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1. FORMULATION OF THE MAIN RESULT

In dimensiond ≥ 5, we consider the differential operator

(1.1) H0 = −∆ + τζ(x)|x|−ε(−∆θ), ε > 0, τ > 0,

where∆θ is the Laplace-Beltrami operator on the unit sphereS = {x ∈
Rd : |x| = 1} andζ is the characteristic function of the complement to
the unit ball{x ∈ Rd : |x| ≤ 1}. The standard argument with separa-
tion of variables allows one to define this operator as the orthogonal sum
of one-dimensional Schrödinger operators, which implies thatH0 is essen-
tially self-adjoint onC∞

0 (Rd).
The spectrum of this operator has an absolutely continuous component,

which coincides with the positive half-line[0,∞) as a set. We perturb now
the operatorH0 by a real valued potentialV = Vω that depends on the
random parameterω = {ωn}n∈Zd :

Vω =
∑
n∈Zd

ωnχ(x− n).

The functionχ in this formula is the characteristic function of the cube
[0, 1)d, andωn are independent random variables taking their values in the
interval [−1, 1]. We will assume thatE[ωn] = 0 for all n. This condition
guarantees the presence of oscillations ofV . Set

H± = H0 ± Vω

Theorem 1.1. Let 0 < ε < 2/(d + 1). Then, for anyτ > 0, the operator
H± has an absolutely continuous spectrum, whose essential support covers
the positive half-line[0,∞). In other words, the spectral projectionEH±(δ)
corresponding to a setδ ⊂ R+ of positive Lebesgue measure, is different
from zero.

Proof. We shall consider only the case whenτ = 1, because the only
property ofτ that matters is that it is positive. The proof of the theorem is
based on two sufficiently deep observations.

1. The entropy of the spectral measure of the operatorH+ (as well as
H−) can be estimated by the negative eigenvalues of the operatorsH+ and
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H−. Let us clarify this statement. Letµ be the spectral measure ofH+,
constructed for the elementf , which means that

((H+ − z)−1f, f) =

∫ ∞

−∞

dµ(t)

t− z

Let λj(∓V ) be the negative eigenvalues of the operatorH±. Then one can
find such an elementf of the spaceL2(Rd), that the measure constructed
for this element will satisfy the condition

(1.2)
∫ b

a

log µ′(λ) dλ ≥ −C(1 +
∑

j

|λj(V )|1/2 +
∑

j

|λj(−V )|1/2),

where0 < a < b < ∞ and the constantC depends only ona andb. The
proof of this statement can be found in [5]. Due to Jensen’s inequality, the
integral

∫ b

a
log µ′(λ) dλ can diverge only to−∞. But, if it converges, then

µ′(λ) > 0 almost everywhere on[a, b], which leads to a certain conclusion
about the absolutely continuous spectrum ofH+.

Let us draw attention of the reader to the main difficulty of application
of (1.2): it is derived only for compactly supported perturbations and one
has to make sure that it survives in the limit, whenV is approximated by
compactly supported functions.

2. Within the conditions of the theorem,

(1.3) E
[∑

j

|λj(±V )|1/2
]

< ∞,

which implies ∑
j

|λj(±V )|1/2 < ∞, almost surely.

Actually, it is much better to take the expectation in both sides of (1.2)
and then talk about approximations ofV by compactly supported functions,
instead of doing it directly.

Let us introduce the notation̄V for the mean value ofVω over the sphere
of radius|x|

V̄ (x) =
1

|S|

∫
S
Vω(|x|θ) dθ.

In order to establish (1.3) we will show thatVω = V̄ + div Q whereQ is
a vector potential having no radial component, i.e.< x, Q(x) >= 0, ∀x.
Besides this, we will show thatQ can be chosen in such a way that

(1.4) E
[∫

|x|=R

|Q|pdS
]
≤ CE

[∫
|x|=R

|Vω|pdS
]
, R > 2,

whereC depends only on the dimensiond and the parameterp ≥ 2.
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Our arguments will be based on the fact that the operator

(1.5) H0 ± 2V ∓ 2V̄ + 4|x|−2+εQ2 ≥ 0

is positive, and therefore it does not have negative eigenvalues. The rea-
son why the relation (1.5) holds is that the operator in its left hand side is
representable in the form

