EXPONENTIAL DECAY OF CORRELATIONS FOR
RANDOMLY CHOSEN HYPERBOLIC TORAL
AUTOMORPHISMS

ARVIND AYYER! AND MIKKO STENLUND?

ABSTRACT. We consider pairs of toral automorphisms (A, B) sat-
isfying an invariant cone property. At each iteration, A acts with
probability p € (0,1) and B with probability 1 — p. We prove
exponential decay of correlations for a class of Holder continuous
observables.

1. INTRODUCTION

1.1. Background. Toral automorphisms are the simplest examples of
Anosov maps. For deterministic Anosov maps, many ergodic and sta-
tistical properties such as ergodicity, existence of SRB measures and
exponential decay of correlations for Holder continuous observables are
known.

Dynamical systems with randomness have been studied extensively
in recent years. A typical model has been an Anosov map with noise.
There are several good books on the subject [Ki, Ar].

Products of random matrices are used in physics to model mag-
netic systems with random interactions and localization of electronic
wave functions in random potentials. They also play a central role in
chaotic dynamical systems. In such applications, Lyapunov exponents
provide information on the thermodynamic properties, electronic trans-
port, and sensitivity for initial conditions. For more on the applications
of products of random matrices, see [CrPaVu].

We consider the action of two separate toral automorphisms A and
B, satisfying a cone condition, but which cannot be considered pertur-
bations of one another. At each iteration, the matrix A is picked with
a certain probability and the matrix B is picked if A is not picked and
applied on the torus.
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We are interested in the ergodic and statistical properties of the
model for fixed realizations of the sequence of A’s and B’s obtained in
this way. One might consider the “environment” (given by the sequence
of matrices) to be fixed and the randomness to be associated with
choosing the initial point on the torus. That is, our point of view is
quenched randomness; one rolls the dice and lives with the outcome.

Acknowledgements. We are grateful to Giovanni Gallavotti, Shel-
don Goldstein, Joel Lebowitz, Carlangelo Liverani, David Ruelle, and
Lai-Sang Young for useful discussions.

1.2. Toral automorphisms. Let T? be the 2-torus R?/27Z>.

Definition 1. A map A : T? O by the matriz action x — Az (mod 2m)
1s called a toral automorphism if the matrix A has integer entries and
det A = +1. It is a hyperbolic toral automorphism if, further, the
eigenvalues of the matriz A have modulus different from 1.

Since the eigenvalues of a 2 x 2 matrix A are given by the formula

tr A+ /(tr A)2 —4det A (1)
2 Y

we see that a toral automorphism is hyperbolic precisely when the
eigenvalues are in R\ {1}. The hyperbolicity condition reduces to

{|trA\ >2 ifdet A= +1,

oA . B (2)
rA#0 ifdetA=—1.

Under the hyperbolicity assumption, the matrix has an eigenvalue
whose absolute value is greater than 1, which we call the unstable
eigenvalue and denote by \2. Similarly, it has a stable eigenvalue,
M with absolute value less than 1. The corresponding eigenvectors
e and e span linear subspaces E4 and EZ, respectively. These we
refer to as the unstable (eigen)direction and the stable (eigen)direction,
respectively.

From now on, we will always assume that our toral automorphisms
are hyperbolic and have determinant 4+1. This is necessary for the cone
property formulated below.

It is important to notice that the eigenvalues in (1) are irrational.
Consequently, the corresponding eigendirections E;‘}u have irrational

slopes; if A = (CC” Z), the eigenvectors are given by the formula

= (o L) ®)
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Here b # 0 by hyperbolicity; see (2). Irrationality is equivalent to
E},n7Z* = {0}. (4)

An alternative, “dynamical”, way of proving (4) starts with assuming
the opposite; suppose that 0 # ¢ € EANZ2. Then A"q — 0 as n — oo,
which is a contradiction because A is an invertible integer matrix. The
case of B is similar using A~'.

