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Abstract

In this paper, we prove the strong stability of Diophantine KAM tori in the view
of viscosity solutions of Hamilton-Jacobi equations.

1 Introduction

The objective of this paper is to study the changes of the graphs of viscosity solutions of
Hamilton-Jacobi equations

H(x,P +Du(x,P ))= H(P ). (1.1)

In (1.1), H(x,p) : R2n → R is a smooth Hamiltonian, strictly convex, i.e. ∂2H
∂p2 > ςI > 0

uniformly, and superlinear growth in p(lim|p|→∞
H(x,p)
‖p‖ = ∞), and 2πZn periodic in x.

Instead of studying a general Hamiltonian H as above, in this paper we will restrict us in
the real analytic Lagrangian

L0(x, ẋ)= l0(ẋ)+εl1(x, ẋ), (1.2)

of which associated Hamiltonian is

H0(x,p)= h0(p)+εh1(x,p), (1.3)

where

∂2l0
∂ẋ2

> 0. (1.4)

Except that, we also restrict us around the graph of a smooth viscosity solution, which is
the so-called KAM torus. In [11], for the Lagrangian systems (1.2), Salamon and Zehnder
proved that for any Diophantine frequency vector ω ∈Rn, there exists an invariant torus
Γ, which is in TTn, corresponds to it. Write L̃(Γ) = G, where L̃ : TTn → T ∗Tn is the
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Legendre transformation. In fact, G is a smooth graph of some viscosity solution. We can
write G=

⋃
x∈Tn

(x,P0 +Du(x,P0)), where u(x,P0) satisfies the Hamilton-Jacobi equation

H0(x,P0 +Du(x,P0))= H0(P0). (1.5)

From [5]1, we get many viscosity solutions for (1.5) for any P , where ‖P −P0‖ is small
enough. Our problem is what the graphs of

⋃
x∈Tn

(x,P +Du(x,P )) look like? What is the

relationship between the graphs and the KAM torus G? We will answer these problems
in our theorems(see Theorem 1,2). In the following, we will give a heuristic description
about our results. We remark that the notations in this section are independent of the
following ones.

Suppose that ω satisfies

|〈k,ω〉|≥ γ

|k|τ , k 6=0,

γ >0, τ ≥n−1.
(1.6)

When ‖P −P0‖ small enough, we will have

‖Du(x,P )−Du(x,P0)‖≤C‖P −P0‖
1

τ+1 ,

‖u(x,P )−u(x,P0)‖≤C‖P −P0‖
1

τ+1 .

Further, one gets

‖(P +Du(x,P ))−(P0 +Du(x,P0))‖≤C‖P −P0‖
1

τ+1 . (1.7)

Definition 1.1 For the H-J equation (1.1) and some P0 ∈Rn, if the graph of
⋃

x∈Tn

(x,P0+

Du(x,P0)) corresponds to a KAM torus and this torus and the graphs of its nearby viscosity
solutions satisfy

‖(P +Du(x,P ))−(P0 +Du(x,P0))‖≤C‖P −P0‖χ, 0 <χ≤ 1, (1.8)

then we call this KAM torus strong stability, where ‖P−P0‖ is small enough and x∈∆⊂Tn

and meas({x∈Tn \∆})= 0. χ is called the strong stability index.

Remark 1.1 The definition for the strong stability of KAM torus is local. Therefore, the
conditions of H, which are uniformly convex and superlinear growth in p, aren’t necessary.

From (1.7) and above discussions, we have known that the KAM torus G in T ∗Tn is
strong stability. We remark that the strong stability of KAM torus in the view of viscosity
solutions of H-J equations has deep relationships with the stickiness of KAM torus(see
[10], also see [9]) and the minimal property of the trajectories which lie in KAM tori(see
[7]).

1Note here, we need neither that H0 is superlinear in p, nor that H0 is uniformly convex. We only need
∂2h0
∂p2 > 0. The reason lies in that we only care about the dynamics of the small neighborhood of G.
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Let us close this introductory section with one important reference. In the Corollary
8.3 of [6], J. Mather has shown that if ω satisfies a Diophantine condition of order τ , then
ω→Pω(ξ) satisfies a Hölder condition of order 1

2τ at ω, i.e. |Pω(ξ)−Pρ(ξ)| ≤ const.|ω−ρ∗| 1
2τ ,

for |ω−ρ∗| ≤ 1, where Pω(·) is Peierl’s barrier. It is well-known that the barrier function can
be represented by viscosity solutions. Our results about C0 estimation partially generalize
his result to high dimensional positive definite Hamiltonian systems.

2 Main Results

2.1 Theorem 1

We start from the Hamiltonian

H(x,p)=〈ω,p〉+ 1
2
〈A(x)p,p〉+f(x,p)

=N +R1 +R2

(2.1)

where N = 〈ω,p〉, R1 = 1
2〈A(x)p,p〉 and R2 = f(x,p) = O(p3). H is assumed to be

defined and real analytic in a neighbourhood of the origin, more precisely on a complex
domain D = D(R,ρ,σ)(ρ > 0, σ > 0) defined as follows: let us employ the Euclidean
norm on complex numbers z and the max norm on complex vectors ξ =(ξ1, · · · , ξn) : |z|=
{[Re(z)]2+[Im(z)]2} 1

2 and |ξ|= max
j=1,··· ,n

|ξj |. Denote by Tn+σ the complex σ-neighborhood

of Tn:
Tn +σ = {q ∈Cn/2πZn||Im(qi)|<σ, ∀j}.