−∆ +
(
|x|−ε/2∇θ ∓ 2|x|−1+ε/2Q

)∗(
|x|−ε/2∇θ ∓ 2|x|−1+ε/2Q

)
We will keep the relation (1.5) in mind and leave it for the moment.
In order to apply (1.5) we have to understand how the eigenvalue sums∑

j |λj(±V )|1/2 behave. We will show that

(1.6)
∑

j

|λj(V1 + V2)|γ ≤
∑

j

|λj(ε
−1V1)|γ +

∑
j

|λj((1− ε)−1V2)|γ

In order to do that we need to recall the Birman-Schwinger principle that
reduces the study of eigenvaluesλj(V ) to the study of the spectrum of a
certain compact operator. For any self adjoint operatorT ands > 0 we
define

n+(s, T ) = rankET (s, +∞),

whereET (·) denotes the spectral measure ofT . Recall the following rela-
tion (see [4])

(1.7) n+(s + t, T + S) ≤ n+(s, T ) + n+(t, S);

The next statement is known as the Birman-Schwinger principle.

Lemma 1.1. Let V be a real valued function defined on the spaceRd. Let
N(λ, V ) be the number of eigenvalues ofH0 − V belowλ < 0. Then

N(λ, V ) = n+(1, (H0 − λ)−1/2V (H0 − λ)−1/2).

Combining this lemma with (1.7) we obtain

Corollary 1.1. For anyε ∈ (0, 1)

(1.8) N(λ, V1 + V2) ≤ N(λ, ε−1V1) + N(λ, (1− ε)−1V2).

Now, since
∑

j |λj(V )|γ =
∫ ∞

0
γsγ−1N(−s, V ) ds, the inequality (1.6)

holds for the Lieb-Thirring sums.

Due to the representationV = (V − V̄ −2|x|−2+εQ2)+ V̄ +2|x|−2+εQ2,
we obtain from (1.6), that
(1.9)∑

|λj(V )|γ ≤
∑

|λj(2V−2V̄−4|x|−2+εQ2)|γ+
∑

|λj(2V̄ +4|x|−2+εQ2)|γ.
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Since the operator (1.5) is positive, the first sum in the right hand side of
(1.9) equals zero. Thus

(1.10)
∑

|λj(Vω)|γ ≤
∑

|λj(2V̄ + 4|x|−2+εQ2)|γ.

Now formula (1.10) and the classical Lieb-Thirring estimate (see [6] and
[7]) lead to the following important intermediate result:

(1.11)
∑

j

|λj(Vω)|γ ≤ C
(∫

||x|−1+ε/2Q|d+2γdx +

∫
|V̄ |d/2+γdx

)
.

Indeed,

Theorem 1.2. [Lieb-Thirring] If d ≥ 3. Then the negative eigenvaluesνj

of−∆− V satisfy the estimate∑
j

|νj|γ ≤ C

∫
|V (x)|γ+d/2 dx, γ ≥ 0.

What is left to prove at this moment? If we take the expectation in both
sides of (1.11), then we shall reduce the problem to the proof of the two
relations:

(1.12) E
[∫

||x|−1+ε/2Q|d+1dx
]

< ∞

and

(1.13) E
[∫

|V̄ |(d+1)/2dx
]

< ∞.

The relation (1.12) forε < 2/(d + 1) immediately follows from (1.4). We
shall establish (1.13) in the next section.

2. PROOF OF(1.4) AND (1.13)

Let us now prove the necessary estimates (1.4) and (1.13). We shall begin
with the following statement.

Lemma 2.1. The relation(1.4)holds for even integersp = 2q with q ≥ 1.

Proof. The mappingV 7→ Q is given by the formula

(2.1) Q = |x|∇θ∆
−1
θ (V − V̄ )

The kernelk(x, y) of this mapping has a singularity of order|x − y|−(d−2)

on the diagonal, but this singularity is integrable. Thus,

k(x, y) =
k0(θ1, θ2)

|x− y|d−2
, θ1 =

x

|x|
, θ2 =

y

|y|
,
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wherek0 ∈ L∞,

Q(x) =

∫
{y: |y|=|x|}

k(x, y)Vω(y)dS(y).

All the statements about the kernelk will be proved in the appendix section
(see Proposition 4.1).

