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hnique 21. Introdu
tionIn this se
ond part of the paper numeri
al experiments are presented. Theydemonstrate the performan
e of the globally 
onvergent numeri
al method in
ombination with the Finite Element Adaptive te
hnique.This is the se
ond part of our work, see [4℄ for the �rst part, where analyti
alresults for our numeri
al method are presented. In this part we present numeri
alexperiments referring for some analyti
al details to the �rst part [4℄. In our numeri
alexperiments we image a medium with small in
lusions in it, although we do notassume a priori knowledge of su
h a stru
ture. We refer to [1℄ and referen
es 
itedthere for another approa
h to imaging of small in
lusions. There are also someother numeri
al methods for multidimensional CIPs, whi
h do not use a good �rstguess for the solution. While the 
urrent paper works with a single measurementevent, they work for some CIPs with the data resulting from multiple measurements[7, 8, 9, 12, 13, 14℄. These publi
ations were dis
ussed in [2℄.We now pose forward and inverse problems, for the 
onvenien
e of the reader,see details in [4℄. As the forward problem, we 
onsider the Cau
hy problem for ahyperboli
 PDE,
c (x) utt = ∆u in R3 × (0,∞) , (1)
u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2)Sin
e equation (1) governs a wide range of appli
ations, in
luding e.g., propagationof a
ousti
 and ele
tromagneti
 waves, then the same is true for the CIP we 
onsider.Let d1 and d2 be two positive 
onstants and Ω ⊂ R3 be a 
onvex bounded domainwith the boundary ∂Ω ∈ C3. We assume that the 
oe�
ient c (x) of equation (1) issu
h that
c (x) ∈ [d1, 2d2] , d1 < d2, c (x) = 2d1 for x ∈ R3�Ω, (3)
c (x) ∈ C2

(

R3
)

. (4)We 
onsider the followingInverse Problem. Suppose that the 
oe�
ient c (x) satis�es (3) and (4), wherethe positive numbers d1 and d2 are given. Assume that the fun
tion c (x) is unknownin the domain Ω. Determine the fun
tion c (x) for x ∈ Ω, assuming that the followingfun
tion g (x, t) is known for a single sour
e position x0 /∈ Ω

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (5)
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hnique 3The paper is organized as follows. In se
tion 2 we formulate an adaptivealgorithm whi
h uses a modi�ed framework for the adaptivity te
hnique presentedin the �rst part [4℄. In se
tion 3 numeri
al experiments are presented. A preprintwith this publi
ation is available online [5℄.2. The adaptive algorithmIn this se
tion we present our adaptive algorithm, whi
h is derived from Theorems3.1-3.4 and Remark 3.1 of [4℄. Ignoring third lines in estimates (33), (34) and (43),(48) (Remark 3.2) of [4℄, we 
on
lude from (24) and (25) of [4℄ that we should �ndan approximate solution of the following problem on ea
h mesh
γ (ch − c0) −

T
∫

0

[∂tuh (ch) · ∂tϕh (ch)] (x, t) dt = 0, ch (x) ∈ Vh. (6)We solve the problem (6) via the quasi-Newton method given in [15℄. On the �rststep of the adaptivity we take the same mesh as one whi
h was used for the globally
onvergent method. The �rst guess c0 := cglob (x) is also taken the one, whi
h wasobtained on the globally 
onvergent stage.For ea
h mesh we 
ompute iteratively the sequen
e {cmh } , m = 1, ... ofapproximations of ch as
cm+1
h (x) = cmh (x) − αHmgm(x), (7)where α is the step length 
omputed via the line-sear
h algorithm [16℄. Here, Hm isan approximate inverse of the Hessian of the Lagrangian. The approximate inverseof the Hessian is 
omputed by the usual BFGS update formula:

Hm+1 = (I − dmsmymT )Hm(I − dmymsmT ) + ρsmsmT , m = 1, ...,

ym = gm+1 − gm, dm = 1/(ymT sm), m = 1, ...
(8)In (8) 
orre
tions sm are de�ned as sm = cm+1

h − cmh . In our 
omputations we haveused a spe
ial BFGS update formula with limited storage for the Hessian [15℄ wherewe store a �nite number m1 = m− 1 of 
orre
tions for the 
omputed gradients andparameters in (8). If m = 0, then the quasi-Newton method is the usual gradientmethod with H0 = I. Let uh (cmh ) ∈ W u
h and ϕh (cmh ) ∈ W u

h be FEM solutions of
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hnique 4state (9) and adjoint (20) problems of [4℄, and c1h := c0. The gradient gm(x) in (7) is
omputed by (see (6) in[4℄)
gm(x) = γ(cmh − c0) −

