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Abstract

Let (T, H) be a weak Weyl representation of the canonical commutation relation
(CCR) with one degree of freedom. Namely 7' is a symmetric operator and H is a
self-adjoint operator on a complex Hilbert space H satisfying the weak Weyl relation:
For all t € R (the set of real numbers), e~ D(T) c D(T) (i is the imaginary unit
and D(T) denotes the domain of T') and Te "y = e #H (T + t)2p, ¥Vt € R, Vo €
D(T). In the context of quantum theory where H is a Hamiltonian, T is called
a strong time operator of H. In this paper we prove the following theorem on
uniqueness of weak Weyl representations: Let H be separable. Assume that H
is bounded below with g9 := info(H) and o(T) = {z € C|Imz > 0}, where C
is the set of complex numbers and, for a linear operator A on a Hilbert space,
o(A) denotes the spectrum of A. Then (T, H) (T is the closure of T) is unitarily
equivalent to a direct sum of the weak Weyl representation (—p,, i,¢e,,+) on the
Hilbert space L?((gg,o0)), where gz, + is the multiplication operator by the variable
A € (g0,00) and pg, 4 := —id/dX with D(d/d)\) = C5°((€0,00)). Using this theorem,
we construct a Weyl representation of the CCR from the weak Weyl representation
(T, H).
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1 Introduction and Main Results

A pair (T, H) of a symmetric operator T and a self-adjoint operator H on a complex
Hilbert space H is called a weak Weyl representation of the canonical commutation relation
(CCR) with one degree of freedom if it obeys the weak Weyl relation: For all t € R (the
set of real numbers), e”*# D(T) C D(T) (i is the imaginary unit and D(T) denotes the
domain of T') and

Te "y = e ™ (T + ), ¥Vt € R,Vop € D(T). (1.1)

This type of representations of the CCR was first discussed by Schmiidgen [13, 14] from
a purely operator theoretical point of view and then by Miyamoto [8] in application to a
theory of time operator in quantum theory. In the context of quantum theory where H
is a Hamiltonian, T" is called a strong time operator of H [3, 5]. A recent development
on weak Weyl representations is found in [6]. Moreover a generalization of a weak Weyl
relation was presented by the present author [2] to cover a wider range of applications to
quantum physics including quantum field theory.

It is easy to see that, if (T, H) is a weak Weyl representation, then so are (T, H) and
(=T, —H), where T denotes the closure of T

In this paper we are concerned with the problem on uniqueness of weak Weyl rep-
resentations. Before stating the main results on this problem, however, we need some
preliminaries.

We denote by W(H) the set of all the weak Weyl representations on JH:

W(H) :={(T,H)|(T, H) is a weak Weyl representation on H}. (1.2)

For a linear operator A on a Hilbert space, 0(A) (resp. p(A)) denotes the spectrum (resp.

the resolvent set) of A (if A is closable, then 0(A) = 0(A)). Let C be the set of complex
numbers and

II, :={z € C|llmz >0}, II_:={ze€ C|lmz < 0}. (1.3)
In the previous paper [4], we proved the following facts:

Theorem 1.1 [4] Let (T, H) € W(H). Then:
(i) If H is bounded below, then either o(T) =11, (the closure of 1) or o(T) = C.
(i) If H is bounded above, then either o(T) = II_ or o(T) = C.
(111) If H is bounded, then o(T) = C.

This theorem has to be taken into account in considering the uniqueness problem of weak
Weyl representations.

A form of representations of the CCR stronger than weak Weyl representations is
known as a Weyl representation of the CCR which is a pair (T, H) of self-adjoint operators
on H obeying the Weyl relation

et = emselsl il =yt s € R. (1.4)



It is well known (the von Neumann uniqueness theorem [9]) that, every Weyl representa-
tion on a separable Hilbert space is unitarily equivalent to a direct sum of the Schrodinger
representation (¢q,p) on L*(R), where ¢ is the multiplication operator by the variable
x € R and p = —iD, with D, being the generalized differential operator in z (cf. [3,
§3.5], [10, Theorem 4.3.1], [11, Theorem VIII.14]).