Similarly, for all r < R denote by Br +ρ the ρ-neighborhood of Br in Cn :

Br +ρ = {p∈Cn|∃ p′ ∈Br such that |pj−p′j |<ρ, ∀j}.
For the combined complexified domain we write D(r,ρ,σ) = (Tn +σ)× (Br +ρ). A norm
on the bounded complex-valued functions on D(r,ρ,σ) is given by

‖F‖r,ρ,σ = sup
(x,p)∈D(r,ρ,σ)

|F (x,p)|.

The Hamiltonian (2.1) is defined in D(R,ρ,σ), where R will be chosen small enough. If
|p| ≥ Ξ, we define2 H = 1

2‖p‖2, where Ξ will be chosen large enough. We extend H
which defined in {(x,p)|x ∈ Tn, |p|< R} to {(x,p)|x ∈ Tn, |p| ≥ Ξ} by a suitable smooth
function and pertain the positive definiteness. We still write the new Hamiltonian by H
for simplicity. Obviously, H is superlinear in p.

Suppose A(x)(x∈Tn) is a positive definite and symmetric matrix and satisfies

λ2‖v‖2≤〈A(x)v,v〉≤λ1‖v‖2, v ∈Rn,

where λ2 > 0. Further, we suppose (1.6). When |p|<R, the Hamilton equation of H is
{

ẋ=ω+A(x)p+ ∂f
∂p

ṗ =−1
2〈∇A(x)p,p〉− ∂f

∂x ,
(2.2)

2In this paper, define ‖p‖=(
n∑

i=1

|pi|2) 1
2 .
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where ∇A =( ∂A
∂x1

, · · · , ∂A
∂xn

)T . When p =0, the above Hamiltonian equation admits a KAM
torus with a Diophantine rotation number ω. It is well-known that the cell equation (1.1)
admits viscosity solutions for any P . When P =0, it is clear that H(x,0)= 0. This means
that u ≡ c is a smooth viscosity solution of (1.1) for P = 0. From Lemma 5.3, we have
the unique viscosity solution(mod constant) u(x,0) = c. Its graph

⋃
x∈Tn

(x,0) corresponds

to the Diophantine KAM tori mentioned above3.

Theorem 1 For any 0 <δ≤ 1, if ‖P‖≤min{ε0,η0,η1}, then

‖Dxu(x,P )‖≤Cδ−1‖P‖ 1
τ+1 ,

for any u(x,P ) satisfying (1.1) and x∈ dom(Du(x,P ))4.

Remark 2.1 The constants ε0, η0 and η1 will be explained in the following sections.

Remark 2.2 For 0 <δ≤K0, the result is similar, where K0 is any large constant.

Define
‖u(x,P )−u(x,0)‖= inf

c
|u(x,P )−u(x,0)−c|,

then we have the following conclusion.

Corollary 1 For any 0 <δ≤ 1, if ‖P‖≤min{ε0,η0,η1}, then

‖u(x,P )−u(x,0)‖≤Cδ−1‖P‖ 1
τ+1 .

2.2 Theorem 2

In this subsection, we will give another important theorem. Consider the following La-
grangian systems

d

dt

∂L0

∂ẋ
=

∂L0

∂x

with the Lagrangian

L0(x, ẋ)= l0(ẋ)+εl1(x, ẋ), (2.3)

where ∂2l0
∂ẋ2 > 0. L0(x,v) is a real analytic function in the domain |Imx| ≤ 2λ0r0, |Imv| ≤

2λ0r0 which is of period 2π in the x−variables. Let ω ∈Rn satisfying ‖ω‖≤M0, |〈k,ω〉|≥
γ
|k|τ , 0 6= k ∈ Zn, for some constants M0 ≥ 1, γ0 > 0, τ ≥ n−1. |∂αL0|2λ0r0 ≤M0, |α| ≤ 4.
From Theorem 1 in [11], we have the following conclusions: ∃δ∗= δ∗(r0, τ, M0, λ0, n) > 0
and c = c(r0, τ, M0, λ0, n) ≥ 8M3

0 such that cδ∗ ≤ 1. If c0ε ≤ δ∗, then there ex-
its a real analytic torus diffeomorphism x = f(ξ) mapping the strip |Imξ| ≤ r0

2 into
|Imf(ξ)| ≤ 2λ0r0, |ImDf(ξ)| ≤ 2λ0r0 such that f(ξ)−ξ is of period 2π andD(L0)p(f,Df)=

3From Proposition 5.1 in the appendix, one gets ‖P +Dxu(x,P )‖→ 0 when ‖P‖→ 0. This means when
‖P‖ is small, the Hamiltonian in the cell equation, which u(x,P ) satisfies, is the original Hamiltonian H.

4the notation dom(Du(x,P)) means the domain of definition of Du(x,P), i.e. the set of the points x
where the derivative Dxu(x,P ) exists.
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(L0)x(f,Df), where c0 is a constant depending on L0 and M and D=
n∑

j=1
ωj

∂
∂ξj

. Moreover,

the pair (L0,f) is stable and satisfies the estimates

‖f−f0‖ r0
2
≤cc0εr

2τ
0 ,

‖U−U0‖ r0
2
≤cc0εr

2τ−1
0 ,

|UT (L0)pp(f,Df)U−a| r0
2
≤ cc0ε

4M3
0

,

(2.4)

where we denote ‖u‖r = |u|r+|Du|r+|D2u|r and U0 = ∂f0

∂ξ and U = ∂f
∂ξ . For our conveniences,

write the initial torus Γ0 =
⋃

ξ∈Tn

(f(ξ),Df ·ω). For more concretely, please see [11].

From the above, it is easy to check that the Lagrangian equation

d

dt

∂L1

∂ξ̇
=

∂L1

∂ξ
(2.5)

has the solution (ξ0+ωt,ω), ξ0 ∈Tn, where L1(ξ, ξ̇)= L0(f(ξ), ∂f
∂ξ ξ̇). Write

⋃
ξ∈Tn

(ξ,ω)= Γ.

