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Abstract

Let (T, H) be a weak Weyl representation of the canonical commutation relation
(CCR) with one degree of freedom. Namely T is a symmetric operator and H is a
self-adjoint operator on a complex Hilbert space H satisfying the weak Weyl relation:
For all t ∈ R (the set of real numbers), e−itHD(T ) ⊂ D(T ) (i is the imaginary unit
and D(T ) denotes the domain of T ) and Te−itHψ = e−itH(T + t)ψ, ∀t ∈ R,∀ψ ∈
D(T ). In the context of quantum theory where H is a Hamiltonian, T is called
a strong time operator of H. In this paper we prove the following theorem on
uniqueness of weak Weyl representations: Let H be separable. Assume that H
is bounded below with ε0 := inf σ(H) and σ(T ) = {z ∈ C|Im z ≥ 0}, where C
is the set of complex numbers and, for a linear operator A on a Hilbert space,
σ(A) denotes the spectrum of A. Then (T , H) (T is the closure of T ) is unitarily
equivalent to a direct sum of the weak Weyl representation (−pε0,+, qε0,+) on the
Hilbert space L2((ε0,∞)), where qε0,+ is the multiplication operator by the variable
λ ∈ (ε0,∞) and pε0,+ := −id/dλ with D(d/dλ) = C∞

0 ((ε0,∞)). Using this theorem,
we construct a Weyl representation of the CCR from the weak Weyl representation
(T , H).
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1 Introduction and Main Results

A pair (T, H) of a symmetric operator T and a self-adjoint operator H on a complex
Hilbert space H is called a weak Weyl representation of the canonical commutation relation
(CCR) with one degree of freedom if it obeys the weak Weyl relation: For all t ∈ R (the
set of real numbers), e−itHD(T ) ⊂ D(T ) (i is the imaginary unit and D(T ) denotes the
domain of T ) and

Te−itHψ = e−itH(T + t)ψ, ∀t ∈ R,∀ψ ∈ D(T ). (1.1)

This type of representations of the CCR was first discussed by Schmüdgen [13, 14] from
a purely operator theoretical point of view and then by Miyamoto [8] in application to a
theory of time operator in quantum theory. In the context of quantum theory where H
is a Hamiltonian, T is called a strong time operator of H [3, 5]. A recent development
on weak Weyl representations is found in [6]. Moreover a generalization of a weak Weyl
relation was presented by the present author [2] to cover a wider range of applications to
quantum physics including quantum field theory.

It is easy to see that, if (T, H) is a weak Weyl representation, then so are (T , H) and
(−T,−H), where T denotes the closure of T .

In this paper we are concerned with the problem on uniqueness of weak Weyl rep-
resentations. Before stating the main results on this problem, however, we need some
preliminaries.

We denote by W(H) the set of all the weak Weyl representations on H:

W(H) := {(T, H)|(T, H) is a weak Weyl representation on H}. (1.2)

For a linear operator A on a Hilbert space, σ(A) (resp. ρ(A)) denotes the spectrum (resp.
the resolvent set) of A (if A is closable, then σ(A) = σ(A)). Let C be the set of complex
numbers and

Π+ := {z ∈ C|Im z > 0}, Π− := {z ∈ C|Im z < 0}. (1.3)

In the previous paper [4], we proved the following facts:

Theorem 1.1 [4] Let (T, H) ∈ W(H). Then:

(i) If H is bounded below, then either σ(T ) = Π+ (the closure of Π+) or σ(T ) = C.

(ii) If H is bounded above, then either σ(T ) = Π− or σ(T ) = C.

(iii) If H is bounded, then σ(T ) = C.

This theorem has to be taken into account in considering the uniqueness problem of weak
Weyl representations.

