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Abstract. In this second part of the paper numerical experiments are presented.
They show that a globally convergent numerical method provides a good starting
point for the finite element adaptive method (adaptivity). This leads to a natural
two-stage numerical procedure, which synthesizes both these methods.
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1. Introduction

In this second part of the paper numerical experiments are presented. They
demonstrate the performance of the globally convergent numerical method in
combination with the Finite Element Adaptive technique.

This is the second part of our work, see [4] for the first part, where analytical
results for our numerical method are presented. In this part we present numerical
experiments referring for some analytical details to the first part [4]. In our numerical
experiments we image a medium with small inclusions in it, although we do not
assume a priori knowledge of such a structure. We refer to |1] and references cited
there for another approach to imaging of small inclusions. There are also some
other numerical methods for multidimensional CIPs, which do not use a good first
guess for the solution. While the current paper works with a single measurement
event, they work for some CIPs with the data resulting from multiple measurements
|7, 8,9, 12, 13, 14]. These publications were discussed in [2].

We now pose forward and inverse problems, for the convenience of the reader,
see details in [4]. As the forward problem, we consider the Cauchy problem for a
hyperbolic PDE,

c(r)uy = Au in R* x (0, 00), (1)
u(z,0) =0,u(x,0) =0 (z — x) . (2)
Since equation (1) governs a wide range of applications, including e.g., propagation
of acoustic and electromagnetic waves, then the same is true for the CIP we consider.
Let d; and dy be two positive constants and 2 C R? be a convex bounded domain

with the boundary 992 € C3. We assume that the coefficient ¢ () of equation (1) is
such that

c(z) € [dy,2ds],dy < dy,c(z) = 2d; for z € R\, (3)
c(z) € C* (R?). (4)
We consider the following
Inverse Problem. Suppose that the coefficient ¢ (x) satisfies (3) and (4), where
the positive numbers d; and ds are given. Assume that the function ¢ (x) is unknown

in the domain 2. Determine the function ¢ (z) for x € Q, assuming that the following
function g (,t) is known for a single source position zo ¢

u(x,t) =g (x,t),V(z,t) € 002 x (0,00). (5)
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The paper is organized as follows. In section 2 we formulate an adaptive
algorithm which uses a modified framework for the adaptivity technique presented
in the first part [4]. In section 3 numerical experiments are presented. A preprint
with this publication is available online [5].

2. The adaptive algorithm

In this section we present our adaptive algorithm, which is derived from Theorems
3.1-3.4 and Remark 3.1 of [4|. Ignoring third lines in estimates (33), (34) and (43),
(48) (Remark 3.2) of [4], we conclude from (24) and (25) of [4] that we should find
an approximate solution of the following problem on each mesh

T
Chp — Co) / [Orup, (cn) - Orpn (cn)] (z,t) dt =0, ¢y, (z) € V). (6)

We solve the problem (6) via the quasi-Newton method given in [15]. On the first
step of the adaptivity we take the same mesh as one which was used for the globally
convergent method. The first guess ¢y := cgop () is also taken the one, which was
obtained on the globally convergent stage.

For each mesh we compute iteratively the sequence {c}'}, m = 1,... of
approximations of ¢, as

e (@) = (z) — al™ g™ (2), (7)

where « is the step length computed via the line-search algorithm [16]. Here, H™ is
an approximate inverse of the Hessian of the Lagrangian. The approximate inverse
of the Hessian is computed by the usual BFGS update formula:

Hm+1 (I dm g™ mT)Hm(I dm m mT)+pSmSmT7m: 1’“'7

8
y"=g"t — g ,dmzl/(ystm),mzl,... (®)

In (8) corrections s™ are defined as s = cZ‘“ —¢p'. In our computations we have

used a special BFGS update formula with limited storage for the Hessian [15] where
we store a finite number m; = m — 1 of corrections for the computed gradients and
parameters in (8). If m = 0, then the quasi-Newton method is the usual gradient
method with H® = I. Let uy (¢]*) € W} and ¢, (¢f*) € W}* be FEM solutions of
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state (9) and adjoint (20) problems of [4], and ¢} := ¢y. The gradient g™ (x) in (7) is
computed by (see (6) in[4])

g () = A — o) — / Drtun () - Dugn ()] (1) . (9)

Although above a posteriori error estimates are approximate ones, our computational
experience shows that they are sufficient. Thus, by Remark 3.1 of [4|, we use the
following adaptivity algorithm in our computations:

Step 0. Choose an initial mesh K}, and an initial time partition J; of the time
interval (0,7]. Start with the initial approximation ¢y = ¢y, which was
computed in the globally convergent algorithm, and compute the sequence of ¢}
in the following steps:

Step 1. Compute solutions uy (c}') € Wi and ¢, (¢]') € W} of state (9) and adjoint
(20) problems of [4], respectively on K}, and Jj.

