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Analytical Model for Comb Capacitance Fringe
Fields

Hanno Hammer

Abstract—Analytical expressions for electric potential and elec-
tric fringe fields in regions above the fingers of MEMS (Micro-
Electro-Mechanical-System) comb capacitances are derived using
potential-theoretic methods. The formulae are valid for 1) a comb
geometry exhibiting a large number of identical fingers and 2) a
finger geometry where the gap between fingers is small compared
to height of fingers and finger overlap. For these conditions, sym-
metries inherent to the comb geometry can be exploited fruitfully
to set up a properly defined Dirichlet problem formulation for
the potential which can be solved for explicitly, yielding a series
expansion for electrostatic potential and electric field components.
The accuracy of approximated analytical solutions, obtained by
truncating the series expansions to contain only a finite number
of terms, is compared with results obtained from Finite Element
simulations of electrostatic potential and electric field. From the
analytic result, an approximation to the levitation force acting
on the upper finger surfaces is derived. A formula expressing the
mean length of fringe electric field lines emanating from upper
finger surfaces into the ambient space is presented.

Index Terms—Comb capacitance, electric field, fringe field, in-
plane interdigitated comb drive, levitation effect, length of electric
field lines.

I. INTRODUCTION

ELECTROSTATIC comb capacitances are some of the
most ubiquitous components used in microelectrome-

chanical (MEMS) devices containing movable mechanical
structures for either electrostatic actuation or capacitive sens-
ing. Comb capacitances essentially exist in two varieties: (1) as
in-plane interdigitated combs, often featuring symmetrically
shaped fingers on both the static and movable part; or (2) as
out-of-plane capacitance intended to generate torsional mo-
tions of the movable comb part out of the plane of the static
part [1], [2]. Mixed designs have also been suggested in the
literature [3]. The in-plane interdigitated form is extremely
popular as a comb drive and can be used to sustain application-
specific stationary drive modes of movable components of
the MEMS [4], [5], by loading the comb capacitance with
typically sinusoidally varying driving voltages. Other appli-
cations include sensing of in-plane lateral distances between
components, long-range actuation [3], [6]–[8], microoptics [9]
and nanophotonics [10].

One of the predominant aspects of in-plane interdigitated
comb drives is the (approximate) linearity of the capacitance
over a wide range of displacement, as long as the fingers
remain engaged, resulting in an electrostatic drive force al-
most independent of (lateral) displacement. In this paper we
shall be dealing with electric fields on in-plane interdigitated
comb drives, in the regime where fingers are deeply engaged;
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referring to Fig. 1 this means that the overlap region s will
be assumed to be much larger than finger width w and finger-
to-finger gap d. If, in addition, the finger height h is assumed
to be (a few times) larger than w and d, the electric field E1

between opposite side walls of the fingers can be approximated
by standard plate capacitor formulas. On the other hand, the
fingers are also sources for electric fringe fields E2 originating
from the finger tips, and fringe fields E3 emanating from the
upper and lower finger surfaces, see Fig. 1. Fringe fields E3 are
the main topic of this paper. Our goal is to provide analytical
formulae for E3 when fingers are deeply engaged. We aim to
work to within a degree of simplification and approximation
which is comparable to the way the electric field in the interior
of a standard plate capacitance is derived.

One motivation for such an investigation could be the
desire to quickly evaluate the electrostatic forces acting on
the movable part of a comb drive in out-of-plane direction
when the fringe fields E3 below the fingers have a distorted
geometry compared to the fields E3 extending from the upper
finger surfaces, or simply become negligible compared to the
latter. This situation can occur when a conducting plate or
“shield” is placed underneath the comb drive and is loaded
with a well-defined voltage; the associated asymmetry in upper
and lower fringe fields E3 then gives rise to a resulting out-
of-plane or “levitation” force which can pull the movable
comb part away from the shield [11]. In order to evaluate the
impact of the levitation forces it is desirable to have reasonably
simple analytical expressions for the electric fringe fields E3

at hand. The objective of this paper is to derive such simple
expressions using methods from Potential Theory, and utilizing
approximations which will arise from the assumptions stated
in the next section.