From [7], ∃ a closed 1-form η, [η] = P0, such that

(L1−η)|Γ =0, (L1−η)|/∈Γ > 0. (2.6)

Write L2 =L1−η. From (2.6), we have

L2 =(ξ̇−ω)T ∂2L2

∂ξ2
(ξ,ω)(ξ̇−ω)+O(ξ̇−ω)3.

Write ∂2L2
∂ξ2 (ξ,ω)= 1

2A−1(ξ). Clearly, A−1(ξ) > 0. Therefore,

L2 =
1
2
(ξ̇−ω)T A−1(ξ)(ξ̇−ω)+O(ξ̇−ω)3.

And its associated Hamiltonian is

H2(ξ,p)= 〈ω,p〉+ 1
2
〈A(ξ)p,p〉+O(p3).

Since L0(x,v) is real analytic, it is easy to see that there exist r′ > 0 and σ′ > 0 and
H2(ξ,p) is real analytic in (Tn +σ′)×(Br′(0)+ρ′), where

Br′(0)+ρ′= {p∈Cn|∃ p′ ∈Br′(0) such that |pj−p′j | ≤ ρ′, ∀j}.
Clearly, we can choose r′, σ′ and ρ′ small enough such that Theorem 1 can been used.
Therefore, for any u(ξ,P ) satisfying the equation H2(ξ,P +Du(ξ,P ))= H2(P ), we have

‖Du(ξ,P )‖≤Cδ−1‖P‖ 1
τ+1 , (2.7)

for ∀ξ ∈Dom(Du,P ) and ∀δ ∈ (0,1] and for ‖P‖ small enough. From Corollary 1, we also
get that for ∀δ ∈ (0,1] and ‖P‖ small enough,

‖u(ξ,P )−u(ξ,0)‖≤Cδ−1‖P‖ 1
τ+1 , (2.8)

5



where ξ ∈ Tn. Write η = P0dξ +df1, f1 ∈ Cω(Tn). Therefore5, L1 = L2 +P0dξ +df1 and
L1−〈P, ξ̇〉=L2−〈P −P0−f ′1, ξ̇〉. Further, one has

H2(ξ,P −P0 +D(v−f1))= H2(P −P0). (2.9)

From (2.7) and (2.8), we have for ‖P −P0‖ small enough,

‖D(v−f1)(P −P0)−D(v−f1)(0)‖≤Cδ−1‖P −P0‖
1

τ+1 ,

‖v(ξ,P −P0)−v(ξ,0)‖≤Cδ−1‖P −P0‖
1

τ+1 ,

where Dv(0)= Df1. Note v(ξ,P−P0) is viscosity solution corresponding with L1−〈P, ξ̇〉.
We will denote v1(ξ,P )= v(ξ,P −P0). Therefore, for ‖P −P0‖ small, we have

‖Dv1(ξ,P )−Dv1(ξ,P0)‖≤Cδ−1‖P −P0‖
1

τ+1 ,

‖v1(ξ,P )−v1(ξ,P0)‖≤Cδ−1‖P −P0‖
1

τ+1 ,
(2.10)

where Dv1(ξ,P0) = Df1 and G =
⋃

ξ∈Tn

(ξ,P0 +Dv1(ξ,P0) =
⋃

ξ∈Tn

(ξ,P0 +Df1) is the smooth

torus. From (2.6) and Lemma 5.3, we get

L̃(Γ)=G, (2.11)

L̃ : TTn→T ∗Tn is the Legendre transformation. Further, we obtain

Df · ∂L0

∂q̇
(f(ξ),Df ·ω)= P0 +Dv1(ξ,P0). (2.12)

Lemma 2.1 v1(ξ,P ) is the viscosity solution of L1−〈P, ξ̇〉 and satisfies (2.10). From the
real analytic torus diffeomorphism ξ = f−1(x), we have the Lagrangian

L1(f−1(x),Df−1(x)ẋ)−〈P,Df−1(x)ẋ〉=L0(x, ẋ)−〈P,Df−1(x)ẋ〉.

Write ηP1(ẋ)= 〈P,Df−1ẋ〉, then ηP1 is a closed 1-form and ηP1 =P1dx+df2, where [ηP1 ] =
C(0)P = P1, C(0) = 1

(2π)n

∫
Tn Df−1(x)dx and f2(x) ∈Cω(x). v2(x,P1) = v1(f−1(x),P ) is

the viscosity solution of L0−ηP1. v2(x,P1) satisfies

H0(x,P1 +D(v2 +f2))= H0(P1). (2.13)

For ‖P −P0‖ small enough and ∀δ ∈ (0,1], we have

‖Dv2(x,P1)−Dv2(x,P 0
1 )‖≤Cδ−1‖P −P0‖

1
τ+1 ≤Cδ−1‖P1−P 0

1 ‖
1

τ+1 , x∈Λ,

‖v2(x,P1)−v2(x,P 0
1 )‖≤Cδ−1‖P1−P 0

1 ‖
1

τ+1 , x∈Tn,

where P 0
1 =C(0)P0 and Λ= {x∈Tn|x∈Dom(Dv2,P1)∩f−1(x)∈Dom(Dv1(ξ),P )}.

Proof. As Proposition 4.4.8 in [3], we need prove two points:
(1). v2(x,P1)≺L1(f−1(x),Df−1(x)ẋ)−〈P,Df−1(x)ẋ〉+H0(P1).

