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Abstract. We consider the Anderson model on the lattice Zd and
prove a positive lower bound on the density of states under certain
conditions. For example, if the random variables are independently and
identically distributed and the probability measure has a bounded den-
sity with compact support, and if the Lebesgue density is essentially
bounded away from zero on its support, then we prove that the den-
sity of states is strictly positive Lebesgue almost every energy in the
deterministic spectrum.

Wegner’s estimate, originally formulated in [W] for the Anderson model
on the lattice Zd, is one of the celebrated tools in the theory of random
Schrödinger operators, see e.g. the recent reviews [V, KM] or [CHK] for the
latest developments in the case of continuum random Schrödinger operators.
In its strongest form for lattice models, a Wegner estimate provides Lips-
chitz continuity of the integrated density of states N(E). In particular, this
implies that the Lebesgue derivative of N(E), the density of states n(E),
exists as a function which is essentially bounded from above. In addition
to the upper bound for the density of states, Wegner also presented an ar-
gument for a strictly positive lower bound for the density of states of the
Anderson model in his original article [W]. Although insightful, Wegner’s
argument is not completely correct as his nonzero lower bound vanishes in
the macroscopic limit.

In this note, we give a mathematical proof of a positive lower bound for
the density of states of the Anderson model. For many years, efforts have
been concentrated on Wegner’s upper bound because this is essential for the
existence and continuity of the integrated density of states, the distribution
function of the density of states, and for Anderson localization. Conse-
quently, Wegner’s idea to obtain a lower bound seems to have remained
fairly unnoticed. The lower bound is, however, essential for Minami’s proof
that the energy level statistics for energies in the strong localization regime
is Poissonian [Min]. Minami fixes an energy E in the strong localization
regime at which the fractional moment bounds of Aizenman and Molčanov
[AM] hold. He assumes that n(E) > 0. Minami then proves that the rescaled
local eigenvalue level spacing measure dµL(x) =

∑
j δ(Ld(εj(L)−E)−x) dx,
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for the finite-volume Hamiltonian (see below for the definitions) with eigen-
values εj(L), converges in the macroscopic limit to a Poisson distribution
with density given by n(E). Here, we prove the positivity of the density of
states at almost every energy in the deterministic spectrum. We mention
that Molčanov [Mol] studied the same question of energy-level statistics for
the one-dimensional Russian school model. In his paper, he also proves the
positivity of the density of states for that model using completely different
methods.

The Anderson model is given by the discrete random Schrödinger operator
H on a probability space (Ω, P) whose realizations H(ω), ω ∈ Ω, act as

(H(ω)ϕ)(x) := (Lϕ)(x) + ωxϕ(x) (1)

for all x ∈ Zd on a dense domain of ϕ ∈ `2(Zd). Here, the discrete Laplacian
L is defined as (Lϕ)(x) :=

∑
y∈Zd:|x−y|=1 ϕ(y), and has purely absolutely

continuous spectrum σ(L) = [−2d, 2d]. The random potential consists of a
family {ωx}x∈Zd of independent, identically distributed real-valued random
variables on Ω.

The Schrödinger operator H of the Anderson model is known [CL, PF] to
be almost surely essentially self-adjoint on the dense subspace {ϕ ∈ `2(Zd) :
suppϕ compact}. Moreover, H is ergodic with respect to lattice transla-
tions. To define the integrated density of states, we consider the restriction
of H to finite volumes Λ ⊂ Zd, letting the operator H

(ω)
Λ denote the Dirichlet

restriction of H(ω) to `2(Λ) and trΛ denote the trace on the finite-dimensional
Hilbert space `2(Λ). We let χB stand for the indicator function of some set
B ⊂ R. The integrated density of states E ∈ R 7→ N(E) is given by the
non-random limit

N(E) = lim
Λ↑Zd

[
1
|Λ|

trΛ
(
χ

]−∞,E](H
(ω)
Λ )

)]
(2)

along a sequence of expanding cubes Λ ⊂ Zd. Equation (2) holds for all
E ∈ R that are continuity points of N(E) and all ω ∈ Ω except for a P-
null set, which can be chosen uniformly with respect to the aforementioned
values of E.

If the single-site distribution of, say, ω0 happens to be absolutely continu-
ous with respect to Lebesgue measure and if its Lebesgue density ρ satisfies
the additional assumption

ρmax := ess sup
w∈R

{ρ(w)} < ∞, (3)

then, according to Wegner [W], the integrated density of states N(E) is Lip-
schitz continuous, hence absolutely continuous and the Lebesgue derivative
of N(E), the density of states,

E ∈ R 7→ n(E) := dN(E)/dE, (4)

obeys the estimate n(E) 6 ρmax for Lebesgue-almost all E ∈ R. Another
consequence of ergodicty of the Schrödinger operator H is that there is a
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closed set Σ ⊂ R such that σ(H(ω)) = Σ with probability one. This set,
called the deterministic spectrum of H is given by Σ = [−2d, 2d] + supp ρ,
for the model in (1).