Previous efforts to analytically determine the electric field
ambient to a comb capacitance must be mentioned duly:
In [12], electrostatic forces in a comb drive with and with-
out grounded plane underneath have been computed via the
principle of virtual work and conformal mapping techniques.
The two cases of engaged/disengaged fingers were treated
separately, employing approximations based on the assumption
that finger width w, gap d and height h be small compared to
either the finger overlap s (engaged case) or finger separation
(comb parts disengaged). Since the two solutions did not match
in the transition region, a linear fit between them had to be
provided. – Analytic solutions to electrostatic forces acting in
an asymmetric comb drive have been derived in [1], using a
potential-theoretical starting point similar to the one given in
this paper inasmuch as a reduction of the field geometry to
two dimensions was carried out. Results were then derived
based on the assumption that the width w of comb fingers is
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Fig. 1. l: finger length. s: finger overlap. w: finger width. d: finger-
finger gap. h: comb height. – Electric fields: Only field lines emanating from
movable comb parts are shown. E1: Field emanating from side walls; E2:
field emanating from finger front faces; E3: field emanating from upper and
lower finger faces. – Triad: Coordinate axes used in computations below.

infinitely small. – The levitation force as a fringe field effect
has been thoroughly investigated in [11], where the physical
reason for levitation was correctly identified as the asymmetric
field geometry due to the presence of a voltage-biased shield
underneath the moving fingers; the theoretical treatment of
the levitation force has been restricted to a phenomenological
formula which was then confirmed experimentally. – In [3],
electrostatic forces in a laterally driven comb drive actuator
were investigated; the idea of solving Laplace’s equation for
the electric potential by means of the method of “separation
of variables” [13]–[15] was mentioned there but not carried
out; the actual field geometry was then determined via Finite
Element (FEM) methods.

Our own treatment of fringe fields E3 makes no effort at
being completely rigorous, if that is possible at all. Instead,
we focus on a narrow but well-defined case of practical en-
gineering interest, as follows: We analytically compute fringe
fields E3 for the case of a comb capacitance consisting of
a stationary and a movable comb part from both of which
interleaving fingers are protruding, as shown in Fig. 1. We
consider the case of engaged fingers only. It will be assumed
that finger width w and finger-to-finger gap d are small
compared to both overlap distance s and finger length l. In
contrast to [12] we make no assumption that the height h of
fingers is small; on the contrary, it will be assumed that fingers
have a high aspect ratio, i.e., h is several times the magnitude
of both w and d. In contrast to [1] we do take into account a
finite width w of the fingers. The plan of the paper then is as
follows:

II. WORKING ASSUMPTIONS. PLAN OF THE PAPER

In this paper we wish to determine the upper E3 fringe field
on a comb capacitance extending into the domain y ≥ 0 above
the fingers, with no conducting surfaces, such as a shield, in
the neighbourhood. The fringe field E3 will be determined
from the electrostatic potential which arises as a solution to an
appropriately defined Dirichlet problem. In order to formulate

a simple Dirichlet problem we shall make use of the following
assumptions:

(A1) The gap d between adjacent fingers shall be small
compared to overlap, d� s;

(A2) the number N of fingers on the combs shall be large,
N � 1; and

(A3) the gap d between adjacent fingers shall be small
compared to finger height, d� h.

The plan of the paper is then as follows: In section III we
explain how assumptions A1–A3 can be utilized to determine
an appropriate domain for a Dirichlet formulation of the
electric potential. We demonstrate how symmetries inherent to
a problem with many fingers (A2) can be used to determine
boundary conditions for the potential on the domain boundary
without explicit knowledge of the potential. In section IV we
indicate the main steps to solve for the potential and represent
the solutions for potential and electric field as infinite series.
Section V introduces the truncated version of these series,
involving only a finite number of terms. In section VI we
compare the series representing potential and electric field
components with the results from FEM simulations, discuss
discrepancies between the two and address limitations of the
approximations made to derive the analytical potential. In
section VII we use the analytical result to determine a first
approximation to the levitation force that acts on the upper
surfaces of movable fingers when a voltage-loaded shield is
placed underneath the comb capacitance. In section VIII, this
result is used to derive a mean length of electric field lines
for the upper E3 fringe field. Finally, in appendix A we
investigate convergence of the series for potential and electric
field components and, in the course it, identify singular points
in the physics of the problem.