It is easy to see that a Weyl representation is a weak Weyl representation (but the
converse is not true). Therefore, as far as the Hilbert space under consideration is sep-
arable, the non-trivial case for the uniqueness problem of weak Weyl representations is
the one where they are not Weyl representations. A general class of such weak Weyl
representations (7, H) are given in the case where H is semi-bounded (bounded below or
bounded above). In this case, T is not essentially self-adjoint [2, Theorem 2.8], implying
Theorem 1.1.

Two simple examples in this class are constructed as follows:

Example 1.1 Let a € R and consider the Hilbert space L*(R}) with R} := (a,00). Let
a+ be the multiplication operator on L?(R]) by the variable A € R}

Dlas)i= {1 € PRDI [ R1FO0Pa < o0}, (1.5)
Gorf =N, [€D(@s) (1.6)

and p
Da+ = —ia (1.7)

with D(pa+) = C§°(RF), the set of infinitely differentiable functions on R} with bounded
support in RF. Then it is easy to see that g, is self-adjoint, bounded below with
0(qa+) = [a,00) and p,_ is a symmetric operator. Moreover, (—p,.+,qa.+) is a weak Weyl
representation of the CCR. Hence, as remarked above, (=P, ,¢a,+) also is a weak Weyl
representation.

Note that p, 1 is not essentially self-adjoint and

o(—pus) = o(~Pay) = IL,. (L8)

In particular, +p, , are maximal symmetric, i.e., they have no non-trivial symmetric
extensions (e.g., [12, §X.1, Corollary]).

Example 1.2 Let b € R and consider the Hilbert space L?*(R, ) with R, := (—o0,b).
Let ¢, be the multiplication operator on L*(R; ) by the variable A € R, . and

d

Do 1= _iﬁ (1.9)

with D(py—) = C°(R, ). Then ¢ is self-adjoint, bounded above with o (g, —) = (—o0, 0],
Pb,— 1s a symmetric operator, and (—ps,—, ¢ —) is a weak Weyl representation of the CCR.
As in the case of p, 4, pp,— is not essentially self-adjoint and

o(—py_) =TI_. (1.10)
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A relation between (—pq 4, @a+) and (—pp_, o) is given as follows. Let Uy : L*(R])
— L?*(R;) be a linear operator defined by

(Uaf)A) = fla+b—=2), feLl*’R), aeleR;.
Then Uy, is unitary and
Uaan,JrUa_b1 =a+b—q_, Uag,pa,JrUa_b1 = —pp—. (1.11)

In view of the von Neumann uniqueness theorem for Weyl representations, the pair
(—=Part>a+) (resp. (=Py_, q,—) ) may be a reference pair in classifying weak Weyl repre-
sentations (7', H) with H being bounded below (resp. bounded above).

By Theorem 1.1, we can define two subsets of W(H):

W, (H) := {(T, H) € W(H)|H is bounded below and o(T) =11, }, (1.12)
W_(H) := {(T, H) € W(H)|H is bounded above and ¢(T) =II_}.  (1.13)

Then, as shown above, (—pa. +,¢a+) € Wi (L*(R})) and (—py—, g ) € W_(L*(R})).
The main results of the present paper are as follows:

Theorem 1.2 Let H be separable and (T, H) € W (H). Let ey :=inf o(H). Then there
exist mutually orthogonal closed subspaces Hy, £ = 1,--- N (N is a positive integer or

o0 ) such that the following (i)—(iii) hold:
(i) H = @fzvzlf}cf-
(i) The operators T and H are reduced by each H,.

(iii) For each {, there exists a unitary operator Uy : Hy — L*(RY) such that

€0

UTU; ' = ~D.,y, UHU" =g (1.14)

In particular
o(H) = [gg,00). (1.15)

Remark 1.1 It is known that, for every weak Weyl representation (7', H) € W(H) (H
is not necessarily separable), H is purely absolutely continuous [8, 13].

As a corollary of Theorem 1.2, we have the following result:

Theorem 1.3 Let H be separable and (T, H) € W_(H). Let b:=supo(H). Then there
exist mutually orthogonal closed subspaces Hy, £ = 1,--- N (N is a positive integer or

o0 ) such that the following (i)—(iii) hold:
(1) H = @évzlf}cf-

(i) The operators T and H are reduced by each H,.



