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Abstract

In the thin domain Oε = T2 × (0, ε), where T2 is a two-dimensional
torus, we consider the 3D Navier-Stokes equations, perturbed by a white
in time random force, and the Leray α-approximation for this system. We
study ergodic properties of these models and their connection with the
corresponding 2D models in the limit ε→ 0. In particular, under natural
conditions concerning the noise we show that in some rigorous sense the 2D
stationary measure µ comprises asymptotical in time statistical properties
of solutions for the 3D Navier-Stokes equations in Oε, when ε� 1.
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1 Introduction

In this paper we study the stochastic Navier-Stokes equations (NSE) in a thin
three-dimensional domain Oε = T2×(0, ε), where T2 is the torus R2/(l1Z×l2Z).
That is, in Oε we consider the 3D NSE, perturbed by a random force, which is
smooth as a function of the space-variable x, while as a function of time t it is
a white noise. Using the Leray projection Πε we write the equation as

u′ + νAεu + Bε(u, u) = fε + Ẇε . (1.1)

Here Aε is the Stokes operator −Πε∆, Bε(u, u) = Πε((u ·∇)u), fε(x) is a deter-
ministic part of the force and Ẇε(t, x) is the time-derivative of a Wiener process
Wε(t, x) in an appropriate function space. The equations are supplemented with
the free boundary conditions in the thin direction (see (2.4) below).
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This boundary value problem for the 3D NSE describes a special case of
anisotropic 3D turbulence, important for the meteorology (see, e.g., [7]). The
natural related question is to find out up to what extend this anisotropic 3D tur-
bulence can be approximated by 2D turbulence. In our work we continue the
rigorous study of this problem, initiated in [4].

The study of global existence of strong solutions for the deterministic Navier-
Stokes equations in thin three-dimensional domains began with the papers of
Raugel and Sell [21, 22], who proved global existence of strong solutions for
large initial data and forcing terms in the case of periodic or mixed boundary
conditions. After these initial results, a series of papers by different authors
followed, in which the results of Raugel and Sell were sharpened and generalised
in various ways, see [19, 11, 20, 1, 24, 12, 5]. In the quoted works it was also
shown that for ε � 1 solutions of the 3D NSE in an ε-thin domain becomes
close to solutions of the corresponding 2D NSE.

From other hand, the stochastic 2D NSE and similar to them 2D NSE,
perturbed by random kick-forces, were intensively studied in recent years by
many authors, see [10, 16, 2, 9, 15] and references therein. Under some mild
restriction on the random force it was proved that the equation has a unique
stationary measure, which governs stochastic properties of its solutions as time
goes to infinity; we refer to the survey [15] for details.

In [4] the authors of this work considered the 3D NSE in Oε, perturbed by
a random kick-force. That is, we considered the equation (1.1), when the r.h.s.
fε + Ẇε is replaced by a random kick-force. Assuming that the force is not
too big and is genuinely random we proved that the equation, regarded as a
random dynamical system in the H1-space of a divergence-force vector fields,
has a unique stationary measure; that all solutions converge to this measure
in distribution, and that the two-dimensional part of the stationary measure
(defined below) converges, when ε goes to zero, to a stationary measure for the
2D NSE on the torus T2. It is shown in [4] that the results obtained apply to
study asymptotical properties of various physically relevant characteristics of
the flow, described by the Navier-Stokes equations in the domain Oε.

Our goal in this work is to extend the results of [4] to the stochastic NSE
(1.1). This tasks complicates by the well known difficulty: no matter how
small ε is, almost every solution for the stochastic NSE (1.1) exists only finite
time.1 So we cannot study its asymptotical in time properties directly. To
resolve this difficulty we apply a trick, often used in physics: we regularise the
equation, study its limiting properties and next remove the regularisation. For
the regularised equation we take the α-model, introduced by J. Leray in [18] for
an analytical study of the NSE. Namely, we replace the nonlinearity (u ·∇)u by
(Gαu · ∇) u, where Gα = (1 + αAε)−1, and write thus regularised equation as

u′ + νAεu + Bε(Gαu, u) = fε + Ẇε , (1.2)

1More specifically, when time grows, the (strong) solution inevitably becomes very large,
so due to the well known lack of a corresponding result on the 3D NSE we cannot guarantee
that it keeps existing.
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see Section 2.5. Analytical properties of eq. (1.2) are as good as those of the
2D NSE (in fact, they are even better). In particular, for any initial data the
equation has a unique solution, existing for all t, and the techniques, developed
for the stochastic 2D NSE allow to show that the equation has a stationary
measure µα

ε , which is unique if the force Ẇε is nondegenerate. In the latter case
every solution u(t, x) of (1.2) converges to this measure in distribution:

D u(t) ⇀ µα
ε as t →∞ ,

see Theorem 2.7. Our goal is to study behaviour of the measure µα
ε when ε → 0

and α → 0.
To describe the results, we consider the operator Mε of averaging in the thin

direction x3, which maps 3D velocity fields on Oε to 2D fields on T2 by the
formula

(Mεu)(x′) =
(

1
ε

∫ ε

0

u1(x′, x3) dx3,
1
ε

∫ ε

0

u2(x′, x3) dx3

)
, x′ = (x1, x2) ∈ T2.

(1.3)
As in the previous works on the NSE in thin 3D domains, we compare Mεu(t),
where u(t) satisfies (1.2), with solutions for the 2D equation

v′ + A0v + B0(v, v) = f̃(x′) + ˙̃
W (t, x′), x′ ∈ T2 , (1.4)

where A0 and B0 are the corresponding 2D Stokes operator and the bilinear
operator, and f̃ and W̃ are limits of Mεfε and MεWε as ε → 0 (below we assume
that these limits exist). Under a mild nondegeneracy assumption on the noise
˙̃

W , the equation has a unique stationary measure µ (which is a Borel measure
in the L2-space of divergence-free vector fields on T2), see Theorem 2.4. We also
consider the α-approximation for equation (1.4) by putting B0((1+αA0)−1v, v)
in (1.4) instead of B0(v, v). Under the same nondegeneracy assumptions it also
has a unique stationary measure µα.

Our main results are presented in Theorem 3.1 and Theorem 3.2. In addition
to some nondegeneracy conditions on the random forces they require that (i) the
correlation operator of the Wiener process Wε(t) in the L2-space of vector-
functions on Oε with respect to the normalised measure ε−1 dx1 dx2 dx3 has a
finite trace, bounded uniformly in ε; (ii) the L2-norms of functions fε(x) are
bounded uniformly in ε, and (iii) the correlation operator K0 of 2D Wiener
process W̃ (t, x′) satisfies the condition trA0K0 < ∞.

The first main result (see Theorem 3.1) states that the projection Mεµ
α
ε of a

stationary measure µα
ε for (1.2) weakly converges as ε → 0 to a unique stationary

measure µα of the 2D Leray approximation which, in its turn, converges as
α → 0 to the unique stationary measure µ of 2D NSE (1.4). Moreover, if
α = α(ε) is a function of ε which converges to zero as ε → 0 sufficiently slow in
comparison with ε, then again Mεµ

α(ε)
ε converges to µ as ε → 0. In particular,

if the 3D noise Ẇε is nondegenerate, then the stationary measure µα
ε is unique,
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and for any solution uα
ε (t) of (1.2) we have

MεD uα
ε (t) t→∞−−−→ Mεµ

α
ε

ε→0−−−→ µα α→0−−−→ µ ,

where the arrows indicates the weak convergence of measures.
Our next main result deals with the limit ‘first ε → 0, next α → 0’. It is

easy to establish that the set of measures {µα
ε , 0 < α ≤ 1} is tight in the space

of Borel measures in the corresponding L2-space (see, e.g., Theorem 2.9 below).
Let us denote by Lim α→0µ

α
ε the set of all its limiting points as α → 0. We

prove in Theorem 3.2 that the set Lim α→0µ
α
ε is formed by (weakly) stationary

measures for the 3D NSE (1.1), and Mε(Lim α→0µ
α
ε ) weakly converges to 2D

stationary measure µ as ε → 0. This means that choosing for each ε > 0 any
µε ∈Lim α→0µ

α
ε we have µε ⇀ µ as ε → 0.

Jointly the two theorems show that

lim
α→0

lim
ε→0

Mεµ
α
ε = lim

ε→0
Lim
α→0

Mεµ
α
ε = µ. (1.5)

That is, in some rigorous sense the anisotropic 3D turbulence, described by
eq. (1.1) with a force, having bounded normalised intensity, may be approxi-
mated by the 2D turbulence, described by eq. (1.4). In particular, the energy
of the 3D flow is close to that of a corresponding 2D flow (as well as averaging
of any functional of the flow, which is continuous in the L2-norm). In the same
time, we cannot prove that averaged enstrophy or enstrophy production of the
3D flow converges to that of the 2D flow, see a discussion in Section 3.

The paper is organised as follows. In Section 2 we describe the models under
the consideration, quote several known results concerning statistical solutions
and stationary measures and give some preliminary results on dependence of
statistical characteristics on ε as ε → 0. This section also contains Theorem 2.7
and Theorem 2.9 on the existence and limiting properties of stationary measures
µα

ε and corresponding statistical solutions for fixed ε, which, as we believe, are of
independent interest. In Section 3 we formulate our main results (Theorem 3.1
and Theorem 3.2). The proofs are rather technical and defer to Section 4. In
this section we also prove Proposition 2.8 which makes an auxiliary step in the
proof of the uniqueness of the stationary measure µα

ε for (1.2) in Theorem 2.7.

Notations. We denote by D(·) the distribution of a random variable, denote
by the symbol ⇀ the weak convergence of measures and denote by | · |L(H) the
operator-norm for operators in a Hilbert space H.