III. ELECTROSTATIC POTENTIAL AS A SOLUTION TO A
DIRICHLET PROBLEM

We work in the coordinate system as picturized in Figs. 1, 2:
The coordinate origin is placed such that the width w of a
movable finger extends over the interval −w/2 ≤ x ≤ w/2;
the upper surface of this finger is located at y = 0; and the
coordinate origin is located in the centre of the finger overlap
region such that the latter covers the range −s/2 ≤ z ≤ s/2.

As stated in the introduction, we shall determine the upper
electric fringe field E3 as the (negative) gradient of the
electrostatic potential Φ(x, y, z) in a domain contained in the
half-space y ≥ 0, i.e. the region above the comb fingers. The
domain will be kept as simple as possible by utilizing approx-
imate symmetries obeyed by the potential when conditions
A1–A3 are assumed to hold, and will be specified in detail
below. In its fullest generality, the potential is a solution to
the Poisson equation [13]–[15]

∆Φ = − ρ

ε0εr
, (1)

where ∆ = ∂2
x+∂2

y +∂2
z is the Laplace operator, ρ = ρ(x, y, z)

is the charge density, ε0 is the electric permittivity of vacuum
and εr is the relative permittivity of the field-carrying domain.
In the specified domain y ≥ 0, no charges are present, hence
ρ = 0. Furthermore we assume that the domain is filled with
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Fig. 2. Cross-section at z = 0 through the domain D in which the
electrostatic potential Φ is to be solved for. – Vst: Potential on static finger.
Vm: Potential on movable finger.

vacuum so that εr = 1. The potential is uniquely determined
only if boundary conditions are supplied: We can either
prescribe potential (Dirichlet boundary conditions), electric
field (von Neumann b.c.), or mixed boundary conditions on
the domain boundary. We shall now argue that the potential
is most easily solved for within a Dirichlet formulation of the
problem.

When the gap d is small compared to overlap s (A1), the
fringe field along the upper surface y = 0 will vary weakly
with z, as long as z takes values within the interior of the range
−s/2 < z < s/2; only near the boundaries z = ±s/2 will
there be significant deviations from the field geometry within.
We thus have approximate z-symmetry of the potential and
hence can approximate the fringe field by its geometry at the
centre plane z = 0. This implies for the potential that

Φ(x, y, z) = Φ(x, y) . (2)

We have thus reduced the problem to two dimensions only.
In the absence of other conducting bodies the potential is

defined only up to an arbitrary constant, or, put in another
way, only the potential difference Φ0 = Vm−Vst is physically
relevant (Vm, Vst is the potential on moving/static fingers). We
can therefore redefine the potentials according to

Vm → Φ0/2 ,

Vst → −Φ0/2 ,
(3)

without changing the physics of the problem. Furthermore, a
large number N of fingers (A2) implies the following “swap
symmetry”: the physics of the problem must be invariant under
translations along x by ±(w + d), followed by swapping
potentials, Vst → Vm, Vm → Vst. The symmetry inherent
in A2 together with swap symmetry and (3) then imply that
the potential must satisfy

Φ
(
x± (w + d), y

)
= −Φ

(
x, y

)
. (4)

Due to this symmetry we need to solve (1) only within the
domain D defined by the interval x = −(w + d)/2 to x =
+(w + d)/2 and 0 ≤ y < +∞. An xy cross-section through
the domain D at z = 0 is picturized in Fig. 2.

