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Abstract

We show coincidence of the two definitions of the integrated density of states (IDS) for a class of
relativistic Schrödinger operators with magnetic fields and scalar potentials introduced in [21, 22], the
first one relying on the eigenvalue counting function of operators induced on open bounded sets with
Dirichlet boundary conditions, the other one involving the spectral projections of the operator defined
on the entire space. In this way one generalizes the results of [10, 20] for non-relativistic operators. The
proofs needs the magnetic pseudodifferential calculus developed in [21], as well as a Feynman-Kac-Itô
formula for Lévy processes [19, 22]. In addition, in case when both the magnetic field and the scalar
potential are periodic, one also proves the existence of the IDS.

1 Introduction

We specify first the class of operators we consider. For d ≥ 2 we set

BC∞(Rd) := {f ∈ C∞(Rd) | ∂αf ∈ L∞(Rd), ∀α ∈ Nd},

and
C∞pol(Rd) := {f ∈ C∞(Rd) | ∂αf is polynomially bounded, ∀α ∈ Nd}.

The magnetic field B = 1
2

∑d
j,k=1Bjkdxj ∧ dxk satisfies:

Hypothesis (i): dB = 0, Bjk = −Bkj ∈ BC∞(Rd).

Using the transversal gauge one constructs a vector potential A =
∑d

j=1Ajdxj , with Aj ∈ C∞pol(Rd),
such that dA = B. The circulation of A through the segment [x, y], x, y ∈ Rd, can be written as

∫

[x,y]

A = − < x− y, ΓA(x, y) >, ΓA(x, y) :=
∫ 1

0

dsA((1− s)x+ sy). (1.1)

In some papers [27, 25] one proposes the following quantization of a classical observable a : T ∗Rd → R:

[
OpA(a)u

]
(x) :=

∫

Rd

∫

Rd

dyd̄ ξ ei<x−y,ξ+ΓA(x,y)> a

(
x+ y

2
, ξ

)
u(y), (1.2)
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where u ∈ S(Rd), d̄ ξ := (2π)−ddξ and the oscillatory integral makes sense if, for example, a ∈ Sm(Rd).
A symbolic calculus for the operators defined by (1.2), essential for the present work, has been developed

in [21]. The quantization (1.2) has the important physical property of being gauge covariant: if ϕ ∈ C∞pol(Rd),
then A and A′ = A+ dϕ define the same magnetic field B and

OpA′(a) = eiϕOpA(a)e−iϕ.

There exists another approach for quantization in the presence of a magnetic field [13, 16, 17, 18, 19, 28, 29].
One defines OpA(a) by the Weyl quantization of the symbol

T ∗Rd 3 (x, ξ) 7→ a (x, ξ −A(x)) ∈ R,

but in this way gauge covariance is lost, as shown in [21] for a(ξ) =< ξ >:= (1 + |ξ|2)1/2. One notices,
however, that both quantizations lead to the same magnetic non-relativistic Schrödinger operator.

We are concerned in the present paper with the case

a(ξ) =< ξ > −1 (1.3)

for which the two quantizations do not coincide.
As shown in [21, 22], the operator OpA(a) in L2(Rd) is essentially self-adjoint on S(Rd). One denotes

by HA its closure; then HA ≥ 0 and its domain is the magnetic Sobolev space of order 1:

H1
A := {u ∈ L2(Rd) | (Dj −Aj)u ∈ L2(Rd), 1 ≤ j ≤ d}.

We call HA the relativistic Schrödinger operator with magnetic field. One should remark that another
candidate exists for this concepts, the operator [(D − A)2 + 1]1/2 − 1 (cf. [12] for instance), but this one
cannot be deduced from a quantization which systematically applies to a whole class of symbols.

For the scalar potential V , let us first consider the following condition.

Hypothesis (ii): V : Rd → R, V = V+ − V−, V± ≥ 0, V± ∈ L1
loc(Rd), and the operator of multiplication

by V− is form-bounded with respect to H0, with relative bound strictly less than 1.

In other words, there exist α ∈ [0, 1) and β ≥ 0 such that
∫

Rd

V−|u|2dx ≤ α‖H1/2
0 u‖2 + β‖u‖2, u ∈ D(H1/2

0 ) = H1/2(Rd), (1.4)

where ‖ · ‖ is the norm of L2(Rd) and Hs(Rd) is the usual Sobolev space of order s ∈ R.
We are going to show in Section 4 that under the assumptions (i) and (ii), the form sum

H ≡ H(A;V ) := HA

·
+ V

is well-defined. The operator H will be self-adjoint and lower semi-bounded in L2(Rd). In particular,
HA = H(A; 0).

To use the Feynman-Kac-Itô formula from Section 4 we will need a stronger hypothesis, involving
Kato’s class Kd associated to the operator H0, defined as follows: The semigroup generated by H0 is given
by convolution with a function pt (defined in Section 3); a function W ∈ L1

loc(Rd), W ≥ 0, belongs to Kd if

lim
t↘0

sup
x∈Rd

∫ t

0

[∫

Rd

ps(x− y)W (y)dy
]
ds = 0. (1.5)

In particular, if W ∈ L∞(Rd), W ≥ 0, then W ∈ Kd. In [36, 6, 9] one shows that W ∈ Kd verifies (1.4) for
any α > 0.

For our main results we shall need a stronger assumption on V .

Hypothesis (ii′): V : Rd → R, V = V+ − V−, V± ≥ 0, V± ∈ L2
loc(Rd) and V− ∈ Kd.
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To define the integrated density of states (IDS) we need a family F of bounded open subsets of Rd, satisfying:

Hypothesis (iii): For any m ∈ N∗, there exists Ω ∈ F such that the ball B(0;m) centered in the origin,
of radius m, is contained in Ω.

Hypothesis (iv): For any ε > 0, there exists m0 ∈ N∗ such that if Ω ∈ F and B(0,m0) ⊂ Ω, we have

|{x ∈ Rd | dist(x, ∂Ω) < 1}| < ε |Ω|,

where we set |Ω| for the Lebesgue measure of Ω.

Let us mention some basic references concerning IDS [5, 8, 11, 14, 32] and [10] that is closer related to
our work. There are two definitions of IDS. The first one [5, 8] uses the operator HΩ induced by H on
Ω ∈ F , with Dirichlet boundary conditions (it is defined in Section 6, where we prove that HΩ has compact
resolvent on L2(Ω)). IDS is the function

ρ : R→ R+, ρ(λ) := lim
Ω→Rd

Ω∈F

NΩ(λ)
|Ω| , (1.6)

where NΩ(λ) is the number of eigenvalues of HΩ smaller than λ.
The second definition [8, 14] uses the fact (proved in Section 5) that the operator 1ΩEλ(H)1Ω belongs

to I1, i.e. is trace-class. Here 1Ω is the operator of multiplication by the characteristic function of Ω,
and Eλ(H)is the spectral projection of H corresponding to the interval (−∞, λ], λ ∈ R. Then IDS is also
defined by

ρ(λ) := lim
Ω→Rd

Ω∈F

tr[1ΩEλ(H)1Ω]
|Ω| . (1.7)

The existence of the limits (1.6) and (1.7) and their equality are both non-trivial problems.
In order to solve them one uses the notion of density of states for H, for which we also have two different

definitions. We are going to see in Sections 5 and 6 that for any f ∈ C0(R) (continuous function with
compact support on R) the operators f(HΩ) and 1Ωf(H)1Ω belong to I1. By the Riesz-Markov Theorem
for any Ω ∈ F there exist Borel measures µD

Ω and µΩ on R, such that

|Ω|−1trf(HΩ) =
∫

R
fdµD

Ω , |Ω|−1tr [1Ωf(H)1Ω] =
∫

R
fdµΩ.

One notices that the two expressions in (1.6) and (1.7) are exactly the distribution functions of these two
measures:

µD
Ω ((−∞, λ]) = |Ω|−1NΩ(λ), µΩ((−∞, λ]) = |Ω|−1tr [1ΩEλ(H)1Ω] .

If Borel measures µD, µ on R exists such that

lim
F3Ω→Rd

µD
Ω = µD, lim

F3Ω→Rd
µΩ = µ,

meaning that for any f ∈ C0(R) and any ε > 0 there exists m0 ∈ N∗ such that if B(0;m0) ⊂ Ω, then
∣∣∣∣
∫

R
fdµD

Ω −
∫

R
fdµD

∣∣∣∣ < ε,

∣∣∣∣
∫

R
fdµΩ −

∫

R
fdµ

∣∣∣∣ < ε,

each of them is called the density of states of H. The main result of this article is the equivalence of these
definitions:

Theorem 1.1. Under assumptions (i), (ii’), (iii) and (iv), the density of states µD exists if and only if the
density of states µ exists. In addition, if one of them exists, then µD = µ.
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For the non-relativistic Schrödinger operator, such a result has been obtained in [10] for V− = 0 and in
[20] for V− 6= 0. There are several results concerning the existence and unicity of IDS for non-relativistic
Schrödinger operators without magnetic field (see [10] for references). The case of a constant magnetic field
has been treated in [14] (V ∈ C∞(Rd) periodic) or in [15] (V random potential, eventually unbounded from
below). We also mention the results in [2, 3, 4, 7, 14] and references therein.

The existence of IDS has been proved in [20] for periodic magnetic fields and scalar potentials. The
second goal of this paper is to extend this last result to the relativistic case.

We consider a lattice Γ in Rd, generated by a base e1, . . . , ed:

Γ = {
d∑

j=1

αjej | αj ∈ Z, 1 ≤ j ≤ d}.

Let us also denote by F a fundamental domain of Rd with respect to Γ; for instance

F = {
d∑

j=1

tjej | 0 ≤ tj < 1, 1 ≤ j ≤ d}.