Acknowledgements. We wish to thank Professor A. Tsinober for discussions
of physical aspects of the problem we consider in this work. Our research was
supported by EPSRC through grant EP/E059244.
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2 Models

2.1 3D Navier-Stokes equations in a thin domain

Let Oε = T2 × (0, ε), where T2 is the torus T2 = R2/(l1Z× l2Z), l1, l2 > 0, and
ε ∈ (0, 1]. Let x = (x′, x3) = (x1, x2, x3) ∈ Oε, and let

u(x) = (u1(x), u2(x), u3(x)), x ∈ Oε,

stands for a vector function on Oε. On the domain Oε we consider the Navier-
Stokes equations (NSE) perturbed by the white noise

∂tu− ν4u +
3∑

j=1

uj∂ju +∇p = fε + Ẇε in Oε × (0,+∞), (2.1)

div u = 0 in Oε × (0,+∞), (2.2)

u(x, 0) = u0(x) in Oε. (2.3)

We supplement the equations with the free boundary conditions in the thin
direction. Thus we impose the following boundary conditions:

x′ ∈ T2 (i.e., u is (l1, l2)-periodic with respect to (x1, x2) ),
and
u3|x3=ε = 0, ∂3uj |x3=ε = 0, j = 1, 2,

u3|x3=0 = 0, ∂3uj |x3=0 = 0, j = 1, 2.

(2.4)

Here above fε = fε(x) is a deterministic time-independent force, and Ẇε(t) is
generalised derivative of a Wiener process with values in appropriate function
space (see Section 2.2 below).

Let Wε be the space, formed by divergence-free vector fields u = (uj)j=1,2,3

on Oε such that

u ∈
[
H2(Oε)

]3
,

∫
Oε

ujdx = 0, j = 1, 2,

and condition (2.4) is satisfied. Let Vε (respectively, Hε) be the closure of Wε in[
H1(Oε)

]3 (respectively, in
[
L2(Oε)

]3). We denote by | · |ε and (·, ·)ε the norm
and the inner product in Hε and by

‖u‖ε ≡ |∇u|ε = [aε(u, u)]1/2

the norm in Vε. Here and below

aε(u, v) =
3∑

j=1

∫
Oε

∇uj · ∇vj dx.

We will also use the normalised versions of the introduced norms:

| · |0,ε = ε−1/2| · |ε , ‖u‖0,ε = ε−1/2‖ u‖ε . (2.5)
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We denote by Aε the Stokes operator defined as an isomorphism from Vε

onto the dual V ′ε by

(Aεu, v)V,V ′ = aε(u, v), u, v ∈ Vε .

The operator is extended to Hε as a linear unbounded operator with a domain
D(Aε) = Wε. Let Πε be the Leray projector on Hε in (L2(Oε))3. Then

(Aεu)(x) = (−Πε∆u)(x), for almost all x ∈ Oε

for every u ∈ D(Aε).
Now we consider the trilinear form

bε(u, v, w) =
3∑

j,l=1

∫
Oε

uj ∂jvl wl dx, u, v ∈ D(Aε), w ∈ (L2(Oε))3.

It defines a bilinear operator Bε by the formula

(Bε(u, v), w)Vε,V ′
ε

= bε(u, v, w), u, v, w ∈ Vε ,

and the system (2.1)–(2.4) can be written in the Leray form (1.1).
It is proved in the works on deterministic equations, mentioned in Introduc-

tion (see, e.g., [12, 24]), that if the random component Ẇε of the force vanishes,
while fε ∈ Hε and u0 ∈ Vε are bounded in certain sense, then for ε � 1 the
problem (1.1) has a unique strong solution. In [4] a similar result has been
obtained for the 3D NSE, perturbed by a random kick-force. In this work we
are concerned with forces, having non-trivial white component Ẇε. We begin
their study with discussion of basic properties of the white forces and statistical
(weak) solutions.

2.2 Noise

We assume that the Wiener process Wε has the form

Wε(t, x) =
∑

j

bε
jβj(t) eλj (x) +

∑
j

b̂ε
j β̂j(t)eΛε

j
(x) . (2.6)

Here bε
j , b̂ε

j are real numbers such that

Bε
0 =

∑
j

(bε
j)

2 < ∞ , B̂ε
0 =

∑
j

(b̂ε
j)

2 < ∞ , (2.7)

and βj(t), β̂j(t) are standard independent Wiener process, defined on a proba-
bility space (Ω,F ,P). So Wε(0) = 0. The system of vectors {eλj , eΛε

j
; j ≥ 1}

is the orthogonal basis of Hε, formed by eigenfunctions of the Stokes operator,
corresponding to eigenvalues {λj ,Λε

j}. They are normalised as follows:

|eλj |0,ε = |eΛε
j
|0,ε = 1
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(see Appendix). So these vectors form an orthonormal basis of the space
(Hε, | · |0,ε), while the vectors {ε−1/2eλj

, ε−1/2eΛε
j
} form an orthonormal ba-

sis of (Hε, | · |ε). We also note that the eigenfunctions eλj
have the structure

eλj = (ẽλj ; 0), where ẽλj are the eigenfunctions of the 2D Stokes operator on
T2 which correspond the to same eigenvalues.

For any vectors f =
∑

j fj eλj +
∑

j f̂jeΛε
j

and h =
∑

j hj eλj +
∑

j ĥjeΛε
j

from Hε, we have E(Wε(t), f)ε = 0 and

E(Wε(t), f)ε(Wε(s), h))ε = (t ∧ s) (Kεf, h)ε,

where the correlation operator Kε is diagonal in the basis {eλj , eΛε
j
, j ≥ 1}:

Kεeλj
= ε[bε

j ]
2eλj , KεeΛε

j
= ε[b̂ε

j ]
2eΛε

j
, j = 1, 2, . . . (2.8)

The relations above imply that

E|Wε(t)|2ε = t · ε ·

∑
j

[bε
j ]

2 +
∑

j

[b̂ε
j ]

2

 ≡ t · trKε < ∞.

Note that the correlation operator for the process Wε with respect to the scalar
product (·, ·)0,ε ≡ ε−1(·, ·)ε generated by | · |0,ε is ε−1Kε.

It is well known that for a.e. ω the corresponding realisation of the process
Wε defines a continuous curve Wε(t) ∈ Hε, see [8].

2.3 3D statistical solutions

We recall now some results from [25] (see also [26]) concerning statistical solu-
tions of problem (2.1)-(2.4).

Let us denote by W−s
ε the completion of the space Hε with respect to the

norm |A−s
ε · |ε with some s > 5/4, and for any T > 0 let Zε

T be the space of
functions u(x, t) in C(0, T ;W−s

ε ) such that

| u |Zε
T
≡ sup

0≤t≤T
|A−s

ε (u(t))|ε +
(∫ T

0

|u(τ)|2εdτ
)1/2

< ∞ .

We also set

Zε = {u ∈ C(0,∞;W−s
ε ) : uT := u |[0,T ]∈ ZT for any T > 0} . (2.9)

This is a complete metric space with respect to the distance

distZε(u, v) =
∞∑

n=1

2−n |(u− v)n|Zε
n

1 + |(u− v)n|Zε
n

. (2.10)

It is proved in [25] that if fε ∈ Hε and u0(x) is a random variable, independent
from the force Ẇε and satisfying E|u0|2+η

ε < ∞ for some η > 0, then the problem
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(2.1)-(2.4) has a statistical solution which is a Borel probability measure Pε in
Zε supported by the set of functions u(x, t) in C(R+;W−s

ε ) such that

| u |T≡ sup
0≤s,t≤T

|A−s
ε (u(t)− u(s))|ε

|t− s|δ
+
(∫ T

0

‖u(τ)‖2εdτ
)1/2

< ∞ (2.11)

for some 0 < δ < 1/2 and for all T . It means that there exists a new probability
space and on this space there exist processes û(t) ∈ Hε , t ≥ 0, and Ŵε(t) ∈
Hε, t ≥ 0, such that D(û(·)) = Pε and

• Ŵε is a Wiener process, distributed as the process Wε;

• Dû(0) = Du0 and the random variable û(0) is independent from the pro-
cess Ŵε;

• the process û(t), t ≥ 0, satisfies eq. (1.1) with Wε replaced by Ŵε. That
is,

û(t)− û(0) +
∫ t

0

(
νAεû + Bε(û, û)− fε

)
ds = Ŵε(t) ∀ t ≥ 0 , (2.12)

almost surely (the equality (2.12) is understood in the usual sense: it
holds true after we multiply it in Hε by any function ϕ ∈ Vε ∩ C∞(Oε)
and replace (Bε(û, û), ϕ) by −(Bε(û, ϕ), û)).

We note that in [25, 26] the statistical solutions are defined in terms of Kol-
mogorov’s equation. That definition is equivalent to the one above.

It is also proved in [25, 26] that eq. (1.1) has a stationary statistical solution
which is a statistical solution, defined by a stationary Borel measure Pε. That
is, the measure Pε is invariant under the translations

Zε → Zε, u(·) 7→ u(τ + ·), τ ≥ 0 .

The trace-measure of the measure Pε, i.e., its image under the mapping u(·) 7→
u(0), is a measure on Vε, called a weakly stationary measure for eq. (1.1).

Statistical solutions for the 2D NSE and the α-approximation for the 3D NSE
which we consider later in this work are defined similarly. In Theorem 2.9 below
we construct stationary statistical solutions Pε for (1.1) as limits (when α → 0)
of the statistical solutions to the corresponding α-approximations (1.2). Due to
lack of the uniqueness statement these 3D solutions Pε may be different from
the solutions constructed in [25] by the Galerkin method.

2.4 Corresponding 2D Navier-Stokes equations

Our goal is to study solutions for (2.1)–(2.4) when ε → 0. Under this limit
problem (2.1)–(2.4) is closely related to the 2D NSE on T2 (see Introduction).
To describe this relation we first define the space

Ṽ =
{

u ∈ H1(T2; R2) : div′ u = 0,

∫
T2

u dx′ = 0
}

,
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where the prime in div′u indicates that we consider the differential operation
with respect to the variable x′ = (x1, x2) (in contrast with x = (x1, x2, x3) ≡
(x′, x3)). Next we define the space H̃ as a closure of Ṽ in

[
L2(T2)

]2. We denote
by | · |T2 and (·, ·)T2 the L2-norm and L2-inner product in H̃, and denote by
‖ · ‖T2 = |∇ · |T2 the norm in the space Ṽ . The subscripts in | · |T2 , (·, ·)T2 and
‖ · ‖T2 will be often omitted when apparent from the context.

