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Abstract

The General Circulation Model ECHAMA4.6 is run under perpet-
ual January conditions with two different values of £@he present
concentration and five times as much. For each case, tinesgari
two indexes of mid-latitude wave activity are computed. Tinean
activity of baroclinic waves and of planetary waves deageatightly,
following the decrease of the mean baroclinicity of the eystinfer-
ence of extreme values is performed by estimating the paexmef
the Generalised Extreme Value (GEV) distribution from seues
of maxima over data blocks of fixed length extracted from theet
series. The sensitivity and goodness-of-fit of the infeesnare as-
sessed by various graphical and numerical tools. The seseital
no marked differences in the statistics of extreme valuésden the
cases with 1 and 5 CQand also suggest that the often invoked ap-
proach of relating changes of the extremes to changes in¢ae and
standard deviation of the bulk statistics is not reliableagd corre-
sponding to the dates of the extremes (block maxima) of ttiexes
show that the relative weight of the wave activity of the Atia sector

increases with C@concentration.



PACS: 02.50.Tt, 02.70.-c, 47.11.-}, 92.60.Bh, 92.70.Gt



1. Introduction

Recently, we have investigated different aspects of thergéngculation of the
atmosphere within the framework of either very simplifieddals or state-of-the-

art GCMs, namely:

1. the statistical properties, specifically extreme vata@stics, of a baroclinic
model of intermediate complexity for the atmospheric natitides (Lu-

carini et al. 2006c¢,d; Felici et al. 2006a,b);

2. the description of wave propagation in the mid-latitutieasphere of state-
of-the-art coupled GCMs (simulations for the IPCC report) asdoci-
ated products such as re-analyses (Lucarini et al. 2006aeRat 2006;

Dell’Aquila et al. 2005).

While in the papers of item 1 the procedures concerning exrstatistics and
its inference are well settled, in the papers quoted in itedyBamically oriented
climate metrics aimed at capturing the basic statistiagerties of the fundamen-
tal features of the mid-latitude atmospheric variability.g. synoptic baroclinic
waves and planetary waves - have been introduced with th@operof audit-
ing GCMs and reanalyses. In this paper our purpose is to j@rvilo research

streams described above, performing statistical anabfsgtreme values of dy-
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namically oriented metrics. The basic meteo-climatic fgobwe focus on is:
what is the sensitivity of the extreme statistics of midtlatinal disturbances to
CGO; increase? The issue is a rather complex and controversesaiod it is not
easy to deduce, from existing literature, a clear cut sifiefdrmulation.

The northern hemisphere mid-latitude variability is mgidtiven by large-
scale processes, which affect, at different spatial angoeahscales, the variabil-
ity of surface parameters.€. precipitation, wind, temperature). The latter pa-
rameters are those typically observed in the meteorolbgetavorks and stored
in the records. Nevertheless, sufficiently long time-serseiitable for statistical
analysis of extreme values, are not always available. Tésssbmetimes led the
researchers to adopt weaker criteria for the selection eftsvto be used for in-
ference of statistical extreme models, with all the enspirgdplems of reliability.
See the discussion in the introduction of Felici et al. (200@©n a different front
statistical analysis of extreme events has been appliedntderies of surface
parameters produced by climate models (Zwiers and Kharg8;1Bharin and
Zwiers 2000). With respect to observations, the usage dhsyically generated
data has the advantage that it is easier to satisfy the wellvk requirements of
length and quality of the record, again see Felici et al. @2)0 However, the

characterisation on theoretical grounds of a well-defiméation between the sta-



tistical properties of surface fields and those of the dgJuarge-scale processes
remains an open (and very hard) problem.

