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Abstract

In this paper, we prove the strong stability of Diophantine KAM tori in the view
of viscosity solutions of Hamilton-Jacobi equations.

1 Introduction

The objective of this paper is to study the changes of the graphs of viscosity solutions of
Hamilton-Jacobi equations

H(z, P+ Du(z, P)) = H(P). (1.1)

In (1.1), H(z,p) : R?" — R is a smooth Hamiltonian, strictly convex, i.e. %ZTQI >c¢l >0

uniformly, and superlinear growth in p(lim|p|ﬂm% = o0), and 27Z" periodic in x.

Instead of studying a general Hamiltonian H as above, in this paper we will restrict us in
the real analytic Lagrangian

L[)((L',.f):lo(.f)—i-ell(w,i'), (1.2)

of which associated Hamiltonian is

HO(xap) :hO(p)+€hl($7p)7 (13)
where
9%l
—_— . 1.4
o2 " (1.4)

Except that, we also restrict us around the graph of a smooth viscosity solution, which is
the so-called KAM torus. In [11], for the Lagrangian systems (1.2), Salamon and Zehnder
proved that for any Diophantine frequency vector w € R”, there exists an invariant torus
I', which is in TT", corresponds to it. Write Z(I‘) = G, where £: TT" — T*T" is the
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Legendre transformation. In fact, G is a smooth graph of some viscosity solution. We can

write G= | (x,Po+ Du(x,Py)), where u(z, Py) satisfies the Hamilton-Jacobi equation
zeT™

Ho(x, Po+ Du(z, Ry)) = Ho(Po). (1.5)

From [5]!, we get many viscosity solutions for (1.5) for any P, where ||P — Py]| is small

enough. Our problem is what the graphs of |J (z, P+ Du(z,P)) look like? What is the
zeT™
relationship between the graphs and the KAM torus G?7 We will answer these problems

in our theorems(see Theorem 1,2). In the following, we will give a heuristic description
about our results. We remark that the notations in this section are independent of the
following ones.

Suppose that w satisfies

(k)| >, k0,

[k (1.6)
v>0, T>n—1.

When || P — Pp|| small enough, we will have

HDU(%P)—DU(JU,PO)H§C||p_p0HT%1,
1

Further, one gets

|(P+ Du(, P)) — (Py+ Du(z, Py))|| < C||P — Py || 757 (1.7)

Definition 1.1 For the H-J equation (1.1) and some Py € R", if the graph of \J (x,Po+
zeT?
Du(z, Py)) corresponds to a KAM torus and this torus and the graphs of its nearby viscosity

solutions satisfy
(P4 Du(x,P))— (Po+ Du(z, Fy))|| < C||P— Py, 0<x<1, (1.8)

then we call this KAM torus strong stability, where || P—Py|| is small enough and x € A C T™
and meas({z € T\ A})=0. x is called the strong stability inde.

Remark 1.1 The definition for the strong stability of KAM torus is local. Therefore, the
conditions of H, which are uniformly convex and superlinear growth in p, aren’t necessary.

From (1.7) and above discussions, we have known that the KAM torus G in T*T" is
strong stability. We remark that the strong stability of KAM torus in the view of viscosity
solutions of H-J equations has deep relationships with the stickiness of KAM torus(see
[10], also see [9]) and the minimal property of the trajectories which lie in KAM tori(see

[7])-

Note here, we need neither that Hp is superlinear in p, nor that Hp is uniformly convex. We only need
8%hg
op?

> 0. The reason lies in that we only care about the dynamics of the small neighborhood of G.



Let us close this introductory section with one important reference. In the Corollary
8.3 of [6], J. Mather has shown that if w satisfies a Diophantine condition of order 7, then
w — P, (&) satisfies a Holder condition of order &= at w, i.e. |P,(£)—P,(£)| < const.|w—p*| 3,
for [w—p*| <1, where P, (-) is Peierl’s barrier. It is well-known that the barrier function can
be represented by viscosity solutions. Our results about C° estimation partially generalize
his result to high dimensional positive definite Hamiltonian systems.

2 Main Results

2.1 Theorem 1

We start from the Hamiltonian

H(z,p)=(w,p) + %<A(x)p,p> + f(x,p)

=N-+Ri+R>

(2.1)

where N = (w,p), R1 = 3(A(z)p,p) and Ry = f(z,p) = O(p). H is assumed to be
defined and real analytic in a neighbourhood of the origin, more precisely on a complex
domain D = D(R,p,0)(p > 0, ¢ > 0) defined as follows: let us employ the Euclidean
norm on complex numbers z and the max norm on complex vectors £ = (&1, ,&n): 2] =

{[Re(z)]Q—i—[Im(z)]z}% and |£| = max ;|- Denote by T"+o the complex o-neighborhood
J=1n
of T™:
T"+o0={qeC"/2xZ"||Im(q;)| <o, Vj}.
Similarly, for all » < R denote by B, + p the p-neighborhood of B, in C™:
B, +p={peC"3 p' € B, such that |p; —p}| <p, Yj}.