One can see that the averaging operator Mε given by (1.3) maps the spaces
Hε and Vε in H̃ and Ṽ respectively. The operator

(M∗
ε v) (x) = u(x) with uj(x) = vj(x′) for j = 1, 2 and u3 = 0

defines isometric embeddings M∗
ε : Ṽ → (Vε, ‖ · ‖0,ε) and M∗

ε : H̃ → (Hε, | · |0,ε).
This operator is a right inverse to Mε, i.e. Mε ◦M∗

ε = id, and is adjoint to the
operator Mε : (Hε, | · |0,ε) → H̃. We also define the operator M̂ε in Hε (resp. in
Vε) by the formula

M̂εu = (Mεu; 0) = M∗
ε Mεu, u ∈ Hε (resp. u ∈ Vε). (2.13)

The operator M̂ε defines an orthogonal projector in Hε and in Vε. So

Vε = M̂εVε ⊕ N̂εVε , where N̂ε = I − M̂ε . (2.14)

By an analogy with the deterministic NSE (see, e.g., [24]) and the equation,
perturbed by a kick-force [4], we can conjecture that if the limits

f̃ = lim
ε→0

Mεf ∈ H̃ and b0
j = lim

ε→0
bε
j , j ≥ 1 ,

exist, then the Mε-projections of solutions to (2.1)–(2.4) should be close (when
ε � 1) to solutions of the following 2D NSE on T2

∂tv − ν4′v +
2∑

j=1

vj∂jv +∇′p = f̃ + ˙̃
W in T2 × (0,+∞), (2.15)∫

T2
v(t, x′) dx′ = 0 ; div ′v = 0 in T2 × (0,+∞), (2.16)

v(x′, 0) = ṽ0(x′) in T2. (2.17)

Here W̃ (t, x′) = W̃ (t) is the Wiener process in H̃ of the form

W̃ (t) =
∑

j

b0
jβj(t) ẽλj , B0 =

∑
j

(b0
j )

2 < ∞ ,

where ẽλj
≡ Mεeλj

are eigenfunctions of the 2D Stokes operator (see Appendix).
So a.a. realisation of W̃ defines a continuous trajectory in H̃, and the correlation
operator K̃0 of the process is the diagonal operator

K0ẽλj = [b0
j ]

2ẽλj , j = 1, 2, . . . ,
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cf. Section 2.2.
In the abstract form problem (2.15)–(2.17) can be written as

u′ + νA0u + B0(u, u) = f̃ + ˙̃
W, u(0) = u0, (2.18)

where A0 and B0 are the corresponding two dimensional Stokes operator and
bilinear operator.

A random field u(t, x) is called a (strong) solution of the problem (2.15)-
(2.17) (written in the form (2.18)) on a segment [0, T ] if for a.a. ω it defines a
curve in C([0, T ], H̃) ∩ L2([0, T ], Ṽ ), satisfying

u(t)− u0 +
∫ t

0

(
νA0u(τ) + B0(u(τ), u(τ))− f̃

)
dτ = W̃ (t),

for all 0 ≤ t ≤ T . A random field u(t, x) which defines a random process with
trajectories in the space

Z = C(0,∞; H̃) ∩ L2 loc(0,∞; Ṽ ) , (2.19)

is a solution of (2.18) for t ∈ [0,∞) if it is a solution on any finite segment [0, T ].
We also consider the process W̃ε(t) = MεWε(t). It has the form above with

the correlation operator ε−1MεKεM
∗
ε , which is the diagonal operator in H̃ with

the eigenvalues (bε
i )

2. Below we will study the 2D NSE (2.18) with W̃ = W̃ ε

and f = f̃ε = Mεfε:

u′ + νA0u + B0(u, u) = f̃ε + ˙̃
W ε, u(0) = uε

0 . (2.20)

The stochastic evolution equation (2.18) was studied by many authors (see,
e.g., [8, 25, 26, 14, 15] and the references therein). Here we will recall basic
result on the existence and uniqueness of its solutions from [14].

Theorem 2.1 If f ∈ H̃ and u0 = uω
0 is a random variable in H̃ indepen-

dent from the process W̃ (t) and such that E|u0|2 < ∞, then eq. (2.18) has a
unique (up to equivalence) solution u(t), t ≥ 0. If, in addition, tr (A0K0) =∑

λj(b0
j )

2 < ∞ and

Eβ0(u0) ≡ E exp(β0 ‖ u0 ‖2) < ∞ (2.21)

for some β0 ∈
(
0, ν|K0|−1

L( eH)

)
, then for every β1 ≤ 1

2 · β0

(
ν − β0|K0|L( eH)

)
we

have

E exp
(

β0‖u(t)‖2 + β1

∫ t

0

| A0u(τ) |2 dτ

)
≤ eγt · Eβ0(u0) (2.22)

for all t ≥ 0, where γ = β0
2ν

(
| f̃ |2 +ν tr(A0K0)

)
. Furthermore for any positive

λ there exists a constant Dβ0,λ > 0 such that

E exp(β0‖u(t)‖2) ≤ Dβ0,λ + e−λ(t−s) ·E exp(β0‖u(s)‖2), t > s ≥ 0. (2.23)
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Proof. The proof of the first part can be found in [14]. For the proof of
relations (2.22) and (2.23) we refer to [3]. �

The solution u, constructed in this theorem, will be denoted u(t;u0) =
u(t, x;u0). It defines a Markov process in the space H̃ with the transition
function Pt(v, ·) = Du(t; v); see [14, 25, 8, 15].

Corollary 2.2 Let the hypotheses of Theorem 2.1 be in force. Then for any
c0 > 0 there exists t∗ > 0 such that

E exp
(

c0

∫ t

0

‖u(τ)‖2dτ

)
≤ eγt · Eβ0(u0) (2.24)

for all 0 ≤ t ≤ t∗, where Eβ0(u0) is defined in (2.21) and γ > 0 is the same as
in (2.22).

Proof. By the Jensen inequality

E exp
(

c0

∫ t

0

‖u(τ)‖2dτ

)
≤ 1

t

∫ t

0

E exp
(
c0t‖u(τ)‖2

)
dτ.

Therefore by (2.22) under the condition c0t ≤ β0 we have

E exp
(

c0

∫ t

0

‖u(τ)‖2dτ

)
≤ 1

t

∫ t

0

eγτdτE exp
(
β0‖u(0)‖2

)
.

This implies (2.24). �

Clearly Theorem 2.1 and Corollary 2.2 remain true for problem (2.20) with
the noise W̃ε = MεWε and the force f̃ε depending on ε. The corresponding
constants β0, β1, γ and t∗ in Theorem 2.1 and Corollary 2.2 can be chosen
independent of ε provided that

|f̃ε|T2 ≤ c1 and ε−1tr
(
A0MεKM∗

ε

)
≡
∑

j

λj [bε
j ]

2 ≤ c2,

where the constants c1 and c2 do not depend on ε.

Below we need the following assertion on the difference of solutions for prob-
lems (2.18) and (2.20).

Proposition 2.3 Let u and uε be solutions of (2.18) and (2.20). Assume that
tr (A0K0) < ∞ and the initial data u0 satisfies (2.21) with some β0 > 0. Then
there exists a constant t∗ > 0, independent from u0, such that

Emax
[0,t∗]

|u(t)− uε(t)|2 (2.25)

≤ C
{ [

E|u(0)− uε(0)|4
]1/2

+
∑

j

(bε
j − b0

j )
2 + |f̃ − f̃ε|2

}
,

where C depends on t∗ and Eβ0(u0).
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Proof. Consider the difference ū = u−uε. The process ū satisfies the equation

ū′ + νA0ū + B0(ū, u) + B0(uε, ū) = f̃ − f̃ε + Ẇ ε,

where W ε is a Wiener process of the form

W ε(t) =
∑

j

(
b0
j − bε

j

)
βj(t) ẽλj

with the diagonal correlation operator Kε, Kεẽλj =
[
b0
j − bε

j

]2
ẽλj for each j.

Applying Ito’s formula to the functional 1
2 |ū|

2 we obtain that

1
2
|ū(t)|2 + ν

∫ t

0

‖ū‖2dτ +
∫ t

0

b0(ū, u, ū)dτ

=
1
2
|ū(0)|2 +

∫ t

0

(f̃ − f̃ε, ū)dτ +Mε(t) +
1
2
t · trKε, (2.26)

where Mε(t) =
∫ t

0

(
ū(τ), dW ε(τ)

)
. By the Doob inequality (see, e.g.,[13, 8])[

E max
s∈[0,t]

|Mε(s)|2
]1/2

≤ 2
[∫ t

0

E(Kεū, ū)dτ

]1/2

≤ C

η
· t · trKε + η ·E max

s∈[0,t]
|ū(s)|2 (2.27)

for any η > 0.
Since |b0(ū, u, ū)| ≤ C‖u‖‖ū‖|ū| ≤ ν‖ū‖2 + Cν‖u‖2|ū|2, from (2.26) we get

that

|ū(t)|2 ≤ m(t) + Cν

∫ t

0

‖u(τ)‖2|ū(τ)|2dτ,

where m(t) = c0

[
|ū(0)|2 + t|f̃ − f̃ε|2 + |Mε(t)|+ t · trKε

]
. Thus by Gron-

wall’s lemma we have that

max
s∈[0,t]

|ū(s)|2 ≤ max
s∈[0,t]

m(s) exp
{

C

∫ t

0

‖u(τ)‖2dτ

}
.

This implies that

E
[

max
s∈[0,t]

|ū(s)|2
]
≤
[
E max

s∈[0,t]
|m(s)|2

]1/2 [
E exp

{
2C

∫ t

0

‖u(τ)‖2dτ

}]1/2

.