∫ T

0

[∂tuh (cmh ) · ∂tϕh (cmh )] (x, t) dt. (9)Although above a posteriori error estimates are approximate ones, our 
omputationalexperien
e shows that they are su�
ient. Thus, by Remark 3.1 of [4℄, we use thefollowing adaptivity algorithm in our 
omputations:Step 0. Choose an initial mesh Kh and an initial time partition J0 of the timeinterval (0, T ]. Start with the initial approximation c0 = cglob, whi
h was
omputed in the globally 
onvergent algorithm, and 
ompute the sequen
e of cmhin the following steps:Step 1. Compute solutions uh (cmh ) ∈W u
h and ϕh (cmh ) ∈W u

h of state (9) and adjoint(20) problems of [4℄, respe
tively on Kh and Jk.Step 2. Update the 
oe�
ient c := cm+1
h on Kh and Jk using (7).Step 3. Stop 
omputing ch on the above quasi-Newton method if either the normof the gradient gm of the Lagrangian with respe
t to the 
oe�
ient in (9) is

||gm||L2(Ω) < θ or norms ||gm||L2(Ω) are stabilized. Otherwise set m := m + 1and go to step 1. Here, θ is the toleran
e in quasi-Newton updates. In our
omputations we took θ = 10−5.Step 4. Compute the fun
tion Bh (x) in (31) of [4℄. Re�ne the mesh at all pointswhere
Bh (x) > βmax

Ω
Bh (x) , (10)where the toleran
e number β ∈ (0, 1) is 
hosen by the user, see se
tion 3 fordetails.Step 5. Constru
t a new mesh Kh and a new time partition Jk. On Jk the newtime step τ should be 
hosen in su
h a way that the CFL 
ondition is satis�ed.Interpolate the initial approximation c0 = cglob, whi
h was 
omputed in theglobally 
onvergent algorithm, from the previous mesh to the new mesh. Returnto step 1 and perform all the steps of the optimization algorithm on the newmesh.
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(a) GFDM (b) G = GFEM ∪GFDM (
) GFEM = ΩFigure 1. The hybrid mesh (b) is a 
ombinations of a stru
tured mesh (a), whereFDM is applied, and a mesh (
), where we use FEM, with a thin overlapping ofstru
tured elements. The solution of the inverse problem is 
omputed in the square

Ω and c(x) = 1 for x ∈ G�Ω.3. Numeri
al Studies3.1. Computations of the forward problemIn this paper we work with the 
omputationally simulated data. That is, the dataare generated by 
omputing the forward problem (12) with the given fun
tion c(x).To solve the forward problem, we use the hybrid FEM/FDM method des
ribedin [6℄. The 
omputational domain in all our tests G = GFEM ∪ GFDM is set as
G = [−4.0, 4.0] × [−5.0, 5.0]. This domain is split into a �nite element domain
GFEM := Ω = [−3.0, 3.0] × [−3.0, 3.0] and a surrounding domain GFDM with astru
tured mesh, see Figure 1. The spa
e mesh in Ω 
onsists of triangles and in
GFDM - of squares with the mesh size h̃ = 0.125 in the overlapping regions. At thetop and bottom boundaries of G we use �rst-order absorbing boundary 
onditions[10℄ whi
h are exa
t in this parti
ular 
ase sin
e the plane wave is initialized innormal dire
tion into G in all our tests. At the lateral boundaries, mirror boundary
onditions allow us to assume an in�nite spa
e domain in the lateral dire
tion.The forward problem is 
omputed in the domain G ⊂ R2 (Figure 1). The
oe�
ient c(x) is unknown only in the domain Ω ⊂ G and

c(x) = 1 in G�Ω. (11)The tra
e of the solution of the forward problem is re
orded at the boundary
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t = 0.5 t = 3.7 t = 5.9 t = 6.9