We make the following hypothesis:
(v) V and Bjk, 1 ≤ j, k ≤ d are Γ-periodic functions.

Theorem 1.2. Under the hypothesis (i), (ii’), (iii), (iv) and (v), the integrated density of states of H exists
and for each f ∈ C0(R) we have

lim
F3Ω→Rd

|Ω|−1tr [1Ωf(H)1Ω] = |F |−1trΓf(H), (1.8)

where trΓ is the Γ-trace in the sense of Atiyah [1].

The plan of this paper is as follows:
In Section 2 we review first some properties of the magnetic pseudodifferential calculus, established

in [21, 22]. Some refined result about commutators are obtained and one overlines approximation by
regularisations (using the magnetic convolution) and cut-offs.

In Section 3 we present the Feller semi-group defined by the free Hamiltonian H0 and the associated
Lévy process. The diamagnetic inequality (3.10) will be a consequence of a Feynman-Kac-Itô formula for
the relativistic Hamiltonian HA.

Section 4 is devoted to the construction of the relativistic Schrödinger operator H = H(A;V ). Using the
Feynman-Kac-Itô formula, representing the semi-group generated by H, we prove the important fact that
C∞0 (Rd) is an essential domain for the form associated to H and we present some consequences regarding
commutators and covariance under gauge transformations.

In Section 5 we estimate the trace norm of some operators of the form 1Ωf(H)1Ω, Ω being a bounded
open subset of Rd and f : R → C a suitable function. The hypothesis V ∈ Kd is essential, allowing us to
use some estimations for the integral kernel of the semi-group generated by H(0;−V−) (cf. [36, 9]).

In Section 6 one defines HΩ as a pseudo-self-adjoint operator on L2(Rd), using a result in [33] on
monotone sequences of quadratic forms. One also estimates the I1-norm of operators of the form f(HΩ).

Section 7 is dedicated to the proof of Theorem 1.1. The main difficulty is the I1-norm estimate of
operators of the form 1Ω(H + λ)−m1Ω − (HΩ + λ)−m. Then, using ideas from [10] finishes the proof.

In Section 8 we prove Theorem 1.2, on the lines of the proof of Theorem 1.6 from [20].

2 The magnetic pseudodifferential calculus

Let us recall first some properties of operators defined by (1.2), proved in [21]. We are going to assume
everywhere that B = dA fulfills hypothesis (i).
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Definition 2.1. Let m ∈ R.
(a) A function f ∈ C∞(R2d) belongs to the symbol space Sm(Rd) if for any α, β ∈ Nd there is a constant

Cα,β > 0 such that

|
(
∂α

x ∂
β
ξ f

)
(X)| ≤ Cα,β < ξ >m−β , X = (x, ξ) ∈ R2d.

The space Sm(Rd) is endowed with the usual Fréchet topology.
(b) S−∞(Rd) := ∩m∈RSm(Rd) is endowed with the projective limit topology.
(c) A symbol f ∈ Sm(Rd) is called elliptic if for some positive constants C,R one has

|f(X)| ≥ C < ξ >m, ∀X = (x, ξ) ∈ R2d, |ξ| ≥ R.

(d) We call principal symbol of an operator of the form OpA(f), where f ∈ Sm(Rd), any element
f0 ∈ Sm(Rd) such that f − f0 ∈ Sm−1(Rd).

Proposition 2.2. Let f ∈ Sm(Rd) and g ∈ Sm′
(Rd).

(a) OpA(f) is a continuous linear operator on S(Rd) and on S ′(Rd).
(b) OpA(f) is the formal adjoint of OpA(f), i.e.

(
OpA(f)u, v

)
L2(Rd)

=
(
u,OpA(f)v

)
L2(Rd)

, ∀u, v ∈ S(Rd).

(c) There exists a unique element f ◦B g ∈ Sm+m′
(Rd) such that

OpA(f)OpA(g) = OpA(f ◦B g).

Moreover, a principal symbol of OpA(f)OpA(g) is fg.

Proposition 2.3. Let f ∈ S0(Rd). Then OpA(f) ∈ B(L2(Rd)), and its norm in B(L2(Rd)) is dominated
by a semi-norm of f in S0(Rd).

Definition 2.4. Let s ∈ R+, ps(ξ) :=< ξ >s∈ Ss(Rd), Ps := OpA(ps).
a) An element u ∈ L2(Rd) belongs to the magnetic Sobolev space Hs

A(Rd) if Psu ∈ L2(Rd). Hs
A(Rd) is

a Hilbert space for the norm

‖u‖s,A :=
(
‖Psu‖2L2(Rd) + ‖u‖2L2(Rd)

)1/2

, (2.1)

and S(Rd) is dense in Hs
A(Rd).

b) H−s
A (Rd) will be the dual of Hs

A(Rd) endowed with the natural norm.

Remark 2.5. If s ∈ N, we have

Hs
A(Rd) = {u ∈ L2(Rd) | (D −A)αu ∈ L2(Rd), ∀α ∈ Nd, |α| ≤ s},

and a norm equivalent to (2.1) is given by

‖u‖′s,A =


 ∑

|α|≤s

‖(D −A)αu‖2L2(Rd)




1/2

.

We used the notation (D −A)α = (D1 −A1)α1 . . . (Dn −An)αn .

Proposition 2.6. For each s,m ∈ R and each f ∈ Sm(Rd),

OpA(f) ∈ B (Hs
A(Rd),Hs−m

A (Rd)
)
.

Proposition 2.7. Let p ∈ Sm(Rd) be real and elliptic, m ≥ 0. We assume p(X) ≥ 0 for |ξ| ≥ R (R > 0
large enough). Then the operator OpA(p), defined on S(Rd), is essentially self-adjoint in L2(Rd). Its closure
P will be a lower semi-bounded self-adjoint operator on the domain Hm

A (Rd).
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Remark 2.8. This proposition applies to the case p(X) =< ξ > −1. The corresponding operator, denoted
by HA, will be a lower semi-bounded self-adjoint operator on L2(Rd) with domain

H1
A(Rd) = {u ∈ L2(Rd) | (Dj −Aj)u ∈ L2(Rd), 1 ≤ j ≤ d}. (2.2)

In fact, adapting arguments from [17] (where the quantification OpA is used), one can show that HA ≥ 0.

The next result has been proved in [21] for B admitting a vector potential with bounded derivatives and
for the general case of hypothesis (i) in [23].

Proposition 2.9. Let us consider verified the hypothesis of Proposition 2.7.
a) If λ ∈ R, λ < inf σ(P ), then (P − λ)−1 is the closure in L2(Rd) of an operator OpA(p(λ)), with

p(λ) ∈ S−m(Rd). If in addition λ ≤ infp− 1, then a principal symbol of OpA(p(λ)) is (p− λ)−1.
b) If m > 0, p ≥ 1 and P ≥ 1, then for every s ∈ R, P s is the closure in L2(Rd) of a operator

OpA(q(s)), q(s) ∈ Ssm(Rd), which admits ps like principal symbol.

In the remaining part of this section we are going to prove two properties of commutators of magnetic
pseudo-differential operators, as well as applications to approximation by regularization or cut-off.

Proposition 2.10. Let m ∈ R or m = −∞ and g ∈ Sm′
(Rd), m′ ∈ R. Then

a) f ◦B g − g ◦B f ∈ Sm+m′−1(Rd), ∀ f ∈ Sm(Rd).
b) Let m ∈ R and M be a subset of Sm(Rd) formed by symbols independents of x ∈ Rd, such that the

set {∂ξ1f, . . . , ∂ξd
f | f ∈M} is bounded in Sm(Rd). Then the set {f ◦B g − g ◦B f | f ∈M} is bounded in

Sm+m′
(Rd).

Proof. a) It follows from the Proposition 2.2 (c).
To verify b), one uses the composition formula from [21] for f ∈M , in which the integral is oscillatory:

(f ◦B g)(X) =
∫

R2d

∫

R2d

d̄Y d̄Z e−2i[Y,Z] ωB(x, y, z) f(ξ − η) g(X − Z), X ∈ R2d, (2.3)

where X = (x, ξ), Y = (y, η), Z = (z, ζ) are points in R2d, d̄Y = π−ddY , [Y,Z] =< η, z > − < ζ, y >
(< ·, · > is the scalar product in Rd) and ωB(x, y, z) = e−4iFB(x,y,z), where FB ∈ C∞(R3d), depending only
on the magnetic field B and its first order derivatives, are of the form:

∑

1≤j≤d

[Dj(x, y, z)yj + Ej(x, y, z)zj ] , Dj , Ej ∈ BC∞(R3d). (2.4)

Using the Leibnitz-Newton formula

f(ξ − η) = f(ξ)−
∑

1≤j≤d

ηj

∫ 1

0

(∂jf)(ξ − tη)dt

and the fact that 1 ◦B g = g, one writes (2.3) as

(f ◦B g)(X) = f(ξ)g(X) + ρf (X), (2.5)

where

ρf (X) = −
∑

1≤j≤d

∫ 1

0

dt

∫

R2d

∫

R2d

d̄Y d̄Z ηj e
−2i[Y,Z] ωB(x, y, z) (∂jf) (ξ − tη)g(X − Z). (2.6)

We use the identity

ηje
−2i[Y,Z] = − 1

2i
∂zj

(
e−2i[Y,Z]

)

to integrate by parts with respect to zj . We also use (2.4) as well as

yke
−2i[Y,Z] =

1
2i
∂ζk

(
e−2i[Y,Z]

)
, zke

−2i[Y,Z] = − 1
2i
∂ηk

(
e−2i[Y,Z]

)
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to integrate by parts with respect to ζk and ηk. This gives

ρf (X) =
∑

1≤j≤d

∫ 1

0

dt

∫

R2d

∫

R2d

d̄Y d̄Z e−2i[Y,Z] ωB(x, y, z)
[ ∑

1≤k≤d

Djk(x, y, z)(∂ξk
g)(X − Z)

(∂jf)(ξ − η) + t
∑

1≤k≤d

Ejk(x, y, z)(∂j∂kf)(ξ − tη)g(X − Z)−

−(∂jf)(ξ − tη)(∂xj
g)(X − Z)

]
, Djk, Ejk ∈ BC∞(R3d).