Among the dominant physical processes featured in the atitiitle atmo-
spheric dynamics, the synoptic waves and the interactitwds ultra-long waves
and topography are main ingredients. The synoptic trageliaves can be rep-
resented as high-frequency high-wavenumber eastwaréagabpg spectral fea-
tures, characterised by periods of order 2-7 days and byatjgatles of a few
thousand Km. These waves can be associated with the releasgailable energy
driven by conventional baroclinic conversion (Blackmon @93peranza 1983;
Wallace et al. 1988), so that they are often referred to ascharc waves. On
the other hand, planetary waves, which interact with onolgygCharney and De-
Vore 1979; Charney and Straus 1980; Buzzi et al. 1984; Benzi £986) and are
catalysed by the sub-tropical jet (Benzi and Speranza 1989eRai. 2006), play
a dominant role in the low frequency-low wavenumber spéodgion of station-
ary waves, whose characteristic time and space scalesgaeldime interval 10-45
days and 7000-15000 Km respectively (Hansen and Suterd.1986

The methodological approach of the present work is to apallge impact
of an increase in the atmospheric £an the extreme value statistics of indexes

of wave activity for the large scale atmospheric dynamicse Mh a state-of-



the-art GCM in perpetual winter conditions for both presaay-and perturbed
atmospheric C@concentrations. Therefore, we generate time series of theW
Activity Index (WAI) and of the Baroclinic Activity Index (BA), which may be
considered as proxies of the intensity of the planetary gmostic waves, re-
spectively (Benzi et al. 1986; Dell’Aquila et al. 2006; Hansad Sutera 1986).
Extreme value analysis is then performed by fitting GensedliExtreme Value
(GEV) distributions (Coles 2001; Felici et al. 2006a,b) oguences of block-
maxima and of block-minima extracted from the generated series.

An outline of the paper follows. A short description of the aef metrics
and statistical inference can be found in Sec. 2. The butisstal properties of
the two runs are analysed in Sec. 3. The extreme value asalf/gihe selected
metrics is reported in Sec. 4, while the mapping of the exé®onto the sphere
is presented in Sec. 5. Conclusions and lines of future rels@ae summarised in

Sec. 6.



2. Data and methods

2a. Description of the model and experimental setup

The atmospheric model used in this study is ECHAMA4.6, an éaolwf the
model used by Roeckner and Arpe (1995), belonging to thetieygheration of
GCM developed at the Max Planck Institute for Meteorology iantburg. It
is an evolution of the spectral weather prediction modelhaf European Cen-
tre for Medium Range Weather Forecasts (Simmons et al 1982HARM4 uses
the spectral transform method fdry dynamicswhile water vapour, cloud water
and trace constituents are advected by using a shapespressemi-Lagrangian
scheme (Williamson and Rasch 1994). The model atmospheesatved in the
vertical by 19 layers, from the surface up to 10hPa. The moalghins a set of pa-
rameterisations for unresolved or not explicitly repreedrdynamical and phys-
ical processes, including radiation (Fouquart and Bonn8018orcrette 1991),
cumulus convection (Tiedke 1989; Nordeng 1994) stratifectouds (Roeckner
1995), gravity wave drag (Miller et al. 1989), vertical digion and surface fluxes,
land surface processes and horizontal diffusion. A summiye design and per-
formance of ECHAMA4 can be found in Roeckner and Arpe (1995).

Two simulations have been performed at T30 spectral hao@teasolution,



corresponding approximately to a gridf5 x 3.75 degrees. The GCM has been
run for 600 model winters (30 days each), under perpetualaigrconditions,
with two values of C@ concentration: the present concentration (360 ppmv) and
five times as much (1800 ppmv). The two runs only differ in the, C@ncentra-
tion: the Sea Surface Temperature (SST) and sea ice cov&epreonstant in
time and fixed to the January monthly mean. This implies tHamevaluating
changes in any statistical property of the atmospheriataton, we are actually
estimating gartial sensitivitywith respect to C@concentration changes, where
the ocean properties afmzen the full sensitivity could be obtained only with
a full coupled atmosphere-ocean model. We emphasise tedatk of a sea-
sonal cycle in the simulation, due to the fact that the mosleln in perpetual
winter conditions, is a further simplification, but it allewo avoid the rather del-
icate problem of filtering out the seasonal modulation frbmdignal. Moreover,
the bulk of the mid-latitude atmospheric processes whichhinbe affected by
the climate change, specifically the baroclinic activitiedke place under winter

conditions.
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2b. Wave Indexes used for the computation of time series

