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Abstract—Principal direction linear oracle (PDLO) and ran-
dom spherical linear oracle (RSLO) ensemble classifiers for
DNA microarray gene expression data are proposed. The oracle
assigns different training(testing) samples to 2 sub-classifiers
of the same type using hyperplane splits in order to increase
the diversity of voting results since errors are not shared
across sub-classifiers. Eleven classifiers were evaluated for per-
formance as the base classifier including k nearest neighbor
(kNN), naı̈ve Bayes classifier (NBC), linear discriminant analysis
(LDA), learning vector quantization (LVQ1), polytomous logistic
regression (PLOG), artificial neural networks (ANN), constricted
particle swarm optimization (CPSO), kernel regression (KREG),
radial basis function networks (RBFN), gradient descent support
vector machines (SVMGD), and least squares support vector
machines (SVMLS). Logistic ensembles (PLOG) resulted in the
best performance when used as a base classifier for PDLO
and RSLO. The performance of logistic ensembles based on
random axis selection and rotation followed by hyperplane splits
in PDLO increased with increasing CV-fold and iteration number.
However, logistic ensembles employed with random hyperplane
splits used in RSLO resulted in degeneration of performance at
the greatest levels of CV-fold and iteration number.

I. INTRODUCTION

Promising results have been reported for ensemble clas-

sification methods for which moderate to substantial gains

in performance have been realized [1]. Ensemble methods

combine results of multiple classifiers to exploit complex

decision boundaries that cannot be handled by a single classi-

fier. The most common methods include majority voting [2],

mixture of experts [3]–[6], bagging [7], boosting [8]–[11], and

bootstrapping [12].

Random oracles for classification originated in the devel-

opment of oblique decision trees in the form of axis-parallel

splits used in CART-LC [13] and later OC1 [14]. Ensembles

of random linear oracles were recently applied to 35 UCI data

sets using a variety of methods including Adaboost, bagging,

multiboost, random subspace, and random forests, and were

shown to outperform other ensemble methods [15], [16]. The

main utility of an oracle for classification is to randomly split

and assign training and testing samples to two sub-classifiers

which employ the same base classifier (decision tree, NBC,

kNN, etc.) for training. Following training, each sub-classifier

performs class prediction on the assigned test samples left out

of training. The primary advantages for using a linear oracle
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is that the training and testing of samples partitioned into

two disjoint partitions can be easier than jointly performing

the same operations on the combined samples, and secondly,

more diversity is introduced into training and testing because

potential errors made by the sub-classifiers are not shared [17].

Diversity has been investigated for boosting, bagging, sum and

product rule for majority voting, etc., [18], [19]; however, to

date there exists no unifying theory that can predict the re-

lationship between ensemble diversity and classification error

[20]. Not surprisingly, most efforts to overproduce-and-select

the best combination of classifiers for a specific classification

problem have revealed that finding an optimum collection of

classifiers is not as straightforward as one would assume.

In a recent report on ensemble classification of gene expres-

sion [21], we showed that a principal direction linear oracle

(PDLO) with a logistic base classifier outperformed logistic

classification without PDLO, and that PDLO improved the

performance of logistic classifiers the most when compared

with ten other base classifiers (kNN, NBC, LDA, LVQ1, ANN,

CPSO, KREG, RBFN, SVMGD, and SVMLS). During PDLO,

assignment of training and testing samples to the sub-classifier

by the oracle is based on rotation of normalized (spherical)

principal component (PC) scores about the eigenvectors rep-

resenting the first, second, and third principal components ex-

tracted from the input samples and features. The eigenvectors

for the first 3 principal components represent orthogonal X , Y ,

and Z axes in three-dimensional space which can be rotated

using a combinations of fixed or random selections of axes and

rotation angles. The rationale for using PDLO was that, in the

case of the first principal component (i.e., greatest eigenvalue),

the rotation of PC scores around the first eigenvector would

ensure uniform selection of samples by the oracle, since the

first eigenvector will disect the centroids of data clusters with

the most separation. A spherical projection of the PC scores for

the first 3 eigenvectors .X; Y; Z/ was induced by standardizing

(normalizing) with
p

�l , where �l is the eigenvalue for the l th

component. Hyperplane splits of samples were achieved by

selecting cases with positive(negative) PC scores after rotation

of the specific axis about which scores were rotated.

This report compares performance of base classifiers for

RSLO against performance of base classifiers used with

PDLO, and in addition, compares performance results for

logistic ensembles for PDLO and RSLO as a function of

CV-folds and iterations (hyperplane splits). Empirical gene

expression data are used for the analysis.
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TABLE I

DATA SETS USED FOR CLASSIFICATION ANALYSIS.

