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Abstract
A new calculus of nuclear liquid-gas phase transition in the standard thermo-

statistics is applied to the generalized thermo-statistics. Because the phase equilib-
rium is de�ned in terms of intensive temperature and conjugate extensive entropy,
we have to solve higher-order simultaneous nonlinear equations than those in the
standard thermo-statistics. The features of phase transition are essentially the
same as those in the standard thermo-statistics. The phase transition is the �rst
order. There is no critical point in the section of binodal surface. The caloric curve
reproduces the experimental data well. We however cannot �nd the retrograde
condensation predicted in the standard thermo-statistics.

The generalized thermo-statistics [1,2] is expected to be applicable to non-equilibrium

systems and small systems. Because they are also produced in the multifragmentation

reaction [3,4] of heavy ions, the generalized thermo-statistics recently attracts consider-

able attention [5-11] in nuclear physics. On the other hand, it is well known that [12,13]

the asymmetric nuclear matter produced in heavy-ion reaction exhibits liquid-gas phase

transition. It is therefore valuable to investigate nuclear liquid-gas phase transition in

the generalized thermo-statistics. The asymmetric nuclear matter is a binary system that

has two independent chemical potentials of proton and neutron. According to the Gibbs

condition on phase equilibrium, both the chemical potentials in liquid and gaseous phases

are equilibrated. Within the standard thermo-statistics, the geometrical construction [14-

19] is usually used to investigate nuclear liquid-gas mixed phase. To the contrary, Refs.

[20,21] have recently developed another calculus, in which the two chemical potentials

are calculated directly from the other intensive quantities of the system, temperature or

pressure, baryon density and isospin asymmetry. In the present paper we extend the

works [20,21] to the generalized thermo-statistics.

Our formulation of warm nuclear matter is essentially based on Ref. [11], which

investigates isospin symmetric matter in the generalized thermo-statistics. Its application

to asymmetric matter is straightforward. Using the q-deformed exponential and logarithm

expq(x) � [ 1 + (1� q)x ]
1=(1�q) ; (1)
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lnq(x) �
x1�q � 1
1� q ; (2)

the thermodynamic potential per volume is given by
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where q is the power-law index, 
 = 2 is the spin degeneracy factor, kB is the Boltzmann

constant and �i is de�ned using the chemical potential �i and the vector potential Vi as

�i = �i � V i: (4)

E�ki = (k
2 +M�

i
2)
1=2 is the energy of nucleon. We have neglected the e¤ect of anti-nucleon.

Moreover, it is noted [22,24] that � is not physical intensive temperature but 1= (kB�) is

only the Lagrange multiplier associated with the extremalization of an entropic measure.

We have used the relativistic mean-�eld model [23] to describe nuclear matter. The

e¤ective masses M�
p(n) = m

�
p(n)MN and the vector potentials Vp(n) = vp(n)MN are deter-

mined by extremizing 
:
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where the mean-�elds are expressed [23] in terms of the e¤ective masses and the vector

potentials. The explicit expressions of the derivatives of mean �elds are also given in Ref.

[23]. The baryon and scalar densities are de�ned by [11,24]

�Bi = 


Z
d3k

(2�)3
[ni (m

�
i ; vi; �i; � ; q; k)]

q; (9)

�Si = 


Z
d3k

(2�)3
M�
i

E�ki
[ni (m

�
i ; vi; �i; � ; q; k)]

q; (10)

where the q-deformed Fermi-Dirac distribution function is [11,24]

ni (m
�
i ; vi; �i; � ; q; k) =

8>>>>><>>>>>:
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(11)

The q-deformed Fermi integrals are calculated using the adaptive automatic integration

with 20-points Gaussian quadrature.

It is noted [22] that the phase equilibrium should be de�ned in terms of intensive

temperature T and conjugate extensive entropy S. Here, they are introduced through

the Gibbs thermodynamic relation [11]:
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�
�p�Bp + �n�Bn

�
; (12)
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Because of Eq. (12), T and S are determined from a single thermodynamic quantity.