5In fact, we need extend H2, L2 as before. The same for L1 and etc.. We skip the steps for simplicity.
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(2). for each x∈Tn, there exists a

(v2(x,P1), L1(f−1(x),Df−1(x)ẋ)−〈P,Df−1(x)ẋ〉, H0(P1))−calibrated curve

γx : (−∞,0]→Tn such that γx(0)= x, and ∀t,

v1(f−1(x),P )−v1(f−1(γ(−t)),P )=
∫ 0

−t
L1(f−1(γ(s)),Df−1γ̇(s))

−〈P,Df−1γ̇(s)〉ds+H0(P1)t.
(2.14)

We only prove the second point and the first one is similar. For any x ∈ Tn, there exists
only one ξ ∈Tn such that ξ = f−1(x). Since v1(ξ,P ) is the viscosity solution of L1−〈P, ξ̇〉,
we have the following: ∃ a minimizing extremal curve γ̃ξ : (−∞,0] → Tn with γ̃ξ(0) = ξ
and such that ∀t∈ (−∞,0],

v1(ξ,P )−v1(γ̃(−t),P )=
∫ 0

−t
L1(γ̃(s), ˙̃γ(s))−〈P, ˙̃γ(s)〉ds+H1(P )t. (2.15)

We define γx(s) = f(γ̃ξ(s)) and H0(P1) = H1(P ). Clearly, (2.14) holds from (2.15). As
(2.9), one has (2.13). If we choose x ∈ Λ = Dom(Dv2,P1)∩ f−1(x) ∈ Dom(Dv1(ξ),P ),
then,

Dv2(x,P1)=
∂f−1(x)

∂x
Dv1(f−1(x),P ), (2.16)

and

Dv2(x,P 0
1 )=

∂f−1(x)
∂x

Dv1(f−1(x),P0). (2.17)

Therefore, from (2.4), (2.16) and (2.17), one gets

‖Dv2(x,P1)−Dv2(x,P 0
1 )‖≤C‖Dv1(f−1(x),P )−Dv1(f−1(x),P0)‖

≤Cδ−1‖P −P0‖
1

τ+1

≤Cδ−1‖P1−P 0
1 ‖

1
τ+1 .

The rest are obvious.

If denote G0 =
⋃

x∈Tn

(x,P 0
1 +D(f2 +v2(x,P 0

1 ))), from (2.12), it is easy to check that

L̃(Γ0)=G0.

From all above in this subsection, we have the following theorem.

Theorem 2 The Lagrangian

L0(x, ẋ)= l0(ẋ)+εl1(x, ẋ)

with associated Hamiltonian H0, where ∂2l0
∂ẋ2 > 0. L0(x,v) is a real analytic function in

the domain |Imx| ≤ 2λ0r0, |Imv| ≤ 2λ0r0 which is of period 2π in the x−variables. Let
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ω ∈Rn satisfying ‖ω‖≤M0, |〈k,ω〉| ≥ γ
|k|τ , 0 6= k ∈Zn, for some constants M0 ≥ 1, γ > 0,

τ ≥n−1. |∂αL0|2λ0r0 ≤M0, |α| ≤ 4. If c0ε≤ δ∗, then ∃ a real analytic smooth torus

Γ0 =
⋃

ξ∈Tn

(f(ξ),Df ·ω)= L̃−1(
⋃

x∈Tn

(x,P 0
1 +D(f2 +v2(x,P 0

1 )))),

where v2(x,P1) satisfies

H0(x,P1 +D(f2 +v2(x,P1)))= H0(P1).

If ‖P1−P 0
1 ‖ small and for any δ ∈ (0,1], we have

‖Dv2(x,P1)−Dv2(x,P 0
1 )‖≤Cδ−1‖P1−P 0

1 ‖
1

τ+1 , x∈Λ,

‖v2(x,P1)−v2(x,P 0
1 )‖≤Cδ−1‖P1−P 0

1 ‖
1

τ+1 , x∈Tn.

Remark 2.3 meas({x∈Tn \Λ})= 0.

3 Three Preparing Lemmata

In this section and the following ones, we will prove Theorem 1. Before that, we will give
three preparing lemmata.

3.1 Lemma 3.1

Lemma 3.1 If ‖P‖≤ δ̄, there exists at least one point x0 ∈ 6MP satisfying

‖P +Dxu(x0,P )‖≤C0‖P‖, (3.1)

where δ̄ depends on n, λ1, λ2 and f and C0 depends on λ1, λ2.

Before we prove Lemma 3.1, we first prove the following proposition.

Proposition 3.1 If ‖P‖≤ δ0, at least there exists one point x0 ∈MP such that

‖v(x)−ω‖≤C1‖P‖, (3.2)

where δ0 depends on n, λ1 and f and C1 depends on λ1.

Proof. The corresponding Lagrangian with the hamiltonian (2.1) is

L=
1
2
(ẋ−ω)T A−1(x)(ẋ−ω)+O((ẋ−ω)3). (3.3)

Our aim is to prove at least one point (x,v)∈M̃P satisfying (3.2), where the corresponding
Lagrangian is L−〈P,ẋ〉. Suppose |O((ẋ−ω)3)| ≤ C‖ẋ−ω‖3. Since Mané′s set is upper
semi-continuous(see [8] ), for |P | ≤ δ0, we have

L≥ 1
4
λ−1

1 ‖ẋ−ω‖2

6In this paper, we will admit the notations in [3] without further explanations. For more details, please
refer to [3].
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where δ0 depend on λ1 and O((ẋ−ω)3) and (x, ẋ)∈M̃P . Therefore,

L̄=L−〈P,ẋ〉≥ 1
4
λ−1

1 ‖ẋ−ω‖2−〈P,ẋ〉

=
1
4
λ−1

1 ‖ẋ−ω−2λ1P‖2−λ1‖P‖2−〈P,ω〉.

In the following we will discuss from the contrary. If ‖v(x)−ω‖≥A‖P‖ and A> 4λ1, then

‖ẋ−ω−2λ1P‖≥‖ẋ−ω‖−2λ1‖P‖
≥A

2
‖P‖.

