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Abstract. This work arises from the purpose of relating time problems in biological systems with
some known tools in dynamical systems. More precisely, how are the phase resetting curves (PRCs)
around a limit cycle γ of a vector field X related to the fact that X is the infinitesimal generator of a
Lie symmetry ([Y, X] = µ Y ). We show how the time variables involved in the Lie symmetry provide
a natural way (a kind of normal form) to express the vector field around γ, similar to action-angle
variables for integrable systems. In addition, the knowledge of the orbits of Y gives a trivial way
to compute the PRC, not only on γ, but also in a neighborhood of it, thus obtaining what we call
phase resetting surfaces (PRSs). However, the aim of the paper is not only to state relationships
among different concepts, but also to perform the effective computation of these symmetries. The
numerical scheme is based on the theoretical ground of the so-called parameterization method to
compute invariant manifolds (the orbits of Y ) in a neighborhood of γ. Limit cycles in biological
(more specifically, neuroscience) models encompass numerical problems that are often neglected or
underestimated; we present a discussion about them and give general solutions whenever it is possible.
Finally, we use all theoretical and numerical results to compute both the PRCs and PRSs and the
isochronous sections of limit cycles for well-known biological models. In this part of the paper, we
also explore how the PRCs evolve (in the parameter space) between different bifurcation values.
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1. Introduction. The behavior of coupled oscillators in biology and, more in-
tensively, in neuroscience has been the subject of a great deal of recent interest and
there is a wide literature on this topic (see [14] for a survey), mainly because many
oscillators can be described by their phase variable. Moreover, under generic con-
ditions, the phase of the oscillation can be also defined outside the hyperbolic limit
cycle via asymptotic phase. Thus, the stable manifold of a point x0 on a limit cycle
is the union of points having equal phases, and it is often referred to as the isochron
of x0.

To study synchronization, a useful measurable property of a neural oscillator
is its phase resetting curve (PRC). The PRC is found by perturbing the oscilla-
tion with a brief stimulus at different times on its cycle and measuring the resulting
phase-shift from the unperturbed system. It is a very useful tool to explain how the
coupling between neurons can affect the phase and lead them to a synchronized or
non-synchronized activity.
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E-08028, Barcelona, Catalonia (antoni.guillamon@upc.edu).
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Phase resetting curves (PRCs) constitute a powerful resource in time-control prob-
lems in biological processes. For instance, in the study of circadian rhythms, phase
resetting curves are indicators for the experimentalists to know the peaks of the phase
advancement and for the practitioners to administrate drugs (see for instance [3], [5]
or [20] for different contexts); that is, to know the optimal phase advancement.

Different methods are known to compute the PRCs, see [14, Ch. 10] for a survey.
One of the most effective is the so-called adjoint method, see [7] (also [1] for a review).
Recently, Govaerts and Sautois (see [10]) have developed a new algorithm to solve
the adjoint method problem accompanied with the implementation of continuation
methods to study PRCs along families of vector fields with a persistent limit cycle.

Typically, solutions to the models of interest tend asymptotically to a limit cycle.
However, one may be interested in computing the phase advancement in the transient
state, when the dynamics has not relaxed back to the limit cycle. This occurs when the
period of stimulation is too short and is favored by factors like a slow attraction to the
limit cycle, a large stimulus amplitude, other external stimuli, random fluctuations,
bursting-like stimuli, . . . Thus, the study of the phase advancement under a certain
stimulus in a neighborhood of the limit cycle, not only on the limit cycle, is also
interesting.

Since the method that we develop in this manuscript gives a “natural” parame-
terization of an entire neighborhood of a limit cycle, and the way we obtain the phase
resetting curves is independent on whether a point is on the limit cycle or not, we can
extend the computation of the phase resetting curves to a neighborhood and obtain
what we call phase resetting surfaces (PRS from now on); that is, we can evaluate
the phase advancement even when the stimulus is performed out of the limit cycle.
The restriction of our method to the limit cycle gives the numerical scheme also used
in [10].

In the examples, we also include a discussion on the relationship between the
excitability types and the types of the corresponding PRCs. This issue was introduced
by Ermentrout in [8]; models with strictly positive or mainly positive PRC are called
usually “Type 1 PRC” or ”Class 1”, whereas models whose PRC changes sign and
present a negative regime (delay in the phase) are known as “Type 2 PRC” or ”Class
2”. The PRC type have effects on the synchronization of an oscillator with a periodic
pulse train. For instance, for Type 1 models, that is with a PRC mostly positive, they
easily synchronize with fast inputs but they cannot synchronize with slower inputs.
This is because they can advance the phase to catch up with faster inputs but they
cannot delay the phase. This is not the case for Type 2 models because they can
advance or delay the phase. We study, in parametric families, the evolution from one
type to another. It can be observed how the negative parts of the PRC for a “Type 2
PRC” oscillator shrink as some bifurcation parameter evolves until it almost vanishes
near to a “Type 1 excitability” value (that is, close to a frequency zero limit cycle
bifurcation), corresponding also to a “Type I PRC” value, see Example 9.2 and (9.5)
(Iapp = 10). We are more concerned with the observation and biological consequences
of these changes between PRCs inside a family of vector fields, rather than carrying
out a systematic computation of PRCs with respect to some parameter. As mentioned
above, this job has been done in [10].
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In the examples we also show (see Figs. 9.2 to 9.6) that, depending on the
geometry of the isochrons, the shape of the phase resetting surface may be different
from the shape of the phase resetting curve in such a way that systems with “Type
I PRC” can present regions with negative PRS, thus allowing, away from the limit
cycle, a delay of the phase which is not supposed for “Type I PRC” oscillators.

The mathematical formalism that we use to obtain information about isochrons,
PRCs and PRSs is based on Lie symmetries, see [22] or [9] for new applications
to limit cycles. Indeed, given a vector field X with a limit cycle γ, it is proved the
equivalence between the existence of a Lie symmetry [Y,X ] = µY and the foliation of a
neighborhood of γ by isochrons (that is, with asymptotic phase well defined). Parallel,
to this theory, Cabré-Fontich-de la Llave have developed a method to parameterize
invariant manifolds around an invariant object, see for instance [2] for the part related
to limit cycles. This so-called parameterization method is much easier to implement
than the computation of Lie symmetries. In this paper we relate the two approaches;
in fact, we prove that the coordinate curves of the parameterization are exactly the
orbits of the unknown vector field Y .

The paper is organized as follows: in Section 2 we give the necessary background
(on isochronous sections, Lie symmetries, parameterization method and phase reset-
ting curves) to tackle the rest of the paper. In Section 3, we relate the Lie symmetries
with the parameterization method. Sections 4 and 6 are devoted to develop the effec-
tive method to compute the isochrons and the phase resetting curves (and surfaces),
using the parameterization method. For the purpose of comparison, in Section 5, we
explain the adjoint method and prove that our result is also a solution of the adjoint
equation. In Section 7, we take care of the details of the numerical implementation of
the method, an aspect which is often overlooked although it is not trivial for slow-fast
systems. We devote Section 8 to envision the application of our method to higher di-
mensions. We end the paper with some examples, in Section 9, and a final discussion
(Section 10).

2. Background and statement of the problem. In this section we go through
the background about the main tools that will be related later on. In general, these
tools are defined for vector fields in R

d, although for the purposes of this paper we
will restrict to d = 2 from Section 3 on.

2.1. Isochronous sections of a limit cycle. Let us consider an autonomous
system of ODEs

ẋ = X(x), x ∈ U ⊆ R
d, d ≥ 2, (2.1)

having a periodic orbit γ of period T , parameterized by θ = t/T as

γ :T = R/Z→ R
d (2.2)

θ → γ(θ)

in order to have period 1, that is γ(θ) = γ(θ + 1).

For the numerical purposes of this paper we will assume that X is an analytic
vector field and so, all the functions and manifolds that we will associate to it. Nev-
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ertheless, the theoretical background that we are quoting in this section is still valid
for lower regularity vector fields.

Definition 2.1. We say that a point q ∈ Ω ⊂ R
d, where Ω is an open domain

containing the limit cycle γ, is in asymptotic phase with a point p ∈ γ if

lim
t→+∞

|Φt(q) − Φt(p)| = 0, or

lim
t→−∞

|Φt(q) − Φt(p)| = 0,

where Φt is the flow associated to the vector field X.

The set of points having the same asymptotic phase is called isochron.

Definition 2.2. We will say that a limit cycle γ is isochronous if there exists an
open neighborhood Ω containing γ such that every point in Ω is in phase with a point
on γ.

Remark 2.3. Notice that the isochrons are mapped to isochrons by the flow Φt of
the vector field X. Hence, they are ΦT -invariant, that is ΦT (q) belongs to the isochron
of q.

This extends the notion of phase of oscillation to a neighborhood in the basin of
attraction of the limit cycle. Hence, in a neighborhood Ω of the limit cycle γ there
exists a unique scalar function

ϑ :Ω ⊂ R
d→ T = [0, 1) (2.3)

x 7→ ϑ(x)

such that

lim
t→+∞(−∞)

|Φt(x) − γ(t+ Tϑ(x))| = 0.

The value ϑ(x) is the asymptotic phase of x and the isochrons are the level sets of
ϑ(x), since it is constant on each isochron.

2.2. Isochrons, stable manifolds and Lie symmetries. From a seminal pa-
per by Winfree ([25]) and the theoretical answers given by Guckenheimer in a sub-
sequent paper ([12]), it is known that phase sets or isochrons and stable manifolds
of hyperbolic limit cycles have a common link: if the limit cycle is stable, then the
isochrons are the leaves of the stable manifold, that is W s(γ(θ)), for θ ∈ T.

Remark 2.4. Notice that the case of a hyperbolic unstable limit cycle is equivalent
to the stable case just reversing the time. However, when one works in dissipative
systems it only makes sense to talk about attractors because the other invariant objects
cannot be seen when one integrates forward the system. Hence, from now on, we will
only mention the stable case.