(iii) For each (, there exists a unitary operator Vi : Hy — L*(R;) such that

ViTV, ' =-p,_, ViHV,'=gq,_. (1.16)

In particular
o(H) = (—o0,b]. (1.17)

Proof. As remarked in the second paragraph of this section, (=T, —H) € W (H) with
a :=info(—H) = —b and o(—T) = II,. Hence, we can apply Theorem 1.2 to conclude
that there exist mutually orthogonal closed subspaces H,, ¢ = 1,---, N (N is a positive
integer or oo) such that the following (i)—(iii) hold: (i) H = @& 3, ; (ii) The operators
—T and —H are reduced by each H, ; (iii) For each ¢, there exists a unitary operator
Uy : Hy — L*(R]) such that

UZTUgil - ﬁa’_;'_, UEHUgil = _Qa,+'
By Example 1.2, we have
Uab]_?a7+U(;bl = _]_)b,—7 Uaan,JrU(;bl = —Qp,—,

where we have used that a + b = 0. Hence, putting V, := U, U,, we obtain the desired
result. |

Remark 1.2 In view of Theorems 1.2 and 1.3, it would be interesting to know when
o(T) =11, (resp. II_) for (T, H) € W(H) with H bounded below (resp. above). Con-
cerning this problem, we have the following results [5]:

(i) Let (T, H) € W(H) and H be bounded below. Suppose that, for some 5y > 0,
Ran(e PHT) ( the range of e #HT) is dense in 3. Then o(T) = IL,.

(ii) Let (T, H) € W(H) and H be bounded above. Suppose that, for some 3, > 0,
Ran(e®HT) is dense in H. Then o(T) = II_.

2 Some Facts and Proof of Theorem 1.2

To prove Theorem 1.2, we first present some key facts.

Lemma 2.1 Let S be a closed symmetric operator on H such that o(S) = I1,. Then there
exists a unique strongly continuous one-parameter semi-group {Z(t)}i>0 whose generator
is 1S. Moreover, each Z(t) is an isometry:

Z(#)Z(t) =1, Vt>0. (2.1)

Proof. This fact is probably well known. But, for completeness, we give a proof. By
the assumption o(S) = I, we have o(iS) = {z € C|Rez < 0}. Therefore the positive



real axis (0, 00) is included in the resolvent set p(iS) of i.S. Since S is symmetric, it follows
that 1

1(iS — N7 < T A > 0.
Hence, by the Hille-Yosida theorem, S generates a strongly continuous one-parameter
semi-group {Z(t) }+>0 of contractions. For all ¢ € D(iS) = D(S), Z(t)y is in D(S) and
strongly differentiable in ¢ > 0 with

d
%Z(t)w =1SZ(t) = Z(t)iSy.
This equation and the symmetricity of S imply that ||Z(¢)¢]* = ||+||?,Vt > 0. Hence

(2.1) follows. ]

Lemma 2.2 Let (T, H) € W (H). Then there exists a unique strongly continuous one-
parameter semi-group {Ur(t) >0 whose generator is iT'. Moreover, each Up(t) is an

isometry and 4 o
Up(t)e ™7 = e~ =1 (t), t>0,s €R. (2.2)

Proof. We can apply Lemma 2.1 to S = T to conclude that iT generates a strongly

continuous one-parameter semi-group {Ur(t)}+>o of isometries on H. For all v € D(T)

and all ¢ > 0, Up(t)y is in D(T') and strongly differentiable in ¢t > 0 with

d p =
Let s € R be fixed and V (t) := e Up(t)e*". Then {V (t)},50 is a strongly continuous
one-parameter semi-group of isometries. Let 1) € D(T). Then e~*H4 € D(T) and

Te Hap — ¢ SHTy) + se~*Hyp,
Hence V (t)3 is in D(T) and strongly differentiable in ¢ with

d

EV(lt)q,zz =TV ().

This implies that V (t)y = Urp(t)y, vt € R. Since D(T) is dense, it follows that V(t) =
Ur(t),vt € R, implying (2.2). |

Let a € R be fixed. For each t > 0, we define a linear operator U,(t) on L*(R}) as
follows: For each f € L*(R]),

A>t+a

a< A<t+a (2:3)

winw={ 107"

Then it is easy to see that {U,(t)}:>o is a strongly continuous one-parameter semi-group
of isometries on L*(R%).