Step 2. Update the coefficient ¢ := "™ on K}, and J,, using (7).

Step 3. Stop computing ¢, on the above quasi-Newton method if either the norm
of the gradient g™ of the Lagrangian with respect to the coefficient in (9) is
192, < € or norms ||g™||,) are stabilized. Otherwise set m := m + 1
and go to step 1. Here, 6 is the tolerance in quasi-Newton updates. In our
computations we took § = 107°.

Step 4. Compute the function B, (x) in (31) of [4]. Refine the mesh at all points
where
By, () > fmax By, (z), (10)
Q

where the tolerance number § € (0,1) is chosen by the user, see section 3 for
details.

Step 5. Construct a new mesh Kj; and a new time partition .J,. On J, the new
time step 7 should be chosen in such a way that the CFL condition is satisfied.
Interpolate the initial approximation ¢y = cgp, Which was computed in the
globally convergent algorithm, from the previous mesh to the new mesh. Return
to step 1 and perform all the steps of the optimization algorithm on the new
mesh.
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(a) Grpm (b) G = Grem UGrpy  (¢) Greym = 2

Figure 1. The hybrid mesh (b) is a combinations of a structured mesh (a), where
FDM is applied, and a mesh (c), where we use FEM, with a thin overlapping of
structured elements. The solution of the inverse problem is computed in the square
Q and c(z) =1 for x € G\

3. Numerical Studies

3.1. Computations of the forward problem

In this paper we work with the computationally simulated data. That is, the data
are generated by computing the forward problem (12) with the given function ¢(z).
To solve the forward problem, we use the hybrid FEM/FDM method described
in [6]. The computational domain in all our tests G = Gprpy U Gppyr is set as
G = [-4.0,4.0] x [-5.0,5.0]. This domain is split into a finite element domain
Grpym = Q = [-3.0,3.0] x [-3.0,3.0] and a surrounding domain Ggpys with a
structured mesh, see Figure 1. The space mesh in €) consists of triangles and in
Grpu - of squares with the mesh size h = 0.125 in the overlapping regions. At the
top and bottom boundaries of G we use first-order absorbing boundary conditions
[10] which are exact in this particular case since the plane wave is initialized in
normal direction into G in all our tests. At the lateral boundaries, mirror boundary
conditions allow us to assume an infinite space domain in the lateral direction.

The forward problem is computed in the domain G C R? (Figure 1). The
coefficient ¢(x) is unknown only in the domain Q C G and

c(x) =1 1in G\ (11)

The trace of the solution of the forward problem is recorded at the boundary
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t=112

Figure 2. Test 1: Isosurfaces of the simulated exact solution to the forward
problem (12) at different times with a plane wave initialized at the top boundary.

0. Next, the coefficient ¢(x) is “forgotten”, and our goal is to reconstruct this
coefficient for x € € from the data ¢ (z,s). The boundary of the domain G is
0G = 0G1 U 0G5 U 0Gs. Here, 0G4 and 0G5 are respectively top and bottom sides
of the largest domain of Figure 1 and 0G3 is the union of left and right sides of this
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t=9.1

Figure 3. Test 2: Isosurfaces of the simulated exact solution to the forward
problem (12) with a plane wave initialized at the bottom boundary.

domain. In our first test the forward problem is
c(x)uy —Au=0, inG x (0,7),
u(z,0) =0, u(x,0) =0, in G,
8nu|8G1 = f(t), on 0G; x (0,t],
8nu|8G1 = —0wu, on Gy x (t1,T),
(')nu|aG2 = —0yu, on 0Gy x (0,7),
Ont] 55, = 0, on Gy x (0,7T),

where 7' is the final time and f(¢) is the plane wave defined as

(sin (5t—m/2) + 1) 27

t) = <t <t = — T =178t.
f(t) 10 L0t <hi=—, 7.8,
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Thus, the plane wave is initialized at the top boundary G and propagates into GG for
t € (0,14]. First order absorbing boundary conditions [10] are used on 0G; X (t1,T]
and 0Gy x (0,7], and the Neumann boundary condition is used on the bottom
boundary 0Gs. In the second test we consider the case when the plane wave is
initialized at the bottom boundary and use the Neumann boundary condition at the
top boundary. In the integral (7) of [4] of the Laplace transform we integrate for
te(0,7).

