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Abstract: In this paper we are discussing the stability problem of the stan-
dard obstacle problem. We show that the solution of the obstacle problem is
stable under the boundary conditions. One can show this result for general
obstacle problem.

1 Introduction

Let 2 C R™ be a bounded domain and let WP () be a usual Sobolev space.
When p = 2 we'll write H™(Q) instead of W™2(Q). The set of functions
which have compact support in £ we’ll denote Cp(£2) and the closer of C§°(Q2)
by the norm of H™ () we’ll denote H{"(2).

Suppose g, ¢ are functions from H'(2) and define

K={ucHYQ) |u—ge H}Q), u>pae in Q}.

We always will assume that g > ¢, so the set K is not empty.
One can easily show that

the set K is closed and convex (1)

(see for example [1], [2]).
Define
G(u)—/ | Du |2dx—2-/fudx
Q Q

We conceder the following problem: for given f € L?(2), g,¢ € H*(Q) find
u € K such that G(u) = InlII(l G(v) (2)
ve

It is easy to see that this problem is equivalent to the following problem:
find u € K such that /Du~D(v—u)dm2/f~(v—u), Vve K (3)
Q Q

The problem (2) or (3) is called obstacle problem (standard obstacle problem,
obstacle problem for the Laplace operator), the function ¢ is called obstacle.
Define

a(u,v) = / Du - Dvdzx
Q
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u,v € HY(Q).
Since there exists an o > 0 such that

/ Du|22a-/ | u|? Y ue H Q)
Q Q
(Poincaré’s inequality) (see [2]), we can write

alu,u) 2 - | u [y, ¥ u € H(Q) (4)
B > 0 is a constant. This means that the bilinear form a(u,v) is coercive on
Hy (9).

It is well known that the Sobolev space H'(Q) is a Hilbert space with the
scalar product

(f,9)m :/Qf-ngDf-ngx

The dual space of HZ(Q) we’ll denote by H~1(Q).

Elements of H~1(2) may be characterized as the derivatives of functions
f, € L*(Q) in the distributional sense, namely, for f € H~!(Q) there exists
fos fi, -+ fn € L?(2) such that

(f b = /Q (o= fiha}de, he HE(Q),
1=1

(-,-) is the pairing between H~1(2) and H}(Q) (see [2],[3]).
If f = fo, the problem (3) could be rewritten with the help of this terminol-
ogy in the following way: find u € K such that

a(u,v —u) > (f,v—u), VveK,

where (-,-) is the scalar product in L?(2).

In general we will reformulate the problem (3) in the following way: for
given f € H~Y(Q) find u € K such that

a(u,v —u) > (f,v—u), Vve K (5)
Proposition 1. | a(u,v) [<|| u||gr - || v |-
Proof. First let assume that || u ||gn=]| v ||gr= 1.

In this case

l a(u,v) |:|/Du-Dv|§/|Du-Dv|§

< -/<|u|2+|DuP+rv\2+|DvP>=

DO |
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In general case use the previous fact with functions ug =

|
Since a(u, v) satisfies (4) and proposition 1 is right, we know that in this case:

Theorem 2. There exists a unique solution to problem (5). And also

1
| w1 —uz || < 5 I f1 = fo llg-1,

where wu, is solution corresponding to f;.
For proof of this theorem see [1] or [2].

2 Some important facts

Let X be a reflexive Banach space with dual X*. Let (-,-) denote a pairing
between X* and X.

Definition 3. A mapping A : D(A) — X* (D(A) C X is the domain

where A is defined)is called monotone, if
(Au — Av,u—v) >0, Y u,v € D(A)

If D(A) is convex, a mapping A is called semicontinuous, if for all u,v € D(A)
the mapping
0,1] 5t — (A(tu+ (1 — t)v),u —v)

1S continuous.

Lemma 4 (Minty). Let K be a closed convex subset of X, and let a
mapping A : K — X™* is monotone and continuous. Then u satisfies

ue K: (Au,v—u) >0 forallve K
if and only if it satisfies
ue K: (Av,v —u) >0 for all v € K.

For proof of this lemma see [1] or [2].
Theorem 5 (Mazur). A convex, closed subset of X is weakly closed.

(see [2], [4]).



3 Stability of the solution
Suppose ¢, g, € H'(2) (n=1,2,...) and define
K,={uec H Q) |u—g, € H(Q), u> ¢ ae. in Q}.

We always will assume that g, > ¢, so the set K, is not empty for every n.
The sets K, are closed and convex.

Theorem 6 (Stability). Suppose f € H~1(2). The solution of the ob-
stacle problem is stabile in the following sense:
let u,, be the solution to problem

Up € Ky a(tn,v —uy) > (f,v—uy,), Vv e K,
and let u be the solution to problem
uve K, alu,v—u) > (f,v—u), VveK.

If g, — g in H'(Q), then u,, — u weakly in H* ().

Proof. If v, € K, then using (4) and proposition 1, we have:
B || wn — vp ||§{1§ a(Up — Upy Up — V) = a(Up, Up — Vn) — a(VUp, Uy — V) <

< (frun —vp)+ [[ oo g1 - | un —vn [ <

< (ol + 11 a-2)- | un = vn g -
So 1

| tn = on [ < 5 (Fon e + 11 f l-2)-

Il wn | <[l wn —vn || g1 + || vn || 2. Therefore, if v, — v € K in HY(Q), we
obtain that || u, ||z1< C. Hence u, has a weakly convergent subsequence
(see [3],[4]). If we show, that from u, — w (weakly) follows that w is the
unique solution to problem (5), then the proof of the theorem will be com-
plete.

Since the mapping u — a(v, u) is continuous, we have

(v, 1n) — av, w). (6)
According to Minty’s lemma
a(Up, Up — Up) > (f,0n — up), ¥ v, € K.

Choose v € K and v, € K, such that || v, — v ||g1— 0 (for example take
Up =0+ gn — g). Then

| a(v,v —up) — a(vp, vy — up) |=| a(v — vp, v — uy) + a(vp, v —vy) |<



<[fv=on lg - [v=un [ + | on [ v =vn [ < Cllv=vp |1 — 0.
So
a(v,v —up) > (f,vn — Up) + €n, €, — 0.

Since

<f7/Un _un> - <f,v—w>,
from (6) we get

a(v,v—w) > <f,1) —U}>.
Now, if we show that w € K, we can insist that w is the unique solution to
problem (5), and the proof will be complete.
Since g, — ¢ in H'(Q), then g, — g weakly in H'(Q) (see, for example,
3], [4])- So

Up — gn — w — g, weakly in H(Q)

But u, — g, € Hi(Q) and H}(Q) is a closed convex subset of H1(Q). So,

according to Mazur’s theorem, w — g € H} ().
Therefore w € K.1
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