Consequently by Corollary 2.2 there exists t∗ > 0 such that

E
[

max
s∈[0,t]

|ū(s)|2
]
≤ [Eβ0(u0)]

1/2

[
E max

s∈[0,t]
|m(s)|2

]1/2

,

for all t ∈ [0, t∗]. Now using (2.27) with an appropriate η > 0 we obtain the
estimate desired in (2.25). �
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A Borel measure µ on H̃ is said to be a stationary measure for eq. (2.18) if
it is a stationary measure for the Markov process which the equation defines in
the space H̃. This means that∫

eH Ef(u(t;u0))µ(du0) =
∫

eH f(u0)µ(du0) for any f ∈ Cb(H̃).

Let us write the force f̃(x) as f̃ =
∑

j f̃j ẽλj .

Theorem 2.4 Assume that tr (A0K0) < ∞, that b0
j 6= 0 if f̃j 6= 0 (j = 1, 2, . . . ),

and that b0
j 6= 0, j = 1, . . . , N for N large enough. Then there exists a unique

stationary measure µ for (2.18), and every solution of (2.18) given by Theo-
rem 2.1 converges to µ in distribution when t →∞. This measure satisfies∫

eH exp
{
β0 ‖ u ‖2

}
µ(du) < ∞ for any β0 < ν|K0|−1

L( eH)
. (2.28)

Proof. The existence of the stationary measure is well-known via the standard
Krylov-Bogolyubov procedure (see, e.g., [14, 25]). Concerning the uniqueness of
the measure under the imposed assumptions see [23, 15]. The claimed estimate
(2.28) follows from (2.23) and the Fatout lemma in the standard way (see [25, 26]
for similar arguments). �

The uniqueness of the measure µ implies the same property for statistical solu-
tions. More precisely, we have thee following assertion.

Corollary 2.5 Let the hypotheses of Theorem 2.4 be in force. Then problem
(2.18) has a unique stationary statistical solution (in the sense of definitions in
Section 2.3) as a Borel probability measure on the space Z given by (2.19).

Proof. Let u(t), t ≥ 0, be a solution of (2.18), such that Du(0) = µ. Its
distribution is a Borel measure P̃ in the space Z. This is stationary statistical
solution of the equation (cf. Section 2.3). Let P ′ be another stationary sta-
tistical solution. Then P ′ = Dv(·), where v(t) is a solution of (2.18) with W̃

replaced by another process, distributed as W̃ . So ϑ = Dv(0) is a stationary
measure for the Markov process, defined by the equation, and ϑ = µ by the
theorem above. Accordingly, P ′ is the distribution of trajectories of the Markov
process with the initial measure µ. So P ′ = P̃ ; that is, the stationary statistical
solution P̃ for the 2D NSE is unique. �

2.5 Leray α-approximation of stochastic 3D Navier-Stokes
equations

It is unknown if the 3D NSE (2.1)-(2.4) has a unique solution. So to make a
progress in its study we replace the equation by its Leray α-approximation [18],
in order later to send α to zero. That is, we consider the equations

∂tu− ν4u +
3∑

j=1

vj∂ju +∇p = fε + Ẇε in Oε × (0,+∞), (2.29)
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div u = 0 in Oε × (0,+∞),

u(x, 0) = u0(x) in Oε ,

where the forces fε and Ẇε are the same as in (2.1). The equations are sup-
plemented with boundary conditions (2.4), and the vector field v = (v1, v2, v3)
solves the elliptic problem

v − α4v = u, div v = 0 in Oε × (0,+∞), (2.30)

and satisfies the same boundary conditions.
In the Leray representation the problem above takes the form

u′ + νAεu + Bε(Gαu, u) = fε + Ẇε, u(0) = u0, (2.31)

where Gα = (I + αAε)−1 is the Green operator for problem (2.30) with bound-
ary conditions (2.4). The nonlinear term Bε(Gαu, u) in (2.31) possesses the
properties:

(Bε(Gαv, u), u) = 0

and

|Bε(Gαu1, u1)−Bε(Gαu2, u2)|ε ≤ Cα,ε (‖u1‖ε + ‖u2‖ε) ‖u1 − u2‖ε. (2.32)

This allows to obtain for the α-model results, similar to those in the 2D case.

Theorem 2.6 Assume that Wε(t) is the Wiener process in Hε of the form
(2.6) and relations (2.7) holds. Let f ∈ Hε. Then there exists a unique (strong)
solution u(t) to (2.31) for any initial data u0 which is independent from the
noise and satisfies E|u0|2ε < ∞. Moreover, for any n ≥ 1 we have

E|u(t)|2n
0,ε +

νn

2

∫ t

0

E|u|2(n−1)
0,ε ‖u‖20,εdτ ≤ E|u(0)|2n

0,ε + bnt ≤ ∞ , (2.33)

where bn = Cnν1−nσn
ε with σε = ε−1

(
tr Kε + λ1

ν |fε|2ε
)
. Here above we use the

notations (2.5) and (2.8).

Proof. Due to the regularity in (2.32) the existence and uniqueness of strong
solutions can be obtained by the same argument as for 2D NSE (see, e.g., [14]
or [8]).

Now we prove (2.33). Here our arguments are formal. To make them rigorous
one should consider the Galerkin approximations for the problem.

Let us consider the functional F (u(t)) = |u(t)|2n
ε . Using the Ito formula we

have

dF = 2n|u|2(n−1)
ε (u, du)ε + n

{
|u|2(n−1)

ε tr Kε + 2(n− 1)|u|2(n−2)
ε (Kεu, u)ε

}
dt.
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Since (u, du)ε = −ν‖u‖2εdt+(u, fεdt+dWε), then integrating the equality above
we obtain

E|u(t)|2n
ε + 2νn

∫ t

0

E|u|2(n−1)
ε ‖u‖2εdτ

= E|u(0)|2n
ε + 2n

∫ t

0

E
(
|u|2(n−1)

ε (u, fε)ε

)
dτ

+n

∫ t

0

E
(
|u|2(n−1)

ε tr Kε + 2(n− 1)|u|2(n−2)
ε (Kεu, u)ε

)
dτ.

Therefore

E|u(t)|2n
ε + νn

∫ t

0

E|u|2(n−1)
ε ‖u‖2εdτ

≤ E|u(0)|2n
ε + Cn

(
tr Kε +

λ1

ν
|fε|2ε + |Kε|L(Hε)

)∫ t

0

E|u|2(n−1)
ε dτ.

Since |Kε|L(Hε) ≤ tr Kε, then the second term in the r.h.s. is bounded by

C ′nεσε

∫ t

0

E|u|2(n−1)
ε dτ ≤ C ′nεσε

(∫ t

0

E|u|2n
ε dτ

)(n−1)/n

t1/n

≤ νn

2
λn

1

∫ t

0

E|u|2n
ε dτ + tC ′′n(εσε)nν1−n .

Since λ1|u|2ε ≤ ‖u‖2ε, by relations (2.5) this implies the required estimate. �

Under the condition σε ≤ C for all 0 ≤ ε ≤ e0 the constant bn in (2.33) is
independent from α and ε. Therefore if E|u(0)|2n

0,ε ≤ C for all 0 ≤ ε ≤ e0, then
we have a priori uniform (with respect to α and ε) estimates for solution u(t)
in the theorem above. This observation is important in the limit transitions
below.

Let us decompose the force fε = fε(x) in (2.29) in the basis of Hε:

fε(x) =
∑

fjeλj (x) +
∑

f̂jeΛε
j
(x)

Theorem 2.7 1) Eq. (2.31) has a stationary measure µα
ε in Hε, satisfying∫

Hε

|u|2(n−1)
0,ε ‖u‖20,εµ

α
ε (du) ≤ Cn, n = 1, 2, . . . , (2.34)

where the constants Cn are increasing functions of σε = ε−1
[
tr Kε + λ1

ν |fε|2ε
]
,

independent from α.
2) There are constants n(ε, α) and n̂(ε, α) such that if bε

j 6= 0 for j ≤ n and
b̂ε
j 6= 0 for j ≤ n̂, and if

bε
j 6= 0 if fj 6= 0 and b̂ε

j 6= 0 if f̂j 6= 0, ∀ j , (2.35)
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then a stationary measure is unique, and every solution of (2.31) converges to
it in distribution as time goes to infinity. In particular, this conclusion holds
true when bε

j 6= 0 and b̂ε
j 6= 0 for all j.

3) Assume that ε−1 trKε ≤ c0 and ε−1|fε|ε ≤ c1 for all ε. Then n(ε, α)
may be chosen independent from ε, and the assumption b̂ε

j 6= 0 for j ≤ n̂ may
be dropped if ε ≤ ε0, where ε0 = ε0(α) > 0.

Proof. The first assertion follows from the Bogolyubov-Krylov arguments and
the Fatout lemma in the standard way, cf. [15], Section 4.4.

The second assertion follows from the techniques, developed in recent works
on the randomly forced 2D NSE, discussed in Introduction. More specifically,
in [17, 23] the 2D NSE is written in the abstract form as

u′ + Lu + B(u, u) = f + Ẇ (2.36)

(in [17] f = 0, but it is shown in [23] that the arguments of that work apply
to equations with non-zero f). The proof in [17, 23] uses only basic properties
of the linear operator L and the quadratic operator B. It is straightforward
that the operators νAε and Bε in (2.31) satisfy these properties, if we choose
for the basic function space the space (Hε, | · |0,ε). So the main theorems in the
references above apply and imply the uniqueness of a stationary measure and
the assertion about the convergence.

