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Abstract

We discuss the inviscid limits for the randomly forced 2D Navier-
Stokes equation and the damped/driven KdV equation. The former
describes the space-periodic 2D turbulence in terms of a special class
of solutions for the free Euler equation, and we view the latter as its
model. We review and revise recent results on the inviscid limit for the
perturbed KdV and use them to suggest a setup which could be used
to make a next step in the study of the inviscid limit of 2D NSE. The
proposed approach is based on an ergodic hypothesis for the flow of
the 2D Euler equation on iso-integral surfaces. It invokes a Whitham
equation for the 2D Navier-Stokes equation, written in terms of the
ergodic measures.

Keywords: Navier-Stokes equations, 2D turbulence, Eulerian limit,
KdV, stationary measure, disintegration, Whitham equation.

0 Introduction

We consider the 2D Navier-Stokes equation (NSE) under the periodic bound-
ary conditions. The equation is perturbed by a Gaussian random force which
is smooth in the space variable, while as a function of time it is a white noise.
We are interested in the inviscid limit for the NSE, i.e. in the behaviour of its
solutions when the viscosity goes to zero. It is not hard to see that in order
to have a limit of order one the force should be proportional to the square
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root of the viscosity (see [Kuk06], Section 10.3). Accordingly, we consider
the following equation:

u̇− ν∆u + (u · ∇)u +∇p =
√

ν η(t, x), 0 < ν ≤ 1, (0.1)

div u = 0, u = u(t, x) ∈ R2, p = p(t, x), x ∈ T2 = R2/(2πZ2).

It is assumed that
∫

u dx ≡ ∫
η dx ≡ 0, that the force η is divergence-free and

is non-degenerate being interpreted as a random process in a function space
(see Section 1). It is known that equation (0.1) defines a Markov process in
the function space

H = {u(x) ∈ L2(T2;R2) | div u = 0,

∫

T2

u dx = 0} ,

and that this process has a unique stationary measure µν . This is a prob-
ability Borel measure in H which attracts distributions of all solutions for
(0.1). Let uν(t, x) be a corresponding stationary solution, i.e.

Duν(t) ≡ µν .

It is proved in [Kuk04] (also see [Kuk06]) that when ν → 0 along a subse-
quence, the random field uν(t, x) converges in distribution to a non-trivial
limit U(t, x) (a priori depending on the subsequence), which is a random field,
stationary in t, H2-smooth in x, and such that each its realisation U(t, x)
satisfies the free Euler equation (i.e. eq. (0.1)ν=0). Accordingly, the marginal
distribution µ0 = DU(0) is an invariant measure for the Euler equation. The
process U is called an Eulerian limit. See below Theorem 1.1.

The estimates for the stationary solutions uν (see (1.2) in Section 1)
imply that E

∫ |uν(t, x)|2dx ∼ 1 for all ν. That is, the characteristic size of
the solution uν remains ∼ 1 when ν → 0. Since the characteristic space-scale
also is ∼ 1, then the Reynolds number of uν grows as ν−1 when ν decays to
zero. Hence, the Eulerian limits U(t, x) describe the transition to turbulence
for stationary in time space-periodic 2D flows. 1 So the study of the Euler
limits is equivalent (at least, is closely related) to the study of the stationary
in time, periodic in space 2D turbulence.

The Euler equation under the periodic boundary conditions has the infi-
nite-dimensional integral of motion I = I(u), where u(·) 7→ I(u(·)) is a map,

1This kind of 2D turbulence usually is modeled by the 2D NSE, stirred by a stationary
random force.
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valued in certain metric space B. In Theorem 1.2 we show that the measure
µ0 = D(U(0)) may be disintegrated as2

µ0 =

∫

B

γb dλ(b) . (0.2)

Here λ = I◦µ0 is the image of the measure µ0 under the map I and γb, b ∈ B,
is a measure on the iso-integral set {I(u) = b}, invariant for the Euler flow.

The Eulerian Limit Theorem 1.1 supports the popular claim that the
2D Euler equation describes the 2D turbulence, while the measure µ0 and its
disintegration (0.2) specify this claim. Accordingly, properties of solutions
for the Euler equation are relevant for the 2D turbulence if they correspond
to a set of vector-fields u in H of positive µ0-measure. For example, it is
known that some steady solutions of the Euler equation are its Lyapunov-
stable equilibria (see [Arn89], Addendum 2, and [AK01]). They are relevant
for the 2D turbulence if the corresponding set of values of the vector-integral
I has positive λ-measure.