A form of representations of the CCR stronger than weak Weyl representations is
known as a Weyl representation of the CCR which is a pair (T, H) of self-adjoint operators
on H obeying the Weyl relation

eitT eisH = e−itseisHeitT , ∀t,∀s ∈ R. (1.4)
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It is well known (the von Neumann uniqueness theorem [9]) that, every Weyl representa-
tion on a separable Hilbert space is unitarily equivalent to a direct sum of the Schrödinger
representation (q, p) on L2(R), where q is the multiplication operator by the variable
x ∈ R and p = −iDx with Dx being the generalized differential operator in x (cf. [3,
§3.5], [10, Theorem 4.3.1], [11, Theorem VIII.14]).

It is easy to see that a Weyl representation is a weak Weyl representation (but the
converse is not true). Therefore, as far as the Hilbert space under consideration is sep-
arable, the non-trivial case for the uniqueness problem of weak Weyl representations is
the one where they are not Weyl representations. A general class of such weak Weyl
representations (T, H) are given in the case where H is semi-bounded (bounded below or
bounded above). In this case, T is not essentially self-adjoint [2, Theorem 2.8], implying
Theorem 1.1.

Two simple examples in this class are constructed as follows:

Example 1.1 Let a ∈ R and consider the Hilbert space L2(R+
a ) with R+

a := (a,∞). Let
qa,+ be the multiplication operator on L2(R+

a ) by the variable λ ∈ R+
a :

D(qa,+) :=

{
f ∈ L2(R+

a )|
∫ ∞

a

λ2|f(λ)|2dλ < ∞
}

, (1.5)

qa,+f := λf, f ∈ D(qa,+) (1.6)

and

pa,+ := −i
d

dλ
(1.7)

with D(pa,+) = C∞
0 (R+

a ), the set of infinitely differentiable functions on R+
a with bounded

support in R+
a . Then it is easy to see that qa,+ is self-adjoint, bounded below with

σ(qa,+) = [a,∞) and pa,+ is a symmetric operator. Moreover, (−pa,+, qa,+) is a weak Weyl
representation of the CCR. Hence, as remarked above, (−pa,+, qa,+) also is a weak Weyl
representation.

Note that pa,+ is not essentially self-adjoint and

σ(−pa,+) = σ(−pa,+) = Π+. (1.8)

In particular, ±pa,+ are maximal symmetric, i.e., they have no non-trivial symmetric
extensions (e.g., [12, §X.1, Corollary]).

Example 1.2 Let b ∈ R and consider the Hilbert space L2(R−b ) with R−b := (−∞, b).
Let qb,− be the multiplication operator on L2(R−b ) by the variable λ ∈ R−b . and

pb,− := −i
d

dλ
(1.9)

with D(pb,−) = C∞
0 (R−b ). Then qb,− is self-adjoint, bounded above with σ(qb,−) = (−∞, b],

pb,− is a symmetric operator, and (−pb,−, qb,−) is a weak Weyl representation of the CCR.
As in the case of pa,+, pb,− is not essentially self-adjoint and

σ(−pb,−) = Π−. (1.10)
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A relation between (−pa,+, qa,+) and (−pb,−, qb,−) is given as follows. Let Uab : L2(R+
a )

→ L2(R−b ) be a linear operator defined by

(Uabf)(λ) := f(a + b− λ), f ∈ L2(R+
a ), a.e.λ ∈ R−b .

Then Uab is unitary and

Uabqa,+U−1
ab = a + b− qb,−, Uabpa,+U−1

ab = −pb,−. (1.11)

In view of the von Neumann uniqueness theorem for Weyl representations, the pair
(−pa,+, qa,+) (resp. (−pb,−, qb,−) ) may be a reference pair in classifying weak Weyl repre-
sentations (T, H) with H being bounded below (resp. bounded above).

By Theorem 1.1, we can define two subsets of W(H):

W+(H) := {(T, H) ∈ W(H)|H is bounded below and σ(T ) = Π+}, (1.12)

W−(H) := {(T, H) ∈ W(H)|H is bounded above and σ(T ) = Π−}. (1.13)

Then, as shown above, (−pa,+, qa,+) ∈ W+(L2(R+
a )) and (−pb,−, qb,−) ∈ W−(L2(R−b )).