In fact, the slopes of Eﬁu—call them aﬁu—are not only irrational but
satisfy a stronger arithmetic property called the Diophantine condition:
there exist € > 0 and K, > 0 such that
KE

A g2
Tl T ®

S, u
B
This tells us that in order for Ef,s to come close to a point on the integer

lattice Z* \ {0}, that point has to reside far away from the origin.
Finally, we point out that a toral automorphism is symplectic. That

is, setting
0 1
= (4 0). ()

any 2 x 2 matrix A with determinant one satisfies

(QI7Q2) €Z27Q17£0 - «

ATJA = . (7)
For future reference, we define
A= ATy = g4 (8)

1.3. Invariant cones. A matrix on R? maps lines running through the
origin into lines running through the origin. Therefore, it is natural to
consider cones, i.e., sets in R? spanned by two lines intersecting at the
origin [Al, Wo]. Cones have also been used in the study of the spectrum
of the transfer operator. See, for example, [BlKeLi, GoLi, Ba].

Definition 2 (Cone property). A pair (Ao, A1) of hyperbolic toral au-
tomorphisms has the cone property if the following cones exist (Fig. 1):
An expansion cone, &, is a cone such that

(1) A& CE€,

(2) there exists A\g > 1 such that |A;x| > Ae|z| for x € €,

(3) The EZ do not lie along the boundary O : E4 N OE = {0}.
A contraction cone, C, is a cone such that ENC = {0} and

(1) A7'c cc,

(2) there ewists A\e < 1 such that |A;'z| > \;'|z| for x € C,

(3) The E% do not lie along the boundary OC: EXi N AC = {0}.
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FIGURE 1. An example of expansion and contraction cones.

Remark 1. A cone is a contraction cone with rate A\¢ (respectively
expansion cone with rate \e ) for (A, B) if and only if it is an expansion
cone with rate )\51 (respectively contraction cone with rate Agl) for
(A=Y, B7Y). With the aid of (8), one checks that if one of the pairs
(A, B), (AT, BT),(A', BY), (A, B) has the cone property then all of
them do (with different cones). Moreover, the rates coincide for the
corresponding cones of (A, B) and (A, B).

The name “expansion cone” is obvious, whereas “contraction cone”
deserves some caution: |A;x| < Ac|z| holds in general only under the
assumption A;z € C, as opposed to the weaker x € C.

Given a line L passing through the origin transversely to E4i, it is
a consequence of hyperbolicity that the image line AL tends to E:
as n — 00. Therefore, an expansion cone has to contain the unstable
eigendirection, E“¢. Similarly, considering the backward iterates, a
contraction cone has to contain the stable eigendirection, E4¢. In brief,

Edc€& and EY cCC. (9)
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The expansion and contraction rates in the cones are naturally bounded
by the eigenvalues of the matrices:

L<Xe<|M and 1> X > |\

. (10)

In particular, our results will hold for any two toral automorphisms
with positive entries, as well as for any two toral automorphisms with
negative entries. This is because the union of the first and third quad-
rant is automatically an expansion cone and the complement a con-
traction cone, as can be easily checked. By inverting the matrices, our
results apply just as well to any two toral automorphisms whose diago-
nal elements are positive (respectively negative) and off-diagonal ones
negative (respectively positive).

1.4. Random toral automorphisms. For definiteness, let A be cho-
sen with probability p and B be chosen whenever A is not chosen.
In order to model randomness, we first set

Ap:=A and A, :=B. (11)
On the space of sequences,  := {0, 1}, we define the shift operator

7 (w(0),w(1),...) — (w(l),w(2),...), (12)
and independently for each index n € N prescribe the probability p to
“w(n) = 0”7 and the probability 1 — p to “w(n) = 17. The resulting
product measure, P, is a 7-invariant ergodic probability measure on €.

The map
P:OxT*O: (w,z) — (Tw, Ayo)T) (13)
is called a skew product and defines a random dynamical system. If m
stands for the normalized Lebesgue measure on T?, i.e.,

dx
dm = ——— 14
= G (14)
then P xm is a ®-invariant probability measure, because m is A;-
invariant for ¢ = 0,1. As usual, we will write u(f) := [duf for the
integral of a function f over a measure space with some measure p.
A basis of the space L?(Q,P) of square integrable functions on €

can be constructed as follows. Set o;(w) := /p/(1 —p) if w(i) = 1,
and o;(w) := —y/(1 = p)/p if w(i) = 0. Then define o4 := [[;c4 0
for any finite subset A of N. The set {o4 | A C N finite} is a countable
orthonormal basis of L*(Q,P).