The 500hPa geopotential height is one of the most relevaighblas descriptive
of the large scale atmospheric circulation (Blackmon 1978)erefore, it con-
stitutes a fundamental benchmark for the comparison oémifft atmospheric
datasets of climatological relevance. Our study focusethemorthern hemi-
sphere mid-latitude atmospheric winter variability asaddé®d by the 500hPa
geopotential height provided by the 1¢€@ontrol run and the 5COrun. There-
fore, we consider the latitudinal belt 30-60°N, where both the baroclinic and
the low frequency planetary wave activity are present inEG#1AM4.6 model.
The geopotential field is averaged over such latitudinal inebrder to derive a
one dimensional longitudinal field representative of thecspheric variability at
mid-latitudes (we have verified that the results presenaowbare quite robust
with respect to the selection of the latitudinal band; tei€empatible with the
fact that they mainly refer to large scale, coherent atmesplieatures). Two
proxies of dynamical state for large scale features of theelatitude troposphere

are extracted from such datasets, according to the folgpwiocedure:

1. the 500hPa geopotential height fiéld\, ¢) is averaged with respect to

latitude¢ over the latitudinal band bounded betwed®AN and60°N;
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2. for each day in the DJF period, the 500hPa geopotentighhé Fourier

decomposed in the longitudinal directian

3. the index is finally computed from the variance associ&tetthe Fourier

coefficientsZ,, of the zonal wavenumbers, fér= ki, ki +1,..., k,:

ko 3
Ly e (8) = <Z 2|Zk(t)\2> : (1)

k=k1

The Wave Activity Index (Hansen and Sutera 1986; Benzi et386), or WAI,
is then computed as the root mean square of the zonal wavemnsralo 4 of the
winter 500hPa geopotential height variance over the cHasti®&l - 60°N, that
is, formula (1) withk; = 2 andk, = 4. Furthermore, an index of large scale
synoptic disturbances has been computed uking 6 andk,, = 8: we refer to
this as the Baroclinic Activity Index (BAI). The physical neag of the WAI and

BAIl indexes introduced above is further discussed in Sec. 3.
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2c. Statistical inference of extreme values

The model chosen for the statistical analysis of extremteeigeneralised distri-

bution of extreme values (GEV), defined by

G(x>:exp{— {Hs(x;“)}%}, @)

forzinthe set{z : 1+ {(x — u)/o > 0} andG(z) = 0 otherwise. FoE = 0,

the GEV reduces to the Gumbel distribution:

G(x) = exp (— exp <—‘T - “)) , 3)

defined inz € R. Given a time series, the distributional parametgrss, ¢)

are inferred by maximum likelihood procedures from seqesrmf block-maxima
extracted from the time series. The methodology has beetrided in detall
in Felici et al. (2006a,b), also see Coles (2001) for basiorthand more exam-
ples.

A convenient way to summarise the statistical propertiesxtfeme values is
thereturn level Given a numbep with 0 < p < 1, the return level associated

with thereturn periodl/p is defined as the valug, that has a probability to be
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exceeded by the block-maxima of the time series. A maximuaiiliood estima-
tor for z, is obtained by plugging the estimates for, o, £) into the formulas for

the quantiles of7(x), obtained by inverting (2):

i—2{i-[-log1—p) ¢} for E40,

Confidence intervals fot, may be obtained from those ¢f, o, ¢) by thedelta

method(Coles 2001; Felici et al. 2006a).