Cancer Classes-Genes-Samples Selected*

Brain [22] 2-7129-60 (21 censored, 39 failures) 16

Prostate [23] 2-12600-102 (52 tumor, 50 normal) 11

Breast [24] 2-3170-15 (8 BRCA1, 7 BRCA2) 6

Breast [25] 2-24481-78 (34 relapse, 44 non-relapse) 17

Colon [26] 2-2000-62 (40 negative, 22 positive) 5

Lung [27] 2-12533-32 (16 MPM, 16 ADCA) 29

Leukemia [28] 2-7129-38 (27 ALL, 11 AML) 9

Leukemia [29] 3-12582-57 (20 ALL, 17 MLL, 20 AML) 13

SRBCT [30] 4-2308-63 (23 EWS, 8 BL, 12 NB, 20 RMS) 20

* Genes selected using greedy PTA.

II. METHODS

A. DNA Microarray Data Sets Used

Data used for classification analysis were available in C4.5

format from the Kent Ridge Biomedical Data Set Repository

(http://sdmc.i2r.a-star.edu.sg/rp), see Table I. The 2-class adult

brain cancer data were comprised of 60 arrays (21 censored,

39 failures) with expression for 7,129 genes [22]. The 2-

class adult prostate cancer data set consisted of 102 training

samples (52 tumor, and 50 normal) with 12,600 features. The

original report for the prostate data supplement was published

by Singh et al [23]. Two breast cancer data sets were used.

The first had 2 classes and consisted of 15 arrays for 8

BRCA1 positive women and 7 BRCA2 positive women with

expression profiles of 3,170 genes [24], and the second was

also a 2-class set including 78 patient samples and 24,481

features (genes) comprised of 34 cases with distant metastases

who relapsed (“relapse”) within 5 years after initial diagnosis

and 44 disease-free (“non-relapse”) for more than 5 years

after diagnosis [25]. Two-class expression data for adult colon

cancer were based on the paper published by Alon et al [26].

The data set contains 62 samples based on expression of

2000 genes in 40 tumor biopsies (“negative”) and 22 normal

(“positive”) biopsies from non-diseased colon biopsies from

the same patients. An adult 2-class lung cancer set including

32 samples (16 malignant pleural mesothelioma (MPM) and

16 adenocarcinoma (ADCA)) of the lung with expression val-

ues for 12,533 genes [27] was also considered. Two leukemia

data sets were evaluated: one 2-class data set with 38 arrays

(27 ALL, 11 AML) containing expression for 7,129 genes

[28], and the other consisting of 3 classes for 57 pediatric

samples for lymphoblastic and myelogenous leukemia (20

ALL, 17 MLL and 20 AML) with expression values for 12,582

genes [29]. The Khan et al [30] data set on pediatric small

round blue-cell tumors (SRBCT) had expression profiles for

2,308 genes and 63 arrays comprising 4 classes (23 arrays

for EWS-Ewing Sarcoma, 8 arrays for BL-Burkitt lymphoma,

12 arrays for NB-neuroblastoma, and 20 arrays for RMS-

rhabdomyosarcoma).

B. Gene Filtering and Selection

For each data set, input genes were ranked by the F-ratio

test statistic, and the top 150 were then used for gene selection.

Gene selection was based on a stepwise greedy plus-take-away

(PTA) method using a plus 1 take away 1 heuristic [31]. Gene-

specific expression on each array was standardized using the

mean and standard deviation over the 150 genes identified

by filtering. Forward stepping was carried out to add(delete)

the most(least) important genes for class separability based

on squared Mahalanobis distance and the F-to-enter and F-

remove statistics. Genes were entered into the model if their

standardized expression resulted in the greatest Mahalanobis

distance between the two closest classes and their F-to-enter

statistic exceeded the F-to-enter criterion. At any step, a gene

was removed if its F-to-enter statistic (F=3.84) was less than

the F-to-remove criterion (F=2.71). Table I lists the number

of genes selected using greedy PTA.

C. Principal Direction Linear Oracle (PDLO)

Let xi D .xi1; xi2; : : : ; xip/ be the set of feature values

for sample xi , and zi D .zi1; zi2; : : : ; zip/ be the set of

standardized feature values for sample xi . Let R be the

p�p (“gene by gene”) correlation matrix based on n train-

ing samples. The concept of principal directions relies on

the eigenvectors derived from principal component analysis

(PCA). Let e1; e2; : : : ; em represent the eigenvectors associated

with the m greatest eigenvalues �1 � �2 � � � � � �m

extracted from R. Principal components derived from PCA

are orthogonal (uncorrelated) with one another. There are 3

vectors associated with each l th extracted principal component

(l D 1; 2; : : : ; m/: a p-vector eigenvector el , a p-vector of

principal component score coefficients ˇl determined with the

relationship ǰ l D ejl=
p

�l , and an n-vector of PC scores yl ,

where the score for the i th .i D 1; 2; : : : ; n/ sample given as

yi l D ˇ1lzi1 C ˇ2lzi2 C � � � C p̌l zip : (1)

The vector yl is distributed N.0; 1/ and serves as a new feature

representing each sample in score space. PC scores for the

first 3 principal components are then used for representing

each sample in spherical 3D space by defining the point

qi D .Xi ; Yi ; Zi/, where Xi D yi1, Yi D yi2, and Zi D yi3.