Therefore,
∫

L̄dµ>−〈P,ω〉=
∫

L̄dµ0,

where µ0 denote the Borel probability measure, invariant by the Euler-Lagrange flow,
supporting on the KAM torus {(x,ω)|x ∈ Tn}. It contradicts with the definition of the
minimizing measure µ.

Proof of Lemma 3.1:

Proof. From [3], if (x,v)∈M̃P , one has

P +Dxu(x,P )=
∂L

∂v
(x,v).

From (3.3), it is easy to get

∂L

∂ẋ
=A−1(ẋ−ω)+O((ẋ−ω)2).

Then, for ‖P‖≤ δ1, one obtains

‖∂L

∂ẋ
‖≤λ−1

2 ‖ẋ−ω‖+C‖ẋ−ω‖2≤ 2λ−1
2 ‖ẋ−ω‖,

where δ1 depends on λ2 and O((ẋ−ω)3). Therefore, if choose x0 ∈MP satisfying (3.2),
then

‖P +Dxu(x0,P )‖≤‖∂L

∂ẋ
‖

≤2λ−1
2 ‖ẋ0−ω‖

≤C0‖P‖,

for ‖P‖≤ δ̄ =min{δ0, δ1}.
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3.2 Lemma 3.2

We introduce the theorem from [10] in the following:

Theorem 3 Consider a Hamiltonian of the form

H(x,p)= 〈ω,p〉+F (x,p), (3.4)

where ω satisfies (1.6). F is a bounded real-analytic function on D(R,ρ,σ) for some
positive constants R,ρ and σ < 1. Furthermore, assume that F, regarded as a function of p,

is order |p|2, so that there exists E′≥ 0 such that |F (x,p)|<E′ |p|2
R2 for all (q,p)∈D(R,ρ,σ).

Assume ρ< 4R, and choose

a∈ (0,β), β =
1− ρ

4R

1+ ρ
4R

.

Then for all r≤R,
|p(0)| ≤ ar⇒|p(t)| ≤ r for all |t| ≤T,

where

T =Γ(
R

r
)e(

k3R
r

)α
, Γ= (β−a)(1+

ρ

4R
)2

σR

2k1
, k1 = eE,

E =E′(1+
ρ

R
)2, k3 = k(1+

ρ

4R
), α =

1
τ +2

,

k=
γρ

Dτ,nE
(

σ

8κτ
)

1
α , Dτ,n =

√
(2τ)!

2τ−n−1
, κτ =

1
4
(

e2

e−1
aτ +ebτ )

1
τ+2 ,

aτ =2τ+3 +23τ+7, bτ =2τ+3 +22τ+5 +23τ+7.

Remark 3.1 If choose ρ =2R and a= 1
6 in the above theorem, then for all r≤R, |p(0)| ≤

1
6r⇒|p(t)| ≤ r for all

|t| ≤T =
cσR2

E′r
exp[(

Cτ,nγρR

E′r
)ασ],

where c is an absolute constant and Cτ,n is a general constant depending on n,τ .

From Remark 3.1, we have the following proposition:

Proposition 3.2 If ε≤R, then for any initial value point (x0, p0)(|p0| ≤ 1
6ε), its solution

curve (x(t), p(t)) under (2.2) satisfies |p(t)| ≤ ε for

|t| ≤ cσR2

E′ε
exp[(

Cτ,nγρR

E′ε
)ασ],

where c is an absolute constant and Cτ,n is a general constant depending on n,τ .

Lemma 3.2 (a). For any x∈MP , then

(x,v(x))= L̃−1(x,Dxu(x,P ))∈M̃P ,

where u(x,P ) is the viscosity solution of (1.1) and L̃ : TTn→T ∗Tn is the global Legendre
transformation associated to L̃=L−〈P,ẋ〉. Denote w(s)= (x(s),v(s))= φs

L̃
(x,v(x)), then

10



w(s) ∈ M̃P , where φL̃ is the Lagrangian flow of L̃. The corresponding curve in T ∗Tn is
denoted by l(s)= (x(s), p̃(s))= φs

H̃
(x,Dxu(x,P )), where H̃(x, p̃)= H(x,P +p̃), H as (2.1).

(b). For t1 ∈ R, Dxu(x1,P )+P = ∂L
∂v (x1,v(x1)), where (x1,v(x1)) = (x(t1),v(t1)) =

w(t1).
(c). Denote the curve by l(s) of which the initial point is (x0,Dxu(x0,P )), where x0 and

u(x,P ) satisfy (3.1). Denote π : T ∗Tn→Tn and x(s) = π(l(s)). The obit of x(s) will er-
godize Tn to within C6‖P‖

1
τ+1 , if ‖P‖≤ ε0 where ε0 depends on R, n, τ, γ, σ, λ1, λ2, ρ, f

and C6 depends on f, n, τ, γ, λ1, λ2. More concretely, for ∀θ ∈ Tn, ∃0 ≤ t0 ≤ Cn,τ

γ‖P‖
τ

τ+1

and x(−t0) such that
‖x(−t0)−θ‖≤C6‖P‖

1
τ+1 ,

where Cn,τ is a general constant depending on n and τ .