3. Bulk statistical propertiesof the model runs

Figure 1 portraits the empirical probability density funas (PDFs) of the WAI
and BAI indexes for the control run and the 5C€ase. The PDFs are estimated

using the kernel estimation technique of Silverman (19@®jre the smoothing

parameter, has been chosen as a Gaussian best-fit for each index. Wer@bser

that no gross discrepancies are apparent between the feedif CQ concentra-
tion cases; nevertheless, the one-dimensional Kolmog8rownov test indicates
that both pairs of the WAI and of the BAI time series are dravent different

underlying PDFs with a very high degree of confidence. Reggrthe first sta-
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tistical moments of the time series (see Table 1), we firs tiwdt both the mean
value and the standard deviation of WAI are much larger thase of BAI, thus
confirming that a large portion of the wave activity is cortcated on the spatial
scales pertaining to the planetary waves (Dell’Aquila e2805; Lucarini et al.
2006a). The mean values of both WAI and BAI decrease when thei€D-
creased, even if the 95% confidence bands of the means avBtajp confidence
intervals have been computed using a block-bootstrap rdethdach takes care of
the time auto-correlation of the time series. Basically weehthat the variance of
the mean varies a5 (L/7), wheres is the sample variancé, is the length of the
time series and is its decorrelation time. We have that in both cases 6 for
the BAIl andr =~ 12 for the WAI time series. The standard deviation of WAI and

BAI does not change with the G@oncentration.

3a. Interpretation of the results

The interpretation of the changes of the statistical priggenf the BAI and WAI
time series due to the alteration in the atmospheric cortiposequires the anal-
ysis of the changes in basic atmospheric fields. When congp#ia5CQ case
to the control run, we observe an increase in the global medace temperature,
a decrease in the surface air meridional temperature graidi¢he mid-latitudes
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of the northern hemisphere and a widespread increase indrsture content in
the atmosphere. These changes are rather robust featuaag ofimate change
simulation entailing increases in GOoncentration and the corresponding figures
are thus not reported here. We have to emphasise that sinaeevamnsidering
an atmosphere-only model, where the SST and the sea ice{ftelds are kept
constant in the two experiments, the observed climate ehangreatly reduced
with respect to what simulated in a fully coupled atmospfmrean models. The
decrease of the meridional temperature gradient at suldaeeis mainly due to
the polar amplification effect of the warming caused by theagiced decrease
in the snow cover in the mid-to-high latitudes, particytasler the Siberia, and
the consequent decrease of the average albedo in those Enead®CQ scenario
simulation shows an increase in the surface temperaturedatoatnigh latitudes
of about 2 degrees. The increase in the moisture conteneddtthosphere is re-
lated to the enhanced capacity of a warmer atmosphere to fatger amounts of
water vapour. When considering lower pressure levels, taagdin the merid-
ional temperature gradient is the opposite, with a strongeisse with latitude for
the 5CQ case.

Two mechanisms contribute to this effect. First, with vdrémospheric com-

position, the atmospheric water vapour increase is unelarally, in such a way
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that the moist adiabatic lapse rate decreases in absolute wvare in the tropical
regions. This tends to offset more and more efficiently goavgards lower pres-
sure the decrease in average baroclinicity occurring eastirface. A second
possible mechanism is the reduction of the upward propaafi waves into the
stratosphere due to the eddy control of the surface meatignadient.

GCM experiments for climates with reduced equator-to-petegerature dif-
ference (Rind 1998), and for doubled €C5hindell et al 1998) show such a re-
duction in planetary wave activity. The reduction of the waactivity should
reduce the momentum deposition into the stratosphere hwhiturn reduces the
overturning circulation of the stratosphere (Haynes 199he overturning acts
to cool the tropical stratosphere and to warm the polarsgpdtere (Eluszkiewicz
et al. 1996). The final feature associated with the weakeoirtlge stratospheric
circulation is the increase of the meridional temperatueslignt at low pressure
levels. The bulk of the statistics of both baroclinic andngt@ary waves seem to
support that the depression of the average baroclinicitgidates when the con-
ditions with fivefold increase in CQare considered, and that the reduction of
planetary waves activity agrees with the increase of thadweal temperature

gradient at low pressure levels.
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4. Extremevalue analysis