The proof in [17, 23] uses in a critical way the ‘squeezing property’, stating
that asymptotical in time behaviour of a solution for (2.36) with a deterministic
r.h.s. is determined by its finite-dimensional part, formed by first few Fourier
harmonics of the solution. The validity of this property for the α-model can
be checked by literal repeating of the classical arguments due to Foias-Prodi,
exploited in [17, 23] (see Proposition A.1 in [17]). The finite-dimensional part
corresponds to the subspace of Hε, spanned by the vectors eλj , j ≤ n(ε, α),
and eΛε

j
, j ≤ ñ(ε, α), where the corresponding eigenvalues λj and Λε

j contain all
eigenvalues of the Stokes operator Aε, smaller than a suitable threshold N .

To prove the last assertion of the theorem we have to estimate how the
numbers n and ñ grow when ε → 0. Let us write the spectrum of the Stokes
operator Aε, formed by the two branches {λj} and {Λε

j} (see Appendix) as
µ1 ≤ µ2 ≤ . . . , and denote by {bµj} the corresponding coefficients in the de-
composition of the Wiener process Wε. By [17, 23] a stationary measure is
unique if (2.35) holds and bµj 6= 0 for j ≤ Nµ. The constant N = Nµ should
be so big that the assumptions (A.1) and (A.2) of Proposition A.1 in [17] imply
the estimate (A.3). This can be achieved with help of the following proposition
(which is an analog of Proposition A.1[17] for the case considered).

Proposition 2.8 Let ui, i = 1, 2 be solutions to the (deterministic) problems

u′ + νAεu + Bε(Gαu, u) = ηi(t), i = 1, 2.

Assume that∫ t

s

‖u1(τ)‖20,ε dτ ≤ ρ + K(t− s), 0 ≤ s ≤ t ≤ s + T, (2.37)
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where ρ,K and T are nonnegative constants. Let P ≡ Pn,n̂ be the spectral
orthoprojector on the subspace

Span
{
eλj , eΛε

i
: 1 ≤ j ≤ n, 1 ≤ i ≤ n̂

}
, n ≥ 1, n̂ ≥ 0

(if n̂ = 0, then the subspace equals Span {eλj : 1 ≤ j ≤ n}), and Q = 1− P . If
Pu1(t) = Pu2(t) and Qη1(t) = Qη2(t) for all t ∈ [s, s + T ], then

|u1(t)− u2(t)|0,ε ≤ e−mn,n̂(t−s)+ρn |u1(s)− u2(s)|0,ε, t ∈ [s, s + T ], (2.38)

where

mn,n̂ =
ν

2
min

{
λn+1,Λε

n̂+1

}
− c0K

α

(
ε2 + λ

−1/2
n+1

)
, ρn =

c0ρ

α

(
ε2 + λ

−1/2
n+1

)
.

We prove this proposition in Section 4.5.

The structure of the constant mn,n̂ and the fact that Λε
k ≥ ε−2 for all k

imply the third assertion of the theorem by the same argument as in [17]. �

Let uα
ε (t), t ≥ 0, be a stationary solution of (2.31), corresponding to the

stationary measure µα
ε . Then Pα

ε = Duα
ε (·) is a stationary statistical solution

of (2.31) in the space Zε. For the same reason as in the 2D case (see Corol-
lary 2.5), under the assumptions of item 2) of the theorem this equation has a
unique stationary statistical solution. Other properties of Pα

ε are collected in
the following assertion.

Theorem 2.9 1) Let Pα
ε = Duα

ε (·) be a stationary statistical solution of (2.31)
in the space Zε given by (2.9). Then for any fixed ε > 0 the set of measures
{Pα

ε , 0 < α ≤ 1} is tight in the space of Borel measures on Zε and the corre-
sponding trace-measures µα

ε are tight in Hε.
2) Let Pε be any limiting measure for this family as α → 0.2 Then the

measure Pε is a stationary statistical solution of the 3D NSE (1.1) in the space
Zε. Its trace-measure µε (i) satisfies estimates (2.34), (ii) is a limiting points
for µα

ε in Hε as α → 0, and (iii) is a weakly stationary measure for (1.1) (see
Section 2.3 for the corresponding definitions).

Proof. 1) The tightness of the set {Pα
ε , 0 < α ≤ 1} follows by repeating the

argument from [25, Chap. IV]. Moreover, in the same way as in [25, Chap. IV]
we can derive from (2.34) the estimate∫

Zε

|u|1+κ
T Pα

ε (du) ≤ CT (2.39)

for every T > 0 and for some κ > 0, where | · |T is given by (2.11) and the
constant CT does not depend on α. The tightness of µα

ε follows from (2.34).

2this means that P
αj
ε ⇀ Pε in the space of Borel measures on Zε for some sequence

αj → 0.
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2) By the Skorokhod representation theorem (see [13]), there exists a new
probability space and on this space there are random processes û

αj
ε (t) ∈ Hε,

t ≥ 0, and ûε(t) ∈ Hε, t ≥ 0, such that D(ûαj
ε ) = Pαl

ε , D(ûε) = Pε and

ûαj
ε → ûε in Zε (2.40)

almost surely. Since P
αj
ε is a statistical solution, then a.s. u = û

αj
ε satisfies

u(t)− u(0) +
∫ t

0

(
νAεu + Bε(Gαj u, u)− f

)
ds = Wαj

ε (t), ∀t ≥ 0 , (2.41)

where W
αj
ε (t) is a Wiener process, distributed as Wε(t). The validity of equa-

tion (2.41) is understood in the same way as that of (2.12).
Let e be any basis vector eλj

or eΛε
j
, and be be the corresponding coefficient

bε
j or b̂ε

j . Let us denote by ξ
αj
ε (t) the Hε-scalar product of the l.h.s. of (2.41)

with ε−1e, where u = û
αj
ε and we replace b(Gαj u, u, e) with −b(Gαj u, e, u).

Then (2.41) implies that ξ
αj
ε (t) is a scalar Wiener process with the dispersion

E(ξαj
ε (t))2 = b2

et. The convergence (2.40) and estimate (2.39) imply that

ξαj
e (t) → ξ0

e(t) a.s.,

uniformly for t in finite segments, where the process ξ0
ε(t) is obtained by replac-

ing û
αj
ε (t) by ûε(t). Therefore ξ0

ε(t) also is a Wiener process with the dispersion
b2
εt.

Now let us take any two basis vectors e′ 6= e′′. Since the Wiener processes
ξ

αj

e′ (t) and ξ
αj

e′′ (t) are independent, then the limiting processes ξ0
e′(t) and ξ0

e′′(t)
are independent as well. Therefore we see that the process ûε(t) satisfies (2.41),
where the Wiener process W

αj
ε (t) is replaced by an equidistributed process

W 0
ε (t). So Pε is a statistical solution.
The estimates on the measure µε follows from the estimates (2.34) on the

measures µα
ε , the convergence (2.40) and the Fatout lemma. The theorem is

proved. �

2.6 Leray α-approximation of stochastic 2D NSE

We may also consider the α-approximation for the 2D NSE (2.18):

v′ + νA0v + B0(G0
αv, v) = f̃ + ˙̃

W, v(0) = v0, (2.42)

where G0
α = (1 + αA0)−1, α > 0. This equation possesses the same properties

as the 2D NSE: given a suitable initial condition it has a unique solution, and
under the assumptions of Theorem 2.4 it has a unique stationary measure in
the space H̃. However we cannot guarantee bounds (2.22), (2.23) and (2.28)
for exponential moments in the case when α > 0. The point is that in the
case α = 0 the proof of these estimates in [3] involves essentially the fact that
b0(u, u, A0u) = 0. If α > 0, then b0(G0

αu, u, A0u) may be not zero and thus the
argument of [3] will not apply. In the case α > 0 we can only use the relation
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b0(G0
αu, u, u) = 0. This leads to the following analogies of Theorem 2.1 and

Proposition 2.3 which provide us with the boundedness of exponential moments
involving weaker norms.

Theorem 2.10 If f ∈ H̃ and u0 = uω
0 is a random variable in H̃ independent

from the process W̃ (t) and such that E|u0|2 < ∞, then eq. (2.42) has a unique
(up to equivalence) solution u(t), t ≥ 0. If, in addition,

E0
β0

(u0) ≡ E exp(β0|u0|2) < ∞ (2.43)

for some β0 ∈
(
0, ν|K0|−1

L( eH)
λ−1

1

)
, where λ1 > 0 is the first eigenvalue of the

2D Stokes operator, then for every β1 ≤ 1
2 · β0

(
ν − β0λ1|K0|L( eH)

)
we have

E exp
(

β0|u(t)|2 + β1

∫ t

0

‖u(τ)‖2dτ

)
≤ eγt · E0

β0
(u0) (2.44)

for all t ≥ 0, where γ = β0
2νλ1

(
| f̃ |2 +νλ1 trK0

)
. Furthermore for any positive

λ there exists a constant Dβ0,λ > 0 such that

E exp(β0|u(t)|2) ≤ Dβ0,λ + e−λ(t−s) ·E exp(β0|u(s)|2), t > s ≥ 0. (2.45)

Moreover, if uε is solution to

v′ + νA0v + B0(G0
αv, v) = f̃ε + ˙̃

W ε, v(0) = vε
0,

then there exists a constant t∗ = t∗(α) > 0, independent from u0, such that

Emax
[0,t∗]

|u(t)− uε(t)|2 (2.46)

≤ C
{ [

E|u(0)− uε(0)|4
]1/2

+
∑

j

(bε
j − b0

j )
2 + |f̃ − f̃ε|2

}
,

where C depends on t∗, α and E0
β0

(u0).

Proof. This is a slight modification of argument given in [3] and in the proof
of Proposition 2.3. To obtain (2.44) and (2.45) we apply the Ito formula to the
process F (t) = exp

(
β0|u(t)|2 + β1

∫ t

0
‖u(τ)‖2dτ

)
. To establish (2.46) we use

the estimate

|b0(ū, u, ū)| ≤ ν‖ū‖2 + Cν(α)|u|2|ū|2, u, ū ∈ Ṽ ,

which makes it possible, via the corresponding analog of Corollary 2.2, to derive
(2.46) from (2.44) (cf. the proof of Proposition 2.3). �
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3 Main results

In the theorem below Mεµ stands for the image of a measure µ under the map
Mε defined in (1.3).