Proof. (a) is easy. and (b) is clear from Theorem 4.8.3 in [3]. We mainly prove (c). Note

‖P +Dxu(x0,P )‖≤C0‖P‖. (3.5)

Then (x(t),p(t)) = (x(t),P + p̃(t)) satisfies (2.2). From (3.5), we have |P +Dxu(x0,P )| ≤
C ′

0|P |, where C ′
0 depends on λ1, λ2 and n. Denote |P |= ε

6C′0
. If P satisfies

|P | ≤min{ R

6C0
, δ̄} (3.6)

then for initial value point (x0, P +Dxu(x0,P )), its solution curve (x(t),p(t)) under (2.2)
satisfies

|p(t)| ≤ 6C0|P |, (3.7)

|t| ≤ cσR2

E′C0|P |exp[(
Cτ,nγρR

E′C0|P | )
ασ], (3.8)

where c is an absolute constant and Cτ,n is a general constant depending on n,τ . From

ẋ=ω+A(x)p+
∂f

∂p
(x,p),

we have

x(t)−x0−ωt =
∫ t

0
(A(x)p+

∂f

∂p
(x,p))ds. (3.9)

Denote |∂f
∂p | ≤C2|p|2. From (3.7) and (3.9), if

|t| ≤ cσR2

E′C0|P |exp[(
Cτ,nγρR

E′C0|P | )
ασ],

then

|x(t)−x0−ωt| ≤C3|t||P |. (3.10)

11



From [1](also see [2], [4]), one obtains for ∀θ ∈ Tn, ∀rM
1 (rM

1 will be chosen in the
following), ∃t0 satisfies

0≤ t0≤ Cn,τ

γrMτ
1

such that

|θ−(−ωt0 +x0)| ≤ rM
1 . (3.11)

From (3.10) and (3.11), if

0≤ t0≤ C(n,τ)
γrMτ

1

≤ cσR2

E′C0|P |exp[(
Cτ,nγρR

E′C0|P | )
ασ], (3.12)

we will have for ∀θ∈Tn, ∃0≤ t0≤ C(n,τ)

γrMτ
1

such that

|x(−t0)−θ|≤|x(−t0)−(−ωt0 +x0)|+ |θ−(−ωt0 +x0)|
≤C3t0|P |+rM

1

≤C3
C(n,τ)
γrMτ

1

|P |+rM
1

=
C4

rMτ
1

|P |+rM
1 .

If we choose rM
1 = |P | 1

τ+1 , then

|x(−t0)−θ| ≤C5|P |
1

τ+1 .

Note (3.6) and (3.12), if |P | ≤ ε0, then

C(n,τ)

γ|P | τ
τ+1

≤ cσR2

E′C0|P |exp[(
Cτ,nγρR

E′C0|P | )
ασ]

holds naturally, where ε0 depends on R, n, τ, γ, σ, λ1, λ2, ρ, f and C5 depends on
f, n, τ, γ, λ1, λ2. Obviously, if ‖P‖≤ ε0, then |P | ≤ ε0. For any θ∈Tn,

∃0≤ t0≤ Cn,τ

γ‖P‖ τ
τ+1

and x(−t0) such that (3.13)

‖x(−t0)−θ‖≤C6‖P‖
1

τ+1 , (3.14)

where C6 depends on f, n, τ, γ, λ1, λ2.

12



3.3 Lemma 3.3

The following lemma is almost a direct corollary of Theorem 4.7.5 of [3]. As [3], for δ > 0
is given and any map u≺L−〈P,ẋ〉+H̃(P ), we define the set Aδ,u formed by the x∈Tn

for which there exists a (continuous) piecewise C1 curve γ : [−δ,δ]→Tn with γ(0)= x and

u(γ(δ))−u(γ(−δ))=
∫ δ

−δ
L(γ(s), ˙γ(s))−〈P, γ̇(s)〉ds+2H̃(P )δ.

Lemma 3.3 For any u(x,P ) satisfying (1.1), we define

Graph(Du(x,P ))= {(x,Dxu(x,P ))|x∈ dom(Du(x,P ))}.

Then (φ−δ
H̃

)∗Graph(Du(x,P ))⊂Aδ,u. It is a Lipschitzian graph with Lipschitzian constant
depending on a fixed δ > 0 on each subset with diameter ≤ η, where φH̃ is the Hamiltonian
flow of H̃(x,p)= H(x,P +p) in T ∗Tn and η doesn’t depend on δ.

Proof. Since u(x,P ) is a viscosity solution of (1.1), obviously, we have

T−t u+H̃(P )t =u, t≥ 0,

where the relative Lagrangian of T−t is L−〈P,ẋ〉. From Proposition 4.4.8 of [3], for any
x∈ dom(Du(x,P )), ∃ a (u,L−〈P,ẋ〉,H(P ))-calibrated curve γx− : (−∞,0]→Tn, such that
γx−(0)= x. This means that for any t≥ 0,

u(x)−u(γx
−(−t))=

∫ 0

−t
(L(γx

−(s), γ̇x
−(s))−〈P, γ̇x

−(s)〉)ds+H̃(P )t. (3.15)

Since u has a derivative at x, we have P+Dxu = ∂L
∂v (x, γ̇x−(0)) and φ∗−δ(x,Dxu)= Dγx

−(−δ)u,
where φH̃ is the Hamiltonian flow of H̃(x,p) = H(x,P +p). In order to apply Theorem
4.7.5 of [3], we choose t = 2δ in (3.15). In the following, we will give the Lipschitzian
constant. From (5.3), we know that when ‖P‖≤ η0, ‖Dxu(x,P )‖≤ 1. Write

D1 = L̃−1D2,

where D2 = {(x,Dxu(x,P )) ∈ T ∗Tn|∀x ∈ Tn, ∀u(x,P ) satisfying (1.1), ‖P‖ ≤ η0}. It is
clear that there exists compact sets D3 and D4 such that D2 ⊂ D3 and D1 ⊂ D4. It is
clear that

sup
x∈D4

|∂
2L

∂x2
|, sup

x∈D4

| ∂2L

∂x∂v
|, sup

x∈D4

|∂
2L

∂v2
| ≤ 1

2
K.

From Theorem 4.7.5 and Proposition 4.7.1 of [3], the Lipschitzian constant is no more
than K