In this section we compare the statistics of extreme valfigdsealCQ and 5CQ
scenarios, see the next subsection. A discussion on tladiteyi of our choices

concerning the statistical inference is postponed to Sec. 4

4a. Comparison of the scenarios

The statistics of extreme values are analysed in two steptyfthe parameters,

o and¢ of the GEV distribution (2) are inferred from sequences oxima and of
minima for each of the six time series of WAI and BAI; secondgturn levels are
computed for several return periods by using (4). For thienesion of (u, o, £),
each time series is subdivided inBbdata blocks, each containirg daily values,
whereB = L/D andL is the total length (number of daily observations) of the
time series. Maximum values of the indexes over each datklalee computed,
yielding sequences of extreme values from whigho, £) are inferred. The same
procedure is applied to sequences of block minima of the senges. ForD we
have selected two valued) = 100 and D = 200. The corresponding point
estimates and uncertainties of the GEV parameters areteepiorTabs. 2 and 3

for the block maxima and in Tabs. 4, 5 for the block minima.

18



Plots of the return levels, as functions of the return periddp are given in
Fig. 2 (for D = 100) and in Fig. 3 (forD = 200), both for the maxima and for the
minima of the time series. For the minima we obtain negatalaas since in this
case the inferences are performed by first multiplying threetseries for -1 and
then extracting the maxima. In each plot results for bottithe series 1C®and
5CG, are given together, to allow comparison. It turns out thatdtiferences,
at extreme levels, between the 1C6cenario and the 5COscenarios are not
particularly significant, from the statistical point of wie the best estimates of
the return levels for 5CPOfall in most cases within the confidence intervals of
the 1CQ simulation and vice versa. Where the estimated uncertasngynaller,
one has that the point estimates agree with higher preciJiba only exception
is provided by the minima of the WAI index, for which the comitte intervals
of the run with 1CQ do not overlap with those of the 5G@ase, at least for
sufficiently large return periods.

The large sampling uncertainty of the time series suggkatsttmay be dan-
gerous to draw physical conclusions from the mere compax$dhe point esti-
mates of the GEV parameters: confidence intervals shouldyshie taken into
account in the analysis. We also emphasise that it may beaiisig to identify

changes in the point estimates of the location parameteith changes in the
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“average extremes”: an example of this is provided by theimayof the WAI
index, for which, when passing from 1G@ 5CQ0;, one observes an increase of
1 but a decrease in the return levels (at least for sufficidatlye return periods).
Both differences are, however, not very significant (palidy so for the point
estimate ofi), given the overlapping of the confidence intervals.

We also remark that the inferred value of the paramgternegative, corre-
sponding to a Weibull distribution (Coles 2001). The suppbkVeibull probabil-
ity density functions is bounded from above: there existalaez,, = 1 — o /¢
which may be considered as a return level with unboundedrreteriod, since
values larger than,, form a set having zero probability (the Weibull probability
density function is identically zero for those values). Taet thatf is negative
with overwhelming reliability suggests the existence op@pand lower bounds
for the considered indexes. Since we are dealing with gledahbles, we may
attribute this property to fact that the system we analyseafaite energy input;
see the related discussion in the context of a simpler maouwdysed by Felici et

al. (2006a).
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4b. Assessment and sensitivity analysis

The data block sizé) has been determined by trying several values @nd
assessing goodness-of-fit by standard diagnostics. Suec&EV is a limit dis-
tribution, obtained in the limit ofL and D going to infinity, in order to catch
genuinely extreme events it is not sufficient to take a blecigth that is slightly
larger than the decorrelation time scale This implies that 50 days is likely to
be the minimum acceptable block length. We also emphasagéttére is no need
to detrend the data in the present analysis, since the ruhstid ECHAMA4.6
model are performed under perpetual January conditionthoAgh the latter is
an oversimplification of the model, as far as inference ofeare values is con-
cerned, statistical stationarity is an important advaatatered by the considered
ECHAMA4.6 simulations with respect to other models or obsgata. See the
discussion in Felici et al. (2006b).