The task to study the limiting measure µ0 and the measures γb and λ is
(very) difficult. To develop corresponding intuition, in Section 2 we discuss
as a model for (0.1) the damped-driven KdV equation under the periodic
boundary conditions:

u̇− νuxx + uxxx − 6uux =
√

νη(t, x) ,

x ∈ T1 = R/2πZ ,

∫
u dx ≡

∫
η dx ≡ 0 .

(0.3)

This equation is obtained by replacing in the NSE (0.1) the Euler equation
by the KdV equation u̇+uxxx−6uux = 0 . I.e., by replacing one Hamiltonian
PDE with infinitely many integrals of motion by another. The inviscid limit
for eq. (0.3) is studied in [KP06]. It is shown there that the limiting solutions
are stationary processes U(t, x), formed by smooth solutions of KdV. In this
case the disintegration (0.2) simplifies significantly: now the measures γb

are the Haar measures in infinite-dimensional tori, and λ is a measure on
the octant R∞+ , which is a stationary measure for an SDE, obtained as the
Whitham averaging of the equation (0.3). See Theorem 2.1 in Section 2.

In Section 3 we use the results for the inviscid limit in eq. (0.3) as a
pilot-model to study the disintegration (0.2) and suggest three assertions,
describing the objects, involved there.

2In Theorem 1.2 the result is stated in an equivalent form, where the Euler equation is
written in terms of vorticity
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Notations. P(M) denotes the set of probability Borel measures on a metric
space M ; D(ξ) denotes the distribution of a random variable ξ; f ◦ µ stands
for the image of a measure µ under a map f , and the symbol ⇀ indicates
∗-weak convergence of Borel measures.

1 The Eulerian limit and its vorticity

We first specify the force η in the 2D NSE (0.1). Let (es, s ∈ Z2 \ {0}) be
the standard trigonometric basis of H:

es(x) =
sin(s · x)√

2π|s|

[−s2

s1

]
or es(x) =

cos(s · x)√
2π|s|

[−s2

s1

]
,

depending whether s1 + s2δs1,0 > 0 or s1 + s2δs1,0 < 0. The force η is

η =
d

dt
ζ(t, x), ζ =

∑

s∈Z2\{0}
bsβs(t)es(x) ,

where {bs} is a set of real constants, satisfying

bs = b−s 6= 0 ∀ s,
∑

|s|2b2
s < ∞ ,

and {βs(t)} are standard independent Wiener processes. By Hl, l ≥ 0, we
will denote the Sobolev space H ∩H l(T2;R2), given the norm

‖u‖l =
( ∫ (

(−∆)l/2u(x)
)2

dx
)1/2

. (1.1)

Let µν be the stationary measure for (0.1) and uν(t, x) be a corresponding
stationary in time solution. It is known to be stationary (=homogeneous) in
x, and a straightforward application of Ito’s formula to ‖uν(t)‖2

0 and ‖uν(t)‖2
1

implies that

E ‖uν(t)‖2
1 ≡

1

2
B0 , E‖uν(t)‖2

2 ≡
1

2
B1 , (1.2)

where for l ∈ R we denote Bl =
∑ |s|2lb2

s (note that B0, B1 < ∞ by assump-
tion); e.g. see in [Kuk06].

The theorem below describes what happens to the stationary solutions
uν(t, x) as ν → 0. For its proof see [Kuk04, Kuk06].
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Theorem 1.1. Any sequence ν̃j → 0 contains a subsequence νj → 0 such
that

Duνj
(·) ⇀ DU(·) in P(

C(0,∞;H1)
)
.

The limiting process U(t) ∈ H1, U(t) = U(t, x), is stationary in t and in x.
Moreover,

1)a) every its trajectory U(t, x) is such that

U(·) ∈ L2 loc(0,∞;H2), U̇(·) ∈ L1 loc(0∞;H1) ,

b) it satisfies the free Euler equation

u̇(t, x) + (u · ∇)u +∇p = 0 , div u = 0 , (1.3)

and c) ‖U(t)‖0 and ‖U(t)‖1 are time-independent quantities. If g is a bounded
continuous function, then

∫

T2

g(rot U(t, x)) dx (1.4)

also is a time-independent quantity.
2) For each t ≥ 0 we have E‖U(t)‖2

1 = 1
2
B0, E‖U(t)‖2

2 ≤ 1
2
B1 and

E exp
(
σ‖U(t)‖2

1

) ≤ C for some σ > 0, C ≥ 1.