Let us denote A := A, -1 -+ - Au(o), such that A? = A:L,:j AF for
1 < k < n. Using the notation A= (A1)~ for any matrix A, we get

A" = Aw(n—l) s Aw(o) = ((AZ)T)_I (15)

w
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Moreover,
A= Ak AR for k=1,...,n—1. (16)

1.5. Sensitive dependence on initial conditions. As an ingredient
of chaos, we discuss how the iterates of a point on the torus depend
sensitively on the point chosen. By this we roughly mean that the
distance, |[A"x — A"y|, between iterates of two close by points, x and
y, typically diverges at an exponential rate as n grows.

To this end, we use the Multiplicative Ergodic Theorem (MET) that
is originally due to Oseledets in the context of differential equations
and smooth flows; see [Os] and also [Ru].

Theorem 2 (2 x 2 MET). Suppose that w — Ay) is a measurable
mapping from ) to the space of real 2 X 2 matrices and the mapping
w — In*|| Ayl is in L'(Q,P). Here In™t = max(Int,0) and || - | is
any matrix norm. Then there exists a set I' C Q with 7' C T' and
P(T") = 1 such that the following holds if w € I':

(1) The limit

lim ((A7)7A")Y*" = A, (17)
ex1sts.
(2) Let exp XS) < e < exp Xff) be the eigenvalues of A, with
US), e ,Ufjs) the corresponding eigenspaces. Further, denote
Ve = {0} (18)
vl = uWe...oU" forr=1,---,s (19)
Then s is either 1 or 2 and forr =1,...,s we have
1
lim —In|A"z| = x" for xeVO\ VI, (20)
n—oo M,

The numbers ij) are called Lyapunov exponents. Both s and

ij) generically depend on w but are T-invariant.

Notice that det A, =1, or > °_, Xff ) = 0, yields two possibilities:
(1) s =1 and W=,
(2) s =2 and W= >0
The MET guarantees that the Lyapunov exponents are invariant under

the flow w — Tw. By ergodicity of the T-invariant measure P, they are
constant almost surely (P = 1).
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Corollary 3. Replacing A" by ij (see (15)) does not change the Lya-
punov exponents. In fact, setting J := (_01 é),

~ ~ \1/2n ~
lim ((AZ)TAZ) — JALJ =R, = (A)7L (21)
Proof. By (8), A" = JA"J=!. Moreover, JT = J= and the symmet-
ric matrix (A")T A" is diagonalizable, such that ((/TZ)TXZL@)I/ o
JO, A" o 'J 1t = J((AZ)TAZ)l/%J_l for some matrix O,, and di-
agonal matrix A,,. O

reads

With respect to the Lebesgue measure on R? almost all (a.a.) points

x belong to the set Ve \Vw(s_l) corresponding to the largest Lyapunov
exponent ng ). P-almost surely the latter equals a constant y®). There-

fore, for a.a. w, for a.a. x,

nlinolo % In|A"z| = x¥. (22)
A priori, there might not exist a positive Lyapunov exponent (s = 1).
This would rule out sensitive dependence on initial conditions in the
meaning of the notion described in the beginning of the subsection.

In particular, it does not follow from the classical works of Fursten-
berg [Fu], Kesten [FuKe], and Virtser [Vi] that the largest Lyapunov
exponent is positive, because the Bernoulli measure used to choose
a matrix at each step is concentrated at two points, A and B, on
SL(2,R).

Theorem 4 (The largest Lyapunov exponent is positive). Suppose that
(A, B) has the cone property. Then there are two distinct Lyapunov ex-
ponents, and x? = —xW . In fact, 0 < In \¢ < x® < max; In|]A\%| and
min; In|]A%| <y <In)e < 0. In particular, x® > Inmax(A\;*, \e).

Proof. The largest Lyapunov exponent is positive, because the expan-
sion cone has nonzero measure. We conclude that s = 2 in the MET.

Consider the intersection E,, := [,,(AF)7'C of preimages of the
contraction cone C. It is a line inside C whose forward iterates forever
remain in C. That is, if x € E,, then A”x € C such that |A”x| < A\3|z|
for all n > 0. We must have Vw(l) = FE,. The construction of E, is
similar to that of random stable manifolds [Yo].

The bounds are now obvious. ]

1.6. Observables and a Holder continuity condition.
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Definition 3. We say that a function (“observable”) f : Q2 x T? — C
satisfies the strong Hélder condition with exponent B € [0,1], if

£l = sup > [f(w, q)llg]” < oo. (23)
we
q€Z?
Here f is the Fourier transform of f.