The influence of the choice of block lengthis illustrated in Fig. 4, where we
display the inferred values of the GEV parametéand the related uncertainties)
against the value ab used for the inference. The asymptotic nature of the GEV
distribution reflects to the fact that the inferences becapproximately constant
as D increases. Of course, uncertainties increase Witlsince one is using less
values for the inference. Accordingly, the valuedobdf the previous section (that
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is D = 100 and 200) are selected in such a way that the inferences a@naaly
stable and that the associated uncertainties are not . [&here is a good deal
of subjectivity in this choice: as usual in GEV-based anal{Soles 2001; Felici
et al. 2006a,b), one has to adopt a reasonable compromigedretong and short
data blocks. Using long data blocks is more likely to yielduences of “genuine”
extremes, but fewer values are selected, which may resuhacceptably large
uncertainties. Taking too short block sizes, however, migiuce a bias towards
the bulk of the statistics (or even cause problems due to aneghigible amount
of autocorrelation in the data). This problem is particlylaerious when dealing
with real observations, since we cannot extend the lengtheofecord to satisfy
the requirements on data abundance.

For all time series of WAI and BAI, the choice @ = 100 is reasonable:
it is large enough to ensure decorrelation of the extremeegand, moreover,
the point estimates of the GEV parameters remain almostaon®r D > 100.
Moreover the maximum likelihood estimate §fis is always negative, except
in cases where sampling uncertainty is large, see Fig. 4. didgnostic plots
in Fig. 5 confirm that both choice® = 100 and D = 200 yield inferences
of reasonably good quality: for example, the displacemehisoints from the

diagonals are relatively small in the probability and quamiots. More graphical
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diagnostics (not shown), analogous to those in Fig. 4 andFiguggest that the
same conclusions also hold for the minima.

The similarities of the statistics of extreme values betwi® two scenarios
are further highlighted in Fig. 6: the GEV probability deres nearly overlap.
A word of caution should be spent here because a small \ariatithe proba-
bility density corresponds to a huge difference in total @awnergy for the WAI
index, whereas this difference is much smaller for BAI. Altigh sharper discrep-
ancies appear for largér, the corresponding return values (not shown) are in fact
rather similar for the two C®scenarios. This suggests that the differences in the
GEV densities are not particularly significant: they seerbaadue to sampling
uncertainty, related to excessive shortness of the recatiggr than to a relevant
variation of the underlying physical processes. Our confidan this statement
is based on the numerous diagnostic plots that we have egdnfimot shown),
that include many more plots similar to those in Figs. 3 up tb@ also non-
parametric densities, estimated from the sequences offrmaaand minima and

also the visual inspection of the maps reported in Sec. 5.
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5. Mapping the extremes

In this section we examine the average maps corresponditige teequences of
extreme values (maxima or minima) extracted from the tinreesef the WAI

and BAI indexes. For each index, maxima and minima are coatpoter blocks

of lengthD = 100 days (see Sec. 4a). From these extreme value samples, we
selected the 500hPa maps corresponding to the date of tleen@d. Collecting
thesemaps of extreman four ensembles, we computed the mean and the standard
deviation for each ensemble.

Fig. 7 shows the ensemble eddy mean and the ensemble statel@ation
(denoted by std for shortness) for both the 5GMd 1CQcases (left and right
columns, respectively) of the maxima. Visual inspectioggasts an amplification
of wave number 2 and 3 for the eddy fields. The WAI case (top relgws
enhanced eddy field, as expected by the choice of the indéix,imdreasing of
the positive centre over the Rockies and deepening of thdinegantre over the
Labrador with respect to the mean eddy field, where the latgsan (not shown)
is taken over the whole time series. This wavy pattern cpoeds to a ridge
over the Rockies and diffluent flow over Europe. For the 5C&se, we observe
an increase of the geopotential height over the Siberiateglaand a moderate

westward shift of the wave pattern respect to the 1C@se. The std patterns
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display two main peaks over the north-central Atlantic anek dhe north-western
Pacific. Those peaks correspond to the ending part of the ¢@aroc storm-track
regions, in correspondence with the jet exit for both theaezsectors. The 5CO
run shows higher values over the Euro-Atlantic sector, evtlie 1CQ over the
Pacific.

