ABSOLUTELY CONTINUOUS SPECTRUM OF ONE RANDOM
ELLIPTIC OPERATOR

O. SAFRONQV

1. FORMULATION OF THE MAIN RESULT

In dimensiond > 5, we consider the differential operator
(1.1) Hy = —A+7((x)|z| 5 (—Ay), e>0, 7>0,

where Ay is the Laplace-Beltrami operator on the unit sphere- {z €
R? : |z| = 1} and( is the characteristic function of the complement to
the unit ball{z € R? : |z| < 1}. The standard argument with separa-
tion of variables allows one to define this operator as the orthogonal sum
of one-dimensional Scidinger operators, which implies tha, is essen-
tially self-adjoint onCg°(R?).

The spectrum of this operator has an absolutely continuous component,
which coincides with the positive half-ling, co) as a set. We perturb now
the operatorH, by a real valued potentidl’ = V,, that depends on the
random parametes = {w,, },,czq:

Vo, = Z wpx(z —n).
neza
The functiony in this formula is the characteristic function of the cube
[0,1)¢, andw, are independent random variables taking their values in the
interval [—1, 1]. We will assume thaE[w,] = 0 for all n. This condition
guarantees the presence of oscillation¥ oSet

H=Hy£V,

Theorem 1.1.Let0 < ¢ < 2/(d + 1). Then, for anyr > 0, the operator

H has an absolutely continuous spectrum, whose essential support covers
the positive half-ling0, co). In other words, the spectral projectidy, ()
corresponding to a set C R, of positive Lebesgue measure, is different
from zero.

Proof. We shall consider only the case when= 1, because the only
property ofr that matters is that it is positive. The proof of the theorem is
based on two sufficiently deep observations.

1. The entropy of the spectral measure of the operator(as well as

H ) can be estimated by the negative eigenvalues of the operdtoesnd
1
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H_. Let us clarify this statement. Let be the spectral measure &f,,
constructed for the elemerfit which means that

(i -an= [ dp(?)

S A

Let \;(FV') be the negative eigenvalues of the operdfor Then one can
find such an element of the spacd.?(R?), that the measure constructed
for this element will satisfy the condition

SRR RO EIREI SEVIGIEES VS INe}

where(0 < a < b < oo and the constant’ depends only o andb. The
proof of this statement can be found in [5]. Due to Jensen’s inequality, the
integralff log i/ () dX can diverge only to-co. But, if it converges, then

@' (A) > 0 almost everywhere ofa, b], which leads to a certain conclusion
about the absolutely continuous spectruntaof.

Let us draw attention of the reader to the main difficulty of application
of (1.2): it is derived only for compactly supported perturbations and one
has to make sure that it survives in the limit, whéns approximated by
compactly supported functions.

2. Within the conditions of the theorem,
(1.3) E[Z W(ﬂ/)ﬁﬂ < 0,
J

which implies

Z I\ (EV)]H? < o0, almost surely.
J
Actually, it is much better to take the expectation in both sides of (1.2)
and then talk about approximationsiotby compactly supported functions,
instead of doing it directly.
Let us introduce the notatiovi for the mean value of,, over the sphere
of radius|z|

Vm—éémmmw

In order to establish (1.3) we will show th&}, = V + divQ whereQ is
a vector potential having no radial component, kexz, Q(z) >= 0, V.
Besides this, we will show th@p can be chosen in such a way that

(1.4) E[A:R|Q|pds} < OE[L:R|Vw]pdS], R>2

whereC' depends only on the dimensidrand the parameter> 2.
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Our arguments will be based on the fact that the operator
(1.5) Hy £ 2V F2V + 4|z|?TQ* > 0

is positive, and therefore it does not have negative eigenvalues. The rea-
son why the relation (1.5) holds is that the operator in its left hand side is
representable in the form

A + (|$’_E/2V9 == 2|$‘_1+E/2Q> (‘%’_E/QVQ T 2|$’_1+E/2Q>

We will keep the relation (1.5) in mind and leave it for the moment.
In order to apply (1.5) we have to understand how the eigenvalue sums
>_; [Xi(£V)]'/2 behave. We will show that

(1.6) z}mm+%W§Z]M5%W+§]Mm_@*mP

In order to do that we need to recall the Birman-Schwinger principle that
reduces the study of eigenvalugg 1) to the study of the spectrum of a
certain compact operator. For any self adjoint operdt@nds > 0 we
define

ni(s,T) = rankEr(s, +00),

whereEr(-) denotes the spectral measure/bfRecall the following rela-
tion (see [4])

(17) 'I’L+($+t,T‘|’S) §n+(S,T)+n+(t,S),
The next statement is known as the Birman-Schwinger principle.