For the combined complexified domain we write D(r,p,0) = (T"+0) x (B, +p). A norm
on the bounded complex-valued functions on D(r,p,0) is given by

1

0,0 — sup |F(x,p)|
(z,p)€D(r,p,0)

The Hamiltonian (2.1) is defined in D(R,p,0), where R will be chosen small enough. If
lp| > 2, we define’ H = }||p||?, where = will be chosen large enough. We extend H
which defined in {(z,p)|x € T, |p| < R} to {(z,p)|z € T", |p| > E} by a suitable smooth
function and pertain the positive definiteness. We still write the new Hamiltonian by H
for simplicity. Obviously, H is superlinear in p.

Suppose A(x)(z € T™) is a positive definite and symmetric matrix and satisfies

Xo[lvl < (A(z)v,0) < Mlol?,  veR™,
where Ao > 0. Further, we suppose (1.6). When |p| < R, the Hamilton equation of H is

{a’v:w+A(x)p+g£ 2.2)

?In this paper, define ||p|| = (Z \pz\Q)%
i=1



where VA = (%’ e ,%)T. When p=0, the above Hamiltonian equation admits a KAM

torus with a Diophantine rotation number w. It is well-known that the cell equation (1.1)
admits viscosity solutions for any P. When P =0, it is clear that H(x,0) =0. This means
that u = ¢ is a smooth viscosity solution of (1.1) for P = 0. From Lemma 5.3, we have

the unique viscosity solution(mod constant) u(z,0) = c. Its graph |J (z,0) corresponds
zeTn
to the Diophantine KAM tori mentioned above?.

Theorem 1 For any 0<6 <1, if ||P|| <min{ep,n0,m1}, then
|Dsue, P < C57 1P 7,
for any u(z, P) satisfying (1.1) and = € dom(Du(z, P))*.
Remark 2.1 The constants e, 19 and n1 will be explained in the following sections.
Remark 2.2 For 0 <6 < Ky, the result is similar, where Kq is any large constant.

Define
Hu(m,l’)—-u(m,O)H::inf|u(x,lj)—-u(x,O)——cL

then we have the following conclusion.

Corollary 1 For any 0<d <1, if ||P|| <min{ep,n0,m}, then
e, P) —u(a,0)]| < 57 P 7+,

2.2 Theorem 2

In this subsection, we will give another important theorem. Consider the following La-
grangian systems

oL, _oL
dt 0  Ox
with the Lagrangian
Lo(z,2) =1o(2) +€ly(x, 2), (2.3)

where % > 0. Lo(z,v) is a real analytic function in the domain [Imx| < 2Xgrg, [Imv| <
2Xoro which is of period 27 in the z—variables. Let w € R" satisfying |lw|| < Mo, |[(k,w)| >
#, 0+# k € Z™, for some constants Mo > 1, 40 >0, 7 >n—1. |0%Lo|argr, < Mo, |of < 4.
From Theorem 1 in [11], we have the following conclusions: 3§* = &*(rg, 7, Moy, Ao, n) >0
and ¢ = c(rg, 7, Mo, Ao, n) > 8M{ such that c§* < 1. If cpe < §*, then there ex-
its a real analytic torus diffeomorphism = = f(§) mapping the strip |[Im&| < 22 into

[Imf(&)] <2X\oro, [IMDf(E)| <2Agro such that f(£)—¢ is of period 27 and D(Lo)p(f,ZDf) =

3From Proposition 5.1 in the appendix, one gets || P+ D, u(z, P)|| — 0 when ||P|| — 0. This means when
||P]| is small, the Hamiltonian in the cell equation, which u(x, P) satisfies, is the original Hamiltonian H.

“the notation dom(Du(x,P)) means the domain of definition of Du(x,P), i.e. the set of the points
where the derivative Dyu(x, P) exists.



(Lo)z(f,Df), where ¢y is a constant depending on Ly and M and D = Z wj ag Moreover,
Jj=
the pair (Lo, f) is stable and satisfies the estimates

1f = foll o <ccperg’,

||U—U0||r0 <CC0€T(2)T 1, (24)
CCp€
VT (Lol DAV ~alp <

where we denote ||ul|, = |u|+ Dul|,+D?ul, and Uy = fO and U = 85 For our conveniences,
write the initial torus T'o= | (f(§),Df-w). For more concretely, please see [11].