By hypothesis, the sets {∂jf | f ∈M}, 1 ≤ j ≤ d are bounded in Sm(Rd).
Using the standard integration by parts procedure with respect to y, z, η, ζ, starting from the equality

< η >2N e−2i[Y,Z] =
(

1− 1
4
∆z

)N

e−2i[Y,Z], N ∈ N

and its analogs, by eliminating the monomials in y and z, as above, one obtains the estimation

|ρf (X)| ≤ p(f) q(g)
∫ 1

0

dt

∫

R2d

∫

R2d

d̄Y d̄Z < z >−2Nη< ζ >−2Ny< η >−2Nz< y >−2Nζ ·

· < ξ − tη >m< ξ − ζ >m′
,

where Nη, Ny, Nz, Nζ are natural integers which must be chosen in a suitable way in order to have abso-
lute convergence of the integrals, p(f) =

∑
1≤j≤d

pj(∂jf), pj is a continuous semi-norm on Sm(Rd) and q a

continuous semi-norm on Sm′
(Rd). Since

< ξ − tη >m≤ C < ξ >m< η >|m|, < ξ − ζ >m′≤ C < ξ >m′
< ζ >|m

′|, C ∈ R+,

one can choose Nη = Nζ = d, Ny = d+ |m′|, Nz = d+ |m| and get

|ρf (X)| ≤ C0 p(f) q(g) < ξ >m+m′
, C0 > 0 constant.

Analogously one estimates the derivatives of ρ and obtains that the set {ρf | f ∈ M} is bounded in
Sm+m′

(Rd).
In the same way one can show that g ◦B f = fg + ρ′f and {ρ′f ; f ∈M} is bounded in Sm+m′

(Rd).

Definition 2.11. Let u ∈ S ′(Rd), f ∈ S(Rd). One calls magnetic convolution of u with f , the function
u ?A f ∈ C∞(Rd) defined by

(u ?A f)(x) :=< u(y), ei<x−y,ΓA(x,y)>f(x− y) >, x ∈ Rd, (2.7)

where < ·, · > is the duality bracket between S(Rd) and S ′(Rd) .

Remark 2.12. Using the equality f(x− y) =
∫
Rd e

i<x−y,ξ>f̂(ξ)dξ, one finds out that u ?A f = OpA(f̂)u.

To regularize a distribution by means of the magnetic convolution, one uses a standard δ-sequence. Let
us consider a function θ ∈ C∞0 (Rd), θ ≥ 0, supp θ ⊂ B(0; 1),

∫
Rd θ(x)dx = 1. For j ≥ 1 one defines

θj(x) := jdθ(jx), x ∈ Rd. Then θj ∈ C∞0 (Rd), supp θj ⊂ B(0; 1/j), θ̂j ∈ S(Rd), θ̂j(ξ) = θ̂(j−1ξ), ξ ∈ Rd.
For u ∈ S ′(Rd) we set Rju := u ?A θj .

Proposition 2.13. (a) If u ∈ E ′(Rd), Rju ∈ C∞0 (Rd) and suppRju ⊂ {x ∈ Rd | dist(x, suppu) ≤ 1/j}.
(b) If u ∈ L∞(Rd), Rju ∈ L∞(Rd) and ‖Rju‖L∞(Rd) ≤ ‖u‖L∞(Rd).
(c) If u ∈ L2(Rd), Rju ∈ L2(Rd) and lim

j→∞
Rju = u on L2(Rd).

(d) Let P = OpA(p), p ∈ S1/2(Rd). If u ∈ L2(Rd) and Pu ∈ L2(Rd), then lim
j→∞

PRju = Pu in L2(Rd).
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Proof. Properties (a) and (b) are evident.
(c) Since θ̂ ∈ S(Rd) ⊂ S−∞(Rd) ⊂ S0(Rd) and Rj = OpA(θ̂j), Proposition 2.3 shows that Rju ∈ L2(Rd).

But
(Rj)u(x) =

∫

Rd

θ(z)u (x− z/j) e−(i/j)<z,ΓA(x,x−z/j)>dz

and u(x) =
∫
Rd θ(z)u(x) dz. Using twice the Dominated Convergence Theorem and the continuity of u in

mean, one gets

‖Rju− u‖L2(Rd) ≤
∫

Rd

θ(z)
[‖u(· − z/j)− u(·)‖L2(Rd)+

+‖u(·)
(
e−(i/j)<z,ΓA(·,·−z/j)> − 1

)
‖L2(Rd)

]
dz →

j→∞
0.

(d) The sequence {j1/2∂kθ̂j}j≥1 is bounded in S−1/2(Rd) for 1 ≤ k ≤ d. One applies Proposition 2.10
(b) with M = {j1/2θ̂j ; j ≥ 1}, m = −∞, m = − 1

2 , m′ = 1
2 , f(ξ) = j1/2θ̂j(ξ), g = p and deduces that the

set
{j1/2(θ̂j ◦B p− p ◦B θ̂j) | j ≥ 1}

is bounded in S0(Rd). By Proposition 2.3, there is a constant C > 0 such that

‖RjP − PRj‖B(L2(Rd)) ≤ Cj−1/2, j ≥ 1.

Thus lim
j→∞

(
PRju−RjPu

)
= 0 in L2(Rd) and lim

j→∞
RjPu = Pu in L2(Rd) implies the conclusion.

Proposition 2.14. Let P = OpA(p), p ∈ Sm(Rd), m ≤ 1 and ϕ ∈ BC∞(Rd). Let us suppose that there
exists N ∈ N, N > m+ d− 1 such that |MN | <∞, where

MN := ∪
|α|=N+1

supp ∂αϕ.

Then there is a constant C > 0 independent on ϕ, operators Sα, S
′
α ∈ B(L2(Rd)), 1 ≤ |α| ≤ N , independent

on ϕ and operators TN , T
′
N ∈ I2 (the Hilbert-Schmidt space on L2(Rd)) such that

‖TN‖I2 + ‖T ′N‖I2 ≤ C max
|α|=N+1

‖∂αϕ‖L∞(Rd)|MN |1/2 (2.8)

and
[ϕ,P ] := ϕP − Pϕ =

∑

1≤|α|≤N

(∂αϕ)Sα + TN =
∑

1≤|α|≤N

S′α(∂αϕ) + T ′N , (2.9)

with the convention that the sums in (2.9) do not exist if N = 0.

Proof. Using (1.2) and Taylor’s formula

ϕ(x)− ϕ(y) = −
∑

1≤|α|≤N

(y − x)α

α!
(∂αϕ)(x) + rN (x, y),

where

rN (x, y) = −
∑

|α|=N+1

(y − x)α

N !

∫ 1

0

(1− t)N (∂αϕ)(x+ t(y − x))dt,

one obtains the first equality from (2.9) with Sα = − 1
α!OpA(Dα

ξ p) and

TNu(x) := − 1
N !

∑

|α|=N+1

∫ 1

0

dt(1− t)N

∫

Rd

dyd̄ξ ei<x−y,ξ+ΓA(x,y)>× (2.10)
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×(Dα
ξ p)

(
x+ y

2
, ξ

)
(∂αϕ)(x+ t(y − x))u(y), u ∈ S(Rd).

Since for |α| ≥ 1 one has Dα
ξ p ∈ S0(Rd), by Proposition 2.3 one has Sα ∈ B(L2(Rd)). But, using in (2.10)

the identity < x − y >2s ei<x−y,ξ> = (1 −∆ξ)s(ei<x−y,ξ>), for s ∈ N, to integrate by parts, one sees that
for any s ∈ N, TN can be written as an integral operator with kernel

KN (x, y) := − 1
N !

∑

|α|=N+1

∫ 1

0

dt(1− t)N

∫

Rd

d̄ξ ei<x−y,ξ+ΓA(x,y)>×

× < x− y >−2s
[
(1−∆ξ)sDα

ξ p
] (

x+ y

2
, ξ

)
(∂αϕ)(x+ t(y − x)).

Denoting by 1M the characteristic function of a set M ⊂ Rd, one obtains for each s ∈ N

|KN (x, y)| ≤ Cs < x− y >−2s max
|α|=N+1

‖∂αϕ‖L∞(Rd)

∫ 1

0

1MN (x+ t(y − x))dt,

with Cs a constant depending on s but not on ϕ. Choosing s > d/4 one gets

‖TN‖I2 = ‖KN‖L2(Rd×Rd) ≤

≤ Cs max
|α|=N+1

‖∂αϕ‖L∞(Rd) sup
t∈[0,1]

[∫

R2d

< x− y >−4s 1MN
(x+ t(y − x)) dx dy

]1/2

.

The integral in the previous formula equals
∫

R2d

< z >−4s 1MN
(x+ tz)dxdz =

∫

Rd

1MN
(y)dy

∫

Rd

< z >−4s dz = |MN |
∫

Rd

< z >−4s dz.

It follows that the norm ‖TN‖I2 is bounded with the right member of the inequality (2.8).
In the same way one gets the second equality from (2.9) and the corresponding bound for ‖T ′N‖I2 .

A first application of the Proposition 2.14 concerns cut-off approximations. Let ψ ∈ C∞0 (Rd), 0 ≤ ψ ≤ 1,
suppψ ⊂ B(0; 2), ψ = 1 on B(0; 1). For j ≥ 1 one sets ψj(x) := ψ(x/j), x ∈ Rd.