t = 7.5 t = 8.5 t = 9.6 t = 11.2Figure 2. Test 1: Isosurfa
es of the simulated exa
t solution to the forwardproblem (12) at di�erent times with a plane wave initialized at the top boundary.
∂Ω. Next, the 
oe�
ient c(x) is �forgotten�, and our goal is to re
onstru
t this
oe�
ient for x ∈ Ω from the data ϕ (x, s) . The boundary of the domain G is
∂G = ∂G1 ∪ ∂G2 ∪ ∂G3. Here, ∂G1 and ∂G2 are respe
tively top and bottom sidesof the largest domain of Figure 1 and ∂G3 is the union of left and right sides of this
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t = 2.1 t = 4.3 t = 4.3 t = 4.8

t = 5.9 t = 6.4 t = 9.1 t = 10.7Figure 3. Test 2: Isosurfa
es of the simulated exa
t solution to the forwardproblem (12) with a plane wave initialized at the bottom boundary.domain. In our �rst test the forward problem is
c (x) utt −△u = 0, in G× (0, T ),

u(x, 0) = 0, ut(x, 0) = 0, in G,
∂nu

∣

∣

∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣

∣

∂G1

= −∂tu, on ∂G1 × (t1, T ),

∂nu
∣

∣

∂G2

= −∂tu, on ∂G2 × (0, T ),

∂nu
∣

∣

∂G3

= 0, on ∂G3 × (0, T ),

(12)
where T is the �nal time and f(t) is the plane wave de�ned as

f(t) =
(sin (st−π/2) + 1)

10
, 0 ≤ t ≤ t1 :=

2π

s
, T = 17.8t1.
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hnique 8Thus, the plane wave is initialized at the top boundary ∂G1 and propagates intoG for
t ∈ (0, t1]. First order absorbing boundary 
onditions [10℄ are used on ∂G1 × (t1, T ]and ∂G2 × (0, T ], and the Neumann boundary 
ondition is used on the bottomboundary ∂G3. In the se
ond test we 
onsider the 
ase when the plane wave isinitialized at the bottom boundary and use the Neumann boundary 
ondition at thetop boundary. In the integral (7) of [4℄ of the Lapla
e transform we integrate for
t ∈ (0, T ) .We now list main dis
repan
ies between our theory and 
omputations. Su
hdis
repan
ies quite often o

ur in 
omputations of ill-posed problems and seem to beinevitable. It is well known that 
omputational results are usually less pessimisti
than the theory. At the same time, theory usually provides a good guidan
e for
omputations. The �rst dis
repan
y is that we use the initializing plane wave in(12) instead of the point sour
e in (2). This is be
ause the point sour
e was usedonly to better justify the 
ertain asymptoti
 behaviour, see [2℄ for our numeri
alveri�
ation of this behaviour for the 
ase of the above plane wave. The se
onddis
repan
y is that domains G and Ω depi
ted on Figure 1 have pie
ewise smoothrather than smooth boundaries. In prin
iple, this might lead to singularities insolutions of both the hyperboli
 equation (12) and ellipti
 equations for fun
tions qnin the above globally 
onvergent numeri
al method. However, we have not observedsu
h singularities in our 
omputations. The third dis
repan
y is that due to some
onvenien
es of our numeri
al implementation, we use pie
ewise 
onstant fun
tions
ch in our 
omputations rather than those satisfying (10) in [4℄. The next dis
repan
yis that we do not use the fun
tion ζε1

(t) in (8) and (20) of [4℄ be
ause we haveobserved in 
omputations of the forward problem (12) that (u |ST
−g) (x, T ) ≈ 0,whi
h eliminates the need to use this fun
tion. Finally a dis
repan
y regardingsmoothness requirements was outlined in subse
tion 3.1 of [4℄. Regardless on thesedis
repan
ies, we have observed a good 
orresponden
e between our analyti
al andnumeri
al results, see below.3.2. Results of re
onstru
tion by the globally 
onvergent algorithmWe have performed numeri
al experiments to re
onstru
t the medium, whi
h ishomogeneous with c (x) = 1 ex
ept of two small squares, where c (x) = 4, see Figure1-
). However, we have not assumed a priori knowledge of neither the stru
ture ofthis medium nor of the ba
kground 
onstant c (x) = 1 outside of those two small
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on
ept (as mentioned in se
tion 2), wehave assumed the knowledge of the 
onstant d1 = 1/2, see (3) and (11). Be
ause ofthis, the starting value for the tail V1,1 (x, s) was 
omputed via solving the forwardproblem (12) for c ≡ 1. Let wc≡1 (x, s) be the 
orresponding fun
tion w (x, s) at
s = s. Then, we took V1,1 (x, s) = s−2 lnwc≡1 (x, s) , see [2℄ for the details.It was found in [2℄ that the interval [s, s] = [6.7, 7.45] is the optimal one fordomains G,Ω spe
i�ed above, and so we have used it in our numeri
al studies. Wehave 
hosen the step size with respe
t to the pseudo frequen
y h = 0.05. Hen
e,
N = 15 in our 
ase. We have 
hosen two sequen
es of regularization parameters
λ := λn and ε = εn for n = 1, ..., N , whi
h are the same as ones in [2℄. So, valuesof these parameters as well as the value of the regularization 
oe�
ient γ in theadaptivity were:
λn = 20, n = 1, 2;λn = 200, n = 3, 4, 5;λn = 2000, n ≥ 6;