We now list main discrepancies between our theory and computations. Such
discrepancies quite often occur in computations of ill-posed problems and seem to be
inevitable. It is well known that computational results are usually less pessimistic
than the theory. At the same time, theory usually provides a good guidance for
computations. The first discrepancy is that we use the initializing plane wave in
(12) instead of the point source in (2). This is because the point source was used
only to better justify the certain asymptotic behaviour, see [2| for our numerical
verification of this behaviour for the case of the above plane wave. The second
discrepancy is that domains G and (2 depicted on Figure 1 have piecewise smooth
rather than smooth boundaries. In principle, this might lead to singularities in
solutions of both the hyperbolic equation (12) and elliptic equations for functions g,
in the above globally convergent numerical method. However, we have not observed
such singularities in our computations. The third discrepancy is that due to some
conveniences of our numerical implementation, we use piecewise constant functions
¢p, in our computations rather than those satisfying (10) in [4]. The next discrepancy
is that we do not use the function (., (¢) in (8) and (20) of [4] because we have
observed in computations of the forward problem (12) that (u |s, —¢) (z,T) ~ 0,
which eliminates the need to use this function. Finally a discrepancy regarding
smoothness requirements was outlined in subsection 3.1 of |[4]. Regardless on these
discrepancies, we have observed a good correspondence between our analytical and
numerical results, see below.

3.2. Results of reconstruction by the globally convergent algorithm

We have performed numerical experiments to reconstruct the medium, which is
homogeneous with ¢ (x) = 1 except of two small squares, where ¢ (z) = 4, see Figure
1-¢). However, we have not assumed a priori knowledge of neither the structure of
this medium nor of the background constant ¢ (x) = 1 outside of those two small
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squares, although, following the Tikhonov concept (as mentioned in section 2), we
have assumed the knowledge of the constant d; = 1/2, see (3) and (11). Because of
this, the starting value for the tail V}; (z,5) was computed via solving the forward
problem (12) for ¢ = 1. Let w.= (x,3) be the corresponding function w (x,s) at
s =3. Then, we took Vi (2,3) =5 ?Inw.; (z,5), see [2] for the details.

It was found in [2] that the interval [s,5] = [6.7,7.45] is the optimal one for
domains G, €2 specified above, and so we have used it in our numerical studies. We
have chosen the step size with respect to the pseudo frequency h = 0.05. Hence,
N = 15 in our case. We have chosen two sequences of regularization parameters
A=\, and € = ¢, for n = 1, ..., N, which are the same as ones in [2]. So, values
of these parameters as well as the value of the regularization coefficient v in the
adaptivity were:

Ay =20, =1,2:\, = 200,n = 3. 4,5: \,, = 2000, 1 > 6
en=0n=1,2;¢,=0.001,n=3,4,5;¢,=0.01,n=06,7;¢, = 0.1 for n > 8;~v = 0.01.
Once the function ¢, is calculated, we update the function ¢ := ¢, , see
subsection 7.3 of [2] for some numerical details. The resulting computed function
is ¢ (x) := cy(z). Comparing with [2|, in the current work we choose a completely

different stopping rule. In calculating iterations with respect to the nonlinear term
(section 4 and Theorem 5.1), we consider norms F*

Fr =gy 1loo = ¥l Lo(00)- (13)
We stop our iterations with respect to nonlinear terms when
either F¥ > FF=1or [k <y,

where v = 0.001 is a small tolerance number of our choice. In other words, we stop
iterations, when either norms Ff start to grow or are too small. Next, we iterate
with respect to the tails (section 4) and use the same stopping criterion. Namely, we
stop our iterations with respect to tails when either

either F',,; > F ;-1 or F,; <w, (14)

where F,; =||gn.iloa—¥,||1,09)- So, following section 4, the number 4, on which these
iterations are stopped, is denoted as ¢ := m,,. Once the criterion (13)-(14) is satisfied,
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Figure 4. Test 1.1: spatial distribution of ¢, after computing ¢, ;7 = 9,10,11,12,
where n is number of the computed function gq.

we take the last computed tail V,, ., , set V111 = V. and run computations
again for ¢,.1. Hence, the number m,, of iterations with respect to tails is chosen
automatically “inside” of each iteration for ¢,, which means that m,,, the number of
iterations with respect to tails varies with n. So, new criteria (13), (14) means a
more flexible stopping rule in the globally convergent algorithm compared with [2],
since in [2| numbers m,, where not chosen automatically.