Lemma 1.1. LetV be a real valued function defined on the sp&cde Let
N(\, V) be the number of eigenvaluesi@§ — V' below\ < 0. Then

N\ V) =ni(1,(Hy— \)"YV2V(Hy — \)7Y?).
Combining this lemma with (1.7) we obtain
Corollary 1.1. For anye € (0,1)
(1.8)  NOAVIi+VR) <N\ V) + N (1—¢)7 ).

Now, since)_, |\;(V)[" = [;"~s7'N(=s,V)ds, the inequality (1.6)
holds for the Lieb-Thirring sums.

Due to the representatidn = (V —V —2|x|2+2Q?) + V +2|x|2+Q?,

we obtain from (1.6), that
(1.9)

DNV <D V=2V A PHEQA ) N2V 4l Q)
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Since the operator (1.5) is positive, the first sum in the right hand side of
(1.9) equals zero. Thus

(1.10) DNV <D IRV + e Q)

Now formula (1.10) and the classical Lieb-Thirring estimate (see [6] and
[7]) lead to the following important intermediate result:

(1.11) Z’)\j(vw)"y < C«(/Hx‘1+a/2Q’d+27dx+/‘V‘d/2+vdw>_
J

Indeed,

Theorem 1.2. [Lieb-Thirring] If d > 3. Then the negative eigenvalugs
of —A — V satisfy the estimate

NP < [v@rta, =0

J

What is left to prove at this moment? If we take the expectation in both
sides of (1.11), then we shall reduce the problem to the proof of the two
relations:

(1.12) E[/erl%/?@w“dx} < 0
and
(1.13) E[/W\(d“)/?dx} < .

The relation (1.12) foe < 2/(d + 1) immediately follows from (1.4). We
shall establish (1.13) in the next section.
2. PROOF OF(1.4)AND (1.13)

Let us now prove the necessary estimates (1.4) and (1.13). We shall begin
with the following statement.

Lemma 2.1. The relation(1.4) holds for even integers = 2q with ¢ > 1.
Proof. The mappind’ — (@ is given by the formula
(2.1) Q = |2V (V = V)

The kernelk(z, y) of this mapping has a singularity of order — y|~(@~2
on the diagonal, but this singularity is integrable. Thus,
. ko(01,0-) T Y

k —_— 0 == — == —
(xvy) |$—y|d_2’ 1 |l’|’ 2 | |a
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wherek, € L,
Qo) = [ kmpVawdsiy)
{y: ly|=|=|}

All the statements about the kerrieWill be proved in the appendix section
(see Proposition 4.1).
We represent) in the form of a sun®) = Q; + Q2,where

k
Q= el Vs

andyy is the characteristic function of the unit b&l : |z| < 1}. We will
establish the estimates

@y [ EloPswscr -1z
lz|=R
separately. The estimate (2.2) 1Qx is obvious. Indeed,

Xo(z —y)
Q= ¢ {v: lyl=l=l} mds( V=6

Let us prove estimate (2.2) fap,. Fix x € R? and denoteh, =
([0, +n)N{y e RY: |y| = |z|} Since]E[wn] = 0, we obtain that

Beize: ¥ Mot areay)

mi+-+tmE=2q j

where all numbersn; are even. Applying the &lder inequality forL?-
functions, we get

S " S m;/2
%:(/An (1+ \dx iy?)J‘)d2> <G ;(/An (1+ ];;i_(ﬁy(dm) =

dS(y) / dS(y)
<C / _C
! ; A [z =y))2@2 = 7 ey (U [ — y[)2@2

simply because ath; > 2 andA,, are uniformly bounded.
Consequently,

E[Qy'(2)] < Cs

Integrating this inequality with respect towe obtain (2.2) forj = 2. Thus
the statement of the lemma follows from the triangle inequality in the Ba-
nach spacé.*

([Eev@ias)™ < ([EQi@)as) "+ ( [ EQx@)as)

(Recall thatE[f] = [, f(w) dw.) O
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Estimate (1.4) is proved only for even integerlt follows for arbitrary
p > 2 by interpolation arguments. Indeed, consider the analytic function

7(z) =K /{ L laras]

Since this function is bounded by the const@pfz?~' on each vertical line
Rez = 2p, withp € N, itis bounded b)CRe(Z)Rd—l for Rez > 2 according
to the following statement:

Theorem 2.1. Let f(z) be a bounded analytic function defined on an open
domain containing the regiom < Re z < b. Suppose that it is bounded on
the two vertical lines by the constani§ and Cj:

fla+it)| <Co  IfO+) <G, ViER
Then
If(2)| < ClOr, for Rez=al+0b(1—-6), 6¢c(0,1).