Theorem 3.1 Assume that

• the assumptions of Theorem 2.4 hold;

• there exist constants ci independent of ε such that

ε−1tr Kε ≤ c0, ε−1|fε|2ε ≤ c1; (3.1)

• we have that

lim
ε→0

∑
j

[bε
j − b0

j ]
2 = 0 and lim

ε→0
|f̃ −Mεfε| = 0. (3.2)

Let µα
ε be a stationary measure for eq. (2.31), given by Theorem 2.7. Then the

following assertions hold for the measures µ̂α
ε = Mεµ

α
ε :

• µ̂α
ε ⇀ µα in H̃ as ε → 0, where µα is a unique stationary measure for the

corresponding 2D α-model (2.42), and µα ⇀ µ as α → 0, where µ is a
unique stationary measure for the 2D NSE (2.18).

• If α = α(ε) is such that

lim
ε→0

α(ε) = 0 and lim
ε→0

{
εα(ε)−3

}
= 0, (3.3)

then µ̂
α(ε)
ε ⇀ µ in H̃ as ε → 0.

We note that in Theorem 3.1 we do not assume that the stationary measure
µα

ε is unique for α, ε > 0. However under condition (3.1) we can use the third
statement of Theorem 2.7 to claim this uniqueness for ε ≤ ε0(α) by increasing
the parameter N in the hypotheses of Theorem 2.4.

We also note that an assertion similar to Theorem 3.1 can be easily estab-
lished for stationary statistical solutions Pα

ε .
The following assertion give a result concerning another iterated limit: first

α → 0, then ε → 0.

Theorem 3.2 Let {Pε} be the family of stationary statistical solutions con-
structed in Theorem 2.9. Then under conditions (3.1) the family {MεPε} is
tight in the space Lloc

2 (R+; H̃) ∩ C(R+; W̃−1), where W̃−1 is the completion of
H̃ with respect to the norm |A−1

0 · |T2 . Moreover, if (3.2) holds and the assump-
tions of Theorem 2.4 are in force, then the only limit point of the family {MεPε}
as ε → 0 is the stationary statistical solution P̃ of the 2D NSE (2.18). Accord-
ingly, the only limit point of the family {Mεµε} is the unique stationary measure
µ of (2.18). Here µε is the trace measure for Pε (which is weakly stationary
measure for eq. (1.1)).
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Under the conditions of the both Theorems 3.1 and 3.2 we obviously have re-
lation (1.5) claimed in the Introduction. Moreover, using (2.34) one can see
that

lim
ε→0

∫
Hε

|N̂εu|20,εµ
α
ε (du) = 0 uniformly in α,

where N̂ε is the ’vertical’ projection defined in Section 2.4 (see eq.2.14), and that
the averaged mean energy E(µα

ε ) = 1
2ε

∫
Hε
|u|20,εµ

α
ε (du) possesses the property

lim
α→0

lim
ε→0

E(µα
ε ) = E(µ) ≡ 1

2

∫
eH |u|2T2µ(du).

In contrast with the kick model considered in [4] we are not able to establish
similar convergence of averaged enstrophy and enstrophy production. However
it should be noted that for a fixed α > 0 the convergence properties of the
measures µα

ε can be improved and the hypotheses concerning fε and Wε can be
relaxed. This claim is based on the fact that using additional regularity provided
by α-approximation, in contrast with (2.33), we can estimate the projections
M̂εu and N̂εu separately. We do not discuss this issue in details.

4 Proofs

In this section we provide the proofs of Theorem 3.1, Theorem 3.2 and Propo-
sition 2.8 which we need to complete the proof of Theorem 2.7.

4.1 Preliminaries

We define the operators M̂ε and N̂ε = I − M̂ε as in Section 2.4 (see relations
(2.13) and (2.14)). The most important property (see, e.g., [24]) of these op-
erators is that M̂ε and N̂ε are spectral (orthogonal) projectors for the Stokes
operator Aε. In particular, these operators map Vε to itself, are orthogonal
in both spaces Hε and Vε, and commute with Aε. Other properties of these
operators which we use in the further considerations are listed below (we refer
to [24] for the proofs):

(i) M̂ε∂xi = ∂xiM̂ε and N̂ε∂xi = ∂xiN̂ε, i = 1, 2.

(ii) If one of the vector fields u, w, v lies in N̂εVε and two others belong to
M̂εVε, then bε(u, w, v) = 0. In particular, for all u, w, v ∈ Vε we have

bε(u, w, M̂εv) = bε(M̂εu, M̂εw, M̂εv) + bε(N̂εu, N̂εw, M̂εv). (4.1)

(iii) There exist positive constants ε0 and c0 such that for all ε ∈ (0, ε0), the
following inequalities hold true.

|N̂εu|ε ≤ ε
∣∣∣∂3N̂εu

∣∣∣
ε

for all u ∈ Vε, (4.2)

|N̂εu|(L∞(Oε))3 ≤ c0|N̂εu|1/4
ε

∣∣∣AεN̂εu
∣∣∣3/4

ε
for all u ∈ D(Aε). (4.3)

We use all these relations in the considerations below.
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4.2 Proof of Theorem 3.2

We start with the proof of the second main result because it does not require
an additional analysis of α-approximation (2.31) and thus is simpler than the
proof of Theorem 3.1.

The tightness follows from estimates (2.34), which are uniform in α and ε,
in the same way as in Theorem 2.9, see also arguments in [25].

Let us denote by Z̃ the space Lloc
2 (R+; Ṽ ) ∩ C(R+; W̃−1) and denote by P̄

any limiting measure as in the theorem. Then

Mεj
Pεj

⇀ P̄

in the space of Borel measures in Z, for some sequence εj → 0. Using the
Skorokhod representation theorem (see, e.g., [13]), we construct on a new prob-
ability space random processes ûεj

(t) ∈ Hεj
, t ≥ 0, and v̂(t) ∈ H̃, t ≥ 0, such

that Dûεj
(·) = Pεj

, Dv̂(·) = P̂ , and

Mεj ûεj → v̂ in Z̃, a.s. (4.4)

(cf. Lemma 5.9 in [4]). Since Pεj is a stationary statistical solution, then ûεj (t)
is a stationary process, satisfying (2.12) with a suitable Wiener process Ŵεj .
Let us denote Mεj ûεj (t) = v̂εj (t). Applying the operator Mεj to (2.12) we get
that v = v̂εj a.s. satisfies

v(t)− v(0) +
∫ t

0

(
νA0v + Mεj Bεj (ûεj , ûεj )−Mεj fεj

)
ds = Mεj Ŵεj (t), (4.5)

for any t ≥ 0. Let us take any vector e = ẽλj
, multiply (4.5) by e in H̃, and

denote the corresponding l.h.s. ξ
εj
e (t). Consider the 3-linear term

bεj (t) := (Mεj Bεj (û, û), e)T2 = ε−1bεj (û, û, M∗
εj

e),

where û = ûεj . Due to (4.1),

bεj (t) = ε−1
j bεj (M̂εj û, M̂εj û, M∗

εj
e) + ε−1

j bεj (N̂εj û, N̂εj û, M∗
εj

e)

= b0(v̂εj , v̂εj , e) + ε−1
j bεj (N̂εj û, N̂εj û, M∗

εj
e).

Using (4.2) we have that

ε−1bε(N̂εû, N̂εû, M∗
ε e). ≤ ε−1C max

x′∈T2
{|∇e(x′)|} |Nεû|2ε ≤ Ceε‖Nεû‖2ε.

Therefore
|bεj (t)− b0(v̂εj , v̂εj , e)| ≤ Ceεj‖ûεj (t)‖2εj

. (4.6)

Passing to the limit in (4.5), using (4.4) and the last estimate, and arguing as
when proving Theorem 2.9, we get that P̄ = D(v̂) is a stationary statistical
solution of the 2D NSE. The assertion on convergence of Mεµε follows from
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the uniqueness of the measure P̄ (see Corollary 2.5) and the fact that µ is a
trace-measure for P̄ . This completes the proof of Theorem 3.2.

We note that using relation (4.6) on the support of the measure Mεj Pεj and
also the corresponding Kolmogorov equation (see [25]) we can suggest a more
direct proof of the theorem which avoids the Skorokhod theorem and statements
like Lemma 5.9 in [4].

4.3 Preparations for the proof of Theorem 3.1

The following assertion on the convergence of Mεu
α
ε (t;u0) is important in our

argument.

Theorem 4.1 Under the assumptions of Theorem 3.1, let uα
ε be a solution for

the 3D α-approximation (2.31). Then

• there exist t∗ = t∗(α) > 0 such that

lim
ε→0

E sup
[0,t∗]

|Mεu
α
ε (t)− uα(t)|2T2 = 0 (4.7)

for every fixed α > 0, provided that limε→0 E|Mεu
α
ε (0) − uα(0)|4T2 = 0,

where uα(t) solves the 2D α-approximation (2.42);

• if α = α(ε) satisfies (3.3), then there exist t∗ > 0 such that

lim
ε→0

E sup
[0,t∗]

|Mεu
α(ε)
ε (t)− u(t)|2T2 = 0, (4.8)

provided limε→0 E|Mεu
α(ε)
ε (0)− u0|4T2 = 0, where u(t) is a solution to the

2D NSE (2.18).

In the argument below we mainly will concentrate on the proof of the second
part of Theorem 4.1 (the case α = α(ε)). The case of the fixed α is simpler.

Since

|Mεu
α(ε)
ε (t)− u(t)| ≤ |Mεu

α(ε)
ε (t)− vε(t)|+ |vε(t)− u(t)|, (4.9)

where vε solves the 2D problem

ṽ′ + νA0ṽ + B0(ṽ, ṽ) = Mεf + MεẆε,

with initial data vε(0) = Mεu(0), then in view of Proposition 2.3 to obtain (4.8)
it remains to estimate the first term in (4.9). For this end, due to estimates
(2.24) and (2.33), it is sufficient to prove the following assertion.