To fully specify the Dirichlet problem we now must prede-
termine the values the potential takes at the boundary of D. It
is intuitively clear – and can be easily derived from (4) – that
the surfaces x = ±w+d

2 are potential surfaces where Φ = 0,

Φ
(
±w + d

2
, y

)
= 0 . (5)

Next, since there are no charges placed at y → +∞, the
potential must be constant there; hence, by continuity with
Φ(x = ±w+d

2 , y →∞) we must have that

lim
y→∞

Φ(x, y) = 0 . (6)

On the opposite boundary, the potential at y = 0 is equal to

Φ(x, 0) = Φ0/2 , for − w

2
≤ x ≤ w

2
, (7)

i.e., within the upper finger area.
Finally we need to prescribe values for the potential at

height y = 0 but within the gap, i.e. for w
2 ≤ x ≤ w+d

2

and −w+d
2 ≤ x ≤ −w

2 . It is here where we need assumption
A3: When the gap d is small compared to the height h of
the fingers, the geometry of the electric field within the gap,
e.g. for w

2 ≤ x ≤ w+d
2 at y = 0, should closely resemble

the homogeneous field seen in the interior of a large plate
capacitance, i.e., featuring only an x component which is equal
in magnitude to the potential difference divided by the gap
size, Φ0/d. This suggests that, on the surface y = 0 within the
gap, the potential varies approximately linearly with x between
its extreme value Φ0/2 on the upper surface of the movable
finger and Φ = 0 in the middle of the gap, at x = ±w+d

2 .
Hence the last boundary condition on Φ will be taken to be

Φ(x, 0) =


Φ0
2 , −w

2 ≤ x ≤ w
2

−Φ0
d x + Φ0

2

(
1 + w

d

)
, w

2 ≤ x ≤ w+d
2

Φ(−x, 0) , −w+d
2 ≤ x ≤ −w

2

.

(8)

IV. SOLUTION TO THE FULLY SPECIFIED DIRICHLET
PROBLEM

We have now fully specified the (two-dimensional) potential
Φ(x, y) along the boundaries of the domain D introduced in
section III. Since there are no charges in the interior of this
domain it is seen from eq. (1) that we are left to solve the
two-dimensional Laplace equation

∆Φ(x, y) =
(

∂2

∂x2
+

∂2

∂y2

)
Φ(x, y) = 0 (9)

in D, subject to boundary conditions (5, 6, 8). The rectangular
geometry of the problem suggests a factorized trial solution

Φ(x, y) = Φ1(x)Φ2(y) . (10)

As expounded in all standard texts on the solution of Laplace’s
equation, eq. (9) then implies that Φ1,Φ2 obey

∂2Φ1

∂x2
= cΦ1 , (11a)

∂2Φ2

∂y2
= −cΦ2 , (11b)
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where c is an as yet arbitrary real constant. From (11a) we
see that candidates for Φ1 are trigonometric and/or hyperbolic
sines and cosines. Our choice of coordinate system is such as
to make the potential symmetric, Φ(x) = Φ(−x), hence only
trigonometric or hyperbolic cosines are eligible. Since (5) must
hold, hyperbolic cosines must be discarded. Thus, functions
Φ1 will be trigonometric cosines cos ax, where a is chosen so
as to make Φ1 vanish at x = ±w+d

2 . This gives

Φ1,k(x) = cos (akx) ,

ak = (2k + 1)
π

w + d
, k ∈ N0 .

(12)

Functions Φ2 then must satisfy eq. (11b) with c = −a2 neg-
ative. That leaves only hyperbolic functions or, equivalently,
basis functions exp(±ay) for Φ2. The positive sign is not
applicable as we cannot satisfy boundary condition (6) with
this choice. Thus, the base function Φ2,k associated with a
given choice of ak is

Φ2,k(y) = e−aky , (13)

and a solution of (9) satisfying the first two boundary condi-
tions (5, 6) is given by

Φk(x, y) = Ak cos (akx) e−aky , (14)

with as yet unspecified real coefficient Ak. By linearity of
Laplace’s equation, the full solution is a superposition

Φ(x, y) =
∞∑

k=0

Ak cos (akx) e−aky (15)

of terms (14) with Ak chosen so as to satisfy the last boundary
condition

Φ(x, 0) =
∞∑

k=0

Ak cos (akx) , (16)

where boundary values Φ(x, 0) are specified in (8). It is seen
that Ak are the coefficients of Φ(x, 0) in a Fourier cosine
expansion on the domain −w+d

2 ≤ x ≤ w+d
2 . They can

therefore be determined using standard methods from Fourier
Analysis, resulting in

Ak =
4Φ0

d (w + d) a2
k

cos
(
ak

w

2

)
=

=
4Φ0

π2 (2k + 1)2
w + d

d
cos

[
(2k + 1)

π

2
w

w + d

]
.