Due to 1b), the measure µ0 = DU(0) is invariant for the Euler equation.
By 2) it is supported by the space H2 and is not the δ-measure at the origin.

Below we denote by H l = H l(Td) the Sobolev space of functions with zero
mean-value on the torus Td, d = 1 or 2. The norm in this space is denoted
‖ · ‖l, i.e. as the norm in Hl, and is defined as in (1.1).

Let us write the Euler equation (1.3) in terms of the vorticity ξ(t, x) =
rot u(t, x) = ∂u2/∂x1 − ∂u1/∂x2:

ξ̇ + (u · ∇)ξ = 0 , u = ∇⊥(−∆)−1ξ . (1.5)

Here ∇⊥ = (∂/∂x2,−∂/∂x1)
t and ∆ is the Laplacian, operating on functions

on T2 with zero mean value. By Theorem 1.1, V (t, x) = rot U satisfies (1.5)
for every value of the random parameter. Now we show that V (t) belongs to a
certain functions space K where (1.5), supplemented by an initial condition
ξ(0) = ξ0 ∈ K, has a unique solution, continuously depending on ξ0. To
define this space we first set

K = {u ∈ L2 loc(R;H2) | u̇ ∈ L1 loc(R;H1)} ,
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given the topology of uniform convergence on bounded time-intervals. This
is a Polish space (i.e., a complete separable metric space). Next we define K̃
as the set of solutions for (1.3), belonging to K. This is a closed subset of
K, so also a Polish space. The group of the flow-maps of the Euler equation
acts on K̃ by time-shifts which are its continuous homeomorphisms. Now
consider the continuous map

π : K̃ → H0(T2) , u(t, x) 7→ rot u(0, x) .

Due to an uniqueness theorem of the Yudovich type (see Lemma 3.5 in
[Kuk04]), π is an embedding. We set

K = π(K̃)

and provide K with the distance, induced from K̃. It makes K a Polish space
(we do not know if K is a linear space or not, i.e. whether it is invariant
with respect to the usual linear operations). It follows from the results of
[BKM84] that H2(T2) ⊂ K. So

H2(T2) ⊂ K ⊂ H0(T2) , (1.6)

where the embeddings are continuous.
Due to what was said above, the Euler equation defines a group of con-

tinuous homeomorphisms

St : K → K , t ∈ R . (1.7)

Theorem 1.1 shows that U(·) ∈ K̃ for each value of the random parameter.
Therefore the measure

θ = D(V (0)) = rot ◦µ0

is supported by K (i.e., θ(K) = 1). Since St ◦ θ = D(V (t)) and V (t) is a
stationary process, then θ is an invariant measure for the dynamical system
(1.7). By the estimates in item 2) of Theorem 1.1, it is supported by the
space K ∩H1(T2) and

∫
exp

(
σ‖v‖2

0 θ(dv) < ∞.
Our next goal is to express the assertion 1c) of Theorem 1.1 in terms of

the measure θ. Let us denote by P(R) the set of probability Borel measures
on R, furnished with the Lipschitz-dual distance

dist(m′,m′′) = sup
f∈L

|〈m′, f〉 − 〈m′′, f〉| ,
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where L is the set of all Lipschitz functions f on R such that Lip (f) ≤ 1 and
|f | ≤ 1. This is a Polish space, and convergence in the introduced distance is
equivalent to the ∗-weak convergence of measures, see [Dud02]. Due to (1.6)
the map

M : K → P(R) , ξ 7→ ξ ◦ (
(2π)−2dx

)
,

is continuous. Indeed, for any f ∈ L we have

|〈Mξ1, f〉 − 〈Mξ2, f〉| =
∣∣∣
∫

(f(ξ1(x))− f(ξ2(x)) (2π)−2dx
∣∣∣

≤
∫
|ξ1 − ξ2| (2π)−2dx = o(1) as dist(ξ1, ξ2) → 0 ,

where we use (1.6) to get the last equality. Therefore, the map

Ψ : K → P(R)× R+ =: B , ξ(·) 7→ (M(ξ), ‖ξ‖−1) ,

also is continuous.
Repeating (say) the arguments in [Kuk04, Kuk06] which prove assertion

1c) of Theorem (1.1), we get that each trajectory u(t, x) of (1.3), belonging
to the space K, satisfies Ψ(u(t)) = const. Recalling the definition of the
flow-maps St, we get that they commute with Ψ. That is,

St : Kb → Kb ∀ t ∈ R , (1.8)

for every b ∈ B. Here

Kb = Ψ−1(b) ⊂ K , b ∈ B .