In all our tests we have introduced the multiplicative random noise in the
boundary data, g,, by adding relative error to computed data ¢ using the following
expression
Q (gmax - gmm)U

100
Here, g (z',t7) = u (z',t7) ,2° € 9 is a mesh point at the boundary 99,/ € (0,T)
is a mesh point in time, «; is a random number in the interval [—1; 1], gimar and Gmin

o (a:i,tj) =g (xi,tj) 1+

are maximal and minimal values of the computed data g, respectively, and o = 5% is
the noise level. Computations were performed on 16 parallel processors in NOTUR
2 production system at NTNU, Trondheim, Norway (67 IBM p575+ 16-way nodes,
1.9GHz dual-core CPU, 2464 GB memory).

Test 1.1

We test our numerical method on the reconstruction of the structure given
on Figure 1-¢). The plane wave f is initialized at the top boundary 0G; of
the computational domain G, propagates during the time period (0,¢;] into G, is
absorbed at the bottom boundary 0G5 for all times ¢ € (0,7") and it is also absorbed
at the top boundary dG; for times t € (t1,T), see Figures 2.

One can see from Figure 4 that the location of the right small square is
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b) 114 ¢) 12 d) c131

Figure 5. Test 2.1: spatial distribution of ¢, after computing ¢, x;n =
10,11,12,13 where n is number of the computed function q.
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a) Test 1.1 b) Test 2.1

Figure 6. The one-dimensional cross-sections of the image of the function ¢, j
computed for corresponding functions g, ;. On a) for Test 1.1 along the vertical
line passing through the middle of the right small square; and on b) for Test 2.1
along the vertical line passing through the middle of the left small square.

imaged well. It follows from 4 -¢) that the imaged contrast in this square is
3.8 : 1 =maxcyp: 1 at n:== N = 11 (see below for this choice of N). Thus,
we have obtained the 5% error (0.2/4) in the imaged contrast, which is the same
as the error in the input data. As to the left small square, we got the same 3.8 : 1
contrast in it for c¢;; ». However, the location of the left square is shifted downwards,
and both imaged squares are on about the same horizontal level. Values of the
function ¢(z) = 1 outside of these squares are imaged accurately.

Figure 7-a) shows computed Lo-norms F,, ;. Using this figure, we analyze results
of the reconstruction. One can see on Figure 7-a) that the number m,, of iterations
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Figure 7. Computed Lo-norms of the F, ; = ||gn.; |oa —En”Lz(aQ).

with respect to tails indeed varies with n, since m,, is chosen automatically now, using
the criterion (13)-(14). We observe that the norms F), ; decrease until computing the
function g;. Next, they slightly grow, decay from Fy o to Fip2 and then these norms
stabilize on n = 11,12. For n = 13,14,15 norms Fj o grow steeply. Thus, we
conclude, that N = 11 and we take ci1,2 as our final reconstruction result on the
globally convergent stage.

Test 2.1

We now test our globally convergent method on the same structure of Figure 1-
c¢). However, the difference with the previous test is that we now use the plane wave,
which is initialized at the bottom boundary of computational domain G, see Fig.2.
Figure 5 displays isosurfaces of resulting images of functions ¢, 5, n = 10,11,12,13.
Figure 6-b) displays the one-dimensional cross-sections of computed images of
functions ¢, superimposed with the correct one along the vertical line passing
through the middle of the left small square. One can see from Figure 5 that the
3.8:1=maxcy; () : 1 contrast for n := N = 11 (see below for this choice of N) in
the left square is imaged again with 5% error (0.2/4) which is the same as the noise
level in the data. As to the right small square, we got the same 3.8 : 1 contrast as in
the left square. However, the location of the right small square is shifted upwards.

Using Figure 7-b), which shows computed Ly-norms F,, ;, we analyze results of
the reconstruction. We observe that computed norms F),; decrease with n until
computing the function ¢, i.e.., until n = 7 and these numbers grow with the
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increase of n = 8,9. Next, we observe a steep decrease at n = 10 and a stabilization
for n = 11,12. For n = 13,14, 15 norms F},; grow steeply. Thus, we conclude, that
N = 12 and we take 12,1 as our final reconstruction result on the globally convergent
stage.