εn = 0, n = 1, 2; εn = 0.001, n = 3, 4, 5; εn = 0.01, n = 6, 7; εn = 0.1 for n ≥ 8; γ = 0.01.On
e the fun
tion qn is 
al
ulated, we update the fun
tion c := cn , seesubse
tion 7.3 of [2℄ for some numeri
al details. The resulting 
omputed fun
tionis c (x) := cN(x). Comparing with [2℄, in the 
urrent work we 
hoose a 
ompletelydi�erent stopping rule. In 
al
ulating iterations with respe
t to the nonlinear term(se
tion 4 and Theorem 5.1), we 
onsider norms F k
n,

F k
n = ||qk

n,1|∂Ω − ψn||L2(∂Ω). (13)We stop our iterations with respe
t to nonlinear terms wheneither F k
n ≥ F k−1

n or F k
n ≤ ν,where ν = 0.001 is a small toleran
e number of our 
hoi
e. In other words, we stopiterations, when either norms F k

n start to grow or are too small. Next, we iteratewith respe
t to the tails (se
tion 4) and use the same stopping 
riterion. Namely, westop our iterations with respe
t to tails when eithereither F n,i ≥ F n,i−1 or F n,i ≤ ν, (14)where F n,i =||qn,i|∂Ω−ψn||L2(∂Ω). So, following se
tion 4, the number i, on whi
h theseiterations are stopped, is denoted as i := mn. On
e the 
riterion (13)-(14) is satis�ed,
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a) c9,2 b) c10,2 
) c11,2 d) c12,2Figure 4. Test 1.1: spatial distribution of ch after 
omputing qn,k;n = 9, 10, 11, 12,where n is number of the 
omputed fun
tion q.we take the last 
omputed tail Vn,mn

, set Vn+1,1 := Vn,mn
and run 
omputationsagain for qn+1. Hen
e, the number mn of iterations with respe
t to tails is 
hosenautomati
ally �inside� of ea
h iteration for qn, whi
h means that mn, the number ofiterations with respe
t to tails varies with n. So, new 
riteria (13), (14) means amore �exible stopping rule in the globally 
onvergent algorithm 
ompared with [2℄,sin
e in [2℄ numbers mn where not 
hosen automati
ally.In all our tests we have introdu
ed the multipli
ative random noise in theboundary data, gσ, by adding relative error to 
omputed data g using the followingexpression

gσ

(

xi, tj
)

= g
(

xi, tj
)

[

1 +
αj(gmax − gmin)σ

100

]

.Here, g (xi, tj) = u (xi, tj) , xi ∈ ∂Ω is a mesh point at the boundary ∂Ω, tj ∈ (0, T )is a mesh point in time, αj is a random number in the interval [−1; 1], gmax and gminare maximal and minimal values of the 
omputed data g, respe
tively, and σ = 5% isthe noise level. Computations were performed on 16 parallel pro
essors in NOTUR2 produ
tion system at NTNU, Trondheim, Norway (67 IBM p575+ 16-way nodes,1.9GHz dual-
ore CPU, 2464 GB memory).Test 1.1We test our numeri
al method on the re
onstru
tion of the stru
ture givenon Figure 1-
). The plane wave f is initialized at the top boundary ∂G1 ofthe 
omputational domain G, propagates during the time period (0, t1] into G, isabsorbed at the bottom boundary ∂G2 for all times t ∈ (0, T ) and it is also absorbedat the top boundary ∂G1 for times t ∈ (t1, T ), see Figures 2.One 
an see from Figure 4 that the lo
ation of the right small square is
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a) c10,2 b) c11,1 
) c12,1 d) c13,1Figure 5. Test 2.1: spatial distribution of ch after 
omputing qn,k;n =