We representQ in the form of a sumQ = Q1 + Q2,where

Q1 =

∫
{y: |y|=|x|}

k0

|x− y|d−2
χ0(x− y)V (y)dS(y)

andχ0 is the characteristic function of the unit ball{x : |x| < 1}. We will
establish the estimates

(2.2)
∫
|x|=R

E
[
|Qj|2q

]
dS(x) ≤ CRd−1, j = 1, 2,

separately. The estimate (2.2) forQ1 is obvious. Indeed,

|Q1(x)| ≤ C

∫
{y: |y|=|x|}

χ0(x− y)

|x− y|d−2
dS(y) ≤ C1

Let us prove estimate (2.2) forQ2. Fix x ∈ Rd and denote∆n =
([0, 1)d + n) ∩ {y ∈ Rd : |y| = |x|} SinceE[ωn] = 0, we obtain that

E[Q2q
2 (x)] ≤ C2

∑
m1+···+mk=2q

∏
j

2q!

m1! . . . mk!

∑
n

(∫
∆n

dS(y)

(1 + |x− y|)d−2

)mj

where all numbersmj are even. Applying the Ḧolder inequality forLp-
functions, we get∑

n

(∫
∆n

dS(y)

(1 + |x− y|)d−2

)mj

≤ C3

∑
n

(∫
∆n

dS(y)

(1 + |x− y|)2(d−2)

)mj/2

≤

≤ C4

∑
n

∫
∆n

dS(y)

(1 + |x− y|)2(d−2)
= C4

∫
{y: |y|=|x|}

dS(y)

(1 + |x− y|)2(d−2)

simply because allmj ≥ 2 and∆n are uniformly bounded.
Consequently,

E[Q2q
2 (x)] ≤ C5

Integrating this inequality with respect tox we obtain (2.2) forj = 2. Thus
the statement of the lemma follows from the triangle inequality in the Ba-
nach spaceL2q(∫

E[Q2q(x)] dS
)1/2q

≤
(∫

E[Q2q
1 (x)] dS

)1/2q

+
(∫

E[Q2q
2 (x)] dS

)1/2q

.

(Recall thatE[f ] =
∫

Ω
f(ω) dω.) �



6 O.SAFRONOV

Estimate (1.4) is proved only for even integerp. It follows for arbitrary
p ≥ 2 by interpolation arguments. Indeed, consider the analytic function

f(z) = E
[∫

{x: |x|=R}
|Q|zdS

]
.

Since this function is bounded by the constantCpR
d−1 on each vertical line

Rez = 2p, with p ∈ N, it is bounded byCRe(z)R
d−1 for Rez ≥ 2 according

to the following statement:

Theorem 2.1. Let f(z) be a bounded analytic function defined on an open
domain containing the regiona ≤ Re z ≤ b. Suppose that it is bounded on
the two vertical lines by the constantsCa andCb:

|f(a + it)| ≤ Ca, |f(b + it)| ≤ Cb, ∀t ∈ R.

Then

|f(z)| ≤ Cθ
aC

1−θ
b , for Rez = aθ + b(1− θ), θ ∈ (0, 1).

Now we obtain a certain information about the mean values ofV over
the sphere of radiusR.

Lemma 2.2. Under conditions of Theorem 1.1

(2.3) E
[∫

|V̄ |(d+1)/2dx
]

< ∞.

Proof. First we shall prove that

(2.4) E[|V̄ |2q(x)] ≤ C(1 + |x|)−(d−1)q.

for any positive integerq. Then we will interpolate two such inequalities
to obtain (2.4) forq = (d + 1)/4. The mappingV 7→ V̄ is given by the
formula

V̄ (x) =
c0

|x|d−1

∫
{y: |y|=|x|}

Vω(y)dS(y).

Fix x ∈ Rd and denote∆n = [0, 1)d + n ∩ {y ∈ Rd : |y| = |x|} Since
E[ωn] = 0, we obtain that

E[|V̄ |2q(x)] ≤ C5

∑
m1+···+mk=2q

∏
j

2q!

m1! . . . mk!