(17)

This determines the potential as

Φ(x, y) =
∞∑

k=0

4Φ0

π2 (2k + 1)2
w + d

d
×

× cos
[
(2k + 1)

π

2
w

w + d

]
cos

[
(2k + 1)

πx

w + d

]
×

× exp
[
− (2k + 1)

πy

w + d

]
.

(18)
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Fig. 3. Potential surfaces (solid -) and electric field lines (dashed ··) of the
truncated analytical potential eq. (20), in the region −2 ≤ x ≤ 2 µm and
0 ≤ y ≤ 3 µm, for N = 10, finger width w = 2 µm, finger gap d = 2 µm,
and potential drop Φ0 = 3.6 V. Labels indicate potential values at the given
potential surface. The finger ranges between x = ±1 µm. Close to the finger
surface, at y = 0, the potential approaches +Φ0/2 = 1.8 V.

The components of electric field strength are given by

Ex = −∂Φ
∂x

=
∞∑

k=0

Akak sin
(
akx

)
e−aky , (19a)

Ey = −∂Φ
∂y

=
∞∑

k=0

Akak cos
(
akx

)
e−aky . (19b)

V. FINITE SERIES TRUNCATION OF THE POTENTIAL

In practise we will ever only deal with a truncation of the
infinite series (18), containing only a finite number N + 1 of
terms,

Φ(x, y) =
N∑

k=0

Ak cos (akx) e−aky . (20)

As will be shown in the next chapter, the accuracy of a
truncation involving only few (≈ 3-4) terms is still very
acceptable in regions located not too close to charged surfaces,
and mostly deteriorates in the neighbourhood of the finger
edges at x = ±w

2 .
In Fig. 3 we plot potential surfaces and electric field lines

of (20), truncated at N = 10, with finger width w = 2 µm,
finger gap d = 2 µm, and potential drop Φ0 = 3.6 V between
static and movable comb.

VI. COMPARISON OF ANALYTICAL MODEL WITH FEM
SIMULATIONS

In this section we present results from electrostatic FEM
simulations of the comb capacitance which will be compared
with the truncated analytical model (20). It will be demon-
strated that, in general, the truncated series provides good
accuracy, except for regions close to the edges of the fingers.

In Figs. 4–6 we compare the potential, horizontal electric
field component Ex, and vertical electric field component Ey

obtained from a FEM analysis with the respective quantities
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Fig. 4. Plot of potential Φ(x, y) versus x over the whole x-range of the
domain D, at height y = 0.1 µm above finger. Dashed: FEM simulation
with spatial resolution of 0.2 µm. Dot-dashed: Analytical model truncated at
N = 10. Circles: Analytical model truncated at N = 3.
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Fig. 5. Plot of horizontal electric field component Ex versus x over the
whole x-range of the domain D, at height y = 0.1 µm above finger. Dashed:
FEM simulation with spatial resolution of 0.2 µm. Dot-dashed: Analytical
model truncated at N = 10. Circles: Analytical model truncated at N = 3.

derived from truncated formula (20) and the truncated versions
of 19a, 19b, for N = 3 and N = 10. The reported quantities
refer to a path parallel to the upper finger surface, extending
along the x-direction over the whole range −2 ≤ x ≤ 2 µm
of the Dirichlet domain, and located at y = 0.1 µm above
the surface. The path constitutes the x-axis on the plots. The
FEM model has a spatial resolution of ≈ 0.2 µm, i.e., potential
values are reported at spatial intervals of 0.2 µm and then
linearly interpolated to produce a continuous plot.