10, 11, 12, 13 where n is number of the 
omputed fun
tion q.
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a) Test 1.1 b) Test 2.1Figure 6. The one-dimensional 
ross-se
tions of the image of the fun
tion cn,k
omputed for 
orresponding fun
tions qn,1. On a) for Test 1.1 along the verti
alline passing through the middle of the right small square; and on b) for Test 2.1along the verti
al line passing through the middle of the left small square.imaged well. It follows from 4 -
) that the imaged 
ontrast in this square is
3.8 : 1 = max c11,2 : 1 at n := N = 11 (see below for this 
hoi
e of N). Thus,we have obtained the 5% error (0.2/4) in the imaged 
ontrast, whi
h is the sameas the error in the input data. As to the left small square, we got the same 3.8 : 1
ontrast in it for c11,2. However, the lo
ation of the left square is shifted downwards,and both imaged squares are on about the same horizontal level. Values of thefun
tion c(x) = 1 outside of these squares are imaged a

urately.Figure 7-a) shows 
omputed L2-norms Fn,i. Using this �gure, we analyze resultsof the re
onstru
tion. One 
an see on Figure 7-a) that the number mn of iterations
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t to tails indeed varies with n, sin
emn is 
hosen automati
ally now, usingthe 
riterion (13)-(14). We observe that the norms Fn,i de
rease until 
omputing thefun
tion q7. Next, they slightly grow, de
ay from F9,2 to F10,2 and then these normsstabilize on n = 11, 12. For n = 13, 14, 15 norms Fn,2 grow steeply. Thus, we
on
lude, that N = 11 and we take c11,2 as our �nal re
onstru
tion result on theglobally 
onvergent stage.Test 2.1We now test our globally 
onvergent method on the same stru
ture of Figure 1-
). However, the di�eren
e with the previous test is that we now use the plane wave,whi
h is initialized at the bottom boundary of 
omputational domain G, see Fig.2.Figure 5 displays isosurfa
es of resulting images of fun
tions cn,k, n = 10, 11, 12, 13.Figure 6-b) displays the one-dimensional 
ross-se
tions of 
omputed images offun
tions cn,k superimposed with the 
orre
t one along the verti
al line passingthrough the middle of the left small square. One 
an see from Figure 5 that the

3.8 : 1 = max c11,1 (x) : 1 
ontrast for n := N = 11 (see below for this 
hoi
e of N) inthe left square is imaged again with 5% error (0.2/4) whi
h is the same as the noiselevel in the data. As to the right small square, we got the same 3.8 : 1 
ontrast as inthe left square. However, the lo
ation of the right small square is shifted upwards.Using Figure 7-b), whi
h shows 
omputed L2-norms Fn,i, we analyze results ofthe re
onstru
tion. We observe that 
omputed norms Fn,i de
rease with n until
omputing the fun
tion q7, i.e.., until n = 7 and these numbers grow with the
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rease of n = 8, 9. Next, we observe a steep de
rease at n = 10 and a stabilizationfor n = 11, 12. For n = 13, 14, 15 norms Fn,i grow steeply. Thus, we 
on
lude, that
N = 12 and we take c12,1 as our �nal re
onstru
tion result on the globally 
onvergentstage.We observe, that in both Tests 1.1 and 2.1 the lo
ation of the small quare,whi
h is lo
ated 
loser to the side from whi
h the plane wave is laun
hed, isimaged better than the lo
ation of the se
ond small square. At the same timethe in
lusion/ba
kground 
ontrast is imaged well in both small squares, so as thevalue of the 
oe�
ient c(x) = 1 outside of (imaged) small squares. Thus, to enhan
eimages of lo
ations, we are prompted to use the adaptivity te
hnique.3.3. Synthesis of the globally 
onvergent algorithm with the adaptivityThe goal of two tests of this subse
tion is to demonstrate the performan
e ofthe synthesis of our globally 
onvergen
e algorithm with the adaptivity te
hnique.We take the starting point for the adaptivity the image obtained by the globally
onvergent method. Below �Test 1.2� (respe
tively �Test 2.2�) means that we takethe image obtained in the above Test 1.1 (respe
tively in Test 1.2), i.e. the fun
tion
c11,1(x) := cglob(x), as the starting point for our �nite element adaptive algorithm.The boundary data g = u |∂Ω in both tests 1.2 and 2.2 are the same as ones in Test1.1 and 2.1 respe
tively. In Tests 1.2 and 2.2 Γ denotes the side of the square Ω,opposite to the side from whi
h the plane wave is laun
hed and ΓT = Γ × (0, T ) . Insome sense the side ΓT is the most sensitive one to the presen
e of those two smallsquares.The adaptivity algorithm was des
ribed in se
tion 2. Now the question is on howto 
hoose the toleran
e number β in (10). The 
hoi
e of β depends on the behaviourof the 
omputed value of maxΩBh (x) in right hand side of (10). If we 
hoose β toosmall (for example, β = 0), then we will re�ne mesh in almost the entire domain
Ω, sin
e, realisti
ally, after the optimization pro
edure Bh (x) will be non- zero atalmost all mesh points. Unlike this, our goal is to 
onstru
t a new mesh with a fewnodes as possible, while still getting a good enhan
ement of the solution obtainedon the globally 
onvergent stage of our two-stage numeri
al pro
edure. On the otherhand, the parameter β 
an not be taken too 
lose to 1 also, sin
e in this 
ase theautomati
 adaptive algorithm will 
ome up with a too narrow region, where the meshshould be re�ned. Thus, the 
hoi
e of β depends on 
on
rete values of the fun
tion
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hnique 14opt.it. 4608 elements 5340 elements 6356 elements 10058 elements 14586 elements1 0.0992683 0.097325 0.0961796 0.0866793 0.08801152 0.0988798 0.097322 0.096723 0.0868341 0.08808663 0.0959911 0.096723 0.08765434 0.096658Table 1. Test 1.2: ||u |ΓT
−g||L2(ΓT ) on adaptively re�ned meshes. The numberof stored 
orre
tions in the quasi-Newton method is m = 15. Computations wasperformed with the noise level σ = 5% and with the regularization parameter