We will not assume (3) for the validity of the lower bound for n(E).

Theorem 1. Let H be the random Schrödinger operator (1) of the Anderson
model. Assume that the single-site distribution of ω0 is absolutely continuous
with respect to Lebesgue measure and that its Lebesgue density ρ is essentially
bounded away from zero on some interval [W−,W+] in the sense that

ρmin := ess inf
w∈[W−,W+]

{ρ(w)} > 0 (5)

for some −∞ < W− < W+ < ∞. Assume further that the integrated density
of states N(E) is an absolutely continuous function with Lebesgue derivative
n(E) as in (4). Then, for every δ > 0 (small enough) there exists a strictly
positive constant Cδ such that

n(E) > Cδ > 0, (6)

for Lebesgue-almost all E ∈ [−2d + W− + δ, 2d + W+ − δ].

Remark 1. The theorem can be generalized in a straightforward manner
to incorporate general bounded, self-adjoint and Zd-translation invariant
unperturbed operators H0 instead of L. In this case, (6) holds for all E ∈
σ(H0) + [W− + δ,W+ − δ].

Remark 2. The lower bound constant Cδ > 0 can be expressed in terms of
the integrated density of states N (0)(E) for the unperturbed operator L. For
any δ > 0 small enough, we cover the interval [−2d + W− + δ, 2d−W+ − δ]
by finitely many intervals Ij = [Ej − δ, Ej + δ] of width 2δ and centered at
Ej . We can take Cδ to be

Cδ = min
j

{
(δρmin)

αEj

2δ

[
N (0)(Ej −W− − 2δ)−N (0)(Ej −W+ + 2δ)

]}
,

(7)
where the positive constants αEj > 0 are defined in the proof of Theorem 1.
The difference of the integrated density of states for L on the right of (7) is
strictly positive, see the end of the proof of Theorem 1.

In Theorem 1, we do not require that ρ is essentially bounded as in (3),
that the support is bounded, nor that [W−,W+] is the entire support of
ρ. However, if we add the latter two hypotheses, we obtain the following
special case of Theorem 1.

Corollary 1. Under the hypotheses of Theorem 1, and the additional condi-
tion that (5) holds on the entire support of ρ, i.e. ρ(w) = 0 for almost every
w ∈ R \ [W−,W+], then the density of states is strictly positive Lebesgue-
almost everywhere on Σ.
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Remark 3. After we completed this work, we learned that similar result is
contained in Frank Jeske’s unpublished PhD-thesis [J], which was super-
vised by Werner Kirsch. We thank Ivan Veselić for informing us about the
existence of [J].

Remark 4. The question arises naturally whether a similar lower bound for
the density of states n does also hold in the case of continuum random
Schrödinger operators, that is, Schrödinger operators on L2(Rd). For d =
1 and for alloy-type random potentials with suitably well-behaved single-
site potentials, the answer is affirmative. The argument proceeds as in the
discrete case with some obvious modifications that are well known from
proofs of upper Wegner estimates for continuum models. The key point
is that the finite-rank-perturbation argument, which allows us to proceed
from (14) to (15) below is still valid in the one-dimensional continuum case.
Indeed, suppose we have two Schrödinger operators on an interval that differ
only by a boundary condition (Dirichlet versus none, say) that is imposed at
an interior point of the interval. Then it is well known from, e.g., the theory
of point interactions that these two Schrödinger operators differ by a rank-2
perturbation. However, for d > 2, different boundary conditions along a
finite hypersurface S give rise to an infinite-rank perturbation. Thus, in
the case d > 2 one needs an alternative argument why different boundary
conditions along S for Schrödinger operators in a finite volume Λ (with S
in the interior of Λ) lead to eigenvalue counting functions that differ by a
term proportional to the area of S. Furthermore, this error term would be
required to remain bounded as Λ ↑ Rd. But this is a delicate issue in view
of [K1, K2].

