should be undertaken together with computational work. For example, what
is the state space of the infinite-dimensional model generated by the equa-
tions (5)? Answering this question requires proving the existence of (weak)
solutions. The idea would be to follow the methods used for the 2-dimensional
Navier-Stokes equations and certain reaction-diffusion equations, see [57, 62].
For these equations the Galerkin method is used to construct a sequence of
successive approximations which converge to a solution of the weak form of
the equations in a suitable Hilbert space. This Hilbert space then serves as
a suitable state space on which an evolution operator can be defined. When
this has been achieved one can try to prove the existence of finite-dimensional
global attractors or inertial manifolds.
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A. Numerical methods

The numerical investigation of the low-order model consists of a mixture
of different techniques, which are described briefly in this section. For con-
tinuation we have mainly used the program AUTO–07p [24], and most of
the technology behind this software is described in [39]. For the numerical
integration and the computation of Lyapunov exponents we have written
tailored software and the algorithms are sketched below.
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A.1. Numerical integration

The low-order model can be written symbolically as

dxi

dt
= Ci +

d∑

j=1

Lijxj +
d∑

j,k=1

Qijkxjxk, i = 1, . . . , d. (8)

This system is integrated numerically by computing a truncated Taylor ex-
pansion of the solution around time t0:

xi(t0 + h) =

N∑

n=0

x
[n]
i (t0)h

n + O(hN+1),

where the coefficients are given by

x
[n]
i (t0) :=

1

n!

dnxi

dtn

∣∣∣∣
t=t0

. (9)

Given a point x
[0]
i (t0), which is either an initial condition or a previously

computed point on the trajectory, we first compute

x
[1]
i = Ci +

d∑

j=1

Lijx
[0]
j +

d∑

j,k=1

Qijkx
[0]
j x

[0]
k .

Then, for n > 0, we have the recurrent relation

x
[n+1]
i =

1

n + 1

(
d∑

j=1

Lijx
[n]
j +

d∑

j,k=1

n∑

m=0

Qijkx
[m]
j x

[n−m]
k

)
,

which follows by substituting the truncated Taylor series in (8) using the
Leibniz rule for differentiation of products.

We have chosen a tolerance ǫ = 10−16. This gives N = 20 as the optimal
order. The step size is then computed as hm = min{sm,1, sm,2}, where

sm,1 = exp

{
1

N − 1
log

(
ǫ
‖x[1]‖∞
‖x[N ]‖∞

)}
,

sm,2 = exp

{
1

N − 2
log

(
e2ǫ

‖x[1]‖∞
‖x[N−1]‖∞

)}
.

A very convenient aspect of the Taylor integration method is the possibility
of producing dense output. By choosing step sizes smaller than the one given
above, one can compute points along the orbits for any value of t.

For a more detailed account on the Taylor method, see [38].
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A.2. Computation of Lyapunov exponents

We compute Lyapunov exponents by means of the algorithm described
in [3, 4]. To compute the first k Lyapunov exponents we choose at random a
set of k orthonormal vectors v1,0, . . . , vk,0. Then we simultaneously integrate
the vector field and the first variational equations:

dx

dt
= f(x),

dvi

dt
= Dxf(x(t))vi, i = 1, . . . , k.

Starting from the initial condition, we integrate the extended system for T
units of time. This gives the vectors x(T ) and vi(T ). During the integra-
tion the vectors vi(t) tend to align themselves along the direction of maximal
expansion. To prevent the vectors vi from collapsing onto one direction, a
Gram-Schmidt procedure is applied to the vectors v1(T ), . . . , vk(T ), which
results in a set of orthogonal vectors ṽ1(T ), . . . , ṽk(T ). Then we replace the
vectors vi(T ) by the normalised vectors ṽi(T )/ ‖ṽi(T )‖. Next, we integrate
again for T units of time using x(T ) and the normalised vectors as initial con-
ditions. Repeating this procedure N times results in the following estimates
for the Lyapunov exponents:

λi =
1

NT

N∑

n=1

log (‖ṽi(nT )‖) , i = 1, . . . , k. (10)

For different methods to compute Lyapunov exponents, see [26, 27].

A.3. Visualisation of attractors

The attractors of the low-order model live in a 46-dimensional space, and
they have to be projected on a 2-dimensional subspace for visualisation: we
use here the directions of maximal amplitude along the orbits (unless other-
wise specified). These directions are computed by integrating the variational
equations along the trajectory [59].

A.4. Computation of power spectra

By integrating the vector field we obtain a time series (ck)
N−1
k=0 by mea-

suring the L2-norm of the solution at regular time intervals. In the power
spectra in this paper the solutions have been sampled at time steps of 1/2.
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From this time series we compute a discrete Fourier transform (DFT) by

ĉk =
1

N

N−1∑

n=0

cn exp

(
−2πi

nk

N

)
. (11)

The power spectrum is a plot of |ĉk|2 against the Fourier frequency fk = k/N .
Before computing a power spectrum is computed, the mean is subtracted

from the time series:

uk = ck −
1

N

N−1∑

n=0

cn.