Clearly Kb is a closed subset of K, and it is not hard to see that it is not
compact. We provide Kb with the induced topology.

Let us denote λ = Ψ ◦ θ. This is a measure on Borel subsets of the Polish
space B.

Theorem 1.2. There exists a family {θb,b ∈ B} of measures on Borel
subsets of K such that

1) θb(Kb) = 1 for each b, for any Borel set A ⊂ K the function b 7→
θb(A) is Borel-measurable on B, and

θ(A ∩Ψ−1(D)) =

∫

D

θb(A) dλ(b) , (1.9)

for any Borel set D ⊂ B.
2) For λ-a.a. b ∈ B the measure θb (interpreted as a measure on Borel

subsets of Kb) is invariant for the dynamical system (1.8).
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Proof. 1) This group of assertions makes the statement of the Disintegration
Theorem, applied to a measurable map

Ψ : (K,A, θ) → (B,B, λ) ,

where A and B are the Borel sigma-algebras for Polish spaces K and B. For
the case when K and B are locally compact sets, the theorem is proved in
[Bou59]. The case of arbitrary Polish spaces reduces to that one since the
measure spaces (K,A) and (B,B) both are isomorphic to the unit segment
[0,1] with the Borel sigma-algebra, by means of some measurable isomor-
phism, see [Dud02] (also see [Par77], section 46).

2) Since the measure θ is invariant for the dynamical system (1.7) and
since Ψ commutes with the flow-maps St, then for any Borel sets A ⊂ K and
D ⊂ B we have

∫
D

θb(A) dλ(b) =
∫

D
θb(StA) dλ(b) . That is,

∫

D

θb dλ(b) =

∫

D

(St ◦ θb) dλ(b) ,

where the integrands are vector-functions, valued in the linear space of signed
Borel measures on K. Hence, θb = St ◦ θb for λ-a.a. b, as stated.

2 The KdV-model

In this section we discuss the inviscid limit in the equation (0.3) as a model
for the Eulerian limit. The results, described below, are obtained in [KP06].

The force η in (0.3) is assumed to have the same form as the force in
Section 1:

η =
∂

∂t

∑

s∈Z\{0}
bsβs(t)es(x) .

Here

es(x) =

{
cos sx, s > 0 ,

sin sx, s < 0 ,

{βs(t)} are standard independent Wiener processes and the coefficients bs

satisfy
bs = b−s 6= 0 ∀ s ; bs ≤ Cm|s|−m ∀m, s

with suitable constants Cm.
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For the same reasons as for the NSE, eq. (0.3) has a unique stationary
measure. Let uν(t, x), t ≥ 0, be a corresponding stationary solution. It is
also stationary in x, and its Sobolev norms satisfy the following estimates
uniformly in ν > 0:

E eσ‖uν(t)‖20 ≤ Cσ < ∞, E ‖uν‖k
m ≤ Cm,k < ∞ (2.1)

(for a suitable σ > 0 and for all m, k); see in [KP06]. These estimates allow
to prove for eq. (0.3) an analogy of Theorem 1.1. That is, to establish that
any sequence ν̃j → 0 contains a subsequence νj → 0 such that

Duνj
(·) ⇀ DU(·) in P(C(0,∞; Hm)) ,

for each m. The limiting process U(t) = U(t, x) is stationary in t and in x
and satisfies estimates (2.1). Its marginal distribution

θ = DU(0)

is an invariant measure for KdV, and every its realisation U(t, x) is a smooth
solution for KdV. Solutions of that equation satisfy infinitely many integrals
of motion. The realisation of these integrals, studied in [MT76, KP03] (also
see in [KP06]), is the most convenient for our purposes. These integrals
are non-negative analytic functions I1, I2, . . . on the space H0, and in big
difference with the integrals for the Euler equation, now the structure of the
iso-integral sets