Proof of Theorem 1. The proof follows Wegner’s arguments [W], except that
we introduce a partition of the finite volume into cubes of large but fixed size.
This allows us to get a nontrivial result in the macroscopic limit L →∞, a
problem seemingly ignored in [W]. A similar partitioning strategy was used
in the proof of a (upper) Wegner estimate for continuum random Schrödinger
operators by spectral averaging [CH], see also [FHLM, HLMW] for the case
Gaussian or other types of unbounded random potentials.
1. Let E1, E2 ∈ R such that E2 − E1 > ε for some ε > 0. We consider
a sequence of expanding cubes ΛL in Zd with volume |ΛL| = Ld. Finally,
we pick a smooth, monotone increasing switch function fε ∈ C1(R) such
that fε(λ) = 0 for all λ 6 0 and fε(λ) = 1 for all λ > ε. We let E denote
the expectation associated with the probability measure P, and we write
Fε,L(λ, ω) := trΛL

fε(λ−H
(ω)
ΛL

). Then we have

N(E2)−N(E1) > lim
L→∞

{
1
Ld

E
[
trΛL

(
fε(E2 −HΛL

)− fε(E1 + ε−HΛL
)
)]}

= lim
L→∞

{
1
Ld

∫ E2

E1+ε
dλ E

[
∂

∂λ
Fε,L(λ, ·)

]}
. (8)
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The quantity Fε,L(λ, ω) depends on λ and ω only through the differences
{ωx − λ}x∈ΛL

, and it is a monotone decreasing function in each of those
differences. We partition the cube ΛL into (L/`)d smaller cubes Γj of the
same (fixed) volume `d. We consider only those big cubes ΛL for which
such a partition is possible. We will take L → ∞, and ` large but finite.
Therefore we get

∂

∂λ
Fε,L(λ, ω) = −

(L/`)d∑
j=1

∑
x∈Γj

∂

∂ωx
Fε,L(λ, ω) (9)

for all λ ∈ R and all ω ∈ Ω.
2. We conclude from (8)–(9) that

N(E2)−N(E1) > ρ`d

min lim
L→∞

 1
(L/`)d

(L/`)d∑
j=1

EΓc
j

[∫ E2

E1+ε
dλ Gj(λ, ·)

] (10)

with

Gj(λ, ωΓc
j
) :=

1
`d

∫
[W−,W+]`

d

( ∏
y∈Γj

dωy

) ∑
x∈Γj

(
− ∂

∂ωx

)
Fε,L(λ, ω). (11)

Here Γc
j := Zd \ Γj denotes the complement of Γj , and (in slight abuse

of notation) we have written ω =: (ωΓj , ωΓc
j
), where ωΓj := (ωx)x∈Γj . The

partial disorder average EΓc
j

in (11) extends only over the coupling constants
ωΓc

j
.

3. Following Wegner [W], we are going to perform a change of variables
in (11) from ωΓj to η: we fix an arbitrary point xj ∈ Γj and set ηxj := ωxj

and ηy := ωy − ωxj for all y ∈ Γj \ {xj}. The Jacobian associated with this
change of variables is 1, whence

Gj(λ, ωΓc
j
) =

1
`d

∫
[W−,W+]

dηxj

∫
[W−−ηxj ,W+−ηxj ]`d−1

( ∏
y∈Γj\{xj}

dηy

)
×

(
− ∂

∂ηxj

)
Fε,L

(
λ, (ωΓj (η), ωΓc

j
)
)
. (12)

Now, fix δ ∈]0, (W+ − W−)/4[. One obtains a lower bound for (12) by
restricting first the integration over ηxj to [W− + δ/2,W+ − δ/2] and then
restricting the integration over ηy to [−δ/2, δ/2], for all y ∈ Γj \ {xj}. This
gives

Gj(λ, ωΓc
j
) >

1
`d

∫
[−δ/2,δ/2]`

d−1

( ∏
y∈Γj\{xj}

dηy

)[
Fε,L

(
λ, (ωΓj (η

−), ωΓc
j
)
)

− Fε,L

(
λ, (ωΓj (η

+), ωΓc
j
)
)]
(13)
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with η± :=
(
W± ∓ δ/2, (ηy)y∈Γj\{xj}

)
. Note that in (13) one has(

ωΓj (η
−)

)
x

6 W− + δ and
(
ωΓj (η

+)
)
x

> W+ − δ for all x ∈ Γj . Since
Fε,L is a decreasing function in each ωx, we arrive at

Gj(λ, ωΓc
j
) >

δ`d−1

`d

[
Fε,L

(
λ, (ω−Γj

, ωΓc
j
)
)
− Fε,L

(
λ, (ω+

Γj
, ωΓc

j
)
)]

(14)

with spatially constant couplings ω±Γj
:= (W±∓ δ)x∈Γj inside the small cube

Γj .
4. Next, we will use a Dirichlet decoupling of the small cube Γj . In the
first (i.e. the positive) term on the right-hand side of (14), this can be done
straight away, because HΛL

6 HΓj ⊕HΛL\Γj
. To do the replacement in the

second (i.e. the negative) term, one has to take into account the error that
arises from introducing the additional Dirichlet boundary condition along
∂Γj \ ∂ΛL. But this is a perturbation of rank O(`d−1) and it is independent
of the coupling constants. Furthermore, recall that 0 6 fε 6 1. Thus there
is a constant D ∈]0,∞[, which depends only on d, such that