£eTn
From the above, it is easy to check that the Lagrangian equation
d oLy OL
= (2.5)
dt 9¢ 0§
has the solution (& +wt,w), & € T, where Ly (€,€) = Lo(f(€), 865) Write |J (§,w)=T

£eTn
From [7], 3 a closed 1-form 7, [n] = Py, such that

(L1—=n)lr =0, (L1—n)|gr >0. (2.6)
Write Ly = L; —n. From (2.6), we have

s (Ew)(E-w)+O(E-w)"

Ly=({—w)

Write 882—;22(5,@ = %A‘l(f). Clearly, A=1(£) > 0. Therefore,

= S~ AT O (E~w) + O~
And its associated Hamiltonian is
Hy(&,p) = (w,p) +%<A(€)p,p> +0(%).

Since Lg(z,v) is real analytic, it is easy to see that there exist 7/ > 0 and ¢’ > 0 and
Hy(&,p) is real analytic in (T" +0") x (B,#(0)+p), where

B,/(0)+p" ={peC"|3 p’ € By(0) such that [p; —pi| <p', Vj}.

Clearly, we can choose ', o' and p’ small enough such that Theorem 1 can been used.
Therefore, for any u(§, P) satisfying the equation Hs(&, P+ Du(&, P)) = Ho(P), we have

_1
IDu(é, P)|| < Ca~H|P| 7+, (2.7)

for V€ € Dom(Du, P) and V¢ € (0,1] and for || P|| small enough. From Corollary 1, we also
get that for Vd € (0,1] and || P|| small enough,

(&, P) —u(€,0)[| < C5~1| P||=+T, (2.8)



where § € T". Write n = Pyd{ +df1, f1 € C<(T"). Therefore®, L1 = Lo + Pyd¢ + df; and
Ly —(P,§)=Ly— (P—Py— f1,€). Further, one has

Hy(&, P~ Py+D(v—f1))=H2(P— F). (2.9)
From (2.7) and (2.8), we have for || P — Pp|| small enough,
1
ID(v— f1)(P—Po) = D(v— f1)(0)[| SC6H|| P — By || 71,
1
l(€, P —Po) —v(€,0)[| < CO™H| P — Ryl 7+,

where Dv(0) = Df;. Note v(£, P — Py) is viscosity solution corresponding with L; — (P,£).
We will denote v (€, P) =v({, P— Fy). Therefore, for |P— Fy|| small, we have

1
|Dv1(&, P) = Dui (€, Po)|| < CO~H| P — Pl T, 010
lo1(€,P) —v1 (€, Po)| < C6| P~ Ry 7,

where Dvy(§,Py))=Df1 and G= | (§,Po+Duvi(&, Po)= U (&, Py+ Df1) is the smooth
£eTn £eTn
torus. From (2.6) and Lemma 5.3, we get

L) =g, (2.11)
L: TT" — T*T™ is the Legendre transformation. Further, we obtain

0Lyg

Df'Tq(f(f)an'w):P0+Dv1(5,P0)- (2.12)

Lemma 2.1 v (¢, P) is the viscosity solution of L1 —(P,€) and satisfies (2.10). From the
real analytic torus diffeomorphism & = f~1(x), we have the Lagrangian

Ly(f (), Df N (w)2) — (P, Df ! (x)i) = Lo(z, &) — (P, Df ! (x)i).

Write np, (&) = (P,Df %), then np, is a closed 1-form and np, = Pidx-+dfa, where [np,| =
CO)P=Pp, C(0)= ﬁfw Df~Y(z)dz and fa(z) € C¥(x). vo(x, P1) = vi(f~H(z),P) is
the viscosity solution of Lo—np,. va(x,P1) satisfies

Ho(z, P+ D(va+ fa)) = Ho(Py). (2.13)
For ||P— Pyl small enough and ¥é € (0,1], we have
|Dva(, Pr) — Dvg (2, PY)| < CO~Y| P = Po|| 77 < 6| Py — PY|| 7T, z €A,
lva(, Pr) —vs(a, PY) | < C6~ | Py — PP 7, w e T,
where P} =C(0)Py and A= {z € T"|x € Dom(Dwvs, P)N f~1(x) € Dom(Dvy(£),P)}.

Proof. As Proposition 4.4.8 in [3], we need prove two points:
(1). waa, P) < Li(f~(z), Df ~(x)i) — (P, Df " (z)@) + Ho(P).

5In fact, we need extend Ha, Ly as before. The same for L; and etc.. We skip the steps for simplicity.