TI = {u | Ij(u) = Ij ≥ 0 ∀ j}
is well understood. Namely, each TI is an analytic torus in H0 of dimension
|J (I)| ≤ ∞, where J (I) = {j | Ij > 0}. Moreover, the torus TI carries a
cyclic coordinate ϕ = {ϕj, j ∈ J (I)} such that in the coordinates (I, ϕ) the
KdV-dynamics takes the integrable form

İ = 0 , ϕ̇ = W (I) ,

where the frequency vector W (I) is analytic and non-degenerate in I. The
Haar measure dϕ on any torus TI is invariant for this dynamics. Since the
map I 7→ W (I) is analytic non-degenerate, then for a ‘typical’ I this is
the unique invariant Borel measure on TI . It turns out that the limiting
measure θ is supported by the set {u ∈ H∞ = ∩Hm | Ij(u) > 0 ∀ j}
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which is measurably isomorphic to a Borel subset of R∞+ × T∞. Under this
isomorphism θ can be written as

θ = λ× dϕ , (2.2)

where λ = D(
I(U(0)

)
is a Borel measure on R∞+ . This is a KdV-analogy of

the disintegration (1.9). It simplifies compare the NSE-case since, firstly, the
iso-integral sets TI are isomorphic to tori, while the topology of the sets Kb is
unknown, and, secondly, any set TI carries the simple KdV-invariant measure
dϕ which typically is the unique invariant measure, while the structure of the
invariant measures θb in (1.9) is unknown.

To describe the measure λ in (2.2) we apply Ito’s formula to eq. (0.3)
and the map u 7→ I(u), and pass in the obtained equation to the fast time
τ = ν−1t. We get a system

dIk(τ) = Fk(u) dτ +
∑

j

σkj(u) dβj(τ) , k = 1, 2, . . . (2.3)

(see [KP06], Section 3). This is an infinite-dimensional SDE with the drift
Fk and the diffusion matrix akl =

∑
j σkjσlj. Clearly Iν(t) = I(uν(t)) is a

stationary solution for this system. Let us define the averaged drift and the
averaged diffusion matrix as follows:

〈Fk〉(I) =

∫

TI

Fk(u(ϕ)) dϕ , 〈akl〉(I) =

∫

TI

akl(u(ϕ)) dϕ (2.4)

(u(ϕ) is a point in TI with the coordinate ϕ).

Theorem 2.1. Every sequence ν̃j → 0 contains a subsequence νj → 0 such
that the process I(uνj

(τ)) (where τ = ν−1t) ∗-weakly converges in distribution
in the space P(

C(0,∞; H0)
)

to a stationary process I(τ), which is a solution
for the martingale problem with the drift and diffusion as in (2.4). The
law D(I(0)) equals λ = DI(U(0)). Its finite-dimensional projections 3 are
absolutely continuous with respect to the Lebesgue measure, and all moments
of all norms |I|m =

∑ |Ij|jm with respect to the measure λ are finite.

Thus, the averaged martingale problem, which can be formally written
as

dI(τ) = 〈F 〉(I) dτ +
(〈a〉〈a〉t)1/2

(I) dβ(τ) (2.5)

3i.e., images of λ under the maps I 7→ (I1, . . . , IM ) ⊂ RM
+ , M ∈ N.
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describes the limiting behaviour of the stationary measures Duνj
(t). Indeed,

the limiting (as νj → 0) measure may be written in the form (2.2), where
λ is a stationary measure for (2.5). It is plausible that (2.5) has a unique
stationary measure λ. If so, then D(uν(t)) ⇀ λ× d ϕ as ν → 0.

3 Ergodic hypothesis for the Eulerian limit

We believe that the damped/driven KdV equation (0.3) is a right model for
the Eulerian limit (that is, a right model for the space-periodic stationary
2D turbulence). Guided by this belief, below we make statements 1-3 which
specify the results in Section 1 concerning the Eulerian limit. Crucial among
them is the first one, which is an ergodic hypothesis for the Euler equation
on a typical iso-integral set Kb. We cannot prove the three statements,
but, firstly, we believe that the validity of their analogies for the KdV-model
justifies the assumptions up to some extend and, secondly, we can prove some
fragments of the picture, given by the assumptions (the corresponding results
will be published elsewhere).