The main results of the present paper are as follows:

Theorem 1.2 Let H be separable and (T, H) ∈ W+(H). Let ε0 := inf σ(H). Then there
exist mutually orthogonal closed subspaces H`, ` = 1, · · · , N (N is a positive integer or
∞) such that the following (i)–(iii) hold:

(i) H = ⊕N
`=1H`.

(ii) The operators T and H are reduced by each H`.

(iii) For each `, there exists a unitary operator U` : H` → L2(R+
ε0

) such that

U`TU−1
` = −pε0,+, U`HU−1

` = qε0,+. (1.14)

In particular
σ(H) = [ε0,∞). (1.15)

Remark 1.1 It is known that, for every weak Weyl representation (T, H) ∈ W(H) (H
is not necessarily separable), H is purely absolutely continuous [8, 13].

As a corollary of Theorem 1.2, we have the following result:

Theorem 1.3 Let H be separable and (T, H) ∈ W−(H). Let b := sup σ(H). Then there
exist mutually orthogonal closed subspaces H`, ` = 1, · · · , N (N is a positive integer or
∞) such that the following (i)–(iii) hold:

(i) H = ⊕N
`=1H`.

(ii) The operators T and H are reduced by each H`.
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(iii) For each `, there exists a unitary operator V` : H` → L2(R−b ) such that

V`TV −1
` = −pb,−, V`HV −1

` = qb,−. (1.16)

In particular
σ(H) = (−∞, b]. (1.17)

Proof. As remarked in the second paragraph of this section, (−T,−H) ∈ W+(H) with
a := inf σ(−H) = −b and σ(−T ) = Π+. Hence, we can apply Theorem 1.2 to conclude
that there exist mutually orthogonal closed subspaces H`, ` = 1, · · · , N (N is a positive
integer or ∞) such that the following (i)–(iii) hold: (i) H = ⊕N

`=1H` ; (ii) The operators
−T and −H are reduced by each H` ; (iii) For each `, there exists a unitary operator
U` : H` → L2(R+

a ) such that

U`TU−1
` = pa,+, U`HU−1

` = −qa,+.

By Example 1.2, we have

Uabpa,+U−1
ab = −pb,−, Uabqa,+U−1

ab = −qb,−,

where we have used that a + b = 0. Hence, putting V` := UabU`, we obtain the desired
result.

Remark 1.2 In view of Theorems 1.2 and 1.3, it would be interesting to know when
σ(T ) = Π+ (resp. Π−) for (T, H) ∈ W(H) with H bounded below (resp. above). Con-
cerning this problem, we have the following results [5]:

(i) Let (T, H) ∈ W(H) and H be bounded below. Suppose that, for some β0 > 0,
Ran(e−β0HT ) ( the range of e−β0HT ) is dense in H. Then σ(T ) = Π+.

(ii) Let (T, H) ∈ W(H) and H be bounded above. Suppose that, for some β0 > 0,
Ran(eβ0HT ) is dense in H. Then σ(T ) = Π−.

2 Some Facts and Proof of Theorem 1.2

To prove Theorem 1.2, we first present some key facts.

Lemma 2.1 Let S be a closed symmetric operator on H such that σ(S) = Π+. Then there
exists a unique strongly continuous one-parameter semi-group {Z(t)}t≥0 whose generator
is iS. Moreover, each Z(t) is an isometry:

Z(t)∗Z(t) = I, ∀t ≥ 0. (2.1)

Proof. This fact is probably well known. But, for completeness, we give a proof. By
the assumption σ(S) = Π+, we have σ(iS) = {z ∈ C|Re z ≤ 0}. Therefore the positive
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real axis (0,∞) is included in the resolvent set ρ(iS) of iS. Since S is symmetric, it follows
that

‖(iS − λ)−1‖ ≤ 1

λ
, λ > 0.