(2). for each z € T", there exists a
(va(z, P1), Li(f~Hz),Df Y (z)i)—(P,Df1(x)z), Ho(P;))— calibrated curve

¥*: (—00,0] — T™ such that v*(0) =z, and V¢,

0

(@2 - n 6P = [ LU eI,

—(P,Df14(s))ds+Ho(P))t.

We only prove the second point and the first one is similar. For any x € T”, there exists
only one & € T such that £ = f~!(x). Since vy (£, P) is the viscosity solution of L; —(P,&),
we have the following: 3 a minimizing extremal curve 3¢ : (—o0,0] — T" with 75(0) = ¢
and such that V¢ € (—o0,0],

0
v1(§»P)—v1(?(—t)aP)Z/_tLl(’Y(S)ﬁ(S))—(Pa’;V(S)>d8+H1(P)t- (2.15)
We define v%(s) = f(3%(s)) and Ho(Py) = H(P). Clearly, (2.14) holds from (2.15). As
(2.9), one has (2.13). If we choose © € A = Dom(Duvy, P1) N f~1(x) € Dom(Duvy(€), P),
then,

Duy(z,Py) = Wml(fl(x),m, (2.16)
and
Duy(z,PY) = WDul(fl(x),Po). (2.17)

Therefore, from (2.4), (2.16) and (2.17), one gets
[ Dvs(, P1) = Duva(z, PL)|| <C||[Dvi (£~ (@), P) = Do (f~H (), Po) |
<C5 || PPy
<067 P — PP,
The rest are obvious. ]

If denote Go= | (z, P+ D(fa+v2(z, PY))), from (2.12), it is easy to check that
zeTn

L(T'o) = Go.
From all above in this subsection, we have the following theorem.
Theorem 2 The Lagrangian
Lo(z,2) =1lo(z) +e€ly (z, &)
3l

with associated Hamiltonian Hy, where g8 > 0. Lo(z,v) is a real analytic function in
the domain |Imz| < 2X\org, |Imv| < 2X\org which is of period 2w in the x—wvariables. Let



w € R™ satisfying |w|| < My, [(k,w)| > 7=, 0#k €Z™, for some constants My >1, v> 0,

‘le’

T>n—1. |0%Lolargr, < Mo, || <4. If coe < 6%, then 3 a real analytic smooth torus

Lo= {J (£(&),Df-w)=L7'( | (&, PP+ D(fa+uva(, PY)))),

geTn zeTn
where vy(x, Py) satisfies
Ho(z, Py + D(fa+va(z, P1))) = Ho(Py).
If ||P, — P|| small and for any 6 € (0,1], we have
1Dvs(, Pr) — Dva(, PY)|| <O | Py — PP|I 7, w e A,
||vg(x,P1)—v2(x,P10)||§05*1||P1—P10H%+1, zeT"

Remark 2.3 meas({z € T"\ A})=0.

3 Three Preparing Lemmata

In this section and the following ones, we will prove Theorem 1. Before that, we will give

three preparing lemmata.

3.1 Lemma 3.1

Lemma 3.1 If |P|| <6, there exists at least one point xo € *Mp satisfying
[P+ Dyu(zo, P)|| < Co| Pl
where & depends on n, \i, Ao and f and Cy depends on A1, Ag.
Before we prove Lemma 3.1, we first prove the following proposition.
Proposition 3.1 If ||P|| <o, at least there exists one point xy € Mp such that
[o(z) —w| < C1[ P,
where &g depends on n, A\y and f and C1 depends on A1.

Proof. The corresponding Lagrangian with the hamiltonian (2.1) is

L— %(' — )T A @) (i —w) + O((5—w)?).

(3.1)

(3.3)

Our aim is to prove at least one point (z,v) € Mp satisfying (3.2), where the corresponding
Lagrangian is L — (P,4). Suppose |O((i —w)?)| < C||# —w||®. Since Mané's set is upper

semi-continuous(see [8] ), for |P| < dp, we have

1
L2 7 i — ol

5Tn this paper, we will admit the notations in [3] without further explanations. For more details, please

refer to [3].



where &y depend on \; and O((¢—w)?) and (z,%) € Mp. Therefore,

1
L=L—(P.&)> A |&—w|* = (P,3)
11,
=M 3w =20 P = M| P|* = (Pow).
In the following we will discuss from the contrary. If ||v(z)—w| > A||P|| and A >4\, then

l&—w =2\ P[> ||& —w| — 21 || P||
A
ZgHPH

Therefore,

/I_Ld,u>—<P,w):/[_/d,u0,

where pog denote the Borel probability measure, invariant by the Euler-Lagrange flow,
supporting on the KAM torus {(z,w)|z € T"}. It contradicts with the definition of the
minimizing measure y.