Observe that if f satisfies (23), then
sup|f(w, @) < || fllglal™, q€Z*\{0}. (24)
Because 0 < 3 < 1, |e® — 1]/|t|? is uniformly bounded in ¢t € R, and
we see that (23) implies Holder continuity of f(w,-) with exponent 3:
A ey — ]
foatn - fwol < 3 fwalle ol T < ol 25)
a2\ (0} iy

for all z,y € T?. The opposite is not true; hence the adjective “strong”.

1.7. Decay of correlations and mixing. We define the nth (time)
correlation function of two observables f and g as

Crglw,n) 1= /T2 dm(z) f(w, Ajz)g(w, ) —m(f(w,)) m(g(w,-)). (26)
We also need the related

Clglw,n) 12/ dm(z) (fo®"-g)(w, z) —m(f(7"w, )) m(g(w,-)) (27)

TZ
and

Cym)i= [ d(Bxm) (£o0"-g) ~ Pxm)() (Bxm)(g),  (25)

where ® refers to the skew product (13). Our result is the following:

Theorem 5 (Decay of Correlations). Let the pair (A, B) satisfy the
cone property (2); see Remark 1. There exist ¢ > 0 and p > 0 such that,
if f and g are two observables satisfying the strong Holder condition
with exponent € (0, 1], then for all w € Q,

sup|Crg(w, n)| < cllfllsllglls e (29)

and
sup|C7y(w, n)| < cl|fll5llgllz e (30)

hold for alln € N. In fact, we can take p = Inmin(A\;"', \¢).
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For all € > 0, there exists a constant C(€) such that, for almost all
w, the upper bounds above can be replaced by

-8 —(x@=6)8n
el flisllglls C(e)~? e &F =, (31)

where X2 > Inmax(\;', \¢) is the a.e. constant, positive, Lyapunov
exponent.

Remark 6. Without additional information concerning the conver-
gence rates of % In|A"x| to the corresponding Lyapunov exponents, we
have no control over C(€) beyond the fact that it is an increasing func-
tion of €.

The proof of Theorem 5 follows in Section 2.

If f,g are trigonometric polynomials (finite linear combination of
exponentials of the form €?), they satisfy (23) trivially and thus, also
(29). Trigonometric polynomials form a countable basis of L*(T? m).
This implies that lim, . [, dm(z) F(ALz)G(z) = m(F) m(G) for any
functions F,G € L?(T? m). We say that every fired realization of the
random sequence (Ay(), Au(1), - - . ) of maps is mixing on T?.

Similarly, one should interpret (30) as a mixing result for the skew
product, keeping w fixed.

Remark 7. It is true that the positivity of the Lyapunov exponent
x® is enough for mizing, even if the cone condition is not satisfied.
However, we need the cone condition to

(1) check that x¥ actually is positive, and
(2) obtain estimates on correlation decay, i.e., on the mizing rate.

Corollary 8. If (A, B) satisfies the cone property, then the skew prod-
uct ®, or the random dynamical system, is mixzing. If, moreover, f and
g satisfy the strong Hélder condition and m(f(w,-)) = m(g(w,-)) =0,
then |CF,(n)| < c||fllllgll; min(e=7?", C(e)=Fe= 6 =m).

Proof. For f,g € L*(QxT? P xm), the difference C7 ,(n) —=P(C? (-, 1))
has the expression

/Qdﬁ”(w) m(f(r"w,-)) m(g(w,-)) = (P xm)(f) (P xm)(g),  (32)

and tends to zero, because 7 is mixing. Since {04 |A C N finite} is
a countable basis of L?(Q,P), we get L?(Q x T?,Pxm) & L*(Q,P) ®
L?(T?,m). The functions o 4(w)e’® form a countable basis of the latter
and trivially satisfy (23) and an estimate corresponding to (30). Hence,
for any f,g € L*(Q2 x T2, P xm), lim, C]?’g(n) = 0, such that ® is
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mixing. The second claim follows from (30) and (31) because C7 (n) =

P(C?,(-,n)) when m(f(w,-)) = m(g(w,-)) = 0. O

The correlation function in (26) has the Fourier representation

Crolw,n) = > flw ) §(w, ). (33)

q€Z2\{0}

The proof of Theorem 5 is based on the decay (24) of f(¢),(q) with

increasing |¢| and on controlling |A”g| with lower bounds that are in-
creasing in n but not too heavily decreasing in |g|, such that summa-
bility persists. Here we gain by working with the sequence (Zﬁ)neN
instead of ((A")7),en, because the former has a Markov property—not
shared by the latter—due to the order in which the matrix factors are
multiplied. More precisely, if ¢" := A"q, then ¢"*! is completely de-
termined by ¢" and w(n) as opposed to the entire history (w(k))o<k<n.