Hence, by the Hille-Yosida theorem, iS generates a strongly continuous one-parameter
semi-group {Z(t)}t≥0 of contractions. For all ψ ∈ D(iS) = D(S), Z(t)ψ is in D(S) and
strongly differentiable in t ≥ 0 with

d

dt
Z(t)ψ = iSZ(t)ψ = Z(t)iSψ.

This equation and the symmetricity of S imply that ‖Z(t)ψ‖2 = ‖ψ‖2,∀t ≥ 0. Hence
(2.1) follows.

Lemma 2.2 Let (T, H) ∈ W+(H). Then there exists a unique strongly continuous one-
parameter semi-group {UT (t)}t≥0 whose generator is iT . Moreover, each UT (t) is an
isometry and

UT (t)e−isH = eitse−isHUT (t), t ≥ 0, s ∈ R. (2.2)

Proof. We can apply Lemma 2.1 to S = T to conclude that iT generates a strongly
continuous one-parameter semi-group {UT (t)}t≥0 of isometries on H. For all ψ ∈ D(T )
and all t ≥ 0, UT (t)ψ is in D(T ) and strongly differentiable in t ≥ 0 with

d

dt
UT (t)ψ = iTUT (t)ψ = UT (t)iTψ.

Let s ∈ R be fixed and V (t) := eitse−isHUT (t)eisH . Then {V (t)}t≥0 is a strongly continuous
one-parameter semi-group of isometries. Let ψ ∈ D(T ). Then e−isHψ ∈ D(T ) and

Te−isHψ = e−isHTψ + se−isHψ.

Hence V (t)ψ is in D(T ) and strongly differentiable in t with

d

dt
V (t)ψ = iTV (t)ψ.

This implies that V (t)ψ = UT (t)ψ, ∀t ∈ R. Since D(T ) is dense, it follows that V (t) =
UT (t),∀t ∈ R, implying (2.2).

Let a ∈ R be fixed. For each t ≥ 0, we define a linear operator Ua(t) on L2(R+
a ) as

follows: For each f ∈ L2(R+
a ),

(Ua(t)f)(λ) :=

{
f(λ− t) λ > t + a
0 a < λ ≤ t + a

(2.3)

Then it is easy to see that {Ua(t)}t≥0 is a strongly continuous one-parameter semi-group
of isometries on L2(Ra

+).

Lemma 2.3 The generator of {Ua(t)}t≥0 is −ipa,+.
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Proof. Let iA be the generator of {Ua(t)}t≥0. Then it follows from the isometry of
Ua(t) that A is a closed symmetric operator. It is easy to see that −pa,+ ⊂ A and hence
−pa,+ ⊂ A. As already remarked in Example 1.1, −pa,+ is maximal symmetric. Hence
A = −pa,+.

We recall a result of Bracci and Picasso [7]. Let {U(α)}α≥0 and {V (β)}β∈R be a
strongly continuous one-parameter semi-group and a strongly continuous one-parameter
unitary group on H respectively, satisfying

U(α)∗U(α) = I, α ≥ 0, (2.4)

U(α)V (β) = eiαβV (β)U(α), α ≥ 0, β ∈ R. (2.5)

Then, by the Stone theorem, there exists a unique self-adjoint operator P on H such that

V (β) = e−iβP , β ∈ R. (2.6)

Lemma 2.4 [7] Let H be separable. Suppose that P is bounded below with ν := inf σ(P ).
Then there exist mutually orthogonal closed subspaces H`, ` = 1, · · · , N (N is a positive
integer or ∞) such that the following (i)–(iii) hold:

(i) H = ⊕N
`=1H`.

(ii) For all α ≥ 0 and β ∈ R, the operators U(α) and V (β) leave H` invariant for
all ` ∈ N.