Now we obtain a certain information about the mean value® @ver
the sphere of radiug.

Lemma 2.2. Under conditions of Theorem 1.1
(2.3) E[/ |f/|<d+1>/2dx} < .

Proof. First we shall prove that
(2.4) E[[VP(x)] < C(1+ |z)~“!

for any positive integeg. Then we will interpolate two such inequalities
to obtain (2.4) forg = (d + 1)/4. The mapping/ — V is given by the

formula
_ CO

Vo= Jar]a=1 /{y: lyi=lel} Vely)ds ()

Fix r € RY and denote\,, = [0,1)¢ + n N {y € R?: |y| = |z|} Since
E[w,] = 0, we obtain that

E|VI¥()]<Cs > Hm1 mklz</A W)mj

mit-+mE=2q j
where all numbers; are even. Itis clear that

;(/An @ ﬁ%))m =

1 1
< Cg =C7
< Ce ; (1 + |z])ms@-1) (1 + |]) @ Dlm=1)
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simply becauseé\,, are uniformly bounded.

Consequently, (2.4) holds for any positive integand therefore for any
q > 1 (according to Theorem 2.1). Integrating this inequality with respect
to x with ¢ = (d + 1) /4, we obtain (2.3). O

3. REMARKS AND REFERENCES

There are some impressive results devoted to the operator
—A+ (14 |z|)~°V,, s>1/2

in the mathematical literature. One can study either the discrete or the con-
tinuous model of this operator. For the discrete model , the presence of the
absolutely continuous spectrum in dimensiba- 2 was proved by Bour-
gain [2], [3]. In dimensionl = 3, the corresponding result was obtained by
Denissov [1].

In spite the fact that the main result of this paper pertains to the theory of
random operators, we would like now to formulate a result of the determin-
istic type. This result will be related to the operator

(3.1) —A—el'+V
where

Tu(z) = é /Su(|x]«9) df

The potentiall” in this model is not random: on the contrary, it is a fixed
potential.

Theorem 3.1.Letd > 2 ande > 0. Assume that’ € L°°,

3.2 V(rf)do = M
(3.2) /S (r0)do—0,  ¥r>1,
and

V2(z

Then the absolutely continuous spectrum of the opei@dyis essentially
supported by—e, c0).

Proof. The proof of this theorem relies on the fact that the negative eigen-
valuesg;(FV') of the operator-A — eI" + I + V satisfy the condition

(34) DB FVIIYE < oo,

The proof of (3.4) is based on the circumstance that the behaviour of the
eigenvalues near zero depends only on the structure of the edge of the spec-
trum of the unperturbed operator. But in the suggested model, this edge has
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the same structure as the one of the one-dimensionab&iciger operator.
Let us introduce the notatioR; for the spectral projection of the operator
A = —A—cel'+¢I corresponding to the intervdl, ¢). SetalsaP, = I—P;.
Then

V = 2ReP1VP2 + PQVPQ,
due to the condition (3.2) on the mean valued/oflt was noticed before
that

d\

%}@uaw%=Awmﬂ4A+M*”vm+Armg;§.

Besides the distribution function, we shall need distribution functions of
singular values of non-selfadjoint operators

n(s,T) = ny(s*,T*T), s> 0
(hereT is a compact operator). Two of the important properties of this

function are
n(s,TS) S TL(— T)7

and
n(31 + S9, T1 + TQ) S n(sl, T1> + TL(SQ, TQ)
Using these properties, we obtain

> A
)2 < —1/2 aA
Z 16;(V /0 n(cr, (A+A) P1V>\/X+

d)\
2V A

Let us remark that the second term equals zero if the ngri;__ is suf-
ficiently small. In the general case, this term can be well estimated by the
integral (3.3). It remains to consider the first term