Proposition 2.15. Let u ∈ L2(Rd) and P = OpA(p), p ∈ Sm(Rd), m ≤ 1.
a) ψju ∈ L2(Rd) and lim

j→∞
ψju = u in L2(Rd).

b) If Pu ∈ L2(Rd), then P (ψju) ∈ L2(Rd) and lim
j→∞

P (ψju) = Pu in L2(Rd).

Proof. a) is trivial.
b) follows if for some constant C > 0 one obtains the inequality

‖[ψj , P ]‖B(L2(Rd)) ≤ Cj−1, j ≤ 1. (2.11)

For this one applies Proposition 2.14 with ϕ = ψj andN = d+1. Since supp ∂αψj ⊂ B(0; 2j), ∀α ∈ Nd, there
is a constant C1 > 0 such that |M (j)

N |1/2 ≤ C1 j
d/2, ∀ j ≥ 1, where M (j)

N := ∪
|α|=N+1

supp ∂αψj . On the other

hand (∂αψj)(x) = j−|α|(∂αψ)(x/j), hence there is a constant C2 > 0 such that ‖∂αψj‖L∞(Rd) ≤ C2 j
−|α|,

for any j ≥ 1 and for all α ∈ Nd with 1 ≤ |α| ≤ N + 1. Then (2.11) follows from (2.8) and (2.9).
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3 The Feller semigroup

In this section we are going to recall some well-known properties of the semi-group
{
e−tH0

}
t≥0

, where
H0 is the free relativistic Hamiltonian for A = 0. H0 is self-adjoint on L2(Rd), H0 ≥ 0 and its domain
is the standard Sobolev space H1(Rd) ≡ H1

0(Rd). Its restriction to S(Rd) is the operator Op0(p), with
p(X) =< ξ > −1. By the Lévy-Khincin formula (see for example [31]), there exists a measure n on Rd such
that

< ξ > −1 = −
∫

Rd

[
ei<y,ξ> − 1− i < y, ξ > 1B(0;1)(y)

]
dn(y), ∀ ξ ∈ Rd. (3.1)

Cf. [17] one has the explicit formula

dn(y) = 2(2π)−
d+1
2 |y|− d+1

2 K d+1
2

(|y|)dy, (3.2)

where Kν is the modified Bessel function of the third kind and order ν, for which the next inequalities are
verified for some positive constant C:

0 < Kν(r) ≤ Cmax
(
r−ν , r−1/2

)
e−r, ∀ r > 0, ∀ ν > 0. (3.3)

By [19, 6], for t > 0, the operator e−tH0 is given by the convolution with the function

pt(x) := (2π)−d t√
|x|2 + t2

∫

Rd

et−<ξ>
√
|x2|+t2dξ = (3.4)

= 2−
d−1
2 π−

d+1
2 t et (|x|2 + t2)−

d+1
4 K d+1

2

(√
|x|2 + t2

)
, x ∈ Rd.

One verifies the properties

pt(x) > 0,
∫

Rd

pt(x)dx = 1 (3.5)

and the fact that e−tH0 can be extended as an well-defined bounded operator on the Banach space

C∞(Rd) :=
{
f ∈ C(Rd) | lim

|x|→∞
f(x) = 0

}
,

equipped with the norm ‖ · ‖∞. One also checks easily the Feller semi-group properties for the family of
these extensions.

By [6, 9], this Feller semi-group is generated by a Lévy process. More precisely, on the space Ω of
the ”càdlag” functions on [0,∞) (Rd-valued, continuous to the right, having left limits), endowed with the
smallest σ-algebra F for which all the coordinate functions

Ω 3 ω 7→ Xt(ω) := ω(t) ∈ Rd

are measurable, one can define for each x ∈ Rd a probabilistic measure Px such that Px{X0 = x} = 1 and
the random variables Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent with distributions pt1−t0 , . . . , ptn−tn−1 for
each 0 = t0 < t1 < · · · < tn < ∞. If we denote by Ex the expectation with respect to the probability Px,
then for any f ∈ C∞(Rd) and t ≥ 0 we have

[
e−tH0f

]
(x) = Ex (f ◦Xt) , x ∈ Rd. (3.6)

By the Lévy-Itô Theorem [24, 19] one has

Xt = x+
∫ t+

0

∫

Rd

y ÑX (ds dy), (3.7)

where
ÑX (ds dy) := NX(ds dy)− N̂X(ds dy),
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N̂X(ds dy) := Ex (NX(ds dy)) = dsdn(y)

and NX is a ”counting measure” on [0,∞)× Rd, defined by

NX((t, t′]×B) := ]{s ∈ (t, t′] | Xs 6= Xs−, Xs −Xs− ∈ B},

where 0 < t < t′ and B is a Borel subset of Rd. Using the procedure from [19] (where one works with the
quantification OpA), one gets a Feynman-Kac-Itô formula for the Hamiltonian HA. For u ∈ L2(Rd), x ∈ Rd

and t ≥ 0 one has (
e−tHAu

)
(x) = Ex

(
(u ◦Xt) e−S(t,X)

)
, (3.8)

where

S(t,X) := i

∫ t+

0

∫

Rd

ÑX(dsdy)
〈∫ 1

0

A(Xs− + ry)dy, y
〉

+ (3.9)

+i
∫ t

0

∫

Rd

N̂X(dsdy)
〈∫ 1

0

[A(Xs + ry)−A(Xs)]dr, y
〉
.

Let us remark that from (3.8) and (3.6) one obtains the diamagnetic inequality for the relativistic hamilto-
nian HA: ∣∣e−tHAu

∣∣ ≤ e−tH0 |u|, ∀u ∈ L2(Rd), ∀ t ≥ 0. (3.10)

(3.10) implies another proof of the fact that HA ≥ 0: e−tH0 is a contraction, thus e−tHA is a contraction
too, which implies HA ≥ 0.

Once again from (3.10), it follows that for any λ > 0, r > 0 and u ∈ L2(Rd) one has
∣∣(HA + λ)−ru

∣∣ ≤ (H0 + λ)−r|u|. (3.11)

This inequality is deduced using the fact that for any lower semi-bounded self-adjoint operator H in a
complex Hilbert space H, for any r > 0 and any λ ∈ R such that λ+ inf σ(H) > 0, one has

(H + λ)−r =
1

Γ(r)

∫ ∞

0

tr−1e−λte−tHdt, (3.12)

where Γ is the Euler function of the second kind.

4 The Hamiltonian H(A; V )

We denote by hA the quadratic form associated to HA:

hA(u, v) :=
(
H

1/2
A u,H

1/2
A v

)
L2(Rd)

, u, v ∈ D(hA) := D(H1/2
A ). (4.1)

To a function W ∈ L1
loc(Rd), W ≥ 0, one assigns a quadratic form qW :

qW (u, v) :=
∫

Rd

W (x)u(x)v(x)dx, u, v ∈ D(qW ) := {f ∈ L2(Rd) |W 1/2f ∈ L2(Rd)}. (4.2)

These forms are symmetric, closed and positive. We set

hA(u) := hA(u, u), qW (u) := qW (u, u).

The next result is known [22], but for convenience we are going to include a proof.

Proposition 4.1. We assume (i) and (ii). Then the sesquilinear form h = h(A;V ) := hA + q
V+
− q

V− is
well-defined on D(hA) ∩D(q

V+
), being symmetric, closed and lower semi-bounded. Thus it defines a lower

semi-bounded self-adjoint operator on L2(Rd), denoted by H = H(A;V ) := HA

·
+V (in the sense of forms).
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Proof. The form hA + q
V+

, defined on D(hA) ∩D(q
V+

), is densely defined, symmetric, closed and positive.
The conclusion of the Proposition would follow if we show that the form q

V− is (hA + q
V+

)-bounded, with
relative bound < 1.

We denote by H+ := HA

·
+ V+ the unique self-adjoint operator ≥ 0 associated to the form hA + qV+

.
Since C∞0 (Rd) ⊂ D(hA) ∩D(q

V+
) we can use the version from [26] of Kato-Trotter formula

e−tH+ = s− lim
n→∞

[
e−

t
n HAe−

t
n V+

]n

, ∀ t ≥ 0. (4.3)

Combining with (3.10) and (3.12) we infer that for every r > 0, λ > 0 and f ∈ L2(Rd) one has
∣∣(H+ + λ)−rf

∣∣ ≤ (H0 + λ)−r|f |. (4.4)

Let g ∈ L2(Rd), λ > 0 large enough, u := (H0 + λ)−1/2g. By using the assumption (ii), there exists
α ∈ (0, 1), β ≥ 0 and α′ ∈ (0, 1) such that

q
V− (u) ≤ α‖H1/2

0 u‖2L2(Rd) + β‖u‖2L2(Rd) = α‖H1/2
0 (H0 + λ)−1/2g‖2L2(Rd)+ (4.5)

+β‖(H0 + λ)−1/2g‖2L2(Rd) ≤
(
α+

β

λ

)
‖g‖2L2(Rd) ≤ α′‖g‖2L2(Rd).

For v ∈ D(hA) ∩D(qV+
) we set f := (H+ + λ)1/2v and g := |f |. Using (4.4) with r = 1/2, (4.5) and the

explicit form of qV− , we get

q
V− (v) = q

V− [(H+ + λ)−1/2f ] ≤ q
V− [(H+ + λ)−1/2g] ≤ α′‖g‖2L2(Rd) =

= α′‖(H+ + λ)1/2v‖2L2(Rd) = α′[hA(v) + q
V+

(v) + λ‖v‖2L2(Rd)].

The Feynman-Kac-Itô formula (3.8) can be extended to the Hamiltonian H (cf. [19]).

Proposition 4.2. Under assumptions (i) and (ii), for any u ∈ L2(Rd) and all t ≥ 0, we have

(
e−tHu

)
(x) = Ex

[
(u ◦Xt) e−S(t,X)−R t

0 (V ◦Xs)ds
]
, x ∈ Rd. (4.6)

By using ideas from [34] and Propositions 2.13, 2.15 and 4.2, we are going to prove

Proposition 4.3. Under assumptions (i), (ii), C∞0 (Rd) is an essential domain for the form h.