We observe, that in both Tests 1.1 and 2.1 the location of the small quare,
which is located closer to the side from which the plane wave is launched, is
imaged better than the location of the second small square. At the same time
the inclusion/background contrast is imaged well in both small squares, so as the
value of the coefficient ¢(x) = 1 outside of (imaged) small squares. Thus, to enhance
images of locations, we are prompted to use the adaptivity technique.

3.3. Synthesis of the globally convergent algorithm with the adaptivity

The goal of two tests of this subsection is to demonstrate the performance of
the synthesis of our globally convergence algorithm with the adaptivity technique.
We take the starting point for the adaptivity the image obtained by the globally
convergent method. Below “Test 1.2” (respectively “Test 2.2”) means that we take
the image obtained in the above Test 1.1 (respectively in Test 1.2), i.e. the function
c111(x) = cqep(), as the starting point for our finite element adaptive algorithm.
The boundary data g = u |gq in both tests 1.2 and 2.2 are the same as ones in Test
1.1 and 2.1 respectively. In Tests 1.2 and 2.2 " denotes the side of the square €2,
opposite to the side from which the plane wave is launched and I'r =T x (0,7) . In
some sense the side I'r is the most sensitive one to the presence of those two small
squares.

The adaptivity algorithm was described in section 2. Now the question is on how
to choose the tolerance number 3 in (10). The choice of 3 depends on the behaviour
of the computed value of maxg By, (x) in right hand side of (10). If we choose [ too
small (for example, 5 = 0), then we will refine mesh in almost the entire domain
(2, since, realistically, after the optimization procedure By (z) will be non- zero at
almost all mesh points. Unlike this, our goal is to construct a new mesh with a few
nodes as possible, while still getting a good enhancement of the solution obtained
on the globally convergent stage of our two-stage numerical procedure. On the other
hand, the parameter 3 can not be taken too close to 1 also, since in this case the
automatic adaptive algorithm will come up with a too narrow region, where the mesh
should be refined. Thus, the choice of 5 depends on concrete values of the function
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opt.it. | 4608 elements | 5340 elements | 6356 elements | 10058 elements | 14586 elements
1 0.0992683 0.097325 0.0961796 0.0866793 0.0880115
2 0.0988798 0.097322 0.096723 0.0868341 0.0880866
3 0.0959911 0.096723 0.0876543
4 0.096658

Table 1. Test 1.2: ||u |r; —g||r,r,) on adaptively refined meshes. The number
of stored corrections in the quasi-Newton method is m = 15. Computations was
performed with the noise level ¢ = 5% and with the regularization parameter
v =0.01.

By, () and should be chosen in numerical experiments. In (10) we take 5 = 0.1 on
the coarse mesh, = 0.2 on the one, two and three refined meshes, and 5 = 0.6 for
all next refinements of the initial mesh.

On all refined meshes we have used a cut-off parameter C.,; for the reconstructed
coefficient ¢;, such that

o (x) = {

We choose C.,; = 0 for m < 3, C.; = 0.3 for m > 3 in all tests, where m is the
number of iterations in quasi-Newton method. Hence, the cut-off parameter ensures

cn (), if jen (2) — cqion () | = Cous
Cqiob (), elsewhere.

that we do not go too far from cgp.

In the adaptive algorithm we can use box constrains for the reconstructed
coefficient. We obtain these constraints using the solution obtained in the globally
convergent part. Namely, in Tests 1.2 and 2.2 minimal and maximal values of the
target coefficient in box constraints are taken using results of Tests 1.1 and 2.1. So,
when conducting Tests 1.1 and 2.1, we have used only the knowledge of the number
d; = 0.5 1in (3). Now, since we know that the solution obtained on the first stage is
a good approximation for the correct solution (Theorem 5.1 of [2]) and the maximal
value of the computed coefficient is 3.8, we set dy = 2 in (3). Thus, in tests 1.2 and
2.2 we enforce that the coefficient ¢(x) belongs to the set of admissible parameters,
c(z) € Cy = {c € C(1 < c(z) < 4}.

Test 1.2.
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a) 4608 elements b) 5340 elements c¢) 6356 elements d) 10058 elements e) 14586 elements

f) 4608 elements g) 5340 elements h) 6356 elements 1) 10058 elements j) 14586 elements

Figure 8. Test 1.2: Adaptively refined computational meshes on a)-e) and spatial
distribution of the parameter ¢, with o = 5%, which corresponds to these meshes,
on £)-j).