(iii) For each `, there exists a unitary operator S` : H` → L2(R+
ν ) such that

S`V (β)S−1
` = e−iβqν,+ , β ∈ R, (2.7)

S`U(α)S−1
` = Uν(α), α ≥ 0. (2.8)

Remark 2.1 This lemma is not the original form of a result in the paper [7], since they
consider the case where the ∗-algebra W+ generated by {U(α), V (β)|α ≥ 0, β ∈ R} is
irreducible. But, if the Hilbert space under consideration is separable, then it is easy
to see that the representation of W+ is decomposed into a direct sum of irreducible
representations of it. In this way, Lemma 2.4 follows from a result in [7, §VII].

We denote the generator of {U(α)}α≥0 by iQ. It follows that Q is closed and symmet-
ric.

Lemma 2.5 Let H`, S` and ν be as in Lemma 2.4. Then P and Q are reduced by each
H` and

S`PS−1
` = qν,+, (2.9)

S`QS−1
` = −pν,+. (2.10)

In particular
σ(P ) = [ν,∞). (2.11)

Proof. Lemma 2.4-(ii) and (2.7) imply (2.9). Simlarly (2.10) follows from Lemma
2.4-(ii), (2.8) and Lemma 2.3.
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Proof of Theorem 1.2

By Lemma 2.2, we can apply Lemma 2.4 to the case where V (β) = e−iβH , β ∈ R and
U(α) = UT (α), α ≥ 0. Then the desired results follow from Lemmas 2.4 and 2.5.

3 Examples

Example 3.1 Let Rd
x = {x = (x1, · · · , xd)|xj ∈ R, j = 1, · · · , d}. We denote by qj the

j-th position operator on L2(Rd
x) (the multiplication operator by the j-th variable xj) and

pj := −iDj the j-th momentum operator, where Dj is the generalized partial differential
operator in xj. The free Hamiltonian for a non-relativistic quantum particle with mass
M > 0 is given by

H0 := − 1

2M
∆,

where ∆ :=
∑d

j=1 D2
j is the generalized Laplacian on L2(Rd

x). It is well known that H0

is a nonnegative self-adjoint operator on L2(Rd
x) and absolutely continuous with σ(H0) =

[0,∞).
We denote by F : L2(Rd

x) → L2(Rd
k) the Fourier transform:

(Ff)(k) :=
1

(2π)d/2

∫

Rd
x

e−ikxf(x)dx, f ∈ L2(Rd
x)

in the L2 sense. Let

Mj :=
{
k = (k1, · · · , kd) ∈ Rd

k|kj 6= 0
} ⊂ Rd

k

For each j = 1, · · · , d, we define

TAB
j :=

M

2

(
qjp

−1
j + p−1

j qj

)

with D(TAB
j ) := F−1C∞

0 (Mj). It is easy to see that (TAB
j , H0) is a weak Weyl representa-

tion of the CCR [2, 8]. The operator TAB
j is called the Aharonov-Bohm time operator [1].

In the previous paper [5], we proved that σ(TAB
j ) = Π+. Hence (TAB

j , H0) ∈ W+(L2(Rd
x)).

Note that inf σ(H0) = 0. Thus we can apply Theorem 1.2 to conclude that (T
AB

j , H0)
is unitarily equivalent to a direct sum of the weak Weyl representation (−p0,+, q0,+) on
L2((0,∞)).

Example 3.2 (A relativistic time operator [2]) The free Hamiltonian for a relativistic
quantum particle with mass m ≥ 0 and spin 0 is given by

Hrel :=
√
−∆ + m2

acting in L2(Rd
x). For each j = 1, · · · , d, we define

T rel
j :=

1

2

(
Hrelp

−1
j qj + qjp

−1
j Hrel

)
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with D(T rel
j ) := F−1C∞

0 (Mj). As is shown in [2], (T rel
j , Hrel) is a weak Weyl representtion.

Moreover σ(T rel
j ) = Π+ [4]. Hence (T rel

j , Hrel) ∈ W+(L2(Rd
x)). Note that inf σ(Hrel) = m.

Thus we can apply Theorem 1.2 to conclude that (T
rel

j , H0) is unitarily equivalent to a
direct sum of the weak Weyl representation (−pm,+, qm,+) on L2((m,∞)).