Proof. Due to Hypothesis (ii) the form h and the operator H are well-defined.
1. Let us first suppose that V− = 0. We show that D(h) ∩ L∞comp(Rd) is an essential domain for h. It is

known that the range R(e−H) is an essential domain for h. By Proposition 4.2, for any u ∈ L2(Rd)

|e−Hu| ≤ e−H(0,0)|u|, a.e. on Rd (4.7)

the function on the right hand side being of class L∞(Rd).
Let u ∈ D(h) ∩ L∞(Rd), ψ and ψj as in Proposition 2.15 and uj := ψju, j ≥ 1. Then

uj ∈ L∞comp(Rd) ∩D(qV+
), lim

j→∞
uj = u in L2(Rd) and lim

j→∞
qV+

(uj − u) = 0.

Let us notice that we have the equality

hA(v, w) =
(
(HA + 1)1/2v, (HA + 1)1/2w

)
L2(Rd)

− (v, w)L2(Rd) (4.8)
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for any v, w ∈ D(hA) = D(H1/2
A ) = D[(HA + 1)1/2]. The operator HA + 1 is defined, by Proposition 2.8, by

the magnetic pseudo-differential operator OpA(< ξ >), so by the point (b) of Proposition 2.9, (HA +1)1/2 is
defined by an operator OpA(q), where q ∈ S1/2(Rd) and q− < ξ >1/2∈ S−1/2(Rd). Since u ∈ D[(HA+1)1/2],
we shall have OpA(q)u ∈ L2(Rd); using Proposition 2.15 (b) we infer that OpA(q)uj belongs to L2(Rd) and
lim

j→∞
OpA(q)uj = OpA(q)u in L2(Rd). Since OpA(q) −OpA(< ξ >1/2) ∈ B[L2(Rd)], by Proposition 2.3, it

follows that OpA(< ξ >1/2)uj ∈ L2(Rd), so uj ∈ H1/2
A (Rd) = D(H1/2

A ) = D(hA). Also using (4.8), we get

lim
j→∞

hA(uj − u) = 0, so lim
j→∞

uj = u in D(h).

2. We prove that C∞0 (Rd) is an essential domain for h(A;V+). Obviously C∞0 (Rd) ⊂ D(h). Let
u ∈ D(h) ∩ L∞comp(Rd) and Rju, j ≥ 1, defined as in Proposition 2.13. Then

Rju ∈ C∞0 (Rd), lim
j→∞

Rju = u in L2(Rd), lim
j→∞

OpA(q)Rju = OpA(q)u in L2(Rd),

where q has been defined above. It follows that lim
j→∞

hA(Rju− u) = 0.

On the other hand,

suppRju ⊂ {x ∈ Rd | dist(x, suppu) ≤ 1}, |(Rju)(x)− u(x)| ≤ 2‖u‖L∞(Rd), x ∈ Rd

and there is a subsequence (Rjk
u)k≥1 such that (Rjk

u)(x) −→
k→∞

u(x) a.e. x ∈ Rd. Using the Dominated

Convergence Theorem we see that lim
k→∞

qV+
(Rjk

u− u) = 0, thus lim
k→∞

Rjk
u = u in D(h).

3. In order to end the proof we have to notice that q
V− is relatively bounded with respect to h(A;V+)

and consequently any convergent sequence from D(h(A;V+)) is also convergent in D(qV− ).

Corollary 4.4. Under hypothesis (i) and (ii), a vector u ∈ D(h) belongs to D(H) if and only if OpA(p)u+
V u ∈ L2(Rd), where p(ξ) :=< ξ > −1. Moreover Hu = OpA(p)u+ V u for any u ∈ D(H).

Proof. Let u ∈ D(h). Since C∞0 (Rd) is an essential domain for h, u ∈ D(H) if and only if there exists
f ∈ L2(Rd) such that

h(u, v) = (f, v)L2(Rd), ∀ v ∈ C∞0 (Rd);

if this is the case, then Hu = f . By Proposition 4.1, V±u ∈ L1
loc(Rd) and

qV± (u, v) =< V±u, v >, ∀ v ∈ C∞0 (Rd), (4.9)

where we denoted by < ·, · > the duality bracket between D(Rd) and D′(Rd). Let {uj}j≥1 ⊂ C∞0 (Rd) such
that lim

j→∞
uj = u in D(h). Then lim

j→∞
H

1/2
A uj = H

1/2
A u in L2(Rd).

Using Proposition 2.2 (a), we get

hA(u, v) = lim
j→∞

(H1/2
A uj ,H

1/2
A v)L2(Rd) = lim

j→∞
(HAuj , v)L2(Rd) = (4.10)

= lim
j→∞

< OpA(p)uj , v >=< OpA(p)u, v >, ∀ v ∈ C∞0 (Rd).

The Proposition follows immediately from the equality

h(u, v) =< OpA(p)u, v > + < V u, v >, v ∈ C∞0 (Rd), (4.11)

which is a consequence of (4.9) and (4.10).
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Proposition 4.5. We suppose that (i) and (ii) are true. Let ϕ ∈ BC∞(Rd) such that |M | < ∞, where
M := ∪

|α|=d+2
supp ∂αϕ.

(a) If u ∈ D(H), then ϕu ∈ D(H). Moreover the commutator [ϕ,H], which is well-defined on D(H),
can be extended to an element of B[L2(Rd)].

(b) There exists a constant C > 0, independent of ϕ, operators

Sα, S
′
α ∈ B[L2(Rd)], 1 ≤ |α| ≤ d+ 1,

independent of ϕ and operators T, T ′ ∈ I2, such that

‖T‖I2 + ‖T ′‖I2 ≤ C max
|α|=d+2

‖∂αϕ‖L2(Rd)|M |1/2 (4.12)

and
[ϕ,H] =

∑

1≤|α|≤d+1

(∂αϕ)Sα + T =
∑

1≤|α|≤d+1

S′α(∂αϕ) + T ′. (4.13)

(c) One has

[(H + λ)−1, ϕ] = (H + λ)−1[ϕ,H](H + λ)−1, ∀λ ∈ R, λ > −infσ(H). (4.14)

Proof. (a) Let u ∈ D(H). Then u ∈ D(qV+
) ∩D(hA). It follows that ϕu ∈ D(qV+

) and

u ∈ D(H1/2
A ) = D

(
(HA + 1)1/2

)
= H1/2

A (Rd).

Since ϕ ∈ S0(Rd) and OpA(ϕ) is the operator of multiplication by ϕ, by Proposition 2.6,

ϕu ∈ H1/2
A (Rd) = D

(
H

1/2
A

)
;

thus ϕu ∈ D(h). By Proposition 2.10 (a) if follows that [OpA(p), ϕ] ∈ B[L2(Rd)], p being given by Corollary
4.4. Therefore, computing in D′(Rd), we get

OpA(p)(ϕu) + V (ϕu) = ϕ[OpA(p)u+ V u] + [OpA(p), ϕ]u ∈ L2(Rd). (4.15)

From Corollary 4.4 we deduce that ϕu ∈ D(H). In addition, the equality (4.15) shows that

[ϕ,H] = [ϕ,OpA(p)] on D(H), (4.16)

which implies the last statement of point (a).
(b) follows from (4.16) and proposition 2.14 with m = 1 and N = d+ 1.
(c) is trivial.

We close this Section with a result on gauge covariance of the operator H.

Proposition 4.6. We assume (i) and (ii). Let A be a vector potential for B with components in C∞pol(Rd)
and let Ã = A − dϕ for some real function ϕ ∈ C∞pol(Rd). We denote by U the unitary operator of
multiplication by e−iϕ on L2(Rd). Then

U H(A;V )U−1 = H(Ã;V ). (4.17)

Proof. We notice first that from the equality

ϕ(x)− ϕ(y) =< x− y,

∫ 1

0

(∇ϕ)((1− s)x+ sy)ds >

and from Definition 1.2, one gets the relation

[e−iϕOpA(a)(eiϕw)](x) =
[
Op

eA(a)w
]
(x), ∀x ∈ Rd (4.18)
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for any a ∈ SmRd and any w ∈ S(Rd).
Let u ∈ D[H(Ã;V )]; cf. Corollary 4.4, u ∈ D[h(Ã;V )] and

Op
eA(p)u+ V u ∈ L2(Rd),

where p(ξ) :=< ξ > −1. From (4.18) we deduce that

OpA(p)(eiϕu) + V (eiϕu) = eiϕ[Op
eA(p)u+ V u] ∈ L2(Rd). (4.19)

Let us show that eiϕu ∈ D[h(A;V )]. Obviously eiϕu ∈ D(q
V+

). We notice now that (2.2) implies that

w ∈ D(H eA) if and only if eiϕw ∈ D(HA). From (4.18) we get U HA U
−1 = H eA, so U H1/2

A U−1 = H
1/2
eA

and then U−1[D(h eA)] = D(hA). It follows that eiϕu ∈ D(hA), so eiϕu ∈ D[h(A;V )]. Using Corollary 4.4
and equality (4.19), we deduce U−1u ∈ D[H(A;V )] as well as (4.17).

5 Trace estimations

Proposition 5.1. Let us suppose that (i) and (ii) are verified. There exists µ ≥ 1, only depending on V−,
such that for all

λ ≥ λ0 := max{−infσ(H) + 1, µ}, r ≥ r0 := d+ 1,

there exists C > 0 such that for every bounded open subset Ω of Rd we have 1Ω(H + λ)−r ∈ I2 and

‖1Ω(H + λ)−r‖I2 ≤ C|Ω|1/2. (5.1)

We denoted by 1Ω both the characteristic function of Ω and the associated multiplication operator on L2(Rd).