Lemma 2.3 The generator of {Ua(t)}i>0 s —iP, , -
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Proof. Let iA be the generator of {U,(t)}+>0. Then it follows from the isometry of
U,(t) that A is a closed symmetric operator. It is easy to see that —p, C A and hence
—Pa+ C A. As already remarked in Example 1.1, —p, , is maximal symmetric. Hence
A= P, .. N

We recall a result of Bracci and Picasso [7]. Let {U(a)}a>0 and {V(5)}ger be a
strongly continuous one-parameter semi-group and a strongly continuous one-parameter
unitary group on H respectively, satisfying

Ul@)U(a) =1, «a>0, (2.4)

U()V(B) = eV (B)U(a), a>0,6¢cR. (2.5)

Then, by the Stone theorem, there exists a unique self-adjoint operator P on H such that
V(B)=eP"  BeR. (2.6)

Lemma 2.4 [7] Let H be separable. Suppose that P is bounded below with v := inf o(P).
Then there exist mutually orthogonal closed subspaces Hyy € = 1,---, N (N is a positive
integer or o) such that the following (i)-(iit) hold:

(i) H= @112\[:1%!-

(ii) For all « > 0 and B € R, the operators U(a) and V(3) leave H, invariant for
all ¢ € N.

(iii) For each {, there exists a unitary operator Sy : Hy, — L*(R}) such that

SV (B)S;t =e Pt B ER, .
SU(a)S; ' =U,(a), a>0. (2.8)

Remark 2.1 This lemma is not the original form of a result in the paper [7], since they
consider the case where the x-algebra W, generated by {U(«a),V(B)|la > 0,5 € R} is
irreducible. But, if the Hilbert space under consideration is separable, then it is easy
to see that the representation of W, is decomposed into a direct sum of irreducible
representations of it. In this way, Lemma 2.4 follows from a result in [7, §VII].

We denote the generator of {U(«)}a>0 by iQ. It follows that @ is closed and symmet-
ric.

Lemma 2.5 Let Hy, Sy and v be as in Lemma 2.4. Then P and Q) are reduced by each
H, and

Sﬁpsz_l = Qu+; (29)

S:QS; = P, (2.10)
In particular

o(P) = [v,00). (2.11)

Proof. Lemma 2.4-(ii) and (2.7) imply (2.9). Simlarly (2.10) follows from Lemma
2.4-(ii), (2.8) and Lemma 2.3. ]



Proof of Theorem 1.2

By Lemma 2.2, we can apply Lemma 2.4 to the case where V(3) = e % 3 € R and
U(a) = Ur(a),a > 0. Then the desired results follow from Lemmas 2.4 and 2.5.

3 Examples

Example 3.1 Let R: = {x = (21, --,zq4)|z; € R,j = 1,---,d}. We denote by g, the
j-th position operator on L?(R%) (the multiplication operator by the j-th variable z;) and
pj := —iD; the j-th momentum operator, where D, is the generalized partial differential
operator in z;. The free Hamiltonian for a non-relativistic quantum particle with mass
M > 0 is given by

Hy:=——7—A
0 I )

where A := Z;.lzl D? is the generalized Laplacian on L*(R%). It is well known that Hy

is a nonnegative self-adjoint operator on L?(R¢) and absolutely continuous with o(Hy) =
[0, 00).
We denote by F : L*(R%) — L*(R{) the Fourier transform:

TNI) = o [ S0, [ € LR

in the L? sense. Let
M; = {k = (ki,- -, k) € R{|k; # 0} C R{

For each j =1,---,d, we define

M - _
T = S (apy " + 07'ay)
with D(T/P) := F1Cg°(M). It is easy to see that (TP, Hy) is a weak Weyl representa-
tion of the CCR [2, 8]. The operator TJAB is called the Aharonov-Bohm time operator [1].
In the previous paper [5], we proved that o(T2®) = II,.. Hence (TP, Hy) € W (L*(R2)).
Note that inf o(Hy) = 0. Thus we can apply Theorem 1.2 to conclude that (T?B,HO)

is unitarily equivalent to a direct sum of the weak Weyl representation (—py ,,qo,+) on
L?((0,00)).