Not much is said about the computation of these isochrons probably perhaps
they can often be reduced to the computation of stable manifolds, which have been
thoroughly studied.
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New papers recovering the problem of the existence of isochrons for a generic non-
hyperbolic limit cycle in the plane have appeared recently ([4, 22]). From Chicone and
Liu’s work, [4], we know that a limit cycle γ of a C2 planar vector field is isochronous
if and only if it is hyperbolic or it is a non-hyperbolic limit cycle satisfying π′′(p) 6= 0
and τ ′(p) = 0, where τ is the time of the first return to a Poincaré section Σ at p ∈ γ
and π is the corresponding Poincaré map. Moreover, in [22], Sabatini proves that a
limit cycle γ of a C2 planar vector field X is isochronous if and only if the vector field
X is an infinitesimal generator of another C2 planar vector field Y transversal to X ;
that is, if

[Y,X ] = µY, (2.4)

for some C2 function µ : R
2 −→ R, where [, ] stands for the Lie bracket of the two

vector fields. Moreover, it is stated that, in this case, the orbits of Y crossing the limit
cycle γ are its isochrons because, by the Lie symmetry, the flow of X sends orbits of
Y to orbits of Y .

Finally, Freire et al., see [9], give a closed formula for the characteristic exponent
of a limit cycle γ of a planar C1 vector field X in terms of µ in (2.4). More precisely,
they prove that the characteristic exponent of γ is given by

λ =

∫ T

0

µ(γ(t/T ))dt. (2.5)

Although the result of Sabatini is a nice geometrical characterization of isochronous
limit cycles, the difficulty arises when trying to find µ and Y . In this paper, we link
this result with the parameterization method developed in [2] to compute the two-
dimensional stable manifold containing γ, and we implement it numerically to obtain
local expansions of µ and Y .

2.3. The parameterization method. In this subsection we introduce the pa-
rameterization method described in [2]. For limit cycles in planar systems, it consists
of looking for a parameterization of the two-dimensional stable manifold in terms of
the phase variable θ on the limit cycle and another variable σ which moves along the
isochron/leave of the stable manifold and corresponds to the time of the orbits of the
vector field Y in (2.4). Hence, we will be looking for a map

K : T × U ⊂T × R→ R
2 (2.6)

(θ, σ) 7→ K(θ, σ),

where U is an open interval containing 0, and a scalar λ such that they satisfy the
equation

(

1

T

∂

∂θ
+
λσ

T

∂

∂σ

)

K(θ, σ) = X(K(θ, σ)), (2.7)

where T is the period of the limit cycle.

On the computational side, in [2], the authors provide a method to solve the
invariance equation (2.7) that leads immediately to practical numerical algorithms.
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We have implemented it in several biological models (specially from neuroscience) in
which the control of the phase advancements becomes crucial. In Section 6 we review
the method and the algorithms to solve equation (2.7) and in Section 7 we discuss
the numerical implementation. Similar implementations of this method have been
performed in [13] for the computation of stable and unstable manifolds of invariant
tori in quasi-periodic maps.

2.4. Phase response curves and surfaces. As mentioned in the Introduction,
phase resetting curves are a key tool to study phase advancement in oscillators. Here
we introduce the basic background.

Let us consider an oscillator of the form (2.1) with a stable limit cycle γ of period
T (let us say, for instance, a periodically spiking neuron) which is stimulated at a
phase θ = ts/T with an arbitrary perturbation.

The effect of the perturbation is to produce a phase shift that can be an advance
or a delay depending on the time of the stimulus ts relative to the phase of the
oscillation θ, leading to a change of the period. The representation of this phase shift
is usually called Phase Response Curve or Phase Resetting Curve (PRC). They are
typically defined as

∆ϑ = (T − Tnew)/T (2.8)

where Tnew is the period for the perturbed limit cycle.

In this paper we will focus on the particular case of infinitesimally small pertur-
bations in duration and amplitude. In this case, the perturbation consists of a pulse
that instantaneously displaces the trajectory away from the limit cycle in a certain
direction by a certain amplitude. Mathematically, we consider

ẋ = X(x) + ǫδ(t− ts) (2.9)

where ǫ = (ǫ1, . . . , ǫd) ∈ R
d and δ(t) is the Dirac delta function.

When |ǫ| ≪ 1, it is common in the theory of weakly coupled neural oscillators
(Ermentrout and Kopell, 1990) to construct the so called infinitesimal Phase Resetting
Curve (iPRC). Using the scalar function ϑ given in (2.3) that associates to every point
in a neighborhood of the limit cycle a phase in [0, 1), it is easy to see that the iPRC
for an instantaneous perturbation as in (2.9) is mathematically equivalent to

∆ϑ(x) = ǫ · ∇ϑ(x) =

(

∂ϑ

∂x1
(x), . . . ,

∂ϑ

∂xd
(x)

)

.

for x ∈ γ, see [14, Ch. 10] for the details.

Note that the pulse in (2.9) can be in any direction in R
d. Usually, one studies

the PRCs for the directions given by a vector basis of R
d. For instance, for the planar

case (d = 2), we will consider the PRCs corresponding to ǫ = (1, 0) and ǫ = (0, 1) and
we will refer to them as PRC1 and PRC2, respectively. For models in neuroscience,
one is usually interested only on the PRC for perturbations in the direction of the
voltage, that is, ∂ϑ(x)/∂V , for x ∈ γ.
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Although in the literature the phase shift is only computed on the limit cycle,
that is x ∈ γ, the isochrons allow to naturally extend it in a neighborhood of the
limit cycle and introduce a new concept that we call Phase Resetting Surface (also
PRS from now on). In general, PRS are not considered in the literature because the
methods to obtain the PRCs are not easily extendable.

The phase resetting surface tabulates the change in the phase produced by a per-
turbation as a function of the phase θ and the distance σ to the limit cycle computed
on the isochron at which it is received. Notice that the PRC is just the section σ = 0
of the PRS. Hence, PRSs are a generalization of the PRCs for σ 6= 0. This tool can
be very useful if we want to stimulate the oscillator repeatedly, without needing to
wait for the oscillator to relax back to the limit cycle attractor. This required time to
relax back is specially inconvenient when the attraction to the limit cycle is too slow
or the amplitude of the stimulus is too large.

The classical method for computing PRCs was given by Ermentrout and Kopell
in [7] and is commonly known as the Adjoint method. In Section 4 we describe
a new alternative method that allows to compute not only the PRC but also the
PRS, using the Lie symmetries formalism and the numerical scheme provided by the
parameterization method.

3. Lie symmetries and normal forms around limit cycles. In this section
we establish a relation between the existence of a Lie symmetry and a 2-dimensional
invariant manifold parameterized by the phase θ and the variable σ for the limit cycle
of a planar vector field. The main result is given by Theorem 3.1.

Theorem 3.1. Let γ be a hyperbolic T -periodic orbit of a planar analytic vector
field X parameterized by θ according to (2.2). Then, there exists a transversal vector
field Y and a scalar function µ, both analytic, such that in a neighborhood Ω of the
periodic orbit γ

[Y,X ] = µY,

if and only if there exists a manifold M which is invariant under the flow of X and
can be parameterized by an analytic map K : T × U ⊂ R → R

2, satisfying

(

1

T
∂θ +

(
∫ σ

0

µ(K(θ, τ))dτ

)

∂σ

)

K(θ, σ) = X ◦K(θ, σ). (3.1)

Moreover, Y ◦K = ∂σK, or equivalently

K(θ, σ) = ψσ(γ(θ)), (3.2)

where ψσ is the flow of the vector field Y .

Proof : Let us look at the first implication. Let us consider K(θ, σ) = ψσ(γ(θ)), where
ψσ is the flow associated to the vector field Y and γ(θ) is the parameterization of the
periodic orbit of the vector field X .

Then, notice that

∂σ(X ◦K(θ, σ)) = DX ◦K(θ, σ)∂σK(θ, σ) = (DX ◦K(θ, σ))(Y ◦K(θ, σ)).
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Using the Lie symmetry DXY −DYX = µY , we have

∂

∂σ
X ◦K(θ, σ) = (DY ◦K(θ, σ))(X ◦K(θ, σ)) + µ(K(θ, σ))(Y ◦K(θ, σ)) (3.3)

Hence, X ◦K(θ, σ) is a solution of the linear equation (3.3) with initial condition

X ◦K(θ, 0) = γ(θ). (3.4)

Let Ψσ be the fundamental solution of the homogeneous equation

∂

∂σ
X ◦K(θ, σ) = (DY ◦K(θ, σ))(X ◦K(θ, σ)), (3.5)

then, the variation of parameters formula tells us that the solution of (3.3) with initial
condition (3.4) is given by

X ◦K(θ, s) = ΨσX(γ(θ)) + Ψσ

∫ σ

0

Ψ−1
s µ(K(θ, s))(Y ◦K(θ, s))ds

Notice that Ψ−1
s Y (K(θ, s)) is independent of s, that is

∂s(Ψ
−1
s Y (K(θ, s))) = −Ψ−1

s (DY ◦K(θ, s))ΨsΨ
−1
s (Y ◦K(θ, s))

+Ψ−1
s (DY ◦K(θ, s))(Y ◦K(θ, s))

= −Ψ−1
s (DY ◦K(θ, s))(Y ◦K(θ, s))

+Ψ−1
s (DY ◦K(θ, s))(Y ◦K(θ, s))

= 0

then we can take Ψ−1
s Y (K(θ, s)) = Ψ−1

σ Y (K(θ, σ)) and we are led with the following
expression for X ◦K(θ, σ),

X ◦K(θ, σ) = ΨσX(γ(θ)) + ΨσΨ−1
σ Y (K(θ, σ))

∫ σ

0

µ(K(θ, s))ds.

Finally, using that the parameterization K is given by the orbits of the vector
field Y on the limit cycle γ, see equation (3.2), we have

∂θK(θ, σ) = ∂θψσ(γ(θ)) = Dψσ(γ(θ))TX(γ(θ)) = TΨσX(γ(θ)),

and the expression for X ◦K(θ, σ) reads out

X ◦K(θ, σ) =

(

1

T
∂θ +

(
∫ σ

0

µ(K(θ, τ))dτ

)

∂σ

)

K(θ, σ),

as we wanted to see.