Proposition 4.2 Let u solves (2.31), ṽ satisfies the 2D NSE above and z =
Mεu− ṽ ∈ H̃. Then for a.a. ω we have

|z(t)|2T2 ≤ |z(0)|2T2E(ṽ; t, 0) +
c1

ν
αθ

∫ t

0

|A1/2
0 ṽ(τ)|4T2E(ṽ; t, τ)dτ

+
c2

ν

[ ε

α3

]1/2
∫ t

0

‖u(τ)‖3/2
ε |u(τ)|5/2

ε E(ṽ; t, τ)dτ, (4.10)

23



where E(ṽ; t, τ) = exp
{
−νλ1(t− τ) + c0

ν

∫ t

τ
|A1/2

0 ṽ(s)|2T2ds
}
. Here θ ∈ (0, 1)

and the constants ci are independent of ε, α and ν.

Proof. The function z = Mεu− ṽ satisfies

z̃′ + νA0z + MεBε(Gαu, u)−B0(ṽ, ṽ) = 0,

Multiplying this relation in H̃ by z we get that

1
2

d

dt
|z|2T2 + ν|A1/2

0 z|2T2 = F (u, ṽ, z), (4.11)

where F (u, ṽ, z) = −(MεBε(Gαu, u) − B0(ṽ, ṽ), z)T2 . We rewrite F (u, ṽ, z) in
the form

F (u, ṽ, z) = −1
ε
bε(Gαu, u, M∗

ε z) + b0(ṽ, ṽ, z).

By (4.1) we have that

1
ε
bε(Gαu, u, M∗

ε z) =
1
ε
bε(N̂εGαu, N̂εu, M∗

ε z) + b0(MεGαu, Mεu, M∗
ε z)

and the symmetry b0(MεGαu, z, z) = 0 yields

1
ε
bε(Gαu, u, M∗

ε z) =
1
ε
bε(N̂εGαu, N̂εu, M∗

ε z) + b0(MεGαu, ṽ, z).

Therefore using the fact that MεGα = G0
αMε we obtain

F (u, ṽ, z) = −1
ε
bε(N̂εGαu, N̂εu, M∗

ε z) + b0(ṽ, ṽ, z)− b0(MεGαu, ṽ, z)

= −1
ε
bε(N̂εGαu, N̂εu, M∗

ε z) + b0(ṽ −MεGαu, ṽ, z)

≡ b1 + b2 + b3, (4.12)

where

b1 = −1
ε
bε(N̂εGαu, N̂εu, M∗

ε z),

b2 = −b0(G0
αz, ṽ, z), b3 = b0(

[
I −G0

α

]
ṽ, ṽ, z).

Estimate for b1: Using the symmetry of the trilinear form bε we obtain
that

εb1 = −bε(N̂εGαu, N̂εu, M∗
ε z) = bε(N̂εGαu, M∗

ε z, N̂εu).

Thus by (4.3) we have that

ε|b1| ≤ |∇M∗
ε z|ε max

x∈Oε

{
|N̂εGαu(x)|

}
|N̂εu|ε

≤ c
√

ε|A1/2
0 z|T2 |AεN̂εGαu|3/4

ε |N̂εu|5/4
ε

≤ c
√

ε|A1/2
0 z|T2‖AεGα‖3/4

L(Hε)|Nεu|2ε.
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Since ‖AεGα‖L(Hε) ≤ α−1 and by (4.2)

|N̂εu|2ε = |N̂εu|3/4
ε |N̂εu|5/4

ε ≤ ε3/4‖N̂εu‖3/4
ε |N̂εu|5/4

ε ,

we obtain that

|b1| ≤ c
[ ε

α3

]1/4

|A1/2
0 z|T2‖N̂εu‖3/4

ε |N̂εu|5/4
ε

≤ δ|A1/2
0 z|2T2 +

c

δ

[ ε

α3

]1/2

‖N̂εu‖3/2
ε |N̂εu|5/2

ε (4.13)

for every δ > 0.

Estimate for b2: It is clear that

|b2| ≤ c|A1/2
0 ṽ|T2‖G0

αz‖L2p1 (T2)‖z‖L2p2 (T2),

where p−1
1 + p−1

2 = 1 and 1 < p1, p2 < ∞. Since

D(As/2
0 ) ⊂

[
Hs(T2)

]2 ⊂ [Lq(T2)
]2

for s = 1− 2
q
, q ≥ 2, (4.14)

we obtain that

‖G0
αz‖L2p1 (T2)‖z‖L2p2 (T2) ≤ c|Aθ/2

0 G0
αz|T2 |A(1−θ)/2

0 z|T2

≤ c|Aθ/2
0 z|T2 |A(1−θ)/2

0 z|T2 ,

where θ = 1− p−1
1 = p−1

2 ∈ (0, 1). Thus by interpolation we have that

‖G0
αz‖L2p1 (T2)‖z‖L2p2 (T2) ≤ c|A1/2

0 z|T2 |z|T2 .

Therefore

|b2| ≤ c|A1/2
0 ṽ|T2 |A1/2

0 z|T2 |z|T2 ≤ δ|A1/2
0 z|2T2 +

c

δ
|z|2T2 |A1/2

0 ṽ|2T2

for every δ > 0.

Estimate for b3: We obviously have that

b3 = b0(
[
I −G0

α

]
ṽ, ṽ, z) = −b0(

[
I −G0

α

]
ṽ, z, ṽ).

Let p−1
1 +p−1

2 = 1 and 1 < p1, p2 < ∞. As above, using the embedding in (4.14)
we obtain

|b3| ≤ c|A1/2
0 z|T2‖ṽ‖L2p1 (T2)‖

[
I −G0

α

]
ṽ‖L2p2 (T2)

≤ c|A1/2
0 z|T2

∣∣∣Aθ/2
0 ṽ|T2 |A(1−θ)/2

0

[
I −G0

α

]
ṽ
∣∣∣
T2

≤ c
∣∣∣A−θ/2

0

[
I −G0

α

] ∣∣∣
L( eH)

|A1/2
0 z|T2 |Aθ/2

0 ṽ|T2 |A1/2
0 ṽ|T2 ,
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where θ = 1− p−1
1 = p−1

2 ∈ (0, 1). One can see that

|A−θ/2
0

[
I −G0

α

]
|L( eH) ≤ max

λ>0

αλ1−θ/2

1 + αλ
≤ αθ/2.

Therefore

|b3| ≤ c αθ/2|A1/2
0 z|T2 |A1/2

0 ṽ|2T2 ,≤ δ|A1/2
0 z|2T2 +

c

δ
αθ|A1/2

0 ṽ|4T2

for every δ > 0 and θ ∈ (0, 1).

Final step: Substituting the estimates for b1, b2 and b3 in (4.12) and choos-
ing appropriative δ > 0 from (4.11) we obtain that

d

dt
|z|2T2 + ν|A1/2

0 z|2T2 ≤ c0

ν
|z|2T2 |A1/2

0 ṽ|2T2 (4.15)

+
c1

ν
αθ|A1/2

0 ṽ|4T2 +
c2

ν

[ ε

α3

]1/2

‖N̂εu‖3/2
ε |N̂εu|5/2

ε .

Since |A1/2
0 z|2T2 ≥ λ1|z|2T2 we can apply Gronwall’s lemma to obtain (4.10) and

complete the proof of Proposition 4.2. �

For the proof the first statement of Theorem 4.1 instead of Proposition 4.2 we
use the following assertion.

Proposition 4.3 Let u solves (2.31) and ṽ solves the 2D α-approximation

ṽ′ + νA0ṽ + B0(G0
αṽ, ṽ) = Mεf + MεẆε, u(0) = u0. (4.16)

Then the difference z = Mεu− ṽ satisfy the relation

|z(t)|2T2 ≤ |z(0)|2T2Eα(ṽ; t, 0)

+
c1

ν

[ ε

α3

]1/2
∫ t

0

‖u(τ)‖3/2
ε |u(τ)|5/2

ε Eα(ṽ; t, τ)dτ (4.17)

for a.a. ω, where Eα(ṽ; t, τ) = exp
{
−νλ1(t− τ) + c0

να

∫ t

τ
|ṽ(s)|2T2ds

}
. Here the

constants ci are independent of ε, α and ν.

Proof. The same argument as in Proposition 4.2 shows that relation (4.11)
holds with

F (u, ṽ, z) = −1
ε
bε(N̂εGαu, N̂εu, M∗

ε z)− b0(G0
αz, ṽ, z) ≡ b1 + b2.

We note that b1 and b2 have the same structure as in the proof of Proposi-
tion 4.2. However to apply exponential estimates from Theorem 2.10 we need
some modification in the estimating of b2.
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Since ‖z‖L∞(T2) ≤ C|z|1/2
T2 |A0z|1/2

T2 (see, e.g., [6]) and |A0G
0
α|L( eH) ≤ α−1,

one can see that

|b2| ≡ |b0(G0
αz, ṽ, z)| = |b0(G0

αz, z, ṽ)|
≤ C sup

x′∈T2

{
|[G0

αz](x′)|
}
|ṽ|T2 |A1/2

0 z|T2

≤ C|G0
αz|1/2

T2 |A0G
0
αz|1/2

T2 |ṽ|T2 |A1/2
0 z|T2

≤ C√
α
|ṽ|T2 |z|T2 |A1/2

0 z|T2 ≤ δ|A1/2
0 z|2T2 +

C

δα
|ṽ|2T2 |z|2T2

for any δ > 0. Therefore using (4.11) and (4.13) for the case considered we
obtain that

d

dt
|z|2T2 + νλ1|z|2T2 ≤

c0

να
|ṽ|2T2 |z|2T2 +

c1

ν

[ ε

α3

]1/2

‖u‖3/2
ε |u|5/2

ε .

Therefore Gronwall’s lemma implies (4.17). This completes the proof of Propo-
sition 4.3. �

Now we are in position to complete the proof of Theorem 4.1.