The BAI case (bottom panel) shows an eddy pattern simildngariean eddy
pattern (figure not shown). Moreover the differences betw&€0, and 1CQ
runs bear some resemblance to the differences between rfesponding total
means. In particular, the 1GQun is characterised by an eastward shift over
the Rockies and a northward shift of the Euro-Atlantic pesitatnomaly. The
two std maps show larger variance in correspondence withdahdpass-high fre-
guency filtered 500hPa height variance, which charactetisestorm-track areas.
A noteworthy fact is that the extremes of a planetary indexs@ur BAI, contain
information on the regional storm-tracks.

Fig. 8 shows the same plots as in Fig. 7, but for the minima efitldexes.
The WAI case (top panel) displays a strong zonal flow, whichharacterised
by the wave number 1 in the eddy field, as expected by the clobittee index.
The difference between the two total fields (figure not shosuggests a zonal

increase of the 500hPa geopotential height around the @bolllee 5CQ case
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The WAI minima ensembles show std centres in the exit regiadheoPacific
jet and over the northern Atlantic. As previously noted, B case (bottom
panels) shows an eddy pattern similar to the mean eddy pdfigure not shown),
while the two std maps show larger variance in corresporaaiih the Pacific

and Atlantic jet exit regions.

6. Summary and conclusions

We have analysed the impact of a five-fold increase in atnersplCO, on the
statistics of two wave indexes in the ECHAMA4.6 General CirtoteModel. The
indexes we have examined can be considered as proxies ofagtiviy at dif-
ferent spatial and temporal scales. The investigation shibat, although certain
differences are observed between the simulation at,1&%@ that with 5CQ,
these differences are not dramatic. As far as the wholesstatiof the time series
is concerned, we observe that the average low frequencyvebvenumber activ-
ity, as well as the high frequency baroclinic activity, clgahow a slight shift to
lower value when going from 1 to 5GOThis can be interpreted as the effect of
the decrease of the average baroclinicity of the mid-ldé&s) which is only par-

tially offset by the potentially storm-enhancing effectedw the increase of the
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moisture content of the atmosphere. We note that, in a follypted simulation of
climate, it is likely that both effects of depression of thveiage baroclinicity of
the system and increase in the moisture content of the atreosor increased
CO, concentration are greatly enhanced. Therefore, it is anglether the over-
all impact would be the same as in the present simulations.

The statistical behaviour of extreme values of the various series is studied

by the block-maximum method, by inferring Generalised &xte Value models.

The statistical significance of these results has been tighip assessed by stan
dard diagnostic tools. The results indicate that the ofteoked approach of relat-
ing changes of the extremes to changes in the mean and stadelaation of the

bulk statistics is not very reliable: in the present casettie time series smaller
means and same variances are obtained when passing fronCDto(Gompare

Table 1), but there is little or no change at extreme levaisftare Fig. 2). More-
over, even for the present, idealised simulations, largeedainties (confidence
intervals) are systematically obtained in the estimatab@iGEV. This suggests
that very long time series are required for accurate esmsiind this problem is
likely to be harder when dealing observed data or with natiestary simulations
(e.g.including the seasonal cycle). Also, the results indidad¢ the identification

of changes in the point estimates of the GEV parameteaaad s with changes
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in the overall statistical properties of the extremes isstjoaable: for instance, a
larger point estimate gf does not necessarily imply larger return levels. In this
sense, the value of the parametewhich is usually the most delicate to estimate,
plays a crucial role. This is particularly relevant for tharapolation of the in-
ferences at very high levels. The analysis of extreme vatiesmplemented by
an examination of composite maps of the extremes of the naaxline main fea-
ture we observe is that the increase of the,€@ncentration tends to increase the
relative weight of the wave activity of the Atlantic sector.

In this study, we considered global measure of physical wawperienced
by the atmospheric system. An important step forward wiltdoeonsider local
measure of climatic parameters, such as precipitationrfaseitemperature, for
generalising the results of the present work. However, wphasise that the
examination of variables of local nature is likely to be mpreblematic: compare
e.g.Vannitsem (2007), where it is suggested that prohibitivehyg time series
are necessary to reach satisfactory convergence of th&tistdtestimators. This
conclusion further highlights the need of understandirg physical processes
which should be involved in the change of meteo-climaticdaaxies, in parallel

with the study of the statistical properties of models oframereasing complexity.
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Figure 1: Left: One-dimensional probability distributitumction of the planetary

wave index WAI for the runs with 1C{)continuous line) and 5C{{dashed line).