The implication the other way follows in the following way. Let K being a param-
eterization of the stable manifold M satisfying equation (3.1). Consider Y the vector
field whose orbits for the points on the limit cycle γ(θ) are given by {K(θ, σ)|σ ∈ R}.
Let σ be the integration time along the orbits of the vector field Y . Therefore,

Y ◦K(θ, σ) = ∂σK(θ, σ). (3.6)
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The fact that the curves {K(θ0, σ)|σ ∈ R} are transversal to the orbits of X
implies also that Y is transversal to X .

We next prove that X is a normalizer of the vector field Y . From equation (3.1),
taking derivatives with respect to σ, we get

(

1

T
∂θ +

(
∫ σ

0

µ(K(θ, τ))dτ

)

∂σ

)

∂σK + (µ ◦K)∂σK = (DX ◦K)∂σK,

and using (3.6), we get

(

1

T
∂θ +

(
∫ σ

0

µ(K(θ, τ))dτ

)

∂σ

)

(Y ◦K) + (µ ◦K)(Y ◦K) = (DX ◦K)(Y ◦K).

By the chain rule,

(DY ◦K)

(

1

T
∂θ +

(
∫ σ

0

µ(K(θ, τ))dτ

)

∂σ

)

K + (µ ◦K)(Y ◦K) = (DX ◦K)(Y ◦K),

and again, by the invariance equation (3.1), we obtain

(DX ◦K)(Y ◦K) − (DY ◦K)(X ◦K) = (µ ◦K)(Y ◦K)

[Y,X ] = µY,

as we wanted to prove. �

3.1. Simplifying the invariance equation (3.1). We would like to remark
that there is a certain freedom for the choice of Y and µ. Thus, given a vector field
Y and a scalar function µ such that [Y,X ] = µY , then for a non-vanishing smooth
scalar function f it turns out that

[f Y,X ] =

(

µ− ∇fTX

f

)

(f Y ) .

Using this freedom, it will be convenient to choose µ to be constant. From (2.5)
we know that the characteristic exponent for the periodic orbit is given by

λ =

∫ T

0

µdt = µT.

Then, it is natural to choose µ = λ/T , where λ is the characteristic exponent of the
periodic orbit γ.

Hence, the invariance equation for the parameterization of the invariant manifold
M is given by (2.7), that we recall here

(

1

T
∂θ +

λσ

T
∂σ

)

K(θ, σ) = X ◦K(θ, σ).
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From equation (2.7) it is clear that M := Range(K) is an invariant manifold for
the flow of X . Moreover, the motion generated by the vector field X on M expressed
in the variables (θ, σ) parameterizing M, is given by

θ̇ = 1/T, (3.7)

σ̇ = λσ/T.

That is, the variable θ rotates at a constant speed 1/T and the variable σ moves
exponentially. Hence,

Φt(K(θ0, σ0)) = K(θ0 + t/T, σ0e
λt/T ),

where Φt is the flow of the vector field X .

Therefore the orbit of a point K(θ0, σ), for any σ ∈ Ω, approaches exponentially
fast to the orbit of the point K(θ0, 0), which corresponds to the point γ(θ0) on the
limit cycle. Hence,

{K(θ0, σ)|σ ∈ Ω} ⊂W s
γ(θ0)

,

that is, the point K(θ0, σ) is contained in the isochron of γ(θ0). Moreover
W s

γ = ∪θ∈[0,1)W
s
γ(θ).

Since, in this particular case the invariant stable manifold for the periodic orbit γ
is 2-dimensional in R

2, the parameterization in terms of the phase variable θ that gives
the position on the limit cycle and σ, which is a variable that moves along a transversal
direction and corresponds to the integration time along the orbits of the vector field
Y , is also a parameterization of the phase space R

2 in a neighborhood of the limit
cycle. The expression of the vector field X in the variables (θ, σ) can be considered
as the normal form for a planar vector field around a limit cycle, reminiscent of the
action-angle variables for conservative systems.

4. Computation of Phase Resetting Curves and Surfaces. The parame-
terization K and the vector field Y jointly with the characteristic exponent λ allow
us to compute the isochrons and the Phase Resetting Curves and Surfaces (PRS).

4.1. Computing the Isochrons. We already mentioned that the orbit of the
points given by K(θ0, σ), for any σ ∈ U approach exponentially fast the orbit of the
point K(θ0, 0) = γ(θ0).

Therefore a parameterization of the isochron of the point γ(θ0) is given by the
analytic map

K(θ0, ·) : U ⊂ R −→ R
2

σ 7−→ K(θ0, σ).

4.2. Computing the PRS. We already mentioned in Section 2.4 that from the
mathematical point of view, the change of phase due to a pulse stimulation at a point
p = K(θ, σ) in a neighborhood Ω of the limit cycle γ is given by

∇ϑ(p) =

(

∂ϑ

∂x
(p),

∂ϑ

∂y
(p)

)

.
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In order to compute ∇ϑ(p) we consider the following argument: on the one hand,
the isochrons are given by the level sets of the function ϑ : R

2 → R, introduced in
(2.3), which associates a phase to each point in a neighborhood of the limit cycle. On
the other hand, they are the orbits of a vector field Y satisfying (2.4). Hence, it is
clear that ∇ϑ(p) has the same direction as Y ⊥(p), which corresponds to the vector
orthogonal to Y on p given by

Y (p) = Y (K(θ, σ)) = ∂σK(θ, σ).

We only need to add some normalization. Notice that for a trajectory φt(p),
p ∈ Ω where φt is the flow of the vector field X , we have

dϑ

dt
(φt(p)) = 1/T,

therefore

dϑ

dt
(φt(p)) = ∇ϑ(φt(p)) ·

d

dt
φt(p) = ∇ϑ(φt(p)) ·X(φt(p)) = 1/T.

Using this normalization we have that for any p ∈ Ω, the PRC is given by

∇ϑ(p) =
Y ⊥(p)

T < Y ⊥(p), X(p) >
, (4.1)

where <,> denotes the dot product.

The PRC is just the PRS restricted to the points on the limit cycle, that is σ = 0,
then for p = K(θ, 0) ∈ γ

∇ϑ(K(θ, 0)) =
Y ⊥(K(θ, 0))

T < Y ⊥(K(θ, 0)), X(K(θ, 0)) >
,

where K(θ, 0) = K0(θ) = γ(θ) and Y (K(θ, 0)) is given by

Y (K(θ, 0)) = ∂σK(θ, 0) = K1(θ).

Therefore,

∇ϑ(γ(θ)) =
K⊥

1 (θ)

< K⊥
1 (θ), X(γ(θ)) >

. (4.2)

5. The relation with the Adjoint method. As we already mentioned in
the introduction, the reference method in neuroscience which is commonly used to
compute Phase Resetting Curves, is the Adjoint Method (see [7], Hoppenstead). It
essentially computes the gradient of the asymptotic phase at the points p ∈ γ, that is
∇ϑ(p), by looking for a T -periodic solution of the equation

d∇ϑ(γ(t/T ))

dt
= −DXT (γ(t/T ))∇ϑ(γ(t/T )), (5.1)

where DXT (γ(t/T )) is the transpose of the real matrix DX(γ(t/T )), with the condi-
tion

∇ϑ(γ(t/T )) ·X(γ(t/T )) =
1

T
,
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which in particular must hold for t = 0.

This procedure has been automated in the program XPPAUT, see [6].

However, the Adjoint problem can be extended to a neighborhood of the limit
cycle. The idea of this generalization is summarized in the following Proposition:

Proposition 5.1. Let γ be a hyperbolic T -periodic orbit of a planar analytic vec-
tor field X parameterized by θ according to (2.2). Assume that there exists a transver-
sal vector field Y satisfying (2.4) in a neighborhood Ω. Then, given a trajectory φt(p),
p ∈ Ω we have that

∇ϑ(φt(p)) =
Y ⊥(φt(p))

T < Y ⊥(φt(p)), X(φt(p)) >
(5.2)

solves the Adjoint Problem

d∇ϑ(φt(p))

dt
= −DXT (φt(p))∇ϑ(φt(p)), (5.3)

with the condition

∇ϑ(φt(p)) ·X(φt(p)) =
1

T
(5.4)

Proof : Notice first that, by construction, condition (5.4) is clearly satisfied.

Let us prove then that (5.2) is a solution of (5.3). In order to check this statement,
we first introduce the matrix J given by

J =

(

0 −1
1 0

)

(5.5)

such that Y ⊥ = JY . Notice that for a 2 × 2 real matrix A we have

(JA) − (JA)T = tr(A)J. (5.6)

Now, we consider the derivative of ϑ(φt(p)) with respect to the time. In order to
simplify notation we set x = φt(p), g(x) :=< Y ⊥(x), X(x) > and τ(x) = tr(DX)(x).

Using that
d

dt
Y (φt(p)) = DY (φt(p))X(φt(p)), we have

d

dt
∇ϑ(x) =

J DY (x)X(x)

T g(x)
− Y ⊥(x) (< JDY (x)X(x), X(x) > + < J Y,DX(x)X(x) >)

T g(x)2

Using now that the Lie symmetry gives DX Y − DY X = µY , that expression
(5.2) reads out as ∇ϑ(x) = (J Y (x))/(T g(x)) and dot product properties (namely,
< J Y (x), DX(x)X(x) > = < DX(x)T J Y (x), X(x) >), we obtain

d

dt
∇ϑ(x) =

J DX(x)Y (x) − µ(x)J Y (x)

T g(x)

− ∇ϑ(x)
(

< JDX(x)Y (x) − µ(x)J Y (x) +DX(x)T J Y (x), X(x) >
)

g(x)
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Applying equation (5.6) and (J DX(x))T = −DX(x)T J , we are led to

d

dt
∇ϑ(x) =

(−DX(x)T + τ(x) − µ(x))J Y (x)

T g(x)
− ∇ϑ(x) (< (τ(x) − µ(x))J Y (x), X(x) >)

g(x)

In fact, again since ∇ϑ(x) = (J Y (x))/(T g(x)), it can be written as:

d

dt
∇ϑ(x) = (−DX(x)T + τ(x) − µ(x))∇ϑ(x) − T∇ϑ(x) (< (τ(x) − µ(x))∇ϑ(x), X(x) >)

Finally, using the already proved condition (5.4) we have

d

dt
∇ϑ(x) = (−DX(x)T + τ(x) − µ(x))∇ϑ(x) −∇ϑ(x) (τ(x) − µ(x)) = −DX(x)T∇ϑ(x),

as we wanted to prove. �

Remark 5.2. It is clear that the classical Adjoint method considers p ∈ γ, then
φt(p) = γ(t/T ) with γ(0) = p.