Within the range of the upper finger surface |x| ≤ 1, the
analytical model coincides with simulation quite satisfactorily,
even for small values of N , and irrespective of the location
above the finger surface. On the other hand, within the gap,
i.e., for w/2 ≤ |x| ≤ (w + d)/2, the analytical values for
the electric potential are higher than the simulated ones. This
results in a different slope of the analytical potential with
respect to x, and hence analytical Ex slightly differs from
the simulated one. We think that the reason lies with (8):
Amongst all boundary conditions, this one involves the most
severe approximation to the real situation, or, to put it another
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Fig. 6. Plot of vertical electric field component Ey versus x over the whole
x-range of the domain D, at height y = 0.1 µm above finger. Dashed: FEM
simulation with spatial resolution of 0.2 µm. Dot-dashed: Analytical model
truncated at N = 10. Circles: Analytical model truncated at N = 3.

way: the real potential at the upper rim of the gap region does
deviate from the strictly linear behaviour that was assumed
in (8). This may be confirmed by direct visual inspection of,
e.g., Fig. 4 where the FEM result shows a slight deviation
(towards lower values) of the potential variation from linear
decrease.

VII. FRINGE FIELDS AND LEVITATION FORCES

In a real MEMS sensor, various reasons may make it
necessary to situate the combs above a conducting plate which
is kept on the same potential as, say, the movable part of the
comb capacitance and which may be called “shield” in what
follows. As a consequence, the fringe field geometry E3 is
no longer symmetric above and below the comb: For, field
lines ending on the bottom surface of the static fingers will
originate both from the bottom of the movable fingers and
from the shield, whereas field lines extending from the top
surfaces of the movable fingers upwards will mostly end on
adjacent static fingers, see Fig. 7. The resulting asymmetry in
E3-field geometry creates an imbalance in electrostatic forces
acting on the surface charges of the movable comb part along
the y direction. For the voltage load as described, namely,
shield potential = movable comb potential, this resulting force
is always directed upwards (along positive y) and hence is
appropriately called levitation force [11].

We are mostly interested in the case where the shield is
placed so narrowly underneath the comb that most of the
electric flux terminating on the lower surfaces of the static
fingers comes from the shield. This means that there is
negligible electric flux emanating from the lower surface of
the movable fingers, and hence the lower E3 fringe field on
the movable finger is basically zero. In this case, the levitation
force on the movable finger is generated by the upper E3

fringe field only. We now derive the levitation force under
this approximation:

The forces on fingers arise from electric fields acting on the
surface charges accumulating on the finger surfaces. Thus, the
vertical force component Fy acting on the upper surface of a
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Fig. 7. Cross section through comb fingers, with shield underneath. Middle
finger: movable, is kept on same potential Vm as shield. Outer fingers: static,
are kept on potential Vst. Grey arrows: Electric fields E3, and E1 (within
gap). As there is no potential difference between movable finger and shield,
fringe field E3 is strong on upper face of movable finger but weak on lower
face. This imbalance generates levitation force. – ny : Unit vector normal to
upper finger surface. Shown is a small rectangular box with face area δA and
infinitesimal height, for determination of surface charges via Gauß’ law.

movable finger is given by

Fy =
∫

S

dA σEy , (21)

where S = sw is the total area of the upper surface of the
movable finger within the overlap region, σ is the surface
charge density on the finger, and Ey is obtained from (19b).
The surface charge density can be determined from the vertical
component Ey of the fringe electric field E3 as follows: We
integrate Gauß’ law

∇ •D = ρ (22)

over a shallow “pillbox”-shaped volume with infinitesimal
height δh and “small” area δA, which intersects the upper
surface of the movable finger as seen in Fig. 7, and use Gauß’
theorem. This gives∮

S

dA n •D =
∫

V (S)

dV ρ = δQ , (23)

where S is the boundary of the pillbox, V (S) is its volume,
and δQ is the total charge contained in it. Inside the conductor
the displacement field is zero (as well as the electric field).
The only nonvanishing component is therefore the normal
component

ny •D = Dy = ε0Ey (24)

on the outer surface of the conductor, where in the last
equation we have made use of the fact that the space ambient
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Fig. 8. Electrostatic “levitation” force from upper fringe field E3 per unit
overlap, in nano-Newton per µm, for three different finger widths w = 1, 2, 7
µm, with gap d varying between 0.5 and 4 µm.

to the fingers is filled with vacuum, hence D = ε0E there.
The last two equations say that

ε0EyδA = δQ . (25)

On the other hand, the total charge contained in the “pillbox”
is equal to

δQ = σδA , (26)

thus eqs. (25, 26) imply that

σ(x) = ε0Ey(x, 0) . (27)

Combining the last result with (21) we obtain for the levitation
force per finger

Fy =
∫ w/2

x=−w/2

dx

∫ s/2

z=−s/2

dz σ Ey =

= sε0

∫ w/2

−w/2

dx E2
y(x, 0) .