Proof of Lemma 3.1:

Proof. From [3], if (x,v) € Mp, one has

P+ Dyu(x,P)= ?)L(a:, v).
v

From (3.3), it is easy to get

oL _
or

Then, for || P|| <41, one obtains

AN —w)+O((& —w)?).

oL 1y . 1y
57 1< A2 Hd = wll+Cllé —wlf* <223 Y|z~ w]),

where 61 depends on Ay and O((# —w)3). Therefore, if choose zg € Mp satisfying (3.2),
then

oL
P+D, P <L || ==
[P+ Do, P < |5

<205 M| —w]|
SCOHPHv

for || P|| <& =min{dp,d1}.



3.2 Lemma 3.2

We introduce the theorem from [10] in the following:

Theorem 3 Consider a Hamiltonian of the form

H(z,p) = (w,p)+ F(z,p), (3-4)

where w satisfies (1.6). F is a bounded real-analytic function on D(R,p,o) for some

positive constants R,p and o < 1. Furthermore, assume that F, regarded as a function of p,
2

is order |p|?, so that there exists E' >0 such that |F(x,p)| < E’l% forall (q,p) € D(R,p,0).

Assume p<4R, and choose

Then for all r < R,
[p(0)| <ar=|p(t)| <r for all |t|<T,

where
R, (k3Rya p o0R
T=T(=)el" )", T=(B—a)1+-5)2Z=, ky=¢E
(T')e ) (/8 a’)( +4R) 2k17 1 € 9
P2 P 1
E=F(1+=% ka=k(1 —
(14 3)% ks =k(1+5), a= .
Yo o, 0 1 (271)! 1, e 1
- « DT = y e =~ T )72,
z)ﬂnla(SHT) » D= oty e = g (G o Febr)

ar= 2T+3 + 23T+77 bT — 2T+3 + 227’+5 4 237’+7.

Remark 3.1 If choose p=2R and a = % in the above theorem, then for allT <R, |p(0)| <
57 = lp(t)| <r for all

coR? CrnypR
t|<T= ex ’ @
[t <T=— —expl(—5;—)"],
where c is an absolute constant and C-,, is a general constant depending on n,T.

From Remark 3.1, we have the following proposition:

Proposition 3.2 If e <R, then for any initial value point (zq, po)(|po| < %e), its solution
curve (z(t), p(t)) under (2.2) satisfies |p(t)| <e for

coR? CrnypR

|t| S Elﬁ exp[( EIE )OCO_L

where c 1s an absolute constant and C,, is a general constant depending on n,T.
Lemma 3.2 (a). For any x € Mp, then

(z,v(z)) =L Yz, Dyu(z, P)) € Mp,

where u(z, P) is the viscosity solution of (1.1) and L: TT" —T*T" is the global Legendre
transformation associated to L=L—(P,&). Denote w(s) = (z(s),v(s)) = ¢} (z,v(x)), then

10



w(s) € Mp, where ¢; is the Lagrangian flow of L. The corresponding curve in T*T™ is
denoted by I(s) = (z(s),p(s)) = ¢ (x, Dyu(z, P)), where H(x,p) = H(z, P+p), H as (2.1).
(b). Fort; € R, Dyu(z1,P)+ P = ‘g—i(ml,v(xl)), where (x1,v(x1)) = (x(t1),v(t1)) =
w(tl).
(c¢). Denote the curve by l(s) of which the initial point is (xo, Dyu(zxg, P)), where o and
u(z, P) satisfy (3.1). Denote w: T*T™ —T™ and x(s) =n(l(s)). The obit of x(s) will er-
1
godize T™ to within Cg||P||7+1, if | P|| < €9 where €y depends on R, n, T, 7, 0, A1, A2, p, f
and Cg depends on f, n, T, v, A1, Aa. More concretely, for V6 € T", 30 <ty < Inr

YIP| 71
and x(—tg) such that

1

[z(—to) =0l < Cs|| Pl 7T,
where Cy, + is a general constant depending on n and T.
Proof. (a) is easy. and (b) is clear from Theorem 4.8.3 in [3]. We mainly prove (c¢). Note

1P+ Dy u(xo, P)[| < Col| Pll. (3.5)
Then (z(t),p(t)) = (x(t), P+p(t)) satisfies (2.2). From (3.5), we have |P+ Dyu(xo, P)| <
Co|P|, where Cj depends on A1, A2 and n. Denote |P|= 5. If P satisfies

0

|P| < min{ﬁléo, 5} (3.6)

then for initial value point (zg, P+ Dyu(xo,P)), its solution curve (z(t),p(t)) under (2.2)
satisfies