Remark 5.3. We will see in the section devoted to the numerical implementation,
that we will obtain a local approximation of the PRS semi-analytically by computing
the parameterization K and using formula (5.2). In order to obtain a PRS in a bigger
domain, we will globalize the local approximation just integrating the adjoint problem
equation (5.3) backwards.

6. Solving the invariance equation. In [2], the authors provide a method to
solve the invariance equation (2.7) and they prove its convergence. In this section, we
review the basic steps of the method and we refer the reader to [2] for more details
and the proof of the theorems.

In order to solve the invariance equation (2.7), we will discretize it in Fourier-
Taylor series. Hence, we will first look for a K as a power series

K(θ, σ) =

∞
∑

n=0

Kn(θ)σn, (6.1)

where the components of Kn are periodic functions of period 1, and then match the
coefficients in σn on both sides of equation (2.7).

For n = 0, one obtains

1

T

d

dθ
K0(θ) = X(K0(θ)). (6.2)

which admits the solution K0(θ) = γ(θ), where γ is a parameterization of the limit
cycle given in (2.2).

Remark 6.1. Notice that if K0(θ) is a solution, then K0(θ+ω) is also a solution
for any ω ∈ [0, 1). Therefore, there is some ambiguity in parameterizing the phase
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of an oscillation, that can be avoided fixing the initial point corresponding to the zero
phase. It can be fixed anywhere on the limit cycle. In the context of tonic spiking in
neuroscience, for instance, it is common to fix θ = 0 at the peak of the spike.

For n = 1, we obtain

1

T

d

dθ
K1(θ) +

λ

T
K1(θ) = DX ◦K0(θ)K1(θ), (6.3)

which tells us that K1(θ) is an eigenfunction with eigenvalue −λ of the operator L
defined by

L :=
d

dθ
− TDX ◦K0(θ).

Using Proposition 5.2 in [2], we know that K1(θ) is a solution of the equation
(6.3) with eigenvalue −λ if and only if K1(0) is an eigenvector of the monodromy
matrix Φ1 with eigenvalue eλ. The monodromy matrix can be computed by solving
the first variational equation

d

dθ
Φθ = DX ◦K0Φθ,

with Φ0 = Id and taking the value Φ1.

Recall that for planar vector fields, the other eigenvector is given by the vector
field X(K0(0)) = X(K0(1)) with associated eigenvalue 1.

Finally, it is easy to see that K1(θ) = eλθ/T ΦθK1(0) is a solution of equation
(6.3).

Remark 6.2. For the numerical computations when the eigenvalue eλ is very

small, we will use that λ =
∫ T

0
div(X(γ(t/T )))dt.

Remark 6.3. Notice that if K1(θ) is a solution of equation (6.3), then bK1(θ), for
any b ∈ R, is also a solution. Even though all the choices of K1(θ) are mathematically
equivalent, the choice affects the numerical properties of the algorithm. See Remark
7.2 for a more detailed discussion.

For n ≥ 2, we have

1

T

d

dθ
Kn +

nλ

T
Kn = (DX ◦K0)Kn +Rn (6.4)

where Rn is an explicit polynomial in K0, . . . ,Kn−1 whose coefficients are derivatives
of X evaluated at K0. These coefficients will be computed using the methods of
automatic differentiation (see for instance [11] and [15]).

By Proposition 5.2 in [2] the equation (6.4) for n ≥ 2 can be solved provided that
enλ is not an eigenvalue of the monodromy matrix Φ1 associated to γ. Notice that
this assumption is satisfied for planar vector fields, provided that the limit cycle is
hyperbolic, that is λ 6= 0.

Once K0(θ) and K1(θ) are fixed (see Remarks 6.1 and 6.3), the solution Kn(θ)
for n ≥ 2 of equation (6.4) is uniquely determined. Taking into account that Kn are
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periodic solutions in θ, we will discretize the equation (6.4) using Fourier series and
reduce the problem to solve a linear system in the Fourier space, see Section 7 for
more details.

Finally, by Theorem 5.4 in [2] we know that, provided that λ satisfies the men-
tioned conditions, the series constructed here converges to a true analytic solution of
the problem.

7. Numerical implementation of the method. In the previous sections we
have described the method, but there are many numerical details which are important
and nontrivial. They do not depend on the method but they are inherent to the
problem. In this section we provide some details about the implementation we have
carried out.

7.1. Fourier-Taylor discretization. In order to solve equation (2.7), we will
discretize the invariance equation using Fourier-Taylor series and study numerical
methods to solve the discretized equations.

As we already mentioned in Section 6, we first seek K as a power series

K(θ, σ) =

∞
∑

n=0

Kn(θ)σn,

where Kn(θ) are 1-periodic functions in θ. Thus, using Fourier formalism, the Kn(θ)
can be written as

Kn(θ) =
∑

k∈Z

cnke
2πikθ.

Since we deal only with real functions, we only need to store half of the coefficients
or, equivalently, store the cosine and sine Fourier series:

Kn(θ) = an
0 +

∑

k>0

an
k cos(2πkθ) + bnk sin(2πkθ),

where a0 = cre
0 , ak = 2cre

k and bk = −2cimk for k > 0.

In the numerical implementation we need to truncate these expansions. In order
to decide up to which order N we compute the Fourier series we require that the
residuals are of size of order 10−15 − 10−20. That is, we truncate the Fourier series
up to some order N in such a way that the norm of the last 10 per cent of Fourier
coefficients is smaller that the considered order, in symbols

|Ktail
n | =

N/2
∑

k=⌊0.9N/2⌋

|an
k | + |bnk | < 1.0e− 15. (7.1)

Remark 7.1. One of our goals is to apply this method to classical systems
in neuroscience. The main practical shortcoming in these cases is that the Fourier
series are not adaptable to the usual presence of spikes (slow-fast systems), where the
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Fourier coefficients decrease very slowly and not uniformly. Although these systems
can be analytic, from this numerical point of view they behave as if they were not. In
these cases, other methods of discretization which are more adaptive like splines or
wavelets could give some improvements.

Since the vector field is assumed to be analytic, so it can be written using al-
gebraic operations and elementary transcendental functions, we can use automatic
differentiation algorithms (see [11], [15]) to obtain Taylor expansions of the operators
in (2.7).

In the whole process when we have a discretization of a periodic function in the
real space, we use the Fast Fourier Transform (FFT) to compute the Fourier series.
In this work we have used the fftw3 library (see http://www.fftw.org/).

7.2. Discretization of the invariance equation and accuracy of the so-
lution. We will solve the invariance equation (2.7) by solving equations (6.2), (6.3)
and (6.4) for n ≥ 2. Observe that equations (6.2) and (6.3) are special because they
involve four unknowns (K0(θ), T,K1(θ), λ). These two equations will be solved simul-
taneously using additional information. Instead, equation (6.4) can be treated the
same way for any n ≥ 2.

In order to solve equations (6.2) and (6.3) we will need to integrate the system of
ODEs. The integration method used is a Taylor method (we have used the routines
provided by Jorba and Zou, see [15] and http://www.maia.ub.es/ angel/soft.html).
We used adaptive step size and degree and a tolerance (absolute and relative) of
1.0e-16.

Recall that for n = 0 we need to look for a periodic solution. In order to compute
it, we consider a Poincaré section and reduce the problem to find a zero of the Poincaré
map that can be achieved using a Newton method. Note that for the Newton method
we will need to integrate the variational equations together with the vector field. The
solution for the variational equations will be used to solve equation (6.3) according
to the method explained in Section 6.

Once we obtain the limit cycle K0(θ) and K1(θ) we store them for equidistant
values of θ, that is θi = i/N , for i = 0, . . . , N − 1.

For n ≥ 2 the most straightforward method is to discretize (6.4) using a basis ofN
Fourier coefficients and, then, apply a linear solver. However, once we have obtained
K0 and K1, we can perform a change of coordinates given by (x, y) = g(θ, σ) =
K0(θ) + σK1(θ). If we apply the method again to the system obtained after this
change, then it turns out that the equation (6.4) becomes diagonal in Fourier series.
Once we obtain the solution as a Fourier series we can go back to real space using the
Fast Fourier Transform. Again, as in the previous cases we store Kn for equidistant
values of θ.

An alternative method consists of applying a quasi-Newton method to the invari-
ance equation.

By now, the results shown in Section 9 have been obtained using the straightfor-
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ward method.

To check the accuracy of the solutions Kn obtained, we substitute them in the
corresponding equation ((6.2) if n = 0, (6.3) if n = 1 and (6.4) if n ≥ 2) for discrete
values of θi = i/N , for i = 0, . . . , N − 1. For each value of θ, this substitution
provides an evaluation of the error En(θ). Finally, we evaluate the discrete ℓ1 norm
of {En(θi)}N−1

i=0 to get the accuracy; that is

‖En‖ =
1

N

N−1
∑

i=0

|En(θi)|. (7.2)

Notice that the computation of En(θi) involves again a FFT.

7.3. Local approximation of the isochrons. Once we have solved the invari-
ance equation up to order L we have obtained a local approximation of the stable
invariant manifold. It remains to determine the domain of convergence and the order
of the error of the local approximation. Both concepts are very strongly related.