In practice, according to the mapping of Tsallis non-extensive thermo-statistics on the

standard Boltzmann-Gibbs thermo-statistics [25-27], they are expressed by the Tsallis

non-extensive entropy Sq:

T = Cq � ; (14)

S

�B
=
lnCq
1� q ; (15)

where

Cq = 1 + (1� q)Sq; (16)
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�B = �Bp + �Bn: (17)

In order to guarantee Cq > 0 we assume [11] that the power-law index depends on the

baryon density:

q � 1 = 1

3

�B=�0
�B=�0 + 2

; (18)

where �0 = 0:16fm
�3 is the saturation density of symmetric nuclear matter. The density

dependence is constrained from the condition

1 < q < 4=3: (19)

This is necessary [11] for the relation P = �
, where P is the pressure density,

P =



3

X
i=p;n

Z
d3k

(2�)3
k2

E�ki
[ni (m

�
i ; vi; �i; � ; q; k)]

q

� 1
2
m2
� h�i

2 � 1
2
m2
� h�3i

2 +
1

2
m2
! h!0i

2 +
1

2
m2
� h�03i

2 : (20)

Moreover, the condition (19) guarantees [11] �nite values of the q-deformed Fermi inte-

grals in Eqs. (9), (10), (13) and (20).

For de�nite values of physical intensive temperature T , baryon density �B and isospin

asymmetry

a =
�Bn � �Bp
�Bn + �Bp

; (21)

we solve 7th-rank nonlinear simultaneous equations (5)-(8), (12), (17) and (21) using

the globally convergent Newton-Raphson algorithm [28] so that the e¤ective masses, the

vector potentials, the chemical potentials and the non-extensive entropy are determined.

The pressure density, the energy density and the extensive entropy are also determined

at a time.

The black curves in Figs. 1 and 2 show the solutions of chemical potentials for

T = 10MeV and a = 0:3 as functions of pressure. (We set the Boltzmann constant

as unit.) The black curves in Fig. 3 show the pressure-density isotherms for several

asymmetries. They exhibit typical nature of van der Waals equation-of-state. The solid

parts on lower pressure and density are the branches for pure gas phase while the solid

parts on higher pressure and density are the branches for pure liquid phase. The dashed

parts correspond to the liquid-gas phase transition. They are not however realized because

the Gibbs condition on phase equilibrium is not satis�ed. In fact, as the nuclear matter

is compressed in Figs. 1 and 2, we cannot reach to the liquid branches from the gas

branches.
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So as to construct the physically reasonable liquid-gas mixed phase being consistent

with the Gibbs condition on phase equilibrium, we have to solve the following 15th-rank

simultaneous nonlinear equations. The four equations of them determine the e¤ective

masses and the vector potentials of proton and neutron in gaseous phase:
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where the su¢ x g indicates gaseous phase. It is noted again that the mean-�elds are ex-

pressed in terms of the e¤ective masses and the vector potentials. Similarly, the equations

for liquid phase are
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The other two equations specify the densities of proton and neutron in liquid-gas mixed

phase:
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where 0 � fg � 1 is the ratio of gas. The baryon densities in gaseous and liquid phases
are
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It is noted that the virtual temperature � is not equilibrated. The power-law indices in

gaseous and liquid phases are also determined self-consistently because they depend on

each density of the two phases:
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Moreover, we have to assume the thermodynamic relations in gaseous and liquid phases:
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The last equation imposes the equilibrium condition on pressures in the two phases:
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Solving Eqs. (22)-(31), (34)-(37) and (40) for de�nite values of temperature T , baryon

density �B and isospin asymmetry a, we have the e¤ective masses, the vector potentials,

the non-extensive entropies and the power-law indices in gaseous and liquid phases as

well as the chemical potentials and the ratio of gas (or liquid) phase. The baryon and

energy densities in the two phases and the equilibrated pressure are also determined at a

time. The total entropy is given by fgSg+(1� fg)Sl because Sg and Sl are the extensive
entropies. The total energy density is also given by U = fgUg + (1� fg)Ul.
The solutions of chemical potentials for T = 10MeV and a = 0:3 are shown by the red

curves in Figs. 1 and 2. As the nuclear matter is compressed between P = 0:049MeV=fm3