Moreover, a Hamming window is applied to reduce leakage of frequencies.
Define the array (Hk)

N−1
k=0 by

Hk = 0.54 − 0.46 cos

(
2πk

N

)
,

and set vk = Hkuk. The DFT is computed from the array (vk)
N−1
k=0 , and the

resulting array (v̂k)
N−1
k=0 is normalised by dividing by the norm of the array

(Hk)
N−1
k=0 .

All frequencies are computed modulo 1. Due to the discrete sampling
procedure, all other frequencies are shifted within the interval [0, 1), a phe-
nomenon referred to as aliasing. Moreover, since our time series is real-valued,
its DFT is symmetric around the frequency f = 1/2. Indeed, from (11) it
follows that ĉN−k = ĉ∗k.

The DFT is computed by means of a fast Fourier transform implemented
in the FFTW library [31].

B. Coefficients of the low-order model

In the Galerkin projection the fields uℓ, vℓ, and hℓ are replaced by the
truncated Fourier expansions. The resulting equations are multiplied with
the basis functions and integrated over the spatial domain. This gives a set of
ordinary differential equations for the time-dependent expansion coefficients.

The coefficients in the equations for the low-order model are given by in-
tegrals of (products of) the basis functions, which are readily implemented in
an algebraic manipulation program. We only present formulas for the projec-
tion of terms in the equation for ûℓ onto the basis function c2m(x; a)cn(y; b).
The projection of other terms are given by similar formulas. In the formulas
that follow, all integrations are over the rectangle Ω = [0, a] × [0, b].
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Constant terms. These terms consist of the forcing and topography. Projec-
tion of the forcing term gives

∫∫
u∗

ℓ(x, y)c2m(x; a)cn(y; b)dxdy.

Projection of the topography term gives
∫∫

hb(x, y)c2m(x; a)cn(y; b)dxdy.

Linear terms. The linear terms are due to the pressure gradient, Coriolis
force terms, dissipation, and damping terms. Projection of the term

ρ1

ρ0
F

∂h1

∂x

gives

ρ1

ρ0

F
∑

ĥc
1,p,q

∫∫
c′2p(x; a)cq(y; b)c2m(x; a)cn(y; b)dxdy

+ ĥs
1,p,q

∫∫
s′2p(x; a)cq(y; b)c2m(x; a)cn(y; b)dxdy.

Projection of Coriolis term

(Ro−1 + βy)vℓ

gives the terms

∑
Ro−1v̂c

ℓ,p,q

∫∫

Ω

c2p(x; a)sq(y; b)c2m(x; a)cn(y; a)dxdy

+ βv̂c
ℓ,p,q

∫∫

Ω

c2p(x; a)sq(y; b)c2m(x; a)cn(y; a)ydxdy

+ Ro−1v̂s
ℓ,p,q

∫∫

Ω

s2p(x; a)sq(y; b)c2m(x; a)cn(y; a)dxdy

+ βv̂s
ℓ,p,q

∫∫

Ω

s2p(x; a)sq(y; b)c2m(x; a)cn(y; a)ydxdy.

Projection of the Laplace diffusion term

Ro−1EH∆uℓ
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gives

Ro−1EH

∑
ûc

ℓ,p,q

∫∫
[c′′2p(x; a)cq(y; b) + c2p(x; a)c′′q (y; b)]c2m(x; a)cn(y; b)dxdy

ûs
ℓ,p,q

∫∫
[s′′2p(x; a)cq(y; b) + s2p(x; a)c′′q (y; b)]c2m(x; a)cn(y; b)dxdy

Finally, projection of the damping term

−σ(µ + δℓ,2r)uℓ

gives

−σ(µ + δℓ,2r)
∑

ûc
ℓ,p,qû

c
ℓ,m,n

∫∫
c2p(x; a)cq(y; b)c2m(x; a)cn(y; b)dxdy

+ ûc
ℓ,p,qû

s
ℓ,m,n

∫∫
s2p(x; a)cq(y; b)c2m(x; a)cn(y; b)dxdy

Quadratic terms. The nonlinear terms in the low-order model are due to
the nonlinear advection operator in the original governing equations. For
example, the projection of the term

uℓ

∂uℓ

∂x

gives the following terms in the low-order model:

∑
ûc

ℓ,p,qû
c
ℓ,r,s

∫∫
c2p(x; a)cq(y; b)c′2r(x; a)cs(y; b)2m(x; a)cn(y; b)dxdy

+ ûc
ℓ,p,qû

s
ℓ,r,s

∫∫
c2p(x; a)cq(y; b)s′2r(x; a)cs(y; b)2m(x; a)cn(y; b)dxdy

+ ûs
ℓ,p,qû

c
ℓ,r,s

∫∫
s2p(x; a)cq(y; b)c′2r(x; a)cs(y; b)2m(x; a)cn(y; b)dxdy

+ ûs
ℓ,p,qû

s
ℓ,r,s

∫∫
s2p(x; a)cq(y; b)s′2r(x; a)cs(y; b)2m(x; a)cn(y; b)dxdy,

where the summation runs over all pairs (p, q), (r, s) ∈ R.
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