δ .
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4 Proofs of Theorem 1 and Corollary 1

Proof. For any x∈ dom(Du(x,P )), from the proof of Lemma 3.3, there exists a calibrated
curve γx such that φ∗−δ(x,Dxu) = (γx(−δ),Dγx(−δ)u). Denote x1 = γx(−δ). For ‖P‖≤ ε0,
from Lemma 3.2 and (3.14), there exists x(−t0)= x2 ∈MP such that

‖x1−x2‖≤C6‖P‖
1

τ+1 . (4.1)

Moreover, from (3.7), (3.8), (3.13) and (3.14), one gets |p(−t0)| ≤ 6C0|P | and |p(−t0+δ)| ≤
6C0|P |. Then ‖p̃(−t0)‖ ≤ (6C0 +1)

√
n‖P‖ and ‖p̃(−t0−δ)‖ ≤ (6C0 +1)

√
n‖P‖. Clearly,

for x0, there exists a calibrated curve γ1 such that γ1(0) = x0. Write γ1(−t0) = x2 and
γ1(−t0 +δ)= x3. From Lemma 3.2, we have

P +Dxu(x3,P )=
∂L

∂v
(x3,v(x3)).

It is clear p̃(−t0 +δ)= Dxu(x3,P ). It results in

‖Dxu(x3,P )‖≤ (6C0 +1)
√

n‖P‖=C7‖P‖. (4.2)

From the proof of Lemma 3.3, we know that for ‖P‖ ≤ η0, ‖Dxu(x,P )‖ ≤ 1. Therefore,
there exits a compact set D5⊂T ∗Tn such that

{φ−δ
H̃

(x,Dxu(x,P ))|∀x∈ dom(Du(x,P )), ∀u(x,P ) satisfying (1.1)}⊂D5.

Denote d the flat metric in T ∗Tn =Tn×Rn. Clearly, for ‖P‖≤ η1, one has

‖x1−x2‖≤C6‖P‖
1

τ+1 ≤ η.

Then for ‖P‖≤min{ε0,η0,η1}, one gets

d(φδ
H̃

(φ−δ
H̃

(x,Dxu(x,P ))),φδ
H̃

(φ−δ
H̃

(x3,Dxu(x3,P )))

≤sup
D5

|Dφδ
H̃
|d(φ−δ

H̃
(x,Dxu(x,P )),φ−δ

H̃
(x3,Dxu(x3,P )))

(from a compact discussion) ≤Cd((x1,Dx1u(x1,P )),(x2,Dx2u(x2,P )))
(from Lemma 3.3) ≤Cδ−1‖x1−x2‖

(from (4.1)) ≤Cδ−1‖P‖ 1
τ+1 .

Therefore,
‖Dxu(x,P )−Dxu(x3,P )‖≤Cδ−1‖P‖ 1

τ+1 .

Combining with (4.2), we get

‖Dxu(x,P )‖≤Cδ−1‖P‖ 1
τ+1 .
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The following is the proof of Corollary 1.

Proof.

‖u(x,P )−u(x,0)‖≤|u(x,P )−min
x∈Tn

u(x,P )|
= |u(x,P )−u(y,P )|.

From the proof of Lemma 5.1 and Theorem 1, if 0<δ≤ 1 and ‖P‖≤min{ε0,η0,η1}, then

|u(x,P )−u(y,P )|≤Cδ−1‖P‖ 1
τ+1 ‖x−y‖

≤Cδ−1‖P‖ 1
τ+1 .

5 Appendix

Lemma 5.1 un is a viscosity solution of

H(x,Pn +Dun(x,Pn))= H(Pn), (5.1)

Pn ∈ D, where D is a compact set in Rn, then ∃ K ′
2 depending only on H and D, such

that

|un(x,Pn)−un(y,Pn)| ≤K ′
2‖x−y‖,

where x, y ∈Tn.

Proof. From Pn ∈D, ∃ K ′
1 depending only on D and H, such that |H(Pn)| ≤K ′

1. Since
H is superlinear and (5.1), it is clear that the set {(x,p) : |H(x,p)| ≤ K ′

1} is compact.
It follows that ∃K ′

2 depending only on H and D, such that |Dun(x,Pn)| ≤ K ′
2, where

x ∈WPn = dom(Dun,Pn). For each Pn, un(x,Pn) is Lipschitz function. So, Tn \WPn is
negligible for Lebsgue measure.

Given two point x, y ∈ Tn, by Fubini theorem, there exist two sequences of points
xk, yk ∈ Tn such that xk → x, yk → y, and the affine segment Γk : γk(t) = xk + yk−xk

|yk−xk| t
intersect WPn in a set of full linear measure in Γk. We have

|un(yk,Pn)−un(xk,Pn)|≤
∫ ‖yk−xk‖

0
|〈Dxun(x,Pn), γ̇k〉|dt

≤
∫ ‖yk−xk‖

0
|‖Dxun(x,Pn)‖‖γ̇k‖dt

≤K ′
2‖yk−xk‖.

Since un(x,Pn) is continuous and xk→x, yk→ y, we have

|un(x,Pn)−un(y,Pn)| ≤K ′
2‖x−y‖.
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Lemma 5.2 Write [um](x)= um(x)−min
x∈Tn

um(x). If un is a viscosity solution of H(x,Pn+

Dun(x,Pn)) = H(Pn), where Pn ∈ D and D is a compact set in Rn, then there exits a
sequence of [un] and u0 ∈ C0(M,R) such that [un]→ u0 in the C0 topology uniformly on
M .