(28)

On inserting truncated formula (19b) into (28) and perform-
ing the x-integration we obtain

Fy =
swε0

2

Ntrunc∑
k,l=0

AkAlakal×

×
{

H
(
(ak + al)

w

2

)
+ H

(
(ak − al)

w

2

)}
,

H(x) =
sinx

x
.

(29)

Since, in our approximation, the levitation force is proportional
to overlap, it makes sense to compare the force Fy/s per unit
overlap s versus variable gap d and/or finger width w. This
is done in Fig. 8 for finger widths w = 1, 2, 7 µm, and gap d
varying between 0.5 and 4 µm.

VIII. MEAN LENGTH OF FRINGE FIELD LINES

We can use formula (29) to derive a mean length of field
lines for fringe fields E3 on the upper finger surfaces, by
comparing (29) with the force acting on a plate capacitance.
The force on one plate of a plate capacitance with area A, gap
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Fig. 9. Mean length of upper E3 fringe field lines δ [µm] between adjacent
fingers, vs. d, for 0 ≤ d ≤ 30 µm. It is seen that δ has two quasi-linear
regimes connected at d ≈ 8.

d, voltage load Φ0, absolute value of total charge on one plate
Q, and interior electric field strength E is

F = Q
E

2
= ε0

AΦ2
0

2d2
. (30)

Eq. (29) can now be put in a similar form,

Fy = ε0
swΦ2

0

2δ2
, (31)

where sw is the upper area of one finger, being the equivalent
of the plate area in a plate capacitance; and

δ =
d√

G
(

d
w

) =
d√
G(p)

, p ≡ d

w
> 0

G(p) ≡
(

4
π

)2 ∞∑
k,l=0

cos
(
(2k + 1)π

2
1

1+p

)
2k + 1

×

×
cos

(
(2l + 1)π

2
1

1+p

)
2l + 1

×

×
{

H
( π

1 + p
(k + l + 1)

)
+ H

( π

1 + p
(k − l)

)}
.

(32)
It is seen that δ represents an effective gap size, or, equiv-

alently, a mean length of upper E3 fringe field lines starting
at the moving finger and ending – half left, half right – on
the upper surfaces of adjacent static fingers, as in Fig. 1. For
a finger width w = 2 µm we vary the gap d between 0 and
30 µm and plot δ(d) versus d in Fig. 9. It is seen that this
function basically has two linear regimes meeting at d ≈ 8.

IX. SUMMARY

Electrostatic fringe fields emanating from the upper surfaces
of movable comb fingers have been introduced within the
context of MEMS comb capacitances. Three assumptions on
comb geometry have been introduced by means of which the
problem of determining the electrostatic potential associated
with E3 fringe fields could be solved within an appropriately

defined Dirichlet domain. It was shown that, using symmetries
inherent to the comb geometry, a simple problem domain could
be introduced such that boundary values for the potential were
found without explicit knowledge of the potential. The fully
specified Dirichlet problem then could be solved for explicitly.
The accuracy of analytical results has been compared with
results from FEM simulations of potentials and field strength
components. It has been demonstrated that, apart from edge
regions, even series truncations involving only very few terms
compare very well with the FEM simulation results. Analytic
results for vertical electric field components on the upper
finger surfaces were used to derive the electrostatic force
acting on these faces. It was argued that, in the presence of
a conducting surface closely underneath the combs which is
loaded with the same potential as the movable fingers, this
force could be used as a first approximation for estimating
the full levitation force on the movable comb parts. From the
same result we derived a mean length of fringe electric field
lines, pertaining to the E3 field emanating from the upper
finger surfaces. – In the appendix, convergence properties
of the series for potentials and electric field components are
discussed. It is demonstrated that, in the interior of the domain,
the series for potential and electric field components converge
in the absolute sense. At the singular points defined by
finger edges, the series for horizontal electric field component
converges towards the mean value of left and right limit of the
real physical field strength there, as is to be expected from a
Fourier-like series, while the series for the vertical component
apparently diverges, in line with physical intuition of electric
fields in edge regions.