1.8. Comments. Notice that Theorem 5 is not needed for Theorem 4;
ergodicity of the shift 7 alone is relevant for Theorem 4.

Without affecting the proofs much, the cone property can be weak-
ened by relaxing, for instance in the case of the expansion cone, the
assumption that every iteration results in expansion. Assuming instead
the existence of a number N such that |[ANz| > A¢|z| for all w if z € €
is equally sufficient.

In fact, it is true that the system is mixing even when the cones are
merely invariant without any contraction/expansion assumption. More
precisely, if A; are hyperbolic toral automorphisms and there exist non-
overlapping cones £ and C with the properties 4;€ C £ and A;'C C C,
then mixing occurs. This is so, because all possible products A?j turn
out to be hyperbolic. However, we have no control over the mixing rate
(the speed at which correlations decay) in this case.

Our results remain valid for any number of automorphisms, if all of
the matrices have a mutual contraction cone and a mutual expansion
cone with contraction and expansion rates bounded away from 1.

One can pursue a line of analysis different from ours by emphasizing
randomness in w. For instance, fixing € T?, the sequence (Alz),
of random variables on € is a Markov chain. Furthermore, with a more
probabilistic approach, it should be possible to do without the cone
property (excluding extreme cases such as B = A™! with p = %) and
still obtain results for almost all w.
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2. PROOF OF THEOREM 5

Before entering the actual proof, we explain our method for the sake
of motivation. Starting with (33), we have

Crolw )< Y |flw, —ALg) §lw,q)l. (34)
q€2>\{0}

The idea is to split Z* \ {0} into suitable pieces using cones. By the
cone property and Remark 1, we have the following at our disposal:

Contraction cone, C. With some positive A\¢ < 1,
[Aial < Aelgl if Aigec,ie{0,1}. (35)
Moreover, Efi C C. The complement C¢ is invariant in the sense that
geC = Aqece (36)
Expansion cone, £. With some A\¢ > 1,
[Aigl = Aelg] for g€ i€ {0,1}. (37)
Moreover, E;}i C &. The cone & itself is invariant in the sense that
gef = A€k (38)

The complement (C U E)¢ and the number M. There exists a
positive integer M depending on only the choice of cones C, & such
that, for any “random” sequence w,

ge(Cué) = AMgec¢. (39)
Let us define
A i=max (A, \g') < 1. (40)
It follows from the bound (35) in the definition of C that, if
q, -+ ,A"'q € C and q # 0, then
1< [Alg] < A"|gl, (41)

where the first inequality is due to the fact that gﬁq is a nonzero integer
vector. But the right-hand side of (41) tends to zero as n — oo, which

is a contradiction unless eventually gﬁq ¢ C. We conclude that there
exists a unique integer N,(q), called the contraction time, satisfying

geC\{0} = ANWgeC and AN-@H+ e e (42)

Let us list some bounds used in proving Theorem 5. The proof of
this lemma is given at the end of the section.
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Lemma 9. The contraction time, N,(q), obeys the w-independent bound

In|q|
< .
N‘U(Q) — ln >\_1 (43)
The following complementary bounds hold:
1 <|AZg] < M\|g) for qeC\{0}, n < Ny(q),  (44)
|Aal > CA"g|™h for geC\{0},n> Nu(q),  (45)
|A"q| > CA (g for qeC® neN. (46)

In fact, (43) is never used but we state it for the sake of completeness.
We now have a natural way of decomposing the sum in (34) for each
fized value of n, by means of the disjoint partition

22 \{0} ={geC|n < Ny(q)} U{g €Cln> No(q)} UC\ {0} (47)
Namely, we can rearrange the series (of nonnegative terms) as
o= >+ Y > (48)

q€Z2\{0}  qeC\{0}: qeC\{0}: g€C°
n<Nu(q) n>Ny(q)

In the first series on the right-hand side we use (44), i.e., the fact that

lq| is large for large n. In the second and the third series it is |A"¢|
that is large for large n, by (45) and (46), respectively.