Proof. Write un(xn
0 ,Pn)= min

x∈Tn
un(x,Pn). From Lemma 5.1, for ∀n, we get

|un(x,Pn)−un(xn
0 ,Pn)| ≤K ′

2‖x−xn
0‖≤K ′

3,

where K ′
3 depends on H and D. This means that |[un]| ≤K ′

3, for any n. Similarly, from
Lemma 5.1, for any x, y ∈Tn, we have

|[un](x,Pn)− [un](y,Pn)|= |un(x,Pn)−un(y,Pn)|
≤K ′

2‖x−y‖.

From Ascoli’s Theorem, we get the conclusion.

Lemma 5.3 M is a compact and connected manifold. L is a Tonelli Lagrangian. Denote
by H :T ∗M →R its associated Hamiltonian. If A0 =M0 =M and u is a viscosity solution
of H(x,Du)= c, then u is unique(mod a constant).

Proof. From Section 5.2 in [3], we have the following:

I(u−,u+) = {x∈M |u−(x)= u+(x)}
Ĩ(u−,u+) = {(x,v)|x∈I(u−,u+),Dxu−=Dxu+ =

∂L

∂v
(x,v)}

Ã0 =∩Ĩ(u−,u+), A0 =π(Ã0).

(5.2)

From (5.2) and Theorem 5.2.8 in [3], we know that if v is another viscosity solution(also
weak KAM solution) of H(x,Du) = c, then Dxu = Dxv, for any x∈M . The conclusion is
clear.

Proposition 5.1 When P → 0, then

‖P +Dxu(x,P )‖→ 0, (5.3)

for any x∈ dom(Du(x,P )) and any u(x,P ) satisfying (1.1).

Proof. Suppose it is not true, then we have the following: ∃ε0 > 0, ∀δn = 1
n → 0,

∃‖Pn‖≤ δn, ∃un(x,Pn) and xn ∈ dom(Dun(x,Pn)) such that

‖Pn +Dxun(xn,Pn)‖≥ ε0.

Since un is a viscosity solution(weak KAM solution) and satisfies H(x,Pn+Du)= H(Pn),
from Proposition 4.4.8 of [3], we have the following: for xn ∈Tn, ∃(un,L−〈Pn, ẋ〉,H(Pn))-
calibrated curve γn such that for ∀t> 0,

un(γn(0))−un(γn(−t))=
∫ 0

−t
[L−〈Pn, ẋ〉]ds+H(Pn)t, (5.4)
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where γn(0)= xn. We also have

Pn +Dxun(xn,Pn)=
∂L

∂v
(γn(0), γ̇n(0)). (5.5)

Since ‖Pn‖≤ 1, it is easy to see that ∃K1 > 0, such that

‖Pn +Dxun(xn,Pn)‖≤K1. (5.6)

Otherwise, we will have ‖Pni+Dxuni(xni ,Pni)‖→∞. Then H(xni ,Pni+Dxuni(xni ,Pni))=
H(Pni)→∞. But it is impossible since H(Pni) is bounded.

From (5.5) and (5.6), one gets that ∃K2 > 0 such that

‖(γn(0), γ̇n(0))‖≤K2. (5.7)

Therefore, there exists a sequence denoted still by (γn(0), γ̇n(0)) and (x0, ẋ0) ∈ TTn such
that

(γn(0), γ̇n(0))→ (x0, ẋ0). (5.8)

Denote
(γ0(s), γ̇0(s))= (φL

−t)∗(x0, ẋ0),

where t> 0 and φL
t is the Lagrangian flow in TTn. From (5.8), it is clear that

lim
n→∞(φL

−t)∗(γn(0), γ̇n(0))= (φL
−t)∗(x0, ẋ0)= (γ0(t), γ̇0(−t)). (5.9)

This means for any t∈ [0,∞), we have

(γn(−t), γ̇n(−t))→ (γ0(−t), γ̇0(−t)). (5.10)

From Lemma 5.2 in the appendix, we know that there exists a sequence [un] and u ∈
C0(M,R) such that [un]→ u in the C0 topology uniformly on M . Since ‖Pn‖ ≤ δn → 0,
one obtains Pn→ 0 when n→ 0. Further, we have

H(Pn)→H(0)= 0. (5.11)

From (5.4), (5.10) and (5.11), when n→ 0, we have for any t> 0,

u(γ0(0))−u(γ0(−t))=
∫ 0

−t
L(γ0(s), γ̇0(s))ds. (5.12)

Write Hn(x,p) = H(x,Pn + p)−H(Pn), from Theorem 8.1.1 of [3], one has that u is a
viscosity solution of H(x,dxu)= 0. From Theorem 7.6.1 of [3], we have

u≺L. (5.13)

From (5.12) and (5.13), it is obvious that γ0(s) is (u,L,0)-calibrated. From Proposition
4.4.10 of [3], we have the following: there exists a Borel probability measure µ on TTn,
invariant by φL

t , carried by the α-limit set of the orbit of (x0, ẋ0), and such that
∫

Ldµ=0.
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From Corollary 4.8.4 of [3], we have suppµ ⊂ {(x,ω)|x ∈ Tn}. Therefore, ∃t1 > 0 large
enough and ε1 > 0 small enough, such that

‖γ̇0(−t1)−ω‖= ε1 > 0. (5.14)

But

L(γ0(−t1), γ̇0(−t1))≥ 1
4
λ−1

1 ‖γ̇0(−t1)−ω‖2 =
1
4
λ−1

1 ε21 > 0. (5.15)

From Lemma 5.3, we know that u is unique(mod constant). But from H(x,du) = 0, it is
clear that u = c is the smooth solution. Then (5.12) is changed into the following: for any
t > 0,

∫ 0
−t L(γ0(s), γ̇0(s))ds = 0. Then for any t > 0, we have L(γ0(−t), γ̇0(−t)) = 0. This

contradicts with (5.15).
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