APPENDIX
DISCUSSION OF CONVERGENCE AND SINGULAR POINTS

The series (18) for the potential converges everywhere in
the absolute sense. This can be seen as follows: The modulus
of each term in the series can be estimated upwards according
to ∣∣∣∣∣ 4Φ0

π2 (2k + 1)2
w + d

d
× cos

[
(2k + 1)

π

2
w

w + d

]
×

× cos
[
(2k + 1)

π

w + d
x

]
exp

[
− (2k + 1)

πy

w + d

] ∣∣∣∣∣ ≤
≤ 4Φ0

π2 (2k + 1)2
w + d

d
,

(33)
where we have replaced | cos | and the exponential by one.
The series that can be built from the remaining term in the
last row is proportional to

∞∑
k=0

1
(2k + 1)2

<
∞∑

n=1

1
n2

=
π2

6
, (34)

and hence converges in the absolute sense. Thus, the series
made from terms given in the first row of (33) converges,
which implies that (9) converges in the absolute sense, and
independently of the values of x, y within the domain D.
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For the field strength the situation is more complicated. For
y > 0 the exponential in the series expansions (19) guarantees
absolute convergence: For, let

q ≡ exp
(
− 2πy

w + d

)
< 1 for y > 0 , (35)

then (19a) may be written in the form

Ex =
4Φ0

dπ
exp

(
− πy

w + d

)
×

×
∞∑

k=0

1
2k + 1

cos
(
ak

w

2

)
sin (akx)× qk .

(36)

To obtain Ey we only need to replace sin(akx) by cos(akx) in
the last formula. But the series on the right-hand side of (36)
converges in the absolute sense, since∣∣∣∣ 1

2k + 1
cos

(
ak

w

2

)
sin (akx)× qk

∣∣∣∣ ≤ 1
2k + 1

qk < qk ,

(37)
and thus has the geometric series

∞∑
k=0

qk =
1

1− q
(38)

as a majorant, which converges due to q < 1. Thus, series (19)
converge in the absolute sense whenever y > 0.

At y = 0 the convergence-enforcing property of the expo-
nential term no longer exists; the series (19) then converge
except for the two singular points at x = ±w

2 , but not in the
sense of absolute convergence. At the singular points, the field
strengths behave like this:

The actual, physical x-component of the field strength is
not defined at (±w

2 , 0). However, there exist the left and right
limits

lim
ε→0

Ex

(w

2
− ε, 0

)
= 0 ,

lim
ε→0

Ex

(w

2
+ ε, 0

)
=

Φ0

d

(39)

at the right edge (w
2 , 0), with similar expressions for the left

edge. The series (19a) at this point then exhibits the well-
known behaviour of Fourier series to converge at disconti-
nuities towards the mean value of the left and right limit
of the function at this point. Indeed, for Φ0 = 3.6 V and
d = 2 µm, the x-component of the field strength inside the
gap is approximately equal to Φ0/d = 1.8, but, as numerical
tests confirm, the series (19a) converges towards a value of 0.9,
i.e., the mean value of the two expressions in (39).

The y-component Ey of the electric field strength at the sin-
gular points (±w

2 , 0) is also not well-defined. The series (19b)
at (w

2 , 0) is equal to

Ey

(w

2
, 0

)
=

4Φ0

dπ

∞∑
k=0

cos2
(
ak

w
2

)
2k + 1

, (40)

which we suspect to diverge. This is confirmed by numerical
summations of the last formula. It is also in line with physical
intuition: At the edge region the electric field should not be
well-defined due to the infinite curvature radius of the edge;
but it were so, if both series in (19) would converge properly
there.
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