Depending on the axis selected, a hyperplane split of all points

rotated about an eigenvector is made. For example, if points

are rotated about the X-axis, then a hyperplane h.Y / based

on Yi D 0 can be used for splitting the samples. Points

having zero or positive values of Yi will lie on or above

h.Y / and are assigned to data set D1, whereas samples with

negative Yi lie below h.Y / and are assigned to D2. The first

miniensemble is used for training and testing with D1 and the

second miniensemble used for training and testing with D1.

The predicted class membership of test samples in D1 and D2

are then used during construction of the confusion matrix used

in performance evaluation.

PDLO performance was evaluated for two methods of

rotation, one in which an increasing angle of rotation was used

where � D iteration 2�
#iterations

and another involving randomly

selected rotation angles with � D U.0; 1/2� . Algorithm 1 lists

the computational steps for employing the principal direction

linear oracle to invoke a hyperplane to split of samples into a

set D1 above a hyperplane and a set D2 below.

D. Random Spherical Linear Oracle (RSLO)

The random spherical linear oracle (RSLO) used the same

spherical 3D points developed during PDLO; however, axis-
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Algorithm 1: Principal Direction Hyperplane Splits

Data: X-, Y -, or Z-axis in spherical 3D score space for

the 3 greatest eigenvalues for a set of p training

(testing) genes selected with greedy PTA.

Result: A set of samples, D1, on or above a hyperplane

and a set D2 below the hyperplane

Specify rotation axis V as either the X-, Y -, or Z-axis

Select axis W which is orthogonal to V -axis

Select whether rotation angles are fixed intervals or

random

foreach iteration j do

If rotation angles are fixed intervals: � D j 2�
#iterations

If rotation angle is random: � D U.0; 1/2�

for sample i  1 to n do
Rotate point qi around axis V using angle �

if Wi � 0 then
Sample is on or above hyperplane

h.W / � 0 D1

endif

if Wi < 0 then
Sample is below hyperplane h.W / < 0 D2

endif

endfor

endfch

independent random hyperplane splits were employed. Using

the points qi in 3D score space, random hyperplane splits were

performed by calculating the dot product q� for each point,

where � is a unit vector with direction cosines �X ; �Y , and

�Z for a randomly selected point qU.0;1/.n�1/C1. Points for

which q� � 0 lie on or above the hyperplane h.q� D 0/ and

are assigned to data set D1, whereas points with dot product

q� < 0 lie below the hyperplane and are assigned to D2.

E. Identification of Best Base Classifier

The first step during classification analysis was to identify

a that yielded the best performance levels. Eleven classifiers

were employed for training and testing [32], [33]. These

included k nearest neighbor (kNN), naı̈ve Bayes classifier

(NBC), linear discriminant analysis (LDA), learning vector

quantization (LVQ1), polytomous logistic regression (PLOG),

artificial neural networks (ANN), constricted particle swarm

optimization (CPSO), kernel regression (KREG), radial basis

function networks (RBFN), gradient descent support vector

machines (SVMGD), and least squares support vector ma-

chines (SVMLS). KREG employed kernel tricks in a least

squares fashion to determine coefficients which reliably predict

class membership when multiplied against kernels for test

samples. All 2-class and 3-class problems were solved using

all possible 2-class problems. First, k-means cluster analysis

was performed on all of the training samples to determine

centers. Coefficients for kernel regression were determined

using the least squares model

˛ D .HT H/�1HT y; (2)