[p(t)| <6Co| P, (3.7)

coR? CrnypR

t < —T_pppl(=mnPt
1< E’CO\P]exp[( E'ColP|

)¥o], (3.8)

where c is an absolute constant and C, is a general constant depending on n,7. From

a'v—w+A(3:)p+g]];(x,p),
we have
(1) — 20— wt = /0 (A(w)p+g‘;(x,p))ds. (3.9)

Denote ’%‘ < Cy|p?. From (3.7) and (3.9), if

coR? o [(CT,n’pr
E'ColP| PN EICy| P

|t] < )“al,

then

|2 (t) — 20— wt| < Cst]| P]. (3.10)

11



From [1](also see [2], [4]), one obtains for ¥ € T", Vr}(rM will be chosen in the
following), 3ty satisfies

Crur
0<to< 3
Y1
such that
10 — (—wto+20)| <M. (3.11)
From (3.10) and (3.11), if
C(n,T) coR? CrnypR
0<ty< < d ], 3.12
>00 > ’)/T‘{WT _E/CQ|P|exp[(E,COIP|) U] ( )
we will have for V0 € T", 40 <ty < % such that
™

|(—to) — 0] < |2(—t0) — (~wto +x0)| + |0 — (—wto +x0)]
§O3t0’P| +7“{V[

C(an) M
<C3—=—|P|+r
>3 ’)/T{\/[T | | 1

Cy
:—MT|P|—|—T{W.
1

1
If we choose r¥ =|P|7T, then
[a(—t) 0] < Cs| P77,
Note (3.6) and (3.12), if |P| <¢q, then

C(n,T) < coR? CrnypR

T i ao-
Ny TN T R oTon T L

holds naturally, where ¢y depends on R, n, 7, v, o, A1, As, p, f and Cs depends on
fyny, 7,9, A1, Ag. Obviously, if || P|| < €g, then |P| <eg. For any 6 € T™,

CnT
30 <tp < ————— and x(—tp) such that (3.13)
VI[P
1
l2(—to) =0l < Cs | P|| 71, (3.14)
where Cg depends on f, n, 7, v, A1, Ao. [
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3.3 Lemma 3.3

The following lemma is almost a direct corollary of Theorem 4.7.5 of [3]. As [3], for § >0

is given and any map u < L— (P, ) —i—E(P), we define the set As,, formed by the x € T"
for which there exists a (continuous) piecewise C'* curve v :[—6,8] — T™ with v(0) =z and

5 : —
u(v(c?))—uw(—é))=/_6L(7(s),v(s))—(Pd(s)>ds+2H(P)6-

Lemma 3.3 For any u(x, P) satisfying (1.1), we define
Graph(Du(x,P)) ={(z, Dyu(z, P))|z € dom(Du(z, P))}.

Then (d)}f)*Graph(Du(x,P)) C Asn. It is a Lipschitzian graph with Lipschitzian constant
depending on a fized 6 >0 on each subset with diameter <m, where ¢ is the Hamiltonian
flow of fl(x,p) =H(x,P+p) in T*T™ and n doesn’t depend on 6.

Proof. Since u(z, P) is a viscosity solution of (1.1), obviously, we have
Ty u+ H(P)t=u, t>0,

where the relative Lagrangian of T~ is L — (P,&). From Proposition 4.4.8 of [3], for any

x € dom(Du(x,P)), 3 a (u, L— (P, z), H(P))-calibrated curve v* : (—o0,0] — T", such that
~*(0) = . This means that for any ¢ >0,

0 -
u(z) —u(yi(=1)) = / (L(YE(5),72(s5)) = (P, (s)))ds + H(P)t. (3.15)

—t

Since v has a derivative at z, we have P+D,u= g—{j(x,"yf (0)) and ¢* 5(x, Dyu) = Do (_s)u,

where ¢ is the Hamiltonian flow of ﬁ(:p,p) = H(z,P+p). In order to apply Theorem
4.7.5 of [3], we choose t = 2§ in (3.15). In the following, we will give the Lipschitzian
constant. From (5.3), we know that when || P|| <no, ||Dyu(z,P)|| <1. Write

Dy =L"'Dy,

where Dy = {(x, Dyu(x,P)) € T*T"|Vz € T", Vu(z, P) satisfying (1.1), ||[P|| < no}. It is
clear that there exists compact sets D3 and D4 such that Dy C D3 and Dy C Dy. It is
clear that
|62L| |82L| |82L|<1K

sup | ==/, sup |=——|, sup |=—5|< =K.

x€£4 dx? w€£4 O0xdv $E£4 Ov? 2
From Theorem 4.7.5 and Proposition 4.7.1 of [3], the Lipschitzian constant is no more
than % [ |
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4 Proofs of Theorem 1 and Corollary 1