Proof. We use (3.12) and Proposition 4.2 to obtain that for any f ∈ L2(Rd), λ ≥ λ0 and r ≥ r0 one has

|(H + λ)−rf | ≤ 1
Γ(r)

∫ ∞

0

tr−1e−λte−tH(0;−V−)|f |dt. (5.2)

Since V− ∈ Kd, by Theorem 1.5 from [36] (or Theorem 2.9 from [9]), for any t > 0 the operator e−tH(0,−V−)

has an integral kernel satisfying: For any ρ, ρ′ > 1, 1
ρ + 1

ρ′ = 1, one can choose positive constants M, b such
that

0 ≤ e−tH(0,V−)(x, y) ≤Mebt sup
z∈Rd

[pt/2(z)]1/ρ′ [pt(x− y)]1/ρ, ∀ t > 0, x, y ∈ Rd, (5.3)

where pt is defined by (3.4). Using (3.4) and (3.3) it follows that there exists an absolute constant C > 0
such that

pt(x) ≤ Ctet
[
(|x|2 + t2)−

d+1
2 + (|x|2 + t2)−

d+2
4

]
e−(|x|2+t2)1/2

, ∀t > 0, x ∈ Rd. (5.4)

We choose ρ = 4 and ρ′ = 4
3 in (5.3). From (5.4) it follows that for some C1 > 0:

sup
z∈Rd

[pt/2(z)]3/4 ≤ C1

(
t−

3d
4 + t−

3d
8

)
, ∀t > 0. (5.5)

Using (5.2), (5.5), (5.3) and (5.4), we get the inequality

|[(H + λ)−rf ](x)| ≤
∫

Rd

L(x− y)|f(y)|dy =: (T |f |)(x), f ∈ L2(Rd), x ∈ Rd, (5.6)

where
L(x) := C2

∫ ∞

0

e−(λ−b−1/4)t tr−
3
4

(
t−

3d
4 + t−

3d
8

)
× (5.7)

×
[
(|x|2 + t2)−

d+1
8 + (|x|2 + t2)−

d+2
16

]
e−

1
4 (|x|2+t2)1/2

dt ≤
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≤ C2

[
|x|− d+1

4 + |x|− d+2
8

]
e−

|x|
4

∫ ∞

0

e−(λ−b− 1
4 )t tr−

3
4

(
t−

3d
4 + t−

3d
8

)
dt,

where C2 is a positive constant. Choosing µ = b + 1
2 , the assumptions insure the convergence of the last

integral. It follows that L ∈ L2(Rd), ∀d ≥ 2.
The integral operator 1ΩT is Hilbert-Schmidt, since

‖1ΩT‖I2 =
[∫

Rd

∫

Rd

|1Ω(x)L(x− y)|2dxdy
]1/2

= ‖L‖L2(Rd)|Ω|1/2. (5.8)

The conclusion of the Proposition follows from (5.6), (5.8) and Theorem 2.13 from [53].

Corollary 5.2. Under the assumptions of Proposition 5.1, for any m ≥ 2r0 there exists C > 0 such that
for any Ω ⊂ Rd open and bounded, we have 1Ω(H + λ)−m1Ω ∈ I1 and

‖1Ω(H + λ)−m1Ω‖I1 ≤ C|Ω|. (5.9)

Proof. We choose r ≥ r0, s ≥ r0, r + s = m. Then

‖1Ω(H + λ)−m1Ω‖I1 ≤ ‖1Ω(H + λ)−r‖I2‖(H + λ)−s1Ω‖I2 ,

and we use Proposition 5.1 to conclude.

Corollary 5.3. Let f ∈ L∞(R), suppf ⊂ (−∞, a], a ∈ R. Under the assumptions of Proposition 5.1,
∃C > 0 such that for any Ω ⊂ Rd open and bounded we have 1Ωf(H)1Ω ∈ I1 and

‖1Ωf(H)1Ω‖I1 ≤ C|Ω|. (5.10)

Proof. We use the equality

1Ωf(H)1Ω = 1Ω(H + λ)−r(H + λ)2rf(H)(H + λ)−r1Ω, r ≥ r0

and Proposition 5.1, taking into account the fact that H, being lower semi-bounded, satisfies

(H + λ)2rf(H) ∈ B[L2(Rd)].

6 The operator HΩ

We assume (i) and (ii) for a while; let H = H(A;V ) be the operator constructed in Section 4. Let Ω be an
open subset of Rn and Ωc its complement. For n ∈ N, n ≥ 1, we set Hn := H+n1Ωc , which is a self-adjoint
operator on L2(Rd) with domain D(Hn) = D(H). The associated quadratic form

hn(u, v) := h(u, v) + n(1Ωcu,1Ωcv), u, v ∈ D(hn) = D(h) (6.1)

is symmetric, lower semi-bounded and closed. We also have h ≤ hn ≤ hn+1, ∀n ≥ 1.
We are going to identify L2(Ω) with the closed subspace of L2(Rd) whose elements are null on Ωc. The

operator 1Ω will be the orthogonal projection of L2(Rd) on L2(Ω).
To the monotone sequence of forms {hn}n≥1 defined by (6.1) one assigns the form hΩ defined on

D(hΩ) := {u ∈ ∩n≥1D(hn) | sup
n≥1

hn(u, u) <∞} = D(h) ∩ L2(Ω) (6.2)

by the equality
hΩ(u, v) = lim

n→∞
hn(u, v) = h(u, v), u, v ∈ D(hΩ). (6.3)
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The form hΩ is not densely defined but, by Theorem 4.1 from [33], it is lower bounded and closed, defining a
unique pseudo-self-adjoint operator HΩ on L2(Rd); we have D(HΩ) ⊂ L2(Ω), HD(HΩ) ⊂ L2(Rd) and HΩ,
considered as an operator in L2(Ω), is self-adjoint. In addition, limn→∞Hn = HΩ in strong resolvent sense.
We denote by CH(R) the set of functions f : [mf ,∞) → R, where mf < inf σ(H) (maybe depending on f),
f continuous and limt→∞ f(t) = 0. Since inf σ(Hn) and inf σ(HΩ) are smaller or equal than inf σ(H), one
can define for any f ∈ CH(R) the operators

f(Hn), f(HΩ) ∈ B [
L2(Rd)

]
.

The second one is defined as follows: f(HΩ)|L2(Ω) is the operator from B
[
L2(Ω)

]
associated to HΩ (seen

as a self-adjoint operator in L2(Ω)) by the usual functional calculus, while f(HΩ) = 0 on L2(Ω)⊥. Then we
have limn→∞ f(Hn) = f(HΩ) for the strong convergence in B

[
L2(Rd)

]
. We have

f(HΩ) = 1Ωf(HΩ) = f(HΩ)1Ω. (6.4)

In particular, the properties above are checked for the function

f(t) = (t+ λ)−1, λ > − inf σ(H),

defined on a neighborhood of σ(H). Then

f(H) = (H + λ)−1, f(HΩ) = (HΩ + λ)−1.

Lemma 6.1. If we assume (i) and (ii), for any Ω ⊂ Rd open bounded set, the operator HΩ has compact
resolvent.

Proof. It will be enough to show that any M ⊂ D(HΩ), bounded for the graph norm defined by HΩ, is
relatively compact in L2(Ω). The set M will be bounded in D(hΩ), thus also bounded in L2(Ω) and D(h).
Hence the set MA := (HA + 1)1/2M is bounded in L2(Rd) and M = (HA + 1)−1/2MA.

Let
χ ∈ C∞0 (Rd), 0 ≤ χ ≤ 1, χ = 1 in a neighborhood of Ω.

By (3.11) one has
|χ(HA + 1)−1/2f | ≤ χ(H0 + 1)−1/2|f |, ∀f ∈ L2(Rd). (6.5)

Since
R(H0 + 1)−1/2 = H1/2(Rd),

the operator χ(H0 + 1)−1/2 is compact on L2(Rd). By Pitt’s Theorem [30] and by (6.5), the operator
χ(HA + 1)−1/2 is also compact on L2(Rd). Since χM = M , the set M is relatively compact in L2(Ω).

Proposition 6.2. We assume that (i) and (ii’) are verified. For any λ ≥ λ0, r ≥ r0 (λ0 and r0 as in
Proposition 5.1), there is a constant C > 0 such that for any open subsets U,Ω of Rd such that U ∩ Ω is
bounded we have 1U (HΩ + λ)−r ∈ I2 and the next inequality holds:

‖1U (HΩ + λ)−r‖I2 ≤ C|U ∩ Ω|1/2. (6.6)

Proof. By using the inequality (5.2) for Hn and the fact that

s− lim
n→∞

(Hn + λ)−r = (HΩ + λ)−r,

one obtains that

|(HΩ + λ)−rf | ≤ 1
Γ(r)

∫ ∞

0

tr−1e−λte−tH(0;−V−)|f |dt, ∀f ∈ L2(Rd).

The proof is completed in the same way as for Proposition 5.1, since

1U (HΩ + λ)−r = 1U1Ω(HΩ + λ)−r = 1U∩Ω(HΩ + λ)−r.
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Corollary 6.3. Under the assumptions of Proposition 6.2, for any m ≥ 2r0, ∃C > 0 such that for any
Ω ⊂ Rd bounded and open one has (HΩ + λ)−m ∈ I1 and

‖ (HΩ + λ)−m ‖I1≤ C|Ω|. (6.7)

Proof. We use the identity

(HΩ + λ)−m = 1Ω(HΩ + λ)−r(HΩ + λ)−s1Ω,

where
r ≥ r0, s ≥ r0, r + s = m,

as well as Proposition 6.2 with U = Ω.