and 0:091MeV=fm3, �p decreases while �n increases. The results indicate that the ratios

of neutron increase in both of liquid and gaseous phases. This is clearly seen in Fig. 4,

where the asymmetry ag =

�
�
(g)
Bn��

(g)
Bp

�
�
�
(g)
Bn+�

(g)
Bp

� in gaseous phase and the asymmetry al =
�
�
(l)
Bn��

(l)
Bp

�
�
�
(l)
Bn+�

(l)
Bp

�
in liquid phase are shown by the red and blue curves, respectively. The ratio of liquid

phase fl = 1:0� fg is also shown by the black curve. Moreover, we see in Figs. 1 and 2
that @�p=@P and @�n=@P have discontinuities at the beginning and ending points of the

phase transition. It is therefore concluded [11] that the phase transition is the �rst order.

The pressure-density isotherms in the phase transition are also shown by the red

curves in Fig. 3. As the asymmetry becomes higher, the nuclear matter is compressed

more weakly while a gain of pressure is larger. The liquid-gas mixed phase for a = 0:5
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is not shown because above some baryon density we have no solutions of Eqs. (22)-

(31), (34)-(37) and (40). The problem is revealed more generally in the binodal surface

of Fig. 5. The red and blue curves are gas and liquid branches. The former ends at

a = 0:84 while the latter ends at a = 0:42. Consequently, there is no critical point, on

which the two branches connect with each other except for equal concentration a = 0.

The absence of critical point is essentially due to the e¤ective density-dependent nucleon-

nucleon interaction. In practice, it has been also found [15,19,20] in the standard thermo-

statistics. However, there are di¤erences between the standard and generalized thermo-

statistics. The region of no gas and liquid branches between a = 0:42 and 0:84 is much

wider than those in Refs. [15,19,20]. Moreover, the gas branch in Fig. 5 does not show

the retrograde condensation predicted in Refs. [14-20].

Next, we investigate the thermodynamic properties of nuclear matter for de�nite

values of pressure P , baryon density �B and isospin asymmetry a. Solving 7th-rank

nonlinear simultaneous equations (5)-(8), (17), (20) and (21), the e¤ective masses, the

vector potentials, the chemical potentials and the virtual temperature � are determined.

The energy density is also determined at a time. The physical temperature T is calculated

from a variation of Eq. (12):

T ln (T=�)

1� q =
U + P �

�
�p�Bp + �n�Bn

�
�B

: (41)

Then, the extensive entropy is calculated from Eq. (15).

The black curves in Figs. 6 and 7 show the solutions of chemical potentials for

P = 0:03MeV=fm3 and a = 0:3 as functions of temperature T . The solid parts on

lower temperature are the branches for pure liquid phase while the solid parts on higher

temperature are the branches for pure gas phase. The dashed parts correspond to the

liquid-gas phase transition. The black curve in Fig. 8 shows the caloric curve, the

temperature as a function of the excitation energy per particle, which is de�ned by

subtracting the binding energy of cold asymmetric nuclear matter [23] from U=�B. The

solid part is the pure liquid phase while the dashed part is the liquid-gas mixed phase.

The triangles are the experimental data of Fig. 5 in Ref. [29]. The black dashed curves

in Figs. 6-8 are not realized because the Gibbs condition on phase equilibrium is not

satis�ed. In fact, as the nuclear matter is heated in Figs. 6 and 7, we cannot reach to

the gas branches from the liquid branches.

So as to construct the physically reasonable liquid-gas mixed phase being consistent

with the Gibbs condition on phase equilibrium, for de�nite values of pressure P , baryon

density �B and isospin asymmetry a, we have to solve 16th-rank simultaneous nonlinear

equations (22)-(31), (34), (35), the thermodynamic relations in gaseous and liquid phases,

P + Ug � TSg �
�
�p�

(g)
Bp + �n�

(g)
Bn

�
= 0; (42)
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and the equilibrium conditions on pressures in the two phases,
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We have the e¤ective masses, the vector potentials, the non-extensive entropies and the

power-law indices in gaseous and liquid phases as well as the chemical potentials, the

ratio of gas (or liquid) phase and the internal physical temperature. The energy densities

in the two phases are also determined at a time.