/ ny (00, (A + N V2BV Py(A 4+ \)1/2) -2
0

o )
nler, (A+N)"V2PV)—= =
| ey
>0 A
/ m@pw+w>Wav%«A+m1ﬂ <
0 VA
/ ny (2, (A+N)"Y2IVID(A + ) 1/2 22 A2,
0

whereA ; are the eigenvalues of the operatoAl’ — c; 21“1/211 which, as a
matter of fact, is a one dimensional Sgtiinger operator with the potential
aq/r? — V2. Therefore, according to the Lieb-Thirring bound for a one
dimensional operator (see [6], [7]), the sOn) |A;|/2 can be estimated by
the integral (3.3). O



A.C. SPECTRUM 9

At the end of this section the author would like to mention one idea,
which might be useful for the reader in the study of Anderson’s model. Let
us look at the result from a different point of view. Consider an operator
which is in a certain sense close to the operator

(3.5) —-A+V,, where V, = anx(x —n).

First, we introduce the clas3 of perturbations3 for which the wave oper-
ators exist:

Be& if and only if Els—tliin exp(—it(—A + B)) exp(it(—A))

Note, that this class is very rich (meaning "large”) and it can include even
differential operators whose coefficients do not decay at infinity. For exam-
ple, the operator

—((2)|x]| 7 Ay, s>1,
belongs to the clas$ ( here( is the characteristic function of the exterior

of the unit ball ), but the coefficients of this operator behave at infinity as
a2

Theorem 3.2.Lete > 0 and letd > 3. Assume that,, are bounded
independent random variables with the propétfy,,| = 0, for all n. Then
for almost every, there exists a perturbatioB € & such that the operator
—A + B+ (14 |z|)~¢V,, has a.c. spectrum allover the positive half line
0, 00).

Proof. Indeed, let) andV be the same as in the proof of Theorem 1.1.
In particular, it means that =, Q(z) >=0, Vz,

dvQ =V, amd V= |S\1/Vw(]a:\6) o,
S
Define

B = —(()|z|" A — ¢(2) 1+ |2|) "V + (1 + |z|) Q%

It is easy to check thaB € &. On the other hand the operateA +

B + ((x)(1 + |z|)~¢V,, is positive. So, there is no necessity to estimate
eigenvalues of this operator and the trace formula obtained in [5] gives the
relation

E(/ablog(u’()\))d)\> > —C(l +/(1 +[2) " E[Q7] |x|1*ddx)

for the spectral measugeof the operator-A + B + ((x)(1 + |x|) ¢V,
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4. APPENDIX

Finally consider a technical and less interesting question about the kernel
of the operato/,A, ' on the unit sphere. Ldt be the orthogonal projec-
tion in L?(S) onto the subspace of constant functions.

Proposition 4.1. The kernel of the operatdv,A, ' (I —T) acting in L2(S)
is a function of the form

ko(% y)

k(x,y) = W,

T,y €8S,

wherek, is bounded.

Proof. Let us fix the pointy. Clearly, the kernek(z,y) possesses the
symmetry with respect to the axis connectingnd —y. Let s be the dis-
tance betweenm andy along the geodesic curve. Thétr,y) = p(s)e(s),
where p(s) is a certain scalar function anglx) is the unit vector, tan-
gent to the mentioned geodesic curve at the pointThat meanss =
2arcsin(|z — y|/2). Since dik = §(z — y) — 1/|S|, we obtain thatp
is a solution of an equation of the form

P +als)p=-1/S|,  s€(0,7)
where the functio(s) = div (e) has two singularities: at the poiat= 0
corresponding tg and at the point = 7 corresponding te-y. Moreover
the character of the singularities at both pointand —y is the same, the
only difference is the sign of the leading term:

d—2
~— 0
Q(S) S ) s — U
d—2
q(s) ~ : s — .
s—1

Indeed, ifx € S is close toy, thene is close to the vectorj:—z'. Therefore

div(e) ~ =% The functionp(s) must be smooth at the poiat = ,
lz—yl

therefore
1 ™
p= Wl f(s)ds, where f(s)= eXP(/Q(S) ds)

Let us clarify the situation with the point = 0. Since diype = —1/|S|
everywhere except the point we conclude automatically that the function
div pe has to have a singularity at The only possible singularity is the one
of the typep ~ fLs ass — 0, with some constant In other words,

®)
k(z,y) ~

c
|z —y|*
asr —y. [
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