Corollary 6.4. Let f ∈ C0(R). Under the assumptions of Proposition 6.2, there exists a constant C > 0
such that for any Ω ⊂ Rd open and bounded, we have f(HΩ) ∈ I1 and

‖ f(HΩ) ‖I1≤ C|Ω|. (6.8)

Proof. For any g ∈ CH(R), since s − limn→∞ g(Hn) = g(HΩ), one obtains for each Ω ⊂ Rd open set, the
inequality

‖ g(HΩ) ‖B[L2(Rd)]≤ sup
R
|g|. (6.9)

We choose
g(t) := (t+ λ)mf(t), where m ≥ 2r0, λ ≥ λ0, −λ /∈ suppf.

Then
g ∈ CH(R), −λ /∈ suppg and f(t) = (t+ λ)−mg(t), ∀t ∈ R.

It follows that
f(HΩ) = (HΩ + λ)−mg(HΩ),

so (6.8) is a consequence of (6.7) and (6.9).

7 Proof of Theorem 1.1

Lemma 7.1. We assume (i) and (ii’). Let λ > − inf σ(H), Ω ⊂ Rd an open bounded set and ϕ ∈
BC∞(Rd), ϕ = 1 on Ωc. Then one has

(H + λ)−1 − (HΩ + λ)−1 =
[
(H + λ)−1 − (HΩ + λ)−1

] [
ϕ+ [H,ϕ](HΩ + λ)−1

]
= (7.1)

=
[
ϕ− (H + λ)−1[H,ϕ]

] [
(H + λ)−1 − (HΩ + λ)−1

]
.

Proof. The function ϕ verifies the assumptions of Proposition 4.5, so the operator of multiplication by ϕ
leaves D(H) invariant and [H,ϕ] ∈ B[L2(Rd)]. Using (4.14) for Hn and the equality

[Hn, ϕ] = [H,ϕ], ∀n ≥ 1,

where Hn := H + n1Ωc , we deduce that

(H + λ)−1 − (Hn + λ)−1 = (H + λ)−1n1Ωc · ϕ(Hn + λ)−1 =

= (H + λ)−1n1Ωc(Hn + λ)−1ϕ+ (H + λ)−1n1Ωc(Hn + λ)−1[H,ϕ](Hn + λ)−1 =

=
[
(H + λ)−1 − (Hn + λ)−1

]
[ϕ+ [H,ϕ] (Hn + λ)−1].

The first equality in (7.1) follows from the formula above in the limit n → ∞, taking into account the
relation

s− lim
n→∞

(Hn + λ)−1 = (HΩ + λ)−1

and the fact that the sequence {(Hn + λ)−1}n≥1 is bounded in B[L2(Rd)].
The second equality in (7.1) follows in the same way.
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The next Proposition is basic for proving Theorem 1.1

Proposition 7.2. We assume again (i) and (ii’). For any λ ≥ λ0 and m ∈ N, m ≥ 4r0 (λ0 and r0 as in
Proposition 5.1), there exists C > 0 such that for any bounded open subset Ω of Rd

‖1Ω(H + λ)−m1Ω − (HΩ + λ)−m‖I1 ≤ C|Ω|1/2|Ω̃|1/2, (7.2)

where Ω̃ := {x ∈ Rd | dist(x, ∂Ω) < 1}.
Proof. We use (6.4) and infer that

1Ω(H+λ)−m1Ω−(HΩ+λ)−m =
∑

0≤j≤m−1

1Ω(H+λ)j−m+1
[
(H + λ)−1 − (HΩ + λ)−1

]
(HΩ+λ)−j1Ω. (7.3)

We denote by Ej the general term of the sum. Let Ω ⊂ Rd bounded and open. By taking the convolution of
the characteristic function of a neighborhood of Ωc by a function from C∞0 (Rd) with the support included
in a small neighborhood of the origin, one constructs a real function ϕ ∈ BC∞(Rd) such that 0 ≤ ϕ ≤ 1,
ϕ = 1 on Ωc, ϕ = 0 on Ω \ Ω̃ and such that ‖∂αϕ‖L2(Rd) ≤ Cα, ∀α ∈ Nd, with Cα independent of Ω.

We estimate first the I1-norm of Ej for 2r0 ≤ j ≤ m− 1. We use the first equality form (7.1) and write
Ej = E′j + E′′j , where E′j and E′′j correspond to the two terms of the sum ϕ+ [H,ϕ]. We have

‖E′j‖I1 = ‖1Ω(H + λ)j−m+1
[
(H + λ)−1 − (HΩ + λ)−1

]
ϕ(HΩ + λ)−j1Ω‖I1 ≤

≤ ‖1Ω(H + λ)j−m+1
[
(H + λ)−1 − (HΩ + λ)−1

] ‖B[L2(Ω)]‖1U (H + λ)−j/2‖I2‖(HΩ + λ)−j/21Ω‖I2 ,

where U := Ωc ∪ Ω̃. Using (6.9) and Proposition 6.2 we get

‖E′j‖I1 ≤ C1|Ω̃|1/2|Ω|1/2 (7.4)

for some positive constant C1, independent of Ω. To estimate the I1 norm of E′′j , we write it as

E′′j =
∑

1≤|α|≤d+1

E′′j,α + E′′j,0,

where the terms E′′j,α and E′′j,0 correspond to the decomposition of [H,ϕ] in the second of the inequalities
(4.13). Using Propositions 4.5 and 6.2 we obtain inequalities, in which the constants are independent of Ω:

‖E′′j,α‖I1 = ‖1Ω(H + λ)j−m+1
[
(H + λ)−1 − (HΩ + λ)−1

]
S′α(∂αϕ)(HΩ + λ)−j−11Ω‖I1 ≤

≤ ‖1Ω(H + λ)j−m+1
[
(H + λ)−1 − (HΩ + λ)−1

]
S′α(∂αϕ)‖B[L2(Rd)] ·

·‖1eΩ(HΩ + λ)−j/2‖I2 ‖(HΩ + λ)−j/2−11Ω‖I2 ≤
≤ C ′|Ω̃|1/2|Ω|1/2, 1 ≤ |α| ≤ d+ 1

and
‖E′′j,0‖I1 = ‖1Ω(H + λ)j−m+1

[
(H + λ)−1 − (HΩ + λ)−1

]
T ′(HΩ + λ)−j−11Ω‖I1 ≤

≤ ‖1Ω(H + λ)j−m+1
[
(H + λ)−1 − (HΩ + λ)−1

] ‖B[L2(Rd)] ‖T ′‖I2‖(HΩ + λ)−j−11Ω‖I2 ≤
≤ C ′′|Ω̃|1/2|Ω|1/2.

Thus we have
‖E′′j ‖I1 ≤ C2|Ω̃|1/2|Ω|1/2. (7.5)

Taking (7.4) into account we get

‖Ej‖I1 ≤ C|Ω|1/2|Ω̃|1/2, 2r0 ≤ j ≤ m− 1, (7.6)
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for some constant C > 0 independent of Ω.
Let us assume now that 0 ≤ j ≤ 2r0− 1; then m− j − 1 ≥ 2r0. We use now the second equality in (7.1)

to write Ej = Ẽ′j + Ẽ′′j where, as before, Ẽ′j and Ẽ′′j correspond to the two terms in the sum ϕ + [H,ϕ].
The I1-norm of Ẽ′′j is estimated as above, writing

Ẽ′′j =
∑

1≤|α|≤d+1

Ẽ′′j,α + Ẽ′′j,0,

where the terms Ẽ′′j,α and Ẽ′′j,0 correspond to the decomposition of [H,ϕ] in the first equality in (4.13). By
(6.9) and Propositions 4.5 and 5.1, we get for Ω- independent constants

‖Ẽ′′j,α‖I1 = ‖1Ω(H + λ)j−m(∂αϕ)Sα

[
(H + λ)−1 − (HΩ + λ)−1

]
(HΩ + λ)−j1Ω‖I1 ≤

B[L2(Rd)] ≤ ‖1Ω(H + λ)
j−m

2 ‖I2 ‖(H + λ)
j−m

2 1eΩ‖I2 ×
×‖(∂αϕ)Sα

[
(H + λ)−1 − (HΩ + λ)−1

]
(HΩ + λ)−j1Ω‖B[L2(Rd)] ≤

≤ C ′|Ω|1/2|Ω̃|1/2, 1 ≤ |α| ≤ d+ 1

and
‖Ẽ′′j,0‖I1 = ‖1Ω(H + λ)j−mT

[
(H + λ)−1 − (HΩ + λ)−1

]
(HΩ + λ)−j1Ω‖I1 ≤

≤ ‖1Ω(H + λ)j−m‖I2 ‖T‖I2‖
[
(H + λ)−1 − (HΩ + λ)−1

]
(HΩ + λ)−j1Ω‖B[L2(Rd)] ≤

≤ C ′′|Ω|1/2|Ω̃|1/2.

So we have
‖Ẽ′′j ‖I1 ≤ C|Ω|1/2|Ω̃|1/2. (7.7)

To estimate the I1-norm of Ẽ′j , we introduce another auxiliary real function

ψ ∈ C∞0 (Rd), 0 ≤ ψ ≤ 1, suppψ ⊂ Ω ∪ Ω̃, ψ = 1 in a neighborhood of Ω,

such that for any α ∈ Nd one has ‖∂αψ‖L∞(Rd) ≤ Cα, with Cα independent of Ω. We have

‖Ẽ′j‖I1 = ‖1Ω(H + λ)j−m+1 ϕ[(H + λ)−1 − (HΩ + λ)−1](HΩ + λ)−j1Ω‖I1 ≤

≤ C‖1Ω(H + λ)j−m+1 ϕ(H + λ)−1ψ‖I1 + C‖1Ω(H + λ)j−m+1ϕψ‖I1 ,

where we used the fact that ψ1Ω = 1Ω and we denoted by C various constants independent of Ω.
Since supp (ϕψ) ⊂ Ω̃, using Proposition 5.1 as above, we get

‖1Ω(H + λ)j−m+1 ϕψ‖I1 ≤ C|Ω|1/2|Ω̃|1/2. (7.8)

For the last term that has to be estimated we use Proposition 4.5 and write

ϕ(H + λ)−1 = (H + λ)−1ϕ−
∑

1≤|α|≤d+1

(H + λ)−1(∂αϕ)Sα(H + λ)−1 − (H + λ)−1T (H + λ)−1.