Units: WAI [m]. Right: same as left panel for the BAI index.
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WAI—extreme Maximum mu-std WAI—extreme Maximum mu-std

- —

Figure 7: The eddy ensemble mean (contour) and the standeaiation (shaded)
of the 100-day maxima of the WAI (top row) and BAI (bottom row) indexésr,
the simulations with 5C®(left panel) and the 1C{right panel).
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WAI—extreme Minimum mu-std WAI—extreme Minimum mu-std

Figure 8: Same as Fig. 7 for the minima of the indexes.
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Table 1: 95% confidence band of the mean and standard dev{atth expressed

in m) of the WAI and BAI indexes for each of the two GCM runs.

95% mean confidence bandtandard deviation
WAILCO, 93.0+ 1.9 21.0
WAI5CO, 92.1+1.8 21.1
BAI1CO, 35.0+ 0.3 9.0
BAI5SCO, 345+ 0.3 9.0
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Table 2: Maximum likelihood estimates of the GEV parametererred from
sequences of block-maxima of the WAI and BAI index, with dength D =
100, for the two considered simulations: 1¢@nd 5CQ. Uncertainties ar85%
confidence bands, evaluated by the observed informatiorixnat, o and their

statistical uncertainties are expressed in units.of

& o I D L

WAI1CO2 | —0.19 £+ 0.04 | 10.28 £+ 0.58 | 131.08 + 0.84 | 100 | 18000
WAISCO2 | —0.28 £ 0.04 | 10.55 £ 0.6 | 132.26 £ 0.85 | 100 | 18000
BAI1CO2 | —0.16 = 0.05 | 5.1 £ 0.29 | 56.84 + 0.42 | 100 | 18000
BAISCO2 | —0.15 £ 0.04 | 5.18 £+ 0.29 | 56.05 4+ 0.42 | 100 | 18000
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Table 3: Same as Table 2, with = 200.

13 o 1 D L
WAI1CO2 | —0.20 £ 0.06 | 9.81 £+ 0.79 | 136.68 + 1.14 | 200 | 18000
WAISCO2 | —0.23 4+ 0.07 | 8.13 £ 0.68 | 138.87 4+ 0.95 | 200 | 18000
BAILCO2 || —0.19 4+ 0.07 | 4.77 £ 0.38 | 60.11 = 0.55 | 200 | 18000
BAISCO2 | —0.12 £ 0.07 | 4.45 £ 0.37 | 59.58 £ 0.52 | 200 | 18000
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Table 4: Same as Table 2, for the block-minima of the WAI and iBdexes.

13 o 1 D L
WAILCO2 | —0.37 £ 0.04 | 10.48 £+ 0.60 | —49.18 £+ 0.84 | 100 | 18000
WAISCO2 | —0.31 £+ 0.05 | 11.35 £+ 0.66 | —48.34 + 0.93 | 100 | 18000
BAI1CO2 | —0.20 £+ 0.05 | 2.18 + 0.13 | —17.70 £+ 0.18 | 100 | 18000
BAI5SCO2 | —0.22 +£ 0.05 | 2.37 + 0.14 | —17.38 4+ 0.20 | 100 | 18000
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Table 5: Same as Table 4, with = 200.

13 o [ D L
WAI1CO2 | —0.33 £+ 0.06 | 7.43 £ 0.60 | —42.56 £+ 0.86 | 200 | 18000
WAI5CO2 || —0.39 £+ 0.06 | 9.92 + 0.81 | —40.67 + 1.13 | 200 | 18000
BAI1CO2 | —0.25 +£ 0.06 | 1.91 £ 0.15 | —16.05 £ 0.22 | 200 | 18000
BAISCO2 | —0.26 £+ 0.07 | 2.21 £ 0.18 | —16.04 £ 0.26 | 200 | 18000
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