∑
n

(∫
∆n

dS(y)

(1 + |x|)d−1

)mj

where all numbersmj are even. It is clear that∑
n

(∫
∆n

dS(y)

(1 + |x|)d−1

)mj

≤

≤ C6

∑
n

1

(1 + |x|)mj(d−1)
= C7

1

(1 + |x|)(d−1)(mj−1)
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simply because∆n are uniformly bounded.
Consequently, (2.4) holds for any positive integerq and therefore for any

q ≥ 1 (according to Theorem 2.1). Integrating this inequality with respect
to x with q = (d + 1)/4, we obtain (2.3). �

3. REMARKS AND REFERENCES

There are some impressive results devoted to the operator

−∆ + (1 + |x|)−sVω, s > 1/2

in the mathematical literature. One can study either the discrete or the con-
tinuous model of this operator. For the discrete model , the presence of the
absolutely continuous spectrum in dimensiond = 2 was proved by Bour-
gain [2], [3]. In dimensiond = 3, the corresponding result was obtained by
Denissov [1].

In spite the fact that the main result of this paper pertains to the theory of
random operators, we would like now to formulate a result of the determin-
istic type. This result will be related to the operator

(3.1) −∆− εΓ + V

where

Γu(x) =
1

|S|

∫
S
u(|x|θ) dθ

The potentialV in this model is not random: on the contrary, it is a fixed
potential.

Theorem 3.1.Letd ≥ 2 andε > 0. Assume thatV ∈ L∞,

(3.2)
∫

S
V (rθ) dθ = 0, ∀r > 1,

and

(3.3)
∫

V 2(x)

(1 + |x|)d−1
dx < ∞.

Then the absolutely continuous spectrum of the operator(3.1) is essentially
supported by[−ε,∞).

Proof. The proof of this theorem relies on the fact that the negative eigen-
valuesβj(∓V ) of the operator−∆− εΓ + εI ± V satisfy the condition

(3.4)
∑

j

|βj(∓V )|1/2 < ∞.

The proof of (3.4) is based on the circumstance that the behaviour of the
eigenvalues near zero depends only on the structure of the edge of the spec-
trum of the unperturbed operator. But in the suggested model, this edge has
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the same structure as the one of the one-dimensional Schrödinger operator.
Let us introduce the notationP1 for the spectral projection of the operator
A = −∆−εΓ+εI corresponding to the interval[0, ε). Set alsoP2 = I−P1.
Then

V = 2ReP1V P2 + P2V P2,

due to the condition (3.2) on the mean values ofV . It was noticed before
that ∑

j

|βj(V )|1/2 =

∫ ∞

0

n+(1, (A + λ)−1/2V (A + λ)−1/2)
dλ

2
√

λ
.

Besides the distribution functionn+ we shall need distribution functions of
singular values of non-selfadjoint operators

n(s, T ) = n+(s2, T ∗T ), s > 0

(hereT is a compact operator). Two of the important properties of this
function are

n(s, TS) ≤ n(
s

||S||
, T ),

and
n(s1 + s2, T1 + T2) ≤ n(s1, T1) + n(s2, T2).

Using these properties, we obtain∑
j

|βj(V )|1/2 ≤
∫ ∞

0

n(c1, (A + λ)−1/2P1V )
dλ√

λ
+∫ ∞

0

n+(c2, (A + λ)−1/2P2V P2(A + λ)−1/2)
dλ

2
√

λ

Let us remark that the second term equals zero if the norm||V ||L∞ is suf-
ficiently small. In the general case, this term can be well estimated by the
integral (3.3). It remains to consider the first term∫ ∞

0

n(c1, (A + λ)−1/2P1V )
dλ√

λ
=∫ ∞

0

n+(c2
1, (A + λ)−1/2P1V

2P1(A + λ)−1/2)
dλ√

λ
≤∫ ∞

0

n+(c2
1, (A + λ)−1/2ΓV 2Γ(A + λ)−1/2)

dλ√
λ

= 2
∑

j

|Λj|1/2,

whereΛj are the eigenvalues of the operator−∆Γ− c−2
1 ΓV 2Γ, which, as a

matter of fact, is a one dimensional Schrödinger operator with the potential
αd/r

2 − V 2. Therefore, according to the Lieb-Thirring bound for a one
dimensional operator (see [6], [7]), the sum

∑
j |Λj|1/2 can be estimated by

the integral (3.3). �
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At the end of this section the author would like to mention one idea,
which might be useful for the reader in the study of Anderson’s model. Let
us look at the result from a different point of view. Consider an operator
which is in a certain sense close to the operator

(3.5) −∆ + Vω, where Vω =
∑

n

ωnχ(x− n).