Given an approximate solution

K [≤L](θ, σ) =

L
∑

n=0

Kn(θ)σn, (7.3)

where

Kn(θ) = an
0 +

N/2
∑

k=1

an
k cos(2πkθ) + bnk sin(2πkθ),

The radius of convergence r = 1/l for the Taylor series is given by

l = lim
n→∞

‖Kn+1‖
‖Kn‖

,

where ‖ · ‖ denotes the ℓ1 norm defined in (7.2). Thus, a direct strategy to com-
pute l could be imposing that |ln − ln−1| < ǫ, for some prescribed ǫ > 0, where
ln = ‖Kn+1‖/‖Kn‖. Then, r = 1/ln could be a numerical approximation of the the-
oretical radius of convergence. However, for numerical reasons, the radius can shrink
in practical implementation. Consequently, we compute the convergence region in an
alternative way.

For each θ we compute a value σ0(θ) such that the approximate solutionK [≤L](θ, σ)
given in (7.3) solves the invariance equation (2.7) up to a certain error E, that we
established between 10−10 − 10−12. That is, we fix θ and we compute the values of
σ ∈ R such that

∣

∣

∣

∣

∣

1

T

L
∑

n=0

K ′
n(θ)σn +

λ

T

L
∑

n=0

nKn(θ)σn −X

(

L
∑

n=0

Kn(θ)σn

)
∣

∣

∣

∣

∣

< E, (7.4)
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where

K ′
n(θ) = 2π

N/2
∑

k=1

kbnk cos(2πkθ) − kan
k sin(2πkθ).

Remark 7.2. Recall that if K(θ, σ) is a solution of the invariance equation (2.7)
so is K(θ+ω, bσ), for any ω ∈ [0, 1) and b ∈ R. As we already mentioned in Remark
6.1 the choice of ω is related to the zero phase for the limit cycle. So, following the
usual criterion in neuroscience, we will fix the zero phase for the oscillator at the spike.
The choice of b is related to the domain of convergence. Hence, if we choose a large b
the domain where we can evaluate the series will be small. Although mathematically
we can choose any value of b, for the numerical stability it will be convenient to choose
a value of b such that the coefficients Kn can be kept at order 1, so that one can avoid
the round-off errors. Notice that if we consider bK1 then new Kn is bnKn.

However, in some cases, the Kn do not converge uniformly and in these cases
one can not find a global b. The immediate consequence of this fact is that for some
values of θ, the Kn become smaller than the machine precision and one can not trust
them. For these values, increasing the order L of the Taylor polynomial has no effect
on increasing the domain where the local approximation is reliable.

7.4. Globalizing the manifold. In theory, the method presented here gives
a parameterization of the whole manifold. However, we have seen that, numerically,
given an error bound (10−10−10−12), we can compute the isochron only up to a value
σ = σ0(θ) for each θ.

A standard way to extend local approximations obtained semi-analytically is to
globalize them using the dynamics given by the vector field (see [24]).

Typically, given a point γ(θ0) on the limit cycle, one could take n points param-
eterized by (θ0, σ) with σ ∈ (σ0(θ0)e

λ, σ0(θ0)), on the corresponding isochron and
then perform iterates of the inverse time-T map Φ−T for these points, where here Φt

denotes the flow of X . However, in many cases (included models in neuroscience in
which we are specially interested) this method has the disadvantage that we get too
many points close to γ(θ0) and just a few far from it. Moreover, some of them may
escape very fast far from the limit cycle.

This last shortcoming can be avoided using that isochrons, even if they are not
invariant, they are preserved by the flow, that is isochrons are carried into isochrons.
Hence, we can consider inverse time-T∆θ maps Φ−T∆θ as well as, taking ∆θ = 1/n,
n ∈ N, n local invariant manifolds corresponding to γ(θ0 + j∆θ), for j = 0, . . . , n− 1.
Then, to globalize the isochron corresponding to γ(θ0) we obtain points {p0, . . . , pm}
on it from points on the local approximation of other isochrons parameterized by
(θ0 + km∆θ, σm), such that

pm = Φ−kmT∆θ(K(θ0 + km∆θ, σm)) (7.5)

with km ∈ N.

The method to decide which σm and km we choose to compute each pm in order
to get points on the globalized isochron less sparse, is based on a method given in [24]
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(see also [16] for another alternative). For the sake of completeness, we explain the
details of the method adapted to our purpose.

We want to extend the local isochron for a phase θ0. We are going to approximate
it by a sequence of points {p0, . . . , pm} on the isochron for which we will assume that
they are at a distance smaller than some tolerance ∆s, that is

‖pm − pm−1‖ < ∆s,

and the angle between three consecutive points is bigger than a certain tolerance ∆α,

(pm−1 − pm−2) · (pm − pm−1) ≥ cos(∆α)‖pm−1 − pm−2‖‖pm − pm−1‖.

Assume that we have computed up to pm satisfying the previous conditions and
we have a current value of σm and ∆σm such that σm = σm−1 + ∆σm and a certain
iterate k such that

Φ−kT∆θ(K(θ0 + k∆θ, σm)) = pm.

We want to predict the new σm+1 and therefore ∆σm+1, such that

Φ−kT∆θ(K(θ0 + k∆θ, σm + ∆σm+1)) = pm+1,

satisfying that it is at a distance smaller than ∆s from pm.

Then, we consider

∆σm+1 = min

(

∆s

∆sm
,

∆α

∆αm
, 1.5

)

∆σm0.8

where ∆sm is the distance between pm−1 and pm and ∆αm the angle between v̄ =
pm−1 − pm−2 and w̄ = pm − pm−1. The factor 0.8 can be seen as a security factor.

If σm+1 = σm + ∆σm+1 falls into the allowed range for σ, that is σm+1 < σ0(θk),
where θk = θ0 + k∆θ, which means that we are in the range where the local approxi-
mation of the isochron for θk is good, we integrate for Φ−kT∆θ and we obtain pm+1.
In this case we define km+1 = k according to (7.5).

Otherwise, we keep dividing both σm+1 and ∆σm+1 by eλ∆θ l times until σm+1 ≤
σ0(θk+l). We say then that km+1 = k+ l and we compute pm+1 from (7.5). Typically,
l = 1 but it can be greater. We replace k by k + 1.

If despite our choice of ∆σm the point pm+1 obtained fails to satisfy one of the
conditions, we can either consider a smaller ∆σm+1 (taking into account that the
∆σ’s cannot be smaller than a certain value ∆min) or keep the computed point and
use an interpolation method for this part.

Remark 7.3. We can globalize the PRS in parallel with the isochrons: we ap-
proximate them locally according to (5.2) and we globalize them integrating the system
(5.3) backwards together with the vector field.
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7.5. Software. The algorithms have been implemented in C language and have
been run under the Linux environment. They have been applied to compute isochronous
sections and PRCs of limit cycles for planar vector fields which appear in models of
neuroscience and neurobiology.

The program performs the following steps: (1) Computation of the limit cycle and
its period, the monodromy matrix and the characteristic exponent. (2) Computation
of the Fourier-Taylor expansions of the isochrons (3) Computation of the domain of
convergence and the local approximation for the isochrons and the PRS (4) Global-
ization of the isochrons and the PRS. The figures are obtained using gnuplot and
Matlab.

8. Isochronous sections, (un)stable manifolds and foliations in R
n. Al-

though computing isochronous sections of limit cycles in R
n, for n ≥ 3, is beyond the

scope of this paper, we would like to highlight the main differences with the planar
case. The effective computation in higher dimensions is a goal for future work.

The theoretical extension to higher dimensions can be derived in a straightfor-
ward manner, though the practical implementation encompasses a plethora of new
challenges. Here, we give the theoretical ideas and concepts, together with comments
concerning practical issues.

Definition 8.1. Let us consider a smooth system of differential equations

ẋ = X(x), x ∈ Ω, Ω ∈ R
n, n ≥ 2,

with a hyperbolic limit cycle γ : R 7→ R
n. An isochronous section of γ is a hypersurface

Σ of R
n (dimension n− 1) such that

x ∈ Σ ⇔ ϕT (x) ∈ Σ

where ϕt(x) is a solution of X such that ϕ0(x) = x, and T is the period of the limit
cycle γ.

To extend the theoretical results, it is convenient to refer to integrable systems
(see [18]):

Definition 8.2. Let Y1, . . . , Yr be vector fields on a smooth manifold M . An
integral submanifold of {Y1, . . . , Yr} is a submanifold N ⊂ M whose tangent space
TN |x is spanned by the vectors {Y1|x, . . . , Yr|x} for each x ∈ N . The system of
vector fields {Y1, . . . , Yr} is integrable if through every point x0 ∈M is contained in
an integral submanifold.

Thus, having a neighborhood Ω ⊂ R
n of γ filled by isochrons is equivalent to

having an integrable system of vector fields {Y1, . . . , Yr}, with r = n − 1 defined in
this neighborhood. One way to obtain these vector fields Yj is to impose (see [9])
that [Yj , X ] = µj Yj , for j = 1, . . . , n− 1. However, as Frobenius theorem shows, this
requirement is not sufficient: the n− 1 vector fields have to be in involution.

We recall both the definition of involution and Frobenius theorem (see also [18]):

Definition 8.3. A system of vector fields {Y1, . . . , Yr} on M is in involution if
there exist smooth real-valued functions hk

ij(x), x ∈M , i,j,k = 1, · · · , r, such that for
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each i, j = 1, · · · , r,

[Yi, Yj ] =

r
∑

k=1

hk
ij · Yk

Theorem 8.4. (Frobenius) Let Y1, . . . , Yr be smooth vector fields on M . Then,
the system {Y1, . . . , Yr} is integrable if and only if it is in involution.

Summing up, adapting Frobenius theorem to our problem, we have:

Theorem 8.5. Let us consider a smooth system of differential equations

ẋ = X(x), x ∈ Ω, Ω ∈ R
n, n ≥ 2,

with a hyperbolic limit cycle γ : R 7→ R
n. Suppose that there exist n − 1 non-trivial

vector fields Y1, . . . , Yn−1 in involution such that

[Yj , X ] = µjYj j = 1, . . . , n− 1

for scalar functions µj : R 7→ R
n, j = 1, . . . , n − 1. Then, the isochronous sec-

tions are the maximal integral submanifolds of the integrable system of vector fields
{Y1, . . . , Yn−1}.