Proof. For any x € dom(Du(x,P)), from the proof of Lemma 3.3, there exists a calibrated
curve 4 such that ¢* 5(x, Dyu) = (Y*(—=0), Dyz(_syu). Denote x1 =~"(—d). For ||P|| < e,
from Lemma 3.2 and (3.14), there exists z:(—ty) = x2 € Mp such that

1
|1 — 22| < Col| P71 (4.1)

Moreover, from (3.7), (3.8), (3.13) and (3.14), one gets |p(—to)| < 6Cp|P| and |p(—to+9)| <
6Co|P|. Then [[p(—to)|| < (6Co +1)v/n||P|| and |[p(—to—3)[| < (6Co+1)y/n[|P|. Clearly,
for zp, there exists a calibrated curve 7 such that 1(0) = zo. Write v1(—t9) = 22 and
v1(—to+9d) =x3. From Lemma 3.2, we have

oL
P+ Dyu(zs, P) = — (z3,v(x3)).
ov
It is clear p(—to+0) = Dyu(x3, P). It results in
[ Dau(zs, P)|| < (6Co+1)v/n||P||=C7||P||. (4.2)

From the proof of Lemma 3.3, we know that for ||P| <o, ||[Dyu(x,P)| < 1. Therefore,
there exits a compact set D5 C T*T™ such that

{(Z)_H‘S(x, Dyu(x, P))|Vz € dom(Du(z, P)), Yu(z, P) satisfying (1.1)} C Ds.
Denote d the flat metric in 7*T" =T" x R™. Clearly, for || P|| <71, one has
1
[ = o] < Cs || Pl 7T <.
Then for || P|| <min{eg, 70,71}, one gets

(6% (67 (x, Dyu(x, P))), 6% (6 (w3, Dyu(xs, P)))
<sup D&% |d(¢7 (@, Dou(w, P)), ¢ (x3, Dyu(xs, P)))

(from a compact discussion) <Cd((z1, Dy u(z1,P)), (22, Dy,u(xa, P)))
(from Lemma 3.3) <CO™t||z1 — 22|

(from (4.1)) <C§~ Y| P||7H.

Therefore,
1
| Dyu(, P) = Dyu(as, P)| < C6~ 1P| 7.

Combining with (4.2), we get

1D,u(z, P)| < Co~ || P|| 7.
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The following is the proof of Corollary 1.
Proof.

zel™

From the proof of Lemma 5.1 and Theorem 1, if 0 <4 <1 and || P|| <min{ep, 70,71}, then

1
lu(z, P) —uy, P)| <C6~ Y|P 71 o —y|
<o Y| p||F,

5 Appendix
Lemma 5.1 u, is a viscosity solution of
H(z,P,+ Duy(z,P,))=H(P,), (5.1)

P, € D, where D is a compact set in R™, then 3 K} depending only on H and D, such
that

[un (2, Pr) = tn (y, Pn)| < Koz ],
where x, yeT".

Proof. From P, € D, 3 K} depending only on D and H, such that |[H(P,)| < K}. Since
H is superlinear and (5.1), it is clear that the set {(z,p) : |H(z,p)| < K{} is compact.
It follows that JK/ depending only on H and D, such that |Du,(z,P,)| < K}, where
x € Wp, = dom(Duy, P,). For each P,, u,(z,P,) is Lipschitz function. So, T"\ Wp_ is
negligible for Lebsgue measure.

Given two point z, y € T™, by Fubini theorem, there exist two sequences of points
zg, yr € T™ such that xp — =, yr — vy, and the affine segment I'y : 5 (t) = xx + é::i’;'
intersect Wp, in a set of full linear measure in I'y,. We have

lye—zk|
i (Y Pr) — i (0, Pa)| < / (Datin (i, Py, ) |dt
0

lye— |l _
<[ D P
< Kolyk — k|-
Since uy,(x, P,,) is continuous and xy — z, yr — y, we have

|t (2, Po) = un(y, Po)| < K[|z — .
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Lemma 5.2 Write [uy,|(x) = um(x)—m%rn Um (x). If uy, is a viscosity solution of H(x, P,+
zeTn

Duy(z,P,)) = H(P,), where P, € D and D is a compact set in R", then there exits a
sequence of [up] and ug € CO°(M,R) such that [u,] — ug in the C° topology uniformly on
M.

Proof.  Write u,(zg,P,) = m%rn un(x, Py). From Lemma 5.1, for Vn, we get
zeTn

un (2, Py) —un (2§, Po)| < K|z — 23 || < K&,

where K4 depends on H and D. This means that |[u,]| < Kj, for any n. Similarly, from
Lemma, 5.1, for any x, y € T", we have

[un] (2, Pn) = [un)(y, Po)| = [un (2, Pn) —un(y, Pn)|
< Kollz—yl|.