where H is a sample � gene matrix with a linear kernel

in element hij D K.xi ; cj / D xT
i cj , where cj is a center

vector, i.e., mean vector, from k-means cluster analysis, and

y is sample vector with yi set to +1 for training samples in

the first class and -1 for samples in the second class being

compared in the 2-class problem. A positive value of yi

denotes membership in the first class and a negative value

reflects membership in the second class. The RBFN employed

the same matrix algebra as kernel regression, but was based on

the RBF kernel K.xi ; cj / D exp.�jjxi � cj jj/. Note that this

is not a Gaussian RBF kernel which uses exp.�jjxi � cj jj=�/

as the kernel. For SVMs, we used an L1 soft norm gradient

descent-based [34] and L2 soft norm least squares approach

to SVM [35]. A weighted exponentiated RBF kernel was

employed to map samples in the original space into the dot-

product space, given as K.x; xT / D exp.� 

m
jjx�xT jj/, where

m=#features. Such kernels are likely to yield the greatest class

prediction accuracy providing that a suitable choice of 
 is

used. To determine an optimum value of 
 for use with RBF

kernels, a grid search was done using incremental values of 


from 2�15, 2�13,. . . , 23 in order to evaluate accuracy for all

training samples. We also used a grid search in the range of

10�2, 10�1,. . . , 104 for the SVM margin parameter C . The

optimal choice of C was based on the grid search for which

classification accuracy is the greatest, resulting in the optimal

value for the separating hyperplane and minimum norm jj�jj of

the slack variable vector. SVM tuning was performed by taking

the median of parameters during grid search iterations when

the test sample misclassification rate was zero. Base classifier

performance for PDLO and RSLO was evaluated using ten

10-fold CV [36].

F. Effect of CV and Iterations on PDLO and RSLO

PLOG yielded the greatest performance when implemented

with PDLO and RSLO, and therefore was evaluated using CV

folds of 2, 5, and 10, and 10 to 100 iterations.

III. RESULTS

Figure 1 and Figure 2 show boxplots of classifier accuracy

for different base classifiers implemented with PDLO and

RSLO, respectively. For PDLO, LDA and PLOG yielded the

greatest performance, and for RSLO PLOG had the greatest

performance. Figure 3 and Figure 4 illustrate for 2-fold CV

(CV2) scatter plots with the number of training (testing)

samples assigned to subset D1 on or above hyperplanes and

samples in D2 below hyperplanes for PDLO and RSLO,

respectively. It is readily apparent that different slopes (train-

ing to testing sample ratios) occurred for samples assigned

to D1 and D2 during random hyperplane splits in RSLO.

For PDLO, the slopes for training/testing sample ratios for

samples assigned to D1 and D2 were similar. Finally, Figure 5

and Figure 6 reveal that performance from axis-dependent

rotations followed by hyperplane splits in PDLO increased

with the number of iterations and number of CV-folds. On the

other hand, for random hyperplane splits in RSLO, this trend

degenerated.

IV. DISCUSSION AND CONCLUSION

There is currently a limited body of information on oracle

ensemble classification for gene expression data. To date,
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Fig. 1. Principal direction linear oracle (PLDO) classifier performance

(accuracy) for various base classifiers.

Fig. 2. Random spherical linear oracle (RSLO) classifier performance

(accuracy) for various base classifiers.

the majority of work has been performed by Kuncheva and

Rodriquez using random linear oracles based on J48 decision

trees applied to UCI data sets [15], and spherical oracles

based on Naı̈ve Bayes base classifiers [16]. For the most part,

their choice of feature transformation involved normalizing

(rescaling) all feature values in the range f0,1g and performing

random hyperplane splits by selecting 2 points randomly and

defining the hyperplane from the perpendicular vector at the

midpoint between the 2 points. Superior results were obtained

for the random linear oracle when compared with the routine

uses of various bagging and boosting forms of decision tree

methods.

In the present study, our focus was to evaluate the effect

of axis-dependent rotation and hyperplane splits in PDLO

Fig. 3. Number of training (testing) samples assigned to subset D1 on or

above hyperplanes vs. samples below hyperplanes in D2 for PDLO based on
random axis selection and random rotation angle selection prior to hyperplane
splits. Test samples left out of training during CV.

Fig. 4. Number of training (testing) samples in D1 on or above hyperplanes
vs. samples in D2 below hyperplanes for RSLO based on random hyperplane

splits. Test samples left out of training during CV.

and random hyperplane splits in RSLO on performance for

11 base classifiers. The use of orthogonal eigenvectors for

the 3 greatest eigenvalues of the gene-by-gene correlation

matrix of expression, normalized with
p

�l , provided a spher-

ical 3D set of points in score space about which rotations

were carried out. Our results show that logistic ensembles

resulted in the greatest classification performance for PDLO

and RSLO. Moreover, the performance of logistic ensembles

based on axis-dependent rotations followed by hyperplane

splits in PDLO increased with increasing CV-fold and iteration

number. However, logistic ensembles employed with random

hyperplane splits used in RSLO resulted in degeneration of
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Fig. 5. PDLO accuracy as a function of CV folds and iterations. Each

iteration based on axis-dependent rotation of points followed by hyperplane
splits. PLOG used as base classifier.

Fig. 6. RSLO accuracy as a function of CV folds and iterations. Each

iteration based on random hyperplane split. PLOG used as base classifier.

performance at the greatest levels of CV-fold and iteration

number.

In conclusion, PLOG resulted in the best performance when

used as a base classifier for PDLO and RSLO. For 10-fold CV

and 100 iterations, the axis-dependent rotations and hyperplane

splits used in PDLO resulted in greater performance levels

when compared with random hyperplane splits used in RSLO.
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