The integral submanifolds themselves are referred to as leaves of the foliation of
Ω.

When n > 2, it may happen that a limit cycle has both stable and unstable
manifolds. Let ns = dimWs(γ) and nu = dimWu(γ). Using the parameterization
method or other computational techniques, we can obtain both Ws(γ) and Wu(γ)
numerically. In other words, we would be computing the leaves of the partial foliations
given by the systems {Y1, . . . , Yns

} (resp., {Yns+1, . . . , Yns+nu
}), where

∫

γ µj < 0

(resp., > 0) if j = 1, . . . , ns (resp., j = ns + 1, . . . , ns + nu). However, this does not
give the whole foliation of the neighborhood.

A more suitable formulation to characterize the isochronous leaves can be obtained
by using differential geometry notation. For the sake of simplicity, we only give a
sketch of it and we restrict ourselves to R

2 though it can be extended to R
n.

Consider a vector field X := P (x, y) ∂
∂ x + Q(x, y) ∂

∂ y and its associated 1-form

ωX := −Q(x, y) dx+P (x, y) dy. We recall that iX α denotes the contraction (interior
product) of a k-form α with respect to X which gives a (k − 1)-form. In particular,
any vector field and its associated 1-form are related by iX dx ∧ dy = ωX .

It is known from classical tensor calculus (see formula 1.62 in [18]) that

i[X,Y ] ω = X(iY ω) − iY (X(ω)), (8.1)

for any k-form ω. If we use that [Y,X ] = µY and choose ω = ωY , the left-hand side
of (8.1) becomes

i[Y,X](ωY ) = iµ Y (ωY ) = µ iY (ωY ).



22 A. GUILLAMON AND G. HUGUET

Using now that iY (ωY ) = 0, we can write (8.1) as iY (X(ωY )) = 0 or, equivalently,

X(ωY ) = λ(x, y)ωY , (8.2)

for some function λ. Thus, the problem of finding isochrons is equivalent to finding
a 1-form ωY and a function λ satisfying (8.2). The leaves of ωY will then be the
isochronous sections of the limit cycle.

9. Examples. In this section, we apply our method to representative examples,
ranging from the most simple instances of Hopf and SNIC (saddle-node on an invari-
ant curve) bifurcations and the classical van der Pol oscillator to more sophisticated
neuronal models. Apart from obtaining isochrons, PRCs and PRSs, through these
examples we want to illustrate different facts: (a) what are the clues to explain the
transition from “Type 1” PRCs to “Type 2” PRCs; (b) the numerical problems that
arise when dealing with slow-fast systems; and, (c) up to which degree PRSs show
disagreement with PRCs in the same phase and how this can affect high frequency
stimulation. We end the paper with a discussion on these facts in Section 10.

We start with a direct application to the simplest vector fields that exhibit either
a Hopf or a SNIC bifurcation, for which we can compute their limit cycle and the
corresponding normalizing vector field analytically and we can also get an analytic
expression for the PRC.

Example 9.1. We consider a simple example of a supercritical Hopf bifurcation
{

ẋ = βx− y − x(x2 + y2),
ẏ = x+ βy − y(x2 + y2),

(9.1)

which writes, in polar coordinates, as
{

ṙ = r(β − r2),

θ̇ = 1.

For β = 0, there is a supercritical Hopf bifurcation giving rise, for β > 0, to a stable
limit cycle γ of radius

√
β and period 1. We parameterize γ by θ in the following way:

γ(θ) = (
√

β cos(θ),
√

β sin(θ)).

It is not difficult to see that the vector field Y (x, y) = (x, y) and the function µ(x, y) =
−2(x2 + y2) satisfy the condition (2.4).

Hence, taking into account that Y ⊥ = (−y, x) and < Y ⊥, X >= x2 + y2, by
equation (4.2) the phase shift for a point p = (x, y) ∈ Ω is given by

∇ϑ(p) =

(

− y

x2 + y2
,

x

x2 + y2

)

.

Then, using the parameterization of the limit cycle, the PRC is just

∇ϑ(γ(θ)) =
1

β
(−
√

β sin(θ),
√

β cos(θ)).

That is, PRC1(θ) = − sin(θ)/
√
β, and PRC2(θ) = cos(θ)/

√
β.
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Example 9.2. The easiest way to obtain a saddle node on an invariant cycle
bifurcation bifurcation is through

{

ṙ = r(β − r2),

φ̇ = m− sin(φ),
(9.2)

which, in cartesian coordinates, writes as















ẋ = βx −my − x(x2 + y2) +
y2

√

x2 + y2
,

ẏ = mx+ βy − y(x2 + y2) − xy
√

x2 + y2
.

We assume that β > 0 and m > 1. Therefore, there exists a unique and stable circular
limit cycle γ of radius

√
β that we parameterize by a phase θ satisfying θ̇ = 1/T ,

θ ∈ [0, 1) in the following way

γ(θ) = (
√

β cos(Ω(θ)),
√

β sin(Ω(θ))),

where Ω is the phase transformation between θ and φ, given by the solution of the
Cauchy problem

1

T

dΩ

dθ
= m− sin(Ω(θ)); Ω(0) = 0.

The explicit solution can be obtained analytically,

Ω(θ) = 2 arctan

(

m sin(T
2

√
m2 − 1 θ)√

m2 − 1 cos(T
2

√
m2 − 1 θ) + sin(T

2

√
m2 − 1 θ)

)

. (9.3)

Again, as in Example 9.1, the vector field Y (x, y) = (x, y) and the function
µ(x, y) = −2(x2 + y2) satisfy condition (2.4).

Hence, taking into account that Y ⊥ = (−y, x) and

< Y ⊥, X >= m(x2 + y2) − y
√

x2 + y2,

by equation (4.2) PRCs are given by

∇ϑ(γ(θ)) =
1

β(m− sin(Ω(θ)))
(−
√

β sin(Ω(θ)),
√

β cos(Ω(θ))).

That is,

PRC1(θ) = − sin(Ω(θ))√
β (m− sin(Ω(θ))

,

see Fig. 9.1, and PRC2(θ) =
cos(Ω(θ))√

β (m− sin(Ω(θ))
.
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Fig. 9.1. PRC1 for system (9.2) with m = 1.1, β = 1. Phase has been scaled to [0, 1]. Observe
the slightly positive bump when θ ∈ (0.9, 1) approx.

9.1. Numerical examples. We present here an application of our models to a
set of examples we found relevant either to illustrate the properties or because they
are representative of classical models:

1. The Van der Pol oscillator:
{

ẋ = −y + x− x3,
ẏ = x.

(9.4)

2. A reduced Hodgkin-Huxley-like system, with sodium and potassium currents,
and only one gating variable:

{

V̇ = − 1
Cm

(gNam∞(V )(V − VNa) + gKn(V − VK) + gL(V − VL) − Iapp),

ṅ = n∞(V ) − n,

(9.5)

where V represents the membrane potential, n is a gating variable, the open-
state probability functions are

m∞(V ) =
1

1 + exp(−(V − Vmax,m)/km)
, n∞(V ) =

1

1 + exp(−(V − Vmax,n)/kn)
,

and the parameters are Cm = 1., gNa = 20., VNa = 60., gK = 10., VK = −90.,
gL = 8., vL = −80., Vmax,m = −20., km = 15., Vmax,n = −25., kn = 5.

3. The Selkov model (see [23]), initially a model for self-oscillations in glycolysis,
which has also been extensively used in models for circadian rhythms (see for
instance [5] and [20]). It is given by

{

ẋ = 1 − x y,
ẏ = a y (x − (1 + b)/(1 + b y)),

(9.6)

where the parameters are a, b ∈ R.
4. The Morris-Lecar model (see [17]), initially conceived as a model for a bar-

nacle giant muscle fiber, but well-studied in the neuroscience literature (after
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[21]) as a paradigm for the different bifurcations that give rise to limit cycles.
The model is given by:







V̇ = 1
C (I − gL(V − VL) − gKω(V − VK) − gCam∞(V )(V − VCa)) ,

ẇ = φ
w∞(V ) − w

τw(V )
,

(9.7)

where

m∞(V ) =
1

2
(1 + tanh((V − V1)/V2)),

w∞(V ) =
1

2
(1 + tanh((V − V3)/V4)), and

τw(V ) = (cosh((V − V3)/(2V4)))
−1
,

and the parameters are VL = −60, VK = −84, VCa = 120, V1 = −1.2,
V2 = 18, V3 = 2, V4 = 30, gL = 2, gK = 8.0, gCa = 4.4, C = 20 and φ = 0.04.

All these examples share common characteristics with slight differences that will
be remarked at the end of this section. Let us start, then, with the common features.

9.1.1. Common features: methods, parameter values and figure la-
belling. In all the cases, we are interested in studying the dynamics close to a
hyperbolic limit cycle γ of period T that surrounds an unstable critical point p∗.
The zero phase point on γ is the point which has a maximum value of the first com-
ponent (x or V depending on the example). As in previous sections, we call λ the
characteristic exponent of γ (so, the characteristic multiplier is eλ). The computation
of the periodic orbits has been performed using a Newton method with a tolerance
of 1.0e− 15. In the neighborhood of γ, we have performed a Taylor expansion as in
(7.3) up to order L and we have considered N Fourier modes for the Kn. With them
we obtain residuals for the Kn as defined in (7.1), which are of order |Kn|tail. The
local approximation that we get for the isochrons defined in (7.4) is computed with an
error smaller than Eloc, while the globalization of the manifold has been performed
following (7.5) and using a Taylor method with a tolerance of order 1.0e− 16. In the
globalization (see definitions after (7.5)), we require a distance of order ∆s = 1.0e−2
between two consecutive points on the isochron and we fix ∆min = 1.0e − 8 and
∆α = 0.3.

Values for each example of all the parameters defined in the last paragraph are
given in Table 9.1. All the results will be given with 4 significant digits although all
the computations have been performed with double precision.