γ = 0.01.
Bh (x) and should be 
hosen in numeri
al experiments. In (10) we take β = 0.1 onthe 
oarse mesh, β = 0.2 on the one, two and three re�ned meshes, and β = 0.6 forall next re�nements of the initial mesh.On all re�ned meshes we have used a 
ut-o� parameter Ccut for the re
onstru
ted
oe�
ient ch su
h that

ch (x) =

{

ch (x) , if |ch (x) − cglob (x) | ≥ Ccut

cglob (x) , elsewhere.We 
hoose Ccut = 0 for m < 3, Ccut = 0.3 for m ≥ 3 in all tests, where m is thenumber of iterations in quasi-Newton method. Hen
e, the 
ut-o� parameter ensuresthat we do not go too far from cglob.In the adaptive algorithm we 
an use box 
onstrains for the re
onstru
ted
oe�
ient. We obtain these 
onstraints using the solution obtained in the globally
onvergent part. Namely, in Tests 1.2 and 2.2 minimal and maximal values of thetarget 
oe�
ient in box 
onstraints are taken using results of Tests 1.1 and 2.1. So,when 
ondu
ting Tests 1.1 and 2.1, we have used only the knowledge of the number
d1 = 0.5 in (3). Now, sin
e we know that the solution obtained on the �rst stage isa good approximation for the 
orre
t solution (Theorem 5.1 of [2℄) and the maximalvalue of the 
omputed 
oe�
ient is 3.8, we set d2 = 2 in (3). Thus, in tests 1.2 and2.2 we enfor
e that the 
oe�
ient c(x) belongs to the set of admissible parameters,
c(x) ∈ CM = {c ∈ C(Ω)|1 ≤ c(x) ≤ 4}.Test 1.2.
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a) 4608 elements b) 5340 elements 
) 6356 elements d) 10058 elements e) 14586 elements
f) 4608 elements g) 5340 elements h) 6356 elements i) 10058 elements j) 14586 elementsFigure 8. Test 1.2: Adaptively re�ned 
omputational meshes on a)-e) and spatialdistribution of the parameter ch with σ = 5%, whi
h 
orresponds to these meshes,on f)-j).The plane wave is initialized on the top boundary of the domain G, whi
h is thelarge re
tangle of Fig. 7.1b. The starting point for the adaptivity algorithm is thefun
tion c11,2 (x) := cglob(x), whi
h 
orresponds to Figure 4-
). We have performednumeri
al experiments with introdu
ing σ = 5% of the multipli
ative random noisein the fun
tion g (x, t) in an adaptive pro
edure. First, the fun
tion cglob(x) was takenon the initial 
oarse mesh is shown on Figure 8-a) and the quasi-Newton methodis applied on this mesh. Figure 8-f shows that the image was not improved whenthe same mesh was used as one on the globally 
onvergent stage. Next, the meshwas adaptively re�ned four times using the above des
ribed pro
edure (subse
tion6.4). Adaptively re�ned meshes shown on Figure 8-a-e). Table 1 presents 
omputed
L2-norms of ||u |ΓT