Gj(λ, ωΓc
j
) >

δ`d−1

`d

{
trΓj

[
fε(λ−W− − δ − LΓj )− fε(λ−W+ + δ − LΓj )

]
−D`d−1

}
>

δ`d−1

`d

{
trΓj

[
fε(E1 −W− − δ − LΓj )− fε(E2 −W+ + δ − LΓj )

]
−D`d−1

}
(15)

for all λ ∈ [E1, E2] and all ωΓc
j
. The contributions from HΛL\Γj

have can-
celed, so the right side of the last line in (15) is independent of L. Inserting
(15) into (10) and taking the limit ε ↓ 0, we arrive at the estimate

N(E2)−N(E1)
E2 − E1

>
(δ ρmin)`d

δ

(
K`(E1, E2)−D/`

)
(16)

for the difference quotient of the integrated density of states of H.
5. The lower bound in (16) is expressed in terms of the difference

K`(E1, E2) := N
(0)
Λ`

(E1 −W− − δ)−N
(0)
Λ`

(E2 −W+ + δ), (17)

of the Dirichlet finite-volume approximation N
(0)
Λ`

(λ) :=
`−d trΛ`

χ
]−∞,λ](LΛ`

) for the integrated density of states of the free

Laplacian L. Accordingly we will write N (0)(λ) := limΛ`↑Zd N
(0)
Λ`

(λ) =
〈δ0, χ]−∞,λ](L)δ0〉 for the corresponding infinite-volume quantity. By
hypothesis we know that N(E) is absolutely continuous with respect to
Lebesgue measure. Hence, we can take the monotone limit E2 ↓ E1 =: E in
(16) and obtain

n(E) >
(δ ρmin)`d

δ

(
K`(E,E)−D/`

)
(18)
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for Lebesgue-almost all E ∈ R. We now fix E0 ∈ R, and observe that
K`(E,E) > K`(E0 − δ, E0 + δ) =: K`(E0), for all E ∈ [E0 − δ, E0 + δ]. We
next note that

K(E0) := lim
`→∞

K`(E0) = N (0)(E0 −W− − 2δ)−N (0)(E0 −W+ + 2δ), (19)

exists. It is important to observe that E0 −W−− 2δ > E0 −W+ + 2δ, since
0 < δ < (W+−W−)/4, and that for all E0 ∈]−2d+W−+2δ, 2d+W+−2δ[,
we have −2d < E0 −W− − 2δ < 2d + (W+ −W−)− 4δ, and −2d− [(W+ −
W−)− 4δ] < E0−W+ +2δ < 2d. Specifically, we have −2d < E0−W−− 2δ
and if E0−W−−2δ > 2d, then the other energy satisfies E0−W++2δ < 2d.
Consequently, K(E0) is strictly positive for E0 on the specified range since

N (0)(λ2)−N (0)(λ1) > 0, (20)

whenever λ1 < λ2, and at least one of the λj ’s lies in the interior of σ(L) =
[−2d, 2d]. Thus, there exists a finite length `E0 such that(

K`E0
(E,E)−D/`E0

)
> K(E0)/2 for all E ∈ [E0 − δ, E0 + δ]. (21)

The theorem follows from (18), (21) and by covering the interval ] − 2d +
W− + δ, 2d + W+ − δ[ by a finite number of small intervals of length 2δ. �
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[AM] M. Aizenman and S. Molčhanov, Localization at large disorder and extreme en-
ergies. An elementary derivation, Commun. Math. Phys. 157 (1993), 245–278.

[CL] R. Carmona and J. Lacroix, Spectral theory of random Schrödinger operators,
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[J] F. Jeske, Über lokale Positivität der Zustandsdichte zufälliger Schrödinger-
Operatoren, PhD-thesis, Ruhr-Universität Bochum, Germany, 1992 [in German].

[K1] W. Kirsch, Small perturbations and the eigenvalues of the Laplacian on large
bounded domains, Proc. Amer. Math. Soc. 101 (1987), 509–512.

[K2] W. Kirsch, The stability of the density of states of Schrödinger operator under
very small perturbations, Integral Equations Operator Theory 12 (1989), 383–
391.



8 P. D. HISLOP AND P. MÜLLER
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[Mol] S. A. Molčanov, The local structure of the spectrum of the one-dimensional
Schrödinger operator, Commun. Math. Phys. 78 (1981), 429–446.

[PF] L. Pastur and A. Figotin, Spectra of random and almost-periodic operators,
Springer, Berlin, 1992.
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