For each model, we present a figure (Figs. 9.2 to 9.6) with different panels. In
order to compact notation, we label each panel with a different symbol: (Kn), (Iso),
(PRC), (PRS) and (PRθ).

In panels (K), the computed Kn, for some values of n, are shown. The fact that
the orbits do not approach γ uniformly in θ has the effect that for certain values of
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Model Figure T ≈ λ ≈ L = N = Etail ∈ Eloc =
1 9.2 6.663 −7.059 15 28 = 256 (10−20, 10−15) 10−12

2, Iapp = 10 9.3 7.074 −27.66 5 211 = 2048 (10−17, 10−12) 10−8

2, Iapp = 165 9.4 1.630 −3.384 10 29 = 512 (10−19, 10−14) 10−10

3 9.5 6.344 −4.909 15 29 = 512 (10−16, 10−14) 10−11

4 9.6 99.27 −9.122 5 210 = 1024 (10−20, 10−13) 10−8

Table 9.1

Parameter values for the different models: T=period of the orbit γ; λ=characteristic exponent
associated to γ; L=order of the Taylor expansion; N=number of Fourier modes; |Ktail

n |=residuals
for the Kn; Eloc=maximum error when computing local approximation of isochrons.

θ, as n goes to infinity, the value of Kn goes to zero faster than for other values, see
the slow-fast item in Section 10 for a discussion on this question.

In panels (Iso) we plot the isochrons corresponding to the phases j/Nφ, for
j = 0, . . . , Nφ − 1, with Nφ = 16, typically. We show the local approximation (green)
computed semi-analytically using the parameterization method and the globalized
isochron (red) using the dynamics given by the vector field. We restrict the compu-
tation to a rectangular domain R containing the limit cycle.

In panels (PRC) we plot the PRC1 (green) and the PRC2 (blue) for an infinitesi-
mally small perturbation in the directions (1, 0) and (0, 1), respectively, with a certain
amplitude specified in each figure caption, jointly with the x (or V ) component (red
line) of the oscillator (scaled for a better reference). Notice that the PRC1, corre-
sponding to the horizontal pulses, is just the section with σ = 0 of the PRSs that are
given in panels (PRC).

In panels (PRS), we plot the PRS1 in the variables θ and σ, but only for positive
values of σ, avoiding negative values for the sake of clearness. The positive values of σ
correspond to the points (x, y) in the external part of the limit cycle (depending on the
orientation of the limit cycle, the sign of σ defined by the parameterization method
out of the limit cycle can be also negative; in these figures we change σ 7→ −σ for the
sake of homogeneity). Indeed, in these panels we plot the phase shift for the points
(x, y) in the outer neighborhood of the limit cycle displayed in panels (Iso). Since
we restrict to the rectangular domain R in the variables (x, y) (because they are the
“real” phase space variables), when plotting the PRS in the variables (θ, σ), we come
across with a non-regular domain. On the top of that, sometimes the discretization
of local isochrons (∆s) used to globalize other isochrons undergoes the limit ∆min

and cannot longer extend the isochron. This is why some isochrons do not reach the
border of the rectangular domain R.

Like the isochrons, the PRS1s are computed locally using semi-analytical methods
and extended by integrating the system (5.3), see Section 7.4. Thus, the mesh is not
completely regular, so we have used cubic interpolation with splines in order to show
it in an regular grid on the plane (θ, σ).

Although the PRSs contain the maximum information about phase advancement,
sometimes they are not easy to visualize. Accordingly, we have decided, in some cases,
to show sections of the PRSs with fixed phases (that is, θ = θ∗ and parameterized
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by σ). Using this view, we can easily illustrate the differences in phase advancement
between different points on the same isochron. These panels are labelled as (PRθ).

Before entering into the discussion, we go through the non-common features of
each example.

Remark 9.3. For the Hodgkin-Huxley-like model (9.5), we have studied the sys-
tem in two regimes: Iapp = 10 (close to a SNIC bifurcation which occurs at Iapp ≈
4.513) and Iapp = 165 (closer to a Hopf bifurcation which occurs at Iapp ≈ 213.8).
Bifurcation values are obtained through XPPAUT, see [6].

For the case Iapp = 10, which is the case close to SNIC, the system presents a slow-
fast dynamics that will accentuate some of the problems that we already mentioned in
the previous example. In this case, we computed the Taylor expansion up to order
L = 5, because, as we can appreciate in Fig. 9.3, for some values of θ, as n increases
the Kn tend to zero much faster. Moreover, since the functions Kn present very
sharp spikes we need to consider up to 210 = 1024 or 211 = 2048 Fourier modes to get
good approximations, that is with residuals smaller than a certain error. This implies
solving linear systems with large matrices that are not very stable.

Notice that this limit cycle is “strongly” hyperbolic and the backwards integration
can be somehow very unstable.

The system presents a fixed point at (−26.83, 0.4093), which is computed using a
Newton method with a tolerance of 1.0e− 13.

Once can appreciate in Fig. 9.3 that the isochrons computed semi-analytically
(green ones, hardly noticeable) are shorter than in the Hopf case (Fig. Fig. 9.4). In
this case, in order to have a long enough local approximation for the isochrons we
reduced the accuracy of the computation down to 1.0e− 08.

For the case Iapp = 165, which is close to the Hopf bifurcation, in Fig. 9.4 one
can observe that the slow-fast phenomenon that we mentioned above is softened.

The system presents a hyperbolic fixed point for at (−21.00, 0.6899), which has
been computed numerically with an error smaller than 1.0e− 13.

Remark 9.4. The Selkov model (9.6) presents an Andronov-Hopf bifurcation for
a = (1 + b)/b. We have studied here the case a = 3, b = 1. The unstable fixed point,
that can be easily computed analytically, is located at (1, 1).

In this example, we have decided to allow ∆max = 1.0e− 12 because far from the
limit cycle points escape.

Remark 9.5. For the Morris-Lecar model (9.7), we have considered the case
Iapp = 91, which presents similar issues as the 2D Hodgin-Huxley model close to a
SNIC considered above.

The system has a fixed point at (−26.26, 0.1320), which is computed using a New-
ton method with a tolerance of 1.0e− 13.

It is to be noticed that equation (9.7) presents a subcritical Hopf bifurcation at



28 A. GUILLAMON AND G. HUGUET

Iapp ≈ 93.86; the unstable limit cycle goes “back” in the parameter space up to Iapp ≈
88.29, where it coalesces with a stable limit cycle in a bifurcation of a semistable
limit cycle that disappears for lower Iapp’s. The stable limit cycle, which comes from
another bifurcation for some Iapp ≫ 93.86, is the one that we study. It can be checked
that the period of this stable orbit is notably above of that of the unstable orbit, born
at the subcritical Hopf bifurcation; thus, one may expect a more slow-fast dynamics,
more similar to a limit cycle close to a SNIC bifurcation than to a Hopf bifurcation.

Some of the shortcomings of the Hodgkin-Huxley close to a SNIC are reproduced
also here: it is necessary to solve linear systems with large matrices that are not very
stable; the limit cycle is “strongly” hyperbolic and the backwards integration can be
somehow very unstable; to have a long enough local approximations for the isochrons
we need to reduce the accuracy of the computation.

Another specific observation is that the isochrons spiral around the unstable limit
cycle in the interior of the stable one. This is not surprising since the two limit cycles
have different periods and so, they cannot share the system of isochrons. Next short
example illustrates analytically this fact.

Example 9.6. Consider the C1 system in polar coordinates

X :=

{

ṙ = r a(r),

θ̇ = b(r).

Suppose that a(rj) = 0, a′(rj) 6= 0 and b(rj) 6= 0, for j = 1, 2, with r1 6= r2, both
positive.

It is straightforward to see that {r = r1} and {r = r2} are hyperbolic limit cycles
of X with alternate stability. From [9], we can deduce that, for each limit cycle, the
vector field

Yj :=

{

ṙ = r,

θ̇ = (b(r) − b(rj))/(a(r))

satisfies [Yj , X ] = µYj, with µ(r) = r a′(r).

Let us take now Y1. It is clear that, in general, θ̇ is not defined on r = r2 since
a(r2) = 0. However, if b(r2) = b(r1) (both limit cycles have the same period!), then
θ̇ may be extended on r = r2 and thus, {r = r2} may be contained in the domain
Ω where the isochrons of {r = r1} are defined. This is the case, for instance, when
the system is rigid (θ̇ =constant), for which the isochrons are straight lines from the
origin.

In the case that b(r2) 6= b(r1) (different periods like the numerical example illus-
trated in Fig. 9.6), θ̇ in Y1 is not bounded close to {r = r2} and, then, the isochrons
of {r = r1} spiral around.

10. Discussion.

An integrated way to study the dynamics around a limit cycle. We want
to emphasize on the completeness of the method presented in this paper. We provide



COMPUTATION and GEOMETRY OF PRCs and PRSs 29

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

K
n

θ

Kn
K1
K5

K10
K15

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

y

x

Iso
global isochron

local isochron
limit cycle

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

K
n

θ

PRC
V

PRC1
PRC2

-0.2
-0.15
-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

-0.2
-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

PRS1(θ,σ)

PRS

θ

σ

PRS1(θ,σ)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

P
R

S

σ

PR θ
θ=0.625
θ=0.672
θ=0.781

Fig. 9.2. The van der Pol oscillator. In the panel PRC, we show PRC1 and PRC2 with
amplitude 1 and x scaled by a factor 0.1. See Section 9.1.1 for a general explanation about the
contents of each panel. In panel (PRθ), notice the diversity of phase advancements that can be
obtained in the same isochron (three isochrons are shown: θ = 0.625, 0.672, 0.781).

a way to reconcile different concepts, from Lie symmetries to phase resetting curves
and surfaces, through the implementation of the parameterization method. Although
computing PRSs has been presented as our last goal, along the way we have related
all the different concepts involved in the parameterization of a neighborhood of a
periodic orbit in R

2: choice of “canonical co-ordinates” inspired by the Lie symmetry,
computation of isochrons, PRCs and, finally, PRSs. We have established, as well, a
link between different parts of the scientific literature that are not usually connected:
theoretical and numerical methods for invariant objects, qualitative theory of (mostly
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Fig. 9.3. Two dimensional Hodgkin-Huxley close to a SNIC bifurcation. In the panel PRC, we
show PRC1 and PRC2 with amplitude 10 and 0.1 respectively, and V scaled by a factor 0.01. See
Section 9.1.1 for a general explanation about the contents of each panel. In panel (Iso), notice the
heterogeneity in the distances between isochrons with equidistant phases, thus reflecting the slow-fast
nature of the system.

planar) ordinary differential equations and theoretical (neuro)biology.