Similarly, the last part of Theorem 5 is based on the following re-
finement of Lemma 9:

Lemma 10. For all € > 0, there exists a constant C(€) such that, for
almost all w, the bounds

1<|Aq| < Cle) e X9 g| for qeC\{0}, n < N,(g), (49)
|A%q| > C()e"XP =gt for qeC\{0}, n> Nu(q), (50)
|Ang| > C(e)e"X9g|  for qeCneEN, (51)

hold true.

Proof of Theorem 5. We first prove (29) and leave it to the reader to
check that the upper bounds below apply just as well to the case of (30).
By the same token, we keep the first argument w of the observables
implicit and just write §(q) instead of g(w, q) etc. Let us proceed case
by case in the decomposition (48) of (34):

Case ¢ € C\ {0}, n < N,(q). By (24) and (44),
19(a)] < llgllslal™ < llgllsA™", (52)
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such that
S FA) @] < gl A > [F(=Ang)] < [ £l llgll a2
q€C\{0}: qeC\{0}:
”SNw(Q) ”SNw(Q)

(53)
Case q € C\ {0}, n > N,(q). By (24) and (45),
[F(=AZa) < 1f 1151 A%al " < (1 £1,0-72" gl (54)

and we have

> A=A (@] < IFILCN > 14(g)llgl”?

eC\{0}: eC\{0}:
LA LA (55)

< I £llsllgllsC7A™

Case ¢ € C°. By (24) and (46),

[F(=AZQ) < £l AZal™ < [ £1l,C7N"1g| 7, (56)
which implies
D (=A@ < FIL,CN D " lata)llal ™ < 1 flllgll,C A"
qece qece
(57)
Choosing
c>1+2C77 and p:=—In), (58)

the bound (29) follows.
By the same argument, the fact that the upper bound (31) applies
is an immediate consequence of Lemma 10. U

Proof of Lemma 9. Equation (44) repeats (41) and the related dis-
cussion, whereas (43) is just another way of writing it in the case

n = N,(q).
By the definition of &,
|A%| > A""|q| when ¢€& neN. (59)
For each index ¢ and any q € Z?\ {0}, we also have the a priori bound
|Aig| > pilg] with = [JATH 7 = A2 (60)
Therefore, if ¢ € (CUE)® and m > 1, (16) implies
(ASgl = A7 AL ] = AT g, (61)

where C' := ming (AM f10) - - - flw(v—1)). Observing C' < 1 and sacrific-
ing (59), the latter bound extends to the whole of C¢, yielding (46).
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We also need a lower bound on |Zﬁq|—0ne that grows exponentially
with n but does not decrease too much with |g|—assuming that ¢ € C

and n > N,(q). To this end, we notice Zfdv“(q)q € C¢ and compute

[ALgl = | A7 AT 0| > AN AT, (62)

TNw(CI)w

From (44) wee see |/Tﬁ“(q)q| > A~ Ne(@]q| 7!, so that (45) follows. O

Proof of Lemma 10. Modifying the constant, (50) follows from (49)
and (51), just like (45) follows from (44) and (46) in the proof of
Lemma 9.

A7C® becomes a thinner and thinner cone inside £ as n increases.

If x € OC (the worst case), then %ln(\AVZx\/M) tends to x?. Thus,

for each € > 0 and n € N, we have |A"z|/|z| > C(e)e"x”~9 for some
choice of C(e), and (51) follows.
Next, we prove (49). Let es(w) be a unit vector spanning the random

stable line (1,5, (A%)~C (see the proof of Theorem 4). Then A%e,(w) €
C for all n. Let us also pick an arbitrary unit vector v in &.

By an elementary geometric argument, there exists a constant K
such that if x € C, y € &, and x +y € C, then |y| < K|z| and
|z| < K|x + y| (the worst case: z,x +y € dC and y € 9E). Recall
that we are assuming A”q € C for each n = 0,..., N,(q). If we split

q = qres(w) + gov, then gﬁq = qlgf}es(u)) + QQAVZU, where the first
term belongs to C and the second to €. We gather that |Q2JZZU‘ <
KlgAte ).

Because 1 In(|A%e (w)|) tends to —x®, for all € > 0 there exists
a C. such that, for all n, |A"e,(w)| < C.e X~ In conclusion,
|Anq| < C.(1+ K)|qu]e X9 and (49) follows from |¢;| < K|g|. O
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