From Ascoli’s Theorem, we get the conclusion.

Lemma 5.3 M is a compact and connected manifold. L is a Tonelli Lagrangian. Denote
by H:T*M — R its associated Hamiltonian. If Ag=My= M and u is a viscosity solution
of H(x,Du)=c, then u is unique(mod a constant).

Proof. From Section 5.2 in [3], we have the following:

I(u_,u+) = {1’ € M’u— (x) = U+($)}
{(z,v)|lz €L Dyu_=Dyuy = g—ﬁ@,v)} (5.2)

Tu_ ) = (u—ut )

.Ao—ﬂfu ) .Ao—?T(.Ao)

From (5.2) and Theorem 5.2.8 in [3], we know that if v is another viscosity solution(also
weak KAM solution) of H(x,Du) = ¢, then Dyu= D,v, for any € M. The conclusion is
clear.

Proposition 5.1 When P — 0, then
|1P+ Dyu(z, P)|| =0, (5:3)
for any x € dom(Du(x,P)) and any u(x,P) satisfying (1.1).

Proof. Suppose it is not true, then we have the following: Jey > 0, V6, =
| Pl < 6, Fun(z, P,) and x,, € dom(Duy(z, P,)) such that

Since uy, is a viscosity solution(weak KAM solution) and satisfies H(z, P, + Du) = H(P,),
from Proposition 4.4.8 of [3], we have the following: for x,, € T", I(uy, L—(Py, &), H(P,))-
calibrated curve =, such that for Vt >0,

0
n(30(0)) ~tn (1)) = [ (L= (Pusi)lds+ H(P)L (5.4)

—t
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where v, (0) = z,,. We also have

Pt Dy, Pa) = 9 (o (0), 30 0)). 5.5)

Since || P,|| <1, it is easy to see that 3K > 0, such that
| Pr,+ Dytin (20, Pr)|| < K. (5.6)

Otherwise, we will have || P, +Dytn, (Tn,, Pn,)|| — 00. Then H(xy,, Py, 4+Dgtn, (Tn,, Pn,)) =
H(P,,) — oco. But it is impossible since H(P,,) is bounded.
From (5.5) and (5.6), one gets that 3K > 0 such that

1(7.(0), ¥ (0)) || < K. (5.7)

Therefore, there exists a sequence denoted still by (7,(0),4,(0)) and (zg,40) € TT™ such
that

(72.(0),¥1(0)) = (20, %0)- (5-8)

Denote
(h0(s),30(s)) = (9 (z0, 30),
where ¢ >0 and ¢F is the Lagrangian flow in 7T". From (5.8), it is clear that

Tim (651)4(7(0),90(0)) = (6 (0,30) = (0 (t), Fo(~1))- (5.9)
This means for any ¢ € [0,00), we have

(Y (=), (=1)) = (30(=1), F0(=1))- (5.10)

From Lemma 5.2 in the appendix, we know that there exists a sequence [u,| and u €
C%(M,R) such that [u,] — u in the C° topology uniformly on M. Since || P,| <, — 0,
one obtains P, — 0 when n — 0. Further, we have

H(P,)— H(0)=0. (5.11)

From (5.4), (5.10) and (5.11), when n — 0, we have for any ¢ >0,

0

u(10(0)) —u(r0(~1)) = / Lv(s),30(s))ds. (5.12)

—t

Write H,(z,p) = H(x,P,+p)— H(P,), from Theorem 8.1.1 of [3], one has that u is a
viscosity solution of H(z,dyu)=0. From Theorem 7.6.1 of [3], we have

u<L. (5.13)

From (5.12) and (5.13), it is obvious that ~o(s) is (u, L,0)-calibrated. From Proposition
4.4.10 of [3], we have the following: there exists a Borel probability measure p on 7T",
invariant by ¢F, carried by the a-limit set of the orbit of (2¢,4¢), and such that J Ldp=0.
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From Corollary 4.8.4 of [3], we have suppp C {(z,w)|x € T"}. Therefore, Jt; > 0 large
enough and €; >0 small enough, such that

But

[F0(—t1) —w|| =€1>0. (5.14)

. 1._4,. 1. _
L(’YO(*tl)WO(*tl))Z1A11H%(*t1)*w||221)\11€%>0- (5.15)

From Lemma 5.3, we know that w is unique(mod constant). But from H(z,du) =0, it is
clear that u = c is the smooth solution. Then (5.12) is changed into the following: for any
t>0, [° L(70(5),30(s))ds = 0. Then for any ¢ >0, we have L(yo(—t),%0(—t)) =0. This
contradicts with (5.15). |
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