1. Every non-empty set Kb carries a measure mb, invariant for the Euler
flow (1.8), such that for a.a. u ∈ H with respect to any stationary measure
µν we have

lim
T→∞

T−1

∫ T

0

f(Stu) dt = 〈f, mb〉 , b = Ψ(u) . (3.1)

For λ-a.a. b the measure mb coincides with θb in (1.9).
Let u(t, x) be a solution of (0.1). Then the vector b(t) = Ψ(u(t)) ∈ B

satisfies a SDE. To describe it we introduce the space C = Cb(R) × R and
denote by 〈·, ·〉 its natural pairing with P(R)×R ⊃ B. For any f ∈ C we set

Ψf (u) = 〈Ψ(u), f〉 .
Applying Ito’s formula to uf = Ψf (u), where u(t) satisfies (0.1), and passing
to the fast time τ = νt, we get

d uf (τ) = Ff (u(τ)) dτ +
∑

s

σfs(u(τ)) dβs(τ) . (3.2)

Here Ff and {σfs, s ∈ Z2 \ 0} are smooth functions on H (depending on the
coefficients bs) and {βs(τ)} are new standard Wiener processes.
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2. Let uν(t) be a stationary solution of (0.1). Then along a subsequence
νj → 0 the process Ψ(uν(τ)) converges in distribution to a limiting process
b(τ). This is a stationary Ito process in B such that for any f ∈ C the process
bf (τ) = 〈b(τ), f〉 has the drift

〈F 〉f (b) = 〈Ff (u),mb〉 =

∫

Kb

Ff (u) mb(du) , (3.3)

and for any f1, f2 ∈ C processes bf1 and bf2 have the covariation

〈a〉f1 f2(b) =
〈∑

s

σf1s(u)σf2s(u),mb

〉
. (3.4)

I.e., the processes bf1(τ)−∫ τ

0
〈F 〉f1(b(s)) ds and bf2(τ)−∫ τ

0
〈F 〉f2(b(s)) ds are

martingales and their bracket equals 〈a〉f1f2(b(τ)).
That is to say, the limiting process b(τ) is a martingale solution for a

stochastic differential equation in the space B with the drift 〈F 〉(b) and the
covariance 〈a〉(b). This is the Whitham equation for the 2D NSE (0.1).

In difference with the KdV case, space B does not have a natural basis,
and we cannot naturally write this equation as a system of infinitely many
SDE. Still we can find a countable system of vectors fj ∈ C such that their
linear combinations are dense in C, and use these vectors in (3.3), (3.4). In
this way we write the Whitham equation above as an over-determined system
of SDE.

We can write down the Whitham equation, using in (3.3), (3.4) the mea-
sures θb instead of the measures mb, i.e. without invoking the Ergodic Hy-
pothesis 1. But if the hypothesis fails, then the measures θb may depend
on the sequence νj → 0 in Theorem 1.1. In this case the Whitham equation
seems to be a useless object.

3. Distribution of the limiting process b(τ) is independent from the sequence
{νj → 0}. Accordingly, the measure θ = Db(0) also is independent from the
sequence, and

Ψ ◦ µν ⇀ θ , µν ⇀ µ0 =

∫
mb θ(db)

as ν → 0.

The crucial assumption for the scenario above is the Ergodic Hypoth-
esis 1. We assume there that (3.1) holds for µν-a.a. initial data (rather
than for all of them) since analogy with the damped/driven KdV suggests
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that on some atypical sets Kb the dynamics {St} may be non-ergodic (i.e.,
‘resonant’).

The task of proving hypothesis 1 and finding out properties of the mea-
sures mb seems to be very difficult. In particular, it is not clear for us which
role in this problem plays the fact that the group of area preserving dif-
feomorphisms of T2 transitively acts on the set of equidistributed functions
Km =

⋃
b∈RK(m,b), m ∈ P(R).

Despite the measures mb are unknown, the averaged drift and covariance
(3.3) and (3.4) which characterise the limiting equation can be calculated
by replacing the ensemble-average by the time-average (see (3.1)). So valid-
ity of the suggested scenario 1-3 may be verified numerically by comparing
Ψ(uν(τ)) with solutions for the limiting equation.
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