Example 3.2 (A relativistic time operator [2]) The free Hamiltonian for a relativistic
quantum particle with mass m > 0 and spin 0 is given by

H.:=V—-A+m2

acting in L2(R%). For each j = 1,---,d, we define

Ti* = = (Hwap; '¢; + 4p;  Hrel)

N | —
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with D(T7!) := F'C°(M). As is shown in [2], (T}, Hya1) is a weak Weyl representtion.
Moreover o(TF!) =TI, [4]. Hence (T3, Hya) € W (L*(RY)). Note that inf o(Hyer) = m.
Thus we can apply Theorem 1.2 to conclude that (T;el, Hy) is unitarily equivalent to a
direct sum of the weak Weyl representation (—p,, 4, ¢m+) on L*((m,00)).

4 Construction of a Weyl representation from a weak
Weyl representation

In the previous paper [6], a general structure was found to construct a Weyl representation
from a weak Weyl representation. Here we recall it.

Theorem 4.1 [6, Corollary 2.6] Let (T, H) be a weak Weyl representation on a Hilbert
space H. Then the operator
L :=log|H| (4.1)

1s well-defined, self-adjoint and the operator
1 —
D = §(TH + HT) (4.2)

is a symmetric operator. Moreover, if D is essentially self-adjoint, then (D, L) is a Weyl
representation of the CCR and o(|H|) = [0, 00).

To apply this theorem, we need a lemma.

Lemma 4.2 Leta € R and

1

dg = _§(pa,+Qa,+ + qa,+pa,+) (4-3)

acting in L*(R}). Then d, is essentially self-adjoint if and only if a < 0.

Proof. Let a > 0. Then the function u on R} defined by u()\) = 1/A*2 X\ > a is in
C>(RS)NLA(R}) with Au/(X) = —(3/2)u()). In the present case, we have D(p, 1+ qa+) =
C*(RF) = D(pa+). Hence D(d,) = CP(RF). It follows that, for all f € D(d,),
(u,(dy —4)f)y = 0. This implies that u € ker(d} + i) and hence ker(d} + i) # {0}.
Therefore d, is not essentially self-adjoint. Thus, if d, is essentially self-adjoint, then
a<0.

Conversely, let a < 0 and v € ker(d}+1i). Then, for all f € C*(R}), (v, (d, —i)f) = 0.
This implies the distribution equation ADyv(\) = —(3/2)v(A\) on Rf. Hence v()\) =
c1/|A\|?/? for a.e. A € R} with a constant ¢;. Since v is in L2(R}), it follows that ¢; = 0
and hence v = 0. Thus ker(d + i) = {0}.

Next, let w € ker(d} —i). Then, in the same way as in the preceding case, we have
w(\) = c|\|V/? with a constant c,. Since w is in L?(RY), it follows that ¢, = 0 and hence
w = 0. Thus ker(df — i) = {0}. By a general criterion on essential self-adjointness, we
conclude that d, is essentially self-adjoint. 1

Now we can prove the following theorem.
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Theorem 4.3 Let H be separable and (T, H) € W (H) with e = info(H). Let L and
D be as in (4.1) and (4.2) respectively. Then:

(i) D is essentially self-adjoint if and only if g < 0.
(i) (D, L) is a Weyl representation of the CCR if and only if o < 0.
Proof. (i) By Theorem 1.2, D is unitarily equivalent to a direct sum of d.,. Hence, by
Lemma 4.2, D is essentially self-adjoint if and only if 9 < 0.
(ii) Let (D, L) be a Weyl representation of the CCR. This means that D is essentially
self-adjoint. Hence, by part (i), g9 < 0.

Conversely let ¢ < 0. Then, by part (i), D is essentially self-adjoint. Hence, by
Theorem 4.1, (D, L) is a Weyl representation of the CCR. |

Finally we remark on the case where (T, H) € W_(H):

Corollary 4.4 Let H be separable and (T, H) € W_(H) with p = supo(H). Let L and
D be as in (4.1) and (4.2) respectively. Then

(i) D is essentially self-adjoint if and only if pn > 0.
(i) (D, L) is a Weyl representation of the CCR if and only if > 0.

Proof. We have (=T, —H) € W, (H) with info(—H) = —pu. The operator D (resp.
L) for (=T, —H) is the same as that for (T, H). Hence the conclusions (i) and (ii) follow
from Theorem 4.3. ]
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