Completion of the proof of Theorem 4.1: It follows from Proposi-
tion 4.2 that

Emax
[0,t∗]

|z(t)|2T2 ≤
[
E|z(0)|4T2

]1/2 [
EE(ṽ; t∗)2

]1/2

+
c1

ν
αθ

[∫ t∗

0

E|A1/2
0 ṽ(τ)|8T2dτ

]1/2 [
t∗EE(ṽ; t∗)2

]1/2

+
c2

ν

[ ε

α3

]1/2
[∫ t∗

0

E‖u(τ)‖2ε|u(τ)|10/3
ε dτ

]3/4 [
t∗EE(ṽ; t∗)4

]1/4
,

where we denote E(ṽ; t) = exp
(

c0
ν

∫ t

0
|A1/2

0 ṽ(s)|2T2ds
)
. Therefore Proposi-

tion 2.3 and estimates (2.24) and (2.33) allow us to conclude the proof of the
second part of Theorem 4.1.

As for the first part of this theorem, arguments are based on Theorem 2.10
and Proposition 4.3 and involve the same ideas.

4.4 Proof of Theorem 3.1

We restrict ourselves to the second assertion of the theorem since a proof of the
first one is similar and a bit simpler. By (2.34) with n = 1 and the Prokhorov
theorem the family of measures {µ̂α(ε)

ε } is tight in P(H̃). Let us take any
converging subsequence

µj := µ̂α(εj)
εj

⇀ µ̃ in H̃.

To prove the assertion we have to show that µ̃ = µ.
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By the Skorokhod representation theorem (see [13]), on a new probability
space for which we take the segment [0,1], given the Borel sigma-algebra and
the Lebesgue measure, we can construct H̃-valued random variables ṽ and {vj}
such that

D(vj) = µj , D(ṽ) = µ̃ and vj → ṽ a.s. in H̃.

Moreover, Eβ0(ṽ) < ∞, where Eβ0 is defined in (2.21) and, due to (2.34), we
have that E|vj − ṽ|4 → 0 as j →∞.

We will view ṽ and {vj} as random variables in the probability space Ωnew =
[0, 1]×[0, 1], depending only on the first factor. For each j we find an Hεj -valued
random variable uj on Ωnew, satisfying

Mεuj = vj and Duj = µα(εj)
εj

,

see Lemma 5.9 in [4]. Next on the space Ωnew we construct independent stan-
dard Wiener processes {βj new, β̂j new}, independent from the random variables
uj , vj and ṽ, and consider equations (2.31) and (2.18), where the processes βj

and β̂j are replaced by their ‘new’ replicas. Let uεj (t;uj) and u0(t; ṽ) be so-
lutions for these equations with the initial data uj and ṽ, respectively. These
processes have the same distributions as solutions for the equations with the
non-modified forces and with the initial data, distributed as µj and µ̃, respec-
tively. In particular,

B∗t µ̃ = Du0(t; ṽ),

where {B∗t , t ≥ 0}, is the Markov semigroup in measures, corresponding to the
2D NSE, see [8, 15]. Let g be any bounded Lipschitz function on H̃. Then∣∣〈g,B∗t µj〉 −Eg(Mεj uεj (t;uj))

∣∣ ≤ E
∣∣g(u0(t; vj))− g(Mεj uεj (t;uj))

∣∣ .
Since Mεj uj = vj , then choosing t ≤ t∗ and applying Theorem 4.1 we get that
the r.h.s. goes to zero with εj . Since Duj is a stationary measure, then

Eg(Mεj
uεj

(t;uj)) = 〈g,Mεj
◦ µα(εj)

εj
〉 = 〈g, µj〉 .

That is,
∣∣〈g,B∗t µj〉 − 〈g, µj〉

∣∣ → 0. Since µj → µ̃ and the linear operators B∗t
are continuous in the ∗-weak topology in the space of measures, then passing to
the limit in the last relation we get that 〈g,B∗t µ̃〉 = 〈g, µ̃〉 for arbitrary bounded
Lipschitz function g. Hence, B∗t µ̃ = µ̃ for any 0 ≤ t ≤ t∗. So µ is a stationary
measure for (2.18), and µ̃ = µ by the uniqueness. The theorem is proved.

4.5 Proof of Proposition 2.8

Now we complete the proof of Theorem 2.7 on the uniqueness of the stationary
measure for the 3D α-approximation (2.31). To do this we need to establish
Proposition 2.8 only.

For u = u1 − u2 we have that

u′ + νAεu + Bε(Gαu, u1) + Bε(Gαu2, u) = η1 − η2.
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Since u = Qu, we obtain that

1
2

d

dt
|Qu|20,ε + ν|A1/2

ε Qu|20,ε + ε−1bε(Gαu, u1, Qu) = 0. (4.18)

The projector P can be written in the form P = P 1
n + P 2

n̂ , where P 1
n and P 2

n̂

are the spectral orthoprojectors on the subspaces Span
{
eλj : 1 ≤ j ≤ n

}
and

Span
{
eΛε

i
: 1 ≤ i ≤ n̂

}
. Therefore

|A1/2
ε Qu|20,ε ≥ min

{
λn+1,Λε

n̂+1

}
|Qu|20,ε. (4.19)

Now we estimate the nonlinear term in (4.18). Since

u = Qu = (1− P 1
n)M̂εu + (1− P 2

n̂)N̂εu ≡ Q1
nM̂εu + Q2

n̂N̂εu,

we have that

bε(Gαu, u1, Qu) = bε(N̂εGαQ2
n̂u, u1, Qu) + bε(M̂εGαQ1

nu, u1, Qu). (4.20)

To estimate the first term in r.h.s. of (4.20) we use the relation

|bε(N̂εu, w, v)| ≤ cε2|AεN̂εu|0,ε · ‖w‖0,ε · |v|0,ε,

see [24] and Lemma 6.3 in [4]. Since |A1/2
ε Gα|L(Hε) ≤ α−1/2, this inequality

implies that

|bε(N̂εGαQ2
n̂u, u1, Qu)| ≤ Cε2|AεN̂εGαQ2

n̂u|0,ε‖u1‖0,ε|Qu|0,ε

≤ Cε2|A1/2
ε Gα|L(Hε)‖Q2

n̂u‖0,ε‖u1‖0,ε|Qu|0,ε

≤ δε‖Qu‖20,ε +
Cδε

3

α
‖u1‖20,ε|Qu|20,ε

for any δ > 0. To estimate the second term in r.h.s. of (4.20) we note that

|bε(M̂εGαQ1
nu, u1, Qu)| ≤ Cε max

x′∈T2

{
|(MεGαQ1

nu)(x′)|
}
‖u1‖0,ε|Qu|0,ε,

where

max
x′∈T2

{
|(MεGαQ1

nu)(x′)|
}
≤ C|MεGαQ1

nu|1/2
T2 |A0MεGαQ1

nu|1/2
T2 . (4.21)

Since |MεGαQ1
nu|T2 ≤ Cλ

−1/2
n+1 |A

1/2
0 Q1

nu|T2 and

|A0MεGαQ1
nu|T2 ≤ |A1/2

0 G0
α|L( eH) · |A

1/2
0 Q1

nu|T2 ,

then the r.h.s. in (4.21) is ≤ C
(
λ

1/2
n+1α

)−1/2‖Q1
nu‖0,ε . Therefore

|bε(M̂εGαQ1
nu, u1, Qu)| ≤ δε‖Qu‖20,ε +

Cδε

αλ
1/2
n+1

‖u1‖20,ε|Qu|20,ε
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for every δ > 0. Thus

|bε(Gαu, u1, Qu)| ≤ ν

2
ε|A1/2

ε Qu|20,ε + c0

(
ε3

α
+

ε

αλ
1/2
n+1

)
‖u1‖20,ε|Qu|20,ε

and we get from (4.18) an (4.19) that

d

dt
|Qu|20,ε + ν min

{
λn+1,Λε

n̂+1

}
|Qu|20,ε ≤ c0

(
ε2

α
+

1

αλ
1/2
n+1

)
‖u1‖20,ε|Qu|20,ε.

Now the desired relation in (2.38) follows from Gronwall’s lemma.

5 Appendix: spectral problem for the Stokes
operator

The spectral boundary value problem which corresponds to operator Aε has the
form 

−∆w = λw, div w = 0 in Oε = T2 × (0, ε),

w(x′, x3) is (l1, l2)-periodic with respect to x′,

w3|x3=ε = 0, ∂3wj |x3=ε = 0, j = 1, 2,

w3|x3=0 = 0, ∂3wj |x3=0 = 0, j = 1, 2.∫
Oε

wjdx = 0, j = 1, 2.

Using the spectral decomposition (2.14) one can see that the spectrum consists
of two branches. Recalling estimate (4.2) we find that these branches are: (i) the
spectrum of the 2D Stokes operator A0, 0 < λ1 ≤ λ2 ≤ . . ., and (ii) series of
eigenvalues 0 < Λε

1 ≤ Λε
2 ≤ . . . , depending on ε and greater than ε−2 . We

denote the corresponding eigenfunctions eλj and eΛε
j
. We have

M̂εeλj
= eλj

, M̂εeΛε
j

= 0 ,

where the (spectral) projector M̂ε is defined by (2.13). One can also see that
eλj = (ẽλj ; 0), where ẽλj ≡ Mεeλj is the eigenfunction for the 2D Stokes oper-
ator on T2 which correspond the to the eigenvalue λj . The eigenvalues λj are

properly ordered numbers
(
s1

2π
l1

)2

+
(
s2

2π
l2

)2

, s = (s1, s2) ∈ Z2 \ {0}, so that

C−1j ≤ λj ≤ Cj for all j, with some C > 1 (see, e.g., [6]). We normalise the
eigenfunctions as follows:

|eλj |ε = |eΛε
j
|ε =

√
ε ∀ j .

It is also obvious that |ẽλj |T2 = 1 and ‖ẽλj‖T2 =
√

λj for all j.
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