4 Construction of a Weyl representation from a weak

Weyl representation

In the previous paper [6], a general structure was found to construct a Weyl representation
from a weak Weyl representation. Here we recall it.

Theorem 4.1 [6, Corollary 2.6] Let (T, H) be a weak Weyl representation on a Hilbert
space H. Then the operator

L := log |H| (4.1)

is well-defined, self-adjoint and the operator

D :=
1

2
(TH + HT ) (4.2)

is a symmetric operator. Moreover, if D is essentially self-adjoint, then (D,L) is a Weyl
representation of the CCR and σ(|H|) = [0,∞).

To apply this theorem, we need a lemma.

Lemma 4.2 Let a ∈ R and

da := −1

2
(pa,+qa,+ + qa,+pa,+) (4.3)

acting in L2(R+
a ). Then da is essentially self-adjoint if and only if a ≤ 0.

Proof. Let a > 0. Then the function u on R+
a defined by u(λ) = 1/λ3/2, λ > a is in

C∞(R+
a )∩L2(R+

a ) with λu′(λ) = −(3/2)u(λ). In the present case, we have D(pa,+qa,+) =
C∞

0 (R+
a ) = D(pa,+). Hence D(da) = C∞

0 (R+
a ). It follows that, for all f ∈ D(da),

〈u, (da − i)f〉 = 0. This implies that u ∈ ker(d∗a + i) and hence ker(d∗a + i) 6= {0}.
Therefore da is not essentially self-adjoint. Thus, if da is essentially self-adjoint, then
a ≤ 0.

Conversely, let a ≤ 0 and v ∈ ker(d∗a+i). Then, for all f ∈ C∞
0 (R+

a ), 〈v, (da − i)f〉 = 0.
This implies the distribution equation λDλv(λ) = −(3/2)v(λ) on R+

a . Hence v(λ) =
c1/|λ|3/2 for a.e. λ ∈ R+

a with a constant c1. Since v is in L2(R+
a ), it follows that c1 = 0

and hence v = 0. Thus ker(d∗a + i) = {0}.
Next, let w ∈ ker(d∗a − i). Then, in the same way as in the preceding case, we have

w(λ) = c2|λ|1/2 with a constant c2. Since w is in L2(R+
a ), it follows that c2 = 0 and hence

w = 0. Thus ker(d∗a − i) = {0}. By a general criterion on essential self-adjointness, we
conclude that da is essentially self-adjoint.

Now we can prove the following theorem.
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Theorem 4.3 Let H be separable and (T, H) ∈ W+(H) with ε0 = inf σ(H). Let L and
D be as in (4.1) and (4.2) respectively. Then:

(i) D is essentially self-adjoint if and only if ε0 ≤ 0.

(ii) (D,L) is a Weyl representation of the CCR if and only if ε0 ≤ 0.

Proof. (i) By Theorem 1.2, D is unitarily equivalent to a direct sum of dε0 . Hence, by
Lemma 4.2, D is essentially self-adjoint if and only if ε0 ≤ 0.

(ii) Let (D,L) be a Weyl representation of the CCR. This means that D is essentially
self-adjoint. Hence, by part (i), ε0 ≤ 0.

Conversely let ε0 ≤ 0. Then, by part (i), D is essentially self-adjoint. Hence, by
Theorem 4.1, (D,L) is a Weyl representation of the CCR.

Finally we remark on the case where (T, H) ∈ W−(H):

Corollary 4.4 Let H be separable and (T, H) ∈ W−(H) with µ = sup σ(H). Let L and
D be as in (4.1) and (4.2) respectively. Then

(i) D is essentially self-adjoint if and only if µ ≥ 0.

(ii) (D,L) is a Weyl representation of the CCR if and only if µ ≥ 0.

Proof. We have (−T,−H) ∈ W+(H) with inf σ(−H) = −µ. The operator D (resp.
L) for (−T,−H) is the same as that for (T, H). Hence the conclusions (i) and (ii) follow
from Theorem 4.3.
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