First, we introduce the classS of perturbationsB for which the wave oper-
ators exist:

B ∈ S if and only if ∃ s− lim
t→±∞

exp(−it(−∆ + B)) exp(it(−∆))

Note, that this class is very rich (meaning ”large”) and it can include even
differential operators whose coefficients do not decay at infinity. For exam-
ple, the operator

−ζ(x)|x|−s∆θ, s > 1,

belongs to the classS ( hereζ is the characteristic function of the exterior
of the unit ball ), but the coefficients of this operator behave at infinity as
|x|2−s.

Theorem 3.2. Let ε > 0 and let d ≥ 3. Assume thatωn are bounded
independent random variables with the propertyE[ωn] = 0, for all n. Then
for almost everyω, there exists a perturbationB ∈ S such that the operator
−∆ + B + (1 + |x|)−εVω has a.c. spectrum allover the positive half line
[0,∞).

Proof . Indeed, letQ andV̄ be the same as in the proof of Theorem 1.1.
In particular, it means that< x,Q(x) >= 0, ∀x,

divQ = Vω, and V̄ = |S|−1

∫
S
Vω(|x|θ) dθ.

Define

B = −ζ(x)|x|−(1+ε)∆θ − ζ(x)(1 + |x|)−εV̄ + (1 + |x|)−1−εQ2.

It is easy to check thatB ∈ S. On the other hand the operator−∆ +
B + ζ(x)(1 + |x|)−εVω is positive. So, there is no necessity to estimate
eigenvalues of this operator and the trace formula obtained in [5] gives the
relation

E
(∫ b

a

log(µ′(λ)) dλ
)
≥ −C

(
1 +

∫
(1 + |x|)−1−εE

[
Q2

]
|x|1−ddx

)
for the spectral measureµ of the operator−∆ + B + ζ(x)(1 + |x|)−εVω.
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4. APPENDIX

Finally consider a technical and less interesting question about the kernel
of the operator∇θ∆

−1
θ on the unit sphere. LetΓ be the orthogonal projec-

tion in L2(S) onto the subspace of constant functions.

Proposition 4.1. The kernel of the operator∇θ∆
−1
θ (I −Γ) acting inL2(S)

is a function of the form

k(x, y) =
k0(x, y)

|x− y|d−2
, x, y ∈ S,

wherek0 is bounded.

Proof. Let us fix the pointy. Clearly, the kernelk(x, y) possesses the
symmetry with respect to the axis connectingy and−y. Let s be the dis-
tance betweenx andy along the geodesic curve. Thenk(x, y) = ρ(s)e(s),
whereρ(s) is a certain scalar function ande(x) is the unit vector, tan-
gent to the mentioned geodesic curve at the pointx. That meanss =
2 arcsin(|x − y|/2). Since divk = δ(x − y) − 1/|S|, we obtain thatρ
is a solution of an equation of the form

ρ′ + q(s)ρ = −1/|S|, s ∈ (0, π)

where the functionq(s) = div (e) has two singularities: at the points = 0
corresponding toy and at the points = π corresponding to−y. Moreover
the character of the singularities at both pointsy and−y is the same, the
only difference is the sign of the leading term:

q(s) ∼ d− 2

s
, s → 0,

q(s) ∼ d− 2

s− π
, s → π.

Indeed, ifx ∈ S is close toy, thene is close to the vectorx−y
|x−y| . Therefore

div(e) ∼ d−2
|x−y| , The functionρ(s) must be smooth at the points = π,

therefore

ρ =
1

|S|f(s)

∫ π

s

f(s) ds, where f(s) = exp(

∫
q(s) ds)

Let us clarify the situation with the points = 0. Since divρe = −1/|S|
everywhere except the pointy, we conclude automatically that the function
div ρe has to have a singularity aty. The only possible singularity is the one
of the typeρ ∼ c

f(s)
ass → 0, with some constantc. In other words,

k(x, y) ∼ c

|x− y|d−2

asx → y. �
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