The plane wave is initialized on the top boundary of the domain GG, which is the
large rectangle of Fig. 7.1b. The starting point for the adaptivity algorithm is the
function c¢119 () = cyop(x), which corresponds to Figure 4-c). We have performed
numerical experiments with introducing o = 5% of the multiplicative random noise
in the function g (x,t) in an adaptive procedure. First, the function cg,,(z) was taken
on the initial coarse mesh is shown on Figure 8-a) and the quasi-Newton method
is applied on this mesh. Figure 8-f shows that the image was not improved when
the same mesh was used as one on the globally convergent stage. Next, the mesh
was adaptively refined four times using the above described procedure (subsection
6.4). Adaptively refined meshes shown on Figure 8-a-e). Table 1 presents computed
Lo-norms of ||u |r, —g||r,r,). We observe that norms at the boundary decrease
as meshes are refined. Then they slightly increase and are finally stabilized for all
refinements n > 3 of the initial mesh. Thus, using this table, we conclude that
on the three times refined mesh we get the final solution of our inverse problem,
which corresponds to Figure 8-j) . One can see on Figure 8-j) that we are able
to accurately reconstruct locations of both small squares. At the same time, an
accurate inclusion/background contrast obtained on the globally convergent stage
is preserved. This contrast turns out to be now 4:1=maxcy(z) : 1 instead of 3.8:1
calculated on the first stage, where c¢(x) is the final imaged coefficient. The value
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opt.it. | 4608 elements | 5298 elements | 7810 elements | 11528 elements | 19182 elements
1 0.0992683 0.0976474 0.0976851 0.089979 0.0977153
2 0.0988798 0.0974385 0.0901018 0.097487
3 0.0959911 0.0901153 0.0975039

Table 2. Test 2.2: ||u |r,
of stored corrections in the quasi-Newton method is m = 15.

performed with the noise level ¢ =
v =0.01.

—9|2o(rr) on adaptively refined meshes. The number
Computations was
5% and with the regularization parameter

) 4608 elements

) 4608 elements

) 5298 elements

) 5298 elements

) 7810 elements

) 7810 elements

) 11528 elements

i
) 11528 elements

Figure 9. Test 2.2: Adaptively refined computational meshes on a)-e) and spatial
distribution of the parameter ¢, with o = 5%, which corresponds to these meshes,

on £)-).

of the coefficient ¢;(z) = 1 outside of small squares is also imaged well.

We have used the smoothing indicator procedure applied to the reconstructed

) 19182 elements

) 19182 elements

coefficient ¢(z) on the all adaptively refined meshes. As it was stated in subsection
7.3 of |2], this procedure consists in a local averaging of computed values of ¢, ; (z) .
The use of the smoothing indicator for the reconstructed coefficient ¢, has helped us
to obtain more accurate images as well as to get a lesser number of finite elements
in computational meshes.

Test 2.2

Now we test the synthesis of the globally convergent numerical method with the
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adaptivity with the starting point on the coarse mesh taken from the result of Test
2.1 and with the plane wave initialized at the bottom boundary of the computational
domain G. The initial guess for the adaptive algorithm on the coarse mesh is the
computed coefficient ¢191(x) presented on Figure 5-¢). The boundary data g is taken
the same as in Test 2.1.

As Test 2.1, we have used four (4) times adaptively refined meshes shown on
Figure 9-a)-e). Figures 9-a),f) show that when the same mesh is used as one for
the globally convergent stage, the image quality is not improved, which coincides
with the observation of Test 2.1. However, adaptively refined meshes do improve the
quality of the reconstruction, see Figures 9-f)-j). In Table 2 we present computed
norms of ||u |[p, —g||r,ry)- We observe that these norms decrease as meshes are
refined. They decrease until the third refinement. On the fourth refinement they
slightly increase and then they stabilize. Further mesh refinements are not necessary
since norms ||u |s; —g||r(sp) are stabilized for all refinements with n > 3 of the
initial mesh, and we get the same reconstruction result with further refinements.
Thus, using Table 2, we conclude that on the three times refined mesh we get the
final solution of our inverse problem. One can see from Figure 9-j) that locations of
both small squares are imaged accurately, so as the contrast maxcs(z):1=4:11n
them, as well as the value of the final reconsructed coefficient ¢¢(x) = 1 outside of
these two small squares.
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