One gets immediately the inequalities

‖1Ω(H + λ)j−m ϕψ‖I1 ≤ C|Ω|1/2|Ω̃|1/2,

‖1Ω(H + λ)j−m (∂αϕ)Sα(H + λ)−1ψ‖I1 ≤ C|Ω|1/2|Ω̃|1/2

and
‖1Ω(H + λ)j−m T (H + λ)−1ψ‖I1 ≤ C|Ω|1/2|Ω̃|1/2,
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which gives
‖1Ω(H + λ)j−m+1 ϕ(H + λ)−1ψ‖I1 ≤ C|Ω|1/2|Ω̃|1/2. (7.9)

From (7.8) and (7.9) we obtain
‖Ẽ′j‖I1 ≤ C|Ω|1/2|Ω̃|1/2 (7.10)

which, together with (7.7), implies the inequality

‖Ej‖I1 ≤ C|Ω|1/2|Ω̃|1/2, 0 ≤ j ≤ 2r0 + 1. (7.11)

The relation (7.2) follows from (7.3), (7.6) and (7.11).

Theorem 1.1 is a direct consequence of the next Proposition:

Proposition 7.3. Now we assume that the hypothesis (i), (ii’), (iii) and (iv) are fulfilled. Then for any
f ∈ C0(R) and ε > 0, there exists m0 ∈ N∗ such that

|tr[1Ωf(H)1Ω]− trf(HΩ)| ≤ ε|Ω| (7.12)

for any Ω ∈ F with B(0,m0) ⊂ Ω.

Proof. One uses ideas of [10] (see also [20]). Let λ0 and r0 the constants from Proposition 5.1. We set
a := λ0 + 1, m0 := 4r0. It will be enough to prove (7.12) for the real functions f ∈ C0(R) such that
supp f ⊂ [−a+ 1

2 ,∞). The functions
[
−a+

1
2
,∞

)
3 t 7→ (a+ t)m0f(t) ∈ R

and
[0, 2] 3 τ 7→ τ−m0f(τ−1 − a) ∈ R

are continuous. For any ε > 0 there is a polynomial Pε with real coefficients such that
∣∣τ−m0f(τ−1 − a)− Pε(τ)

∣∣ ≤ ε, ∀ τ ∈ [0, 2].

Therefore ∣∣∣∣(a+ t)m0f(t)− Pε

(
1

a+ t

)∣∣∣∣ ≤ ε, ∀ t ≥ −a+
1
2
.

Let

Qε(t) := (a+ t)−m0Pε

(
1

a+ t

)
.

Then in form-sense
−ε(a+H)−m0 ≤ f(H)−Qε(H) ≤ ε(a+H)−m0 ,

so
−ε1Ω(a+H)−m01Ω ≤ 1Ωf(H)1Ω − 1ΩQε(H)1Ω ≤ ε1Ω(a+H)−m01Ω, Ω ∈ F .

Using Corollaries 5.2 and 5.3 we obtain

|tr[1Ωf(H)1Ω]− tr[1ΩQε(H)1Ω]| ≤ ε tr[1Ω(a+H)−m01Ω] ≤ C1 ε |Ω|, (7.13)

where C1 is a constant independent on ε and Ω ∈ F .
In the same way, using Corollaries 6.3 and 6.4, one shows that for some constant C2, independent on ε

and Ω ∈ F , one has
|trf(Ω)− trQε(HΩ)| ≤ ε tr(a+HΩ)−m0 ≤ C2 ε |Ω|. (7.14)

Inequality (7.12) follows from (7.13), (7.14), (7.2) and hypothesis (iv).
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8 Proof of Theorem 1.2

Let us suppose that (i), (ii’), (iii), (iv) and (v) are verified. Since the proof of Theorem 1.2 is very close to
that of Theorem 1.6 from [20], we shall not indicate all the details.

Let us notice first that the hypothesis (i) and (v), the proofs of Proposition 5.1 and Corollary 5.2 from
[20] show that there exists a constant magnetic field

B0 =
1
2

∑

1≤j,k≤d

B0
jkdxj ∧ dxk, B0

jk = −B0
kj ∈ R

and a vector potential
A(p) =

∑

1≤j≤d

A
(p)
j dxj ,

where the components A(p)
j belong to C∞pol(Rd) and are Γ-periodic, such that B−B0 = dA(p). Since B0 = dA0

with
A0 =

∑

1≤j≤d

A0
jdxj , A0

j (x) =
1
2

∑

1≤k≤d

B0
kjxk,

we have B = d(A(p) + A0), so, by Proposition 4.6, we will assume in the sequel that the vector potential
defining the magnetic field B is A := A(p) +A0.

For γ ∈ Γ we define the function ϕγ : Rd → R,

ϕγ(x) :=
∑

1≤j≤d

A0
j (γ)xj =

1
2

∑

1≤j,k≤d

B0
kjγkxj

(so dϕγ = A0(γ)) and the unitary operators of multiplication with eiϕγ on L2(Rd) denoted by Uγ . Let us
put (Lγu) (x) := u(x− γ) and Tγ := UγLγ . The operators Tγ are the magnetic translations [37].

Lemma 8.1. Let us suppose that (i), (ii’) and (v) are verified. Then the operator H = H(A;V ) constructed
in Section 4 commutes with Tγ , i.e.

HTγ = TγH, ∀ γ ∈ Γ. (8.1)

Proof. By Proposition 4.6, we have H(A;V )Uγ = UγH(A− dϕγ ;V ). So we only need to show that

LγH(A;V ) = H(A− dϕγ ;V )Lγ , ∀ γ ∈ Γ. (8.2)

Since
ΓA(x− γ, y − γ) = ΓA(x, y)−A0(γ) = ΓA−dϕγ (x, y), x, y ∈ Rd,

it follows that for any a ∈ Sm(Rd), Γ-periodic in x, and for any w ∈ S(Rd), we have

LγOpA(a)w = OpA−dϕγ (a)(Lγw). (8.3)

Let u ∈ D(H(A;V )), so u ∈ D(h(A;V )) and OpA(p)u + V u ∈ L2(Rd) with p(ξ) :=< ξ > −1. From (8.3)
we have [

OpA−dϕγ (p)
]
(Lγu) + V (Lγu) = Lγ

[
OpA(p)u+ V u

]
∈ L2(Rd). (8.4)

Let us show that Lγu ∈ D(h(A− dϕγ ;V )). Obviously Lγu ∈ D(qV+
). From (2.2) it follows that

w ∈ D(HA) if and only if Lγw ∈ D(HA) = D(HA−dϕγ ).

From (8.3) we deduce that LγHAL
−1
γ = HA−dϕγ , so LγH

1/2
A L−1

γ = H
1/2
A−dϕγ

. It follows that Lγ [D(hA)] =
D(hA−dϕγ ), so Lγu ∈ D(hA−dϕγ ) and then

Lγu ∈ D [h(A− dϕγ ;V )] .

From Corollary 4.4 and equality (8.4) we get Lγu ∈ D [H(A− dϕγ ;V )] as well as (8.2).
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The family {Tγ}γ∈Γ satisfies
TαTβ = e−iϕβ(α)Tα+β , α, β ∈ Γ,

so it doesn’t form a group. However, using [1] as a model (cf. also [20]), one can define a Γ-trace for a class
of operators on B(L2(Rd)) commuting with the magnetic translations Tγ .

Definition 8.2. An operator S ∈ B(L2(Rd)) belongs to IΓ
1 if TγS = STγ , ∀ γ ∈ Γ and if for every

ϕ,ψ ∈ L∞comp(Rd) one has ϕSψ ∈ I1.

One can show that for all ϕ,ϕ′, ψ, ψ′ ∈ L∞comp(Rd) such that

∑

γ∈Γ

Lγ(ϕψ) =
∑

γ∈Γ

Lγ(ϕ′ψ′) = 1, ∀S ∈ I1,

we have the equality tr(ϕSψ) = tr(ϕ′Sψ′). This justifies

Definition 8.3. Let S ∈ IΓ
1 . We call Γ-trace of S the expression

trΓS := tr(ϕSψ),

where ϕ,ψ ∈ L∞comp(Rd) and
∑
γ∈Γ

Lγ(ϕψ) = 1.

One can prove (see [20])

Lemma 8.4. Let S = S∗ ∈ IΓ
1 . Then KS, the integral kernel of S, is a locally integrable function on

Rd × Rd, its restriction to the diagonal of Rd × Rd is well-defined and locally integrable and one has

trΓS =
∫

F

KS(x, x)dx, (8.5)

where F is a fundamental domain of Rd with respect to Γ.

From Corollary 5.3 and Lemma 8.1 it follows that for any f ∈ C0(R) one has f(H) ∈ IΓ
1 . From Lemma

8.4 we know that the restriction to the diagonal of integral kernel Kf(H) exists as a locally integrable
function. Then for any Ω ∈ F one has

tr(1Ωf(H)1Ω) =
∫

Ω

Kf(H)(x, x)dx. (8.6)

By the proof of Theorem 1.6 in [20] we get

lim
Ω→Rd,Ω∈F

1
|Ω|

∫

Ω

Kf(H)(x, x)dx =
1
|F |

∫

F

Kf(H)(x, x)dx. (8.7)

Then (1.9) follows from (8.6), (8.7) and (8.5).
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