We have also taken care of the numerical aspects involved in the method, which
are not trivial and show up relationships among geometry, dynamics and numerical
schemes. Concerning to the practical part of the effective computation, the above
examples have shed light upon different biological and numerical issues that we would
like to remark next.
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Fig. 9.4. Two dimensional Hodgkin-Huxley close to a Hopf bifurcation. In the panel PRC, we
show PRC1 and PRC2 with amplitude 2 and 0.02 respectively, and V scaled by a factor 0.01. See
Section 9.1.1 for a general explanation about the contents of each panel.

From “Type 1” to “Type 2” PRCs. As we mentioned in the Introduction,
from [8], PRCs are classified between models with strictly positive or mainly posi-
tive PRC (“Type 1” or ”Class 1”), and models whose PRC changes sign (“Type 2”
or ”Class 2”). The “rule of thumb” proposed by Ermentrout is that Type 1 PRC
correspond to models in which oscillations appear via saddle-node on invariant circle
bifurcations, whereas Type 2 PRC correspond to supercritical Andronov-Hopf bifur-
cation.

Our examples confirm this rough classification and we have used them to give an
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Fig. 9.5. Selkov model with a = 3 and b = 1, not far from a Hopf bifurcation. See Section 9.1.1
for a general explanation about the contents of each panel.

idea how the transition between the two PRC types takes place. Another study, using
only PRCs and continuation methods, has recently appeared in [10].

Analytically, we have seen for instance (see Example 9.1) that
PRC1(θ) = −1/

√
β sin(θ) close to a Hopf bifurcation and (see Example 9.2), PRC1(θ) =

− sin(Ω(θ))/(
√
β(m− sin(Ω(θ))), where Ω is given in (9.3), for a system that presents

a SNIC bifurcation at m = 1 (see also Fig. 9.1).

These examples clearly show that the fact that systems with oscillations coming
from a saddle-node bifurcation are of “Type 1”, that is, the PRC is mainly positive



COMPUTATION and GEOMETRY OF PRCs and PRSs 33

-5

 0

 5

 10

 15

 20

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

K
n

θ

Kn
K1
K3
K5

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-100 -50  0  50  100

w

V

Iso
global isochron

local isochron
limit cycle

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

K
n

θ

PRC
V

PRC1
PRC2

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  0
 5

 10
 15

 20
 25

 30
 35

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

PRS1(θ,σ)

PRS

θ

σ

PRS1(θ,σ)

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  5  10  15  20  25

P
R

S

σ

PR θ
θ=0.156
θ=0.516
θ=0.781

Fig. 9.6. Morris-Lecar model. In the panel PRC, we show PRC1 and PRC2 with amplitude
1 and 0.01 respectively, and V scaled by a factor 0.001. See Section 9.1.1 for a general explanation
about the contents of each panel. In panel (Iso), notice how isochrons spiral around the unstable
limit cycle, see also Remark 9.5.

(or mainly negative), is produced by the slow-fast dynamics; moreover, the time it
spends on a negative (resp., positive) regime is very short compared to the time it
spends out of it. This fact can also be observed when comparing (9.5) with Iapp = 10
(see Fig. (9.3)) with (9.5) with Iapp = 165 (see Fig. (9.4)). For instance, in Fig.
(9.3), panel (PRC), we can appreciate a small negative portion of the PRC1 (close to
θ = 0.1), whereas in the same panel of Fig. (9.4), the negative part has a bigger area.
As the value Iapp increases from Iapp = 10 on, the negative portion of the PRC is
enlarging up to the bifurcation point Iapp ≈ 213.8, where the PRC has practically
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zero integral.

Observe also that systems with a marked “Type II” tendency (mainly, (9.4),
(9.5) with Iapp = 165 or (9.6)) reach the extreme values of the PRCs when the
isochrons have maximal curvature nearby the limit cycle (the correspondence is not
exact because it also depends on the stimulus direction). Compare panels (PRC) with
panels (Iso) in Figs. 9.2, 9.4 and 9.5. On the other hand, the chosen value for the
Morris-Lecar system (see Fig. 9.6) shows an intermediate behavior, perhaps closer to
“Type II” than to “Type I” (recall from (9.5) that it takes place close to a double
limit cycle bifurcation).

Numerical drawbacks for slow-fast systems. From a joint analysis of panels
(Kn) and (Iso) we can deduce the effect of slow versus fast dynamics. In Fig. 9.2, for
instance, one can appreciate two features close to values θ ≈ 0.4 or θ ≈ 0.9: (a) the
Kn 6= 0 for every n; (b) the isochrons on these zones are more separated (though the
phases are equidistant). In other words, the slow dynamics makes the convergence of
the Fourier expansions of our method to slow down as well. The numerical problem
is that the value of Kn goes to zero faster in some zones, and it is then impossible to
choose a uniform b (see Remark 7.2) such that the Kn can be kept to have order 1 for
all the values of θ. Thus, for these values of θ, increasing the degree L of the Taylor
polynomial does not have any effect in the growth of the domain where the isochron
can be computed semi-analytically. This situation turns out to be a serious issue for
the cases when the systems present an accentuated slow-fast dynamics.

This effect is even more dramatic in system (9.5) close to the SNIC bifurcation,
see Fig. 9.3. In this case, (observe panel (Kn)) the zone close to θ = 0, where the Kn

take values orders of magnitude above the rest of the cycle; that is,
max

θ
|Kn(θ)|

min
θ

|Kn(θ)| ≫ 1.

This coincides again with the zone where the isochrons are more noticeable separated,
panel (Iso) of Fig. 9.3.

On the other hand, the factor
max

θ
|Kn(θ)|

min
θ

|Kn(θ)| is more attenuated in (9.5) close to

the Hopf bifurcation, see Fig. 9.4.

Role of PRSs under high frequency stimulations. As explained in Section
1, the phase advancement computed on the limit cycle (PRC) can differ from that
computed out of the limit cycle (PRS). This difference will be important under dif-
ferent circumstances like a short period of stimulation, a slow attraction to the limit
cycle, a large stimulus amplitude, environmental random fluctuations, bursting-like
stimuli, etc. We fix our attention, now, to panels (PRS) and (PRθ) in all the figures.
Our purpose is to highlight the differences in the phase advancement for points in a
neighborhood of γ which share the same phase θ.

As with the maximum and minimum values of the PRCs, we pay attention to
the zones where the curvature of the isochrons is extreme close to the limit cycle.
This phenomenon can be timidly observed in Fig. 9.3, panel (PRθ), where the section
θ = 0.75 of the PRS is shown to be decreasing. More exaggerated variations can be
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obtained for θ = 0.15625 in Fig. 9.4, panel (PRθ), or in Fig. 9.2. In the latter case,
we show a zoo of possible sections (θ ∈ {0.672, 0.625, 0.781}).

Changes of the phase advancement with respect to σ given a fixed θ, as the
above examples show, combined with high frequency stimuli, rule out the possibility
of controlling the whole phase advancement of an experiment using only the PRC.
Thus, the PRSs become extremely useful. These differences, as our examples, show are
more noticeable close to Type II oscillators (Hopf) because of the stronger curvature
of the isochrons.

Our results agree with the fact that perturbations applied to Type II oscillators
produce significant normal displacements from the limit cycle rather those applied to
Type I. This fact has been also studied in [19] by Oprisan and Canavier, in the sense
that the difference in angular velocity at displaced points compared to the angular
velocity on the limit cycle is then more important. As pointed out in [19], this might
affect the study of biological circuits comprising Type II neural oscillators, which
appear frequently in identified central pattern-generating circuits.

Isochrons in higher dimensions. Although in this paper we only apply the
method to compute isochrons and PRCs to planar differential systems, it can be
applied to higher dimensions provided that the limit cycle is hyperbolic and stable.
In higher dimensions, we would like to emphasize the interesting question about the
existence of an isochronous foliation when a limit cycle is not stable (i.e., some of the
characteristic multipliers are bigger than one). In Section 8 we have shown that for a
given vector field X ∈ R

n, n ≥ 2, with a limit cycle γ, if there exist n− 1 non-trivial
vector fields Y1, . . . , Yn−1 in involution satisfying the Lie symmetry equation (2.4),
then γ is isochronous and the foliation can be defined. An effective/efficient method
to compute the isochrons for a limit cycle with both stable and unstable manifolds
is also a challenge to which the Lie symmetries approach can help. We have seen
in Section 8 that the problem of finding isochrons is equivalent to solving equation
(8.2); that is, finding a 1-form ωY and a function λ satisfying X(ωY ) = λ(x)ωY .
The leaves of ωY will then be the isochronous sections of the limit cycle. Developing
numerical methods to solve equation (8.2) would then give the isochronous sections,
independently of the dimensions of the stable and unstable manifolds associated to
the (hyperbolic) limit cycle. We want to emphasize, however, that this has more
theoretical than practical interest since in models one usually encounters (hyperbolic)
stable limit cycles. In this case, solving (8.2) would be equivalent to finding the stable
manifold; the parameterization method could be useful as well, as in the bidimensional
case.
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[13] À. Haro and R. de la Llave, A parameterization method for the computation of invariant
tori and their whiskers in quasi-periodic maps: numerical algorithms, Discrete Contin.
Dyn. Syst. Ser. B, 6 (2006), pp. 1261–1300 (electronic).

[14] E. M. Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and burst-
ing, Computational Neuroscience, MIT Press, Cambridge, MA, 2007.
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