The solutions of chemical potentials for P = 0:03MeV=fm3 and a = 0:3 are shown by

the red curves in Figs. 6 and 7. As the nuclear matter is heated from T = 5:79MeV to

8:80MeV, �p increases while �n decreases. The results indicate that the ratios of neutron

decrease in both of liquid and gaseous phases. This is clearly seen in Fig. 9, where the

asymmetries in the two phases are shown by the red and blue curves, respectively. The

ratio of liquid fl = 1:0 � fg is also shown by the black curve. The boiling of nuclear
liquid under constant pressure is shown more generally in Fig. 10, where the blue and

red curves are the boiling temperature of nuclear liquid and the condensed temperature of

nuclear gas, respectively. The dotted lines indicate that the nuclear liquid of asymmetry

a = 0:3 begins to evaporate into highly asymmetric nuclear gas of ag = 0:977, which is

almost composed of neutrons. When the evaporation completes, the liquid phase is in

rather symmetric state of asymmetry al = 0:057. The caloric curve in liquid-gas phase

transition is also shown by the red curve in Fig. 8. It reproduces the experimental data

better than the black dashed curve. Consequently, we can see that the experimental data

provide the clear evidence of nuclear liquid-gas phase transition.

The liquid-gas phase transition in asymmetric nuclear matter has been investigated for

the �rst time within the generalized thermo-statistics. A new calculus of the phase tran-

sition in the standard thermo-statistics is applicable to the generalized thermo-statistics.

We however have to solve higher-order simultaneous nonlinear equations than those in

the standard thermo-statistics. This is because the phase equilibrium can be de�ned

only in terms of intensive temperature and conjugate extensive entropy. So as to deter-

mine them the Gibbs thermodynamic relation should be imposed on the thermodynamic
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potential. Moreover, the power-law index depends on the baryon density so that the

extensive entropy is not negative.

We have investigated the isothermal compression and the boiling under constant pres-

sure. The essential features of nuclear liquid-gas phase transition in the generalized

thermo-statistics are similar to those in the standard thermo-statistics. The derivatives

of chemical potentials have discontinuities at the ends of phase transition. We can there-

fore conclude that the phase transition is the �rst order. The liquid and gas branches in

the section of binodal surface are connected with each other only on the equal concen-

tration, but there is no critical point. The caloric curve calculated for appropriate values

of asymmetry and pressure reproduces the experimental data well. We however cannot

�nd the retrograde condensation predicted in the standard thermo-statistics.
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Figure 1: The proton chemical potential as a function of pressure for T = 10MeV and
a = 0:3. The black dashed curve does not satisfy the Gibbs condition on phase equilibrium
while the physically precise liquid-gas phase transition is expressed by the red curve.
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Figure 2: The same as Fig. 1 but for neutron chemical potential.
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Figure 3: The pressure-density isotherms at T = 10MeV for the asymmetries from
a = 0:1 to a = 0:5. The black dashed curves do not satisfy the Gibbs condition on
phase equilibrium while the physically precise liquid-gas phase transitions are expressed
by the red curves.
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Figure 5: The section of binodal surface at T = 10MeV.
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Figure 6: The proton chemical potential as a function of physical temperature for
P = 0:03MeV=fm3 and a = 0:3. The black dashed curve does not satisfy the Gibbs
condition on phase equilibrium while the physically precise liquid-gas phase transition is
expressed by the red curve.
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Figure 7: The same as Fig. 6 but for neutron chemical potential.
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Figure 8: The caloric curves for P = 0:03MeV=fm3 and a = 0:3. The black solid curve
represents the pure liquid phase. The black dashed curve does not satisfy the Gibbs
condition on phase equilibrium while the physically precise liquid-gas mixed phase is
expressed by the red curve.
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Figure 9: The black curve is the ratio of liquid fl = 1�fg in the liquid-gas phase transition
for P = 0:03MeV=fm3 and a = 0:3. The red and blue curves are the asymmetries in
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Figure 10: The boiling (red) and condensed (blue) curves of nuclear liquid and gas under
constant pressure P = 0:03MeV=fm3.
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