−g||L2(ΓT ). We observe that norms at the boundary de
reaseas meshes are re�ned. Then they slightly in
rease and are �nally stabilized for allre�nements n > 3 of the initial mesh. Thus, using this table, we 
on
lude thaton the three times re�ned mesh we get the �nal solution of our inverse problem,whi
h 
orresponds to Figure 8-j) . One 
an see on Figure 8-j) that we are ableto a

urately re
onstru
t lo
ations of both small squares. At the same time, ana

urate in
lusion/ba
kground 
ontrast obtained on the globally 
onvergent stageis preserved. This 
ontrast turns out to be now 4:1=max cf (x) : 1 instead of 3.8:1
al
ulated on the �rst stage, where cf(x) is the �nal imaged 
oe�
ient. The value
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hnique 16opt.it. 4608 elements 5298 elements 7810 elements 11528 elements 19182 elements1 0.0992683 0.0976474 0.0976851 0.089979 0.09771532 0.0988798 0.0974385 0.0901018 0.0974873 0.0959911 0.0901153 0.0975039Table 2. Test 2.2: ||u |ΓT
−g||L2(ΓT ) on adaptively re�ned meshes. The numberof stored 
orre
tions in the quasi-Newton method is m = 15. Computations wasperformed with the noise level σ = 5% and with the regularization parameter

γ = 0.01.
a) 4608 elements b) 5298 elements 
) 7810 elements d) 11528 elements e) 19182 elements
f) 4608 elements g) 5298 elements h) 7810 elements i) 11528 elements j) 19182 elementsFigure 9. Test 2.2: Adaptively re�ned 
omputational meshes on a)-e) and spatialdistribution of the parameter ch with σ = 5%, whi
h 
orresponds to these meshes,on f)-j).of the 
oe�
ient cf (x) = 1 outside of small squares is also imaged well.We have used the smoothing indi
ator pro
edure applied to the re
onstru
ted
oe�
ient c(x) on the all adaptively re�ned meshes. As it was stated in subse
tion7.3 of [2℄, this pro
edure 
onsists in a lo
al averaging of 
omputed values of cn,i (x) .The use of the smoothing indi
ator for the re
onstru
ted 
oe�
ient ch has helped usto obtain more a

urate images as well as to get a lesser number of �nite elementsin 
omputational meshes.Test 2.2Now we test the synthesis of the globally 
onvergent numeri
al method with the
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hnique 17adaptivity with the starting point on the 
oarse mesh taken from the result of Test2.1 and with the plane wave initialized at the bottom boundary of the 
omputationaldomain G. The initial guess for the adaptive algorithm on the 
oarse mesh is the
omputed 
oe�
ient c12,1(x) presented on Figure 5-
). The boundary data g is takenthe same as in Test 2.1.As Test 2.1, we have used four (4) times adaptively re�ned meshes shown onFigure 9-a)-e). Figures 9-a),f) show that when the same mesh is used as one forthe globally 
onvergent stage, the image quality is not improved, whi
h 
oin
ideswith the observation of Test 2.1. However, adaptively re�ned meshes do improve thequality of the re
onstru
tion, see Figures 9-f)-j). In Table 2 we present 
omputednorms of ||u |ΓT
−g||L2(ΓT ). We observe that these norms de
rease as meshes arere�ned. They de
rease until the third re�nement. On the fourth re�nement theyslightly in
rease and then they stabilize. Further mesh re�nements are not ne
essarysin
e norms ||u |ST

−g||L2(ST ) are stabilized for all re�nements with n > 3 of theinitial mesh, and we get the same re
onstru
tion result with further re�nements.Thus, using Table 2, we 
on
lude that on the three times re�ned mesh we get the�nal solution of our inverse problem. One 
an see from Figure 9-j) that lo
ations ofboth small squares are imaged a

urately, so as the 
ontrast max cf(x) : 1 = 4 : 1 inthem, as well as the value of the �nal re
onsru
ted 
oe�
ient cf(x) = 1 outside ofthese two small squares. A
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