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1. INTRODUCTION

In this paper we study the negative eigenvaluesλj(V ) of the Schr̈odinger
operator−∆ − V (x), x ∈ Rd. If V decays as|x| → ∞ in a certain
integral sense, then the negative spectrum of the operator is discrete. The
igenvaluesλj(V ) can accumulate only to the point zero. Moreover, the rate
of the accumulation is controlled by the relation

(1.1)
∑

j

|λj(V )|γ ≤ C

∫
|V (x)|d/2+γ dx,

whereγ ≥ 0 for d ≥ 3, γ > 0 for d = 2 andγ ≥ 1/2 for d = 1.
The estimate (1.1) is called the classical Lieb-Thirring inequality. One

needs to remark, that although for anyV ∈ Ld/2+γ the eigenvalue sum∑
j |λj|γ converges for bothV and−V , it follows from our results that

converse need not be true. The sum
∑

j |λj|γ can converge even for poten-
tials that are not functions of the classLd/2+γ.

In the present paper we study the question: how typical is the situation
when the right hand side of (1.1) is infinite, but nevertheless the series in
the left hand side converges? For that purpose, we introduce a certain class
of potentials that either decay slower thanLd/2+γ-functions or do not decay
at all. Potentials in this class will depend on a parameterω, which runs over
a space with a probability measure, so that one can distinguish between
typical and not typicalω. Instead of a decay of the potential, our theorems
require random oscillations ofV = Vω, which ensure thatE[Vω(x)] = 0 for
all x. First, we establish the estimate

(1.2) E
[∑

|λj(Vω)|γ
]
≤ C

∫
E

[
|Vω(x)|d+2γ

]
dx, d ≥ 3.

Then we move one step further and consider potentials with the property

(1.3)
∫ ∣∣∣∫ |x− y|−(d−1)E

[
Vω(x)Vω(y)

]
dy

∣∣∣d/2+γ

dx < ∞.

This condition holds not only ifVω(x) decays at infinity, but it also holds
when the frequency of random oscillations ofV increases as|x| → ∞.
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We show that, even though potentialsVω satisfying (1.3) do not necessary
decay, the corresponding series

∑
j |λj(Vω)|γ for them might be still con-

vergent.
The estimates obtained in the paper show that the probability to meet

a Ld+2γ-potential for which the corresponding eigenvalue sum diverges is
zero and that, for a typicalVω, one has

∑
|λj(Vω)|γ < ∞. This illustrates

the main difference between (1.2) and the classical Lieb-Thirring estimate
(1.1) that holds for all potentials fromLd/2+γ, even for the worst ones.

Relation (1.2) holds ford ≥ 3. A close result holds in the cased = 2 for
potentials|Vω(x)| ≤ C(1 + |x|)−s. The cased = 1 is essentially different
from other dimensions.

The solution of the problem studied in this paper relies heavily on the
classical Lieb-Thirring estimates. The important role of these estimates in
the theory of Schr̈odinger operators is illustrated by the large number of
references we decided to give in the corresponding section (see [1]-[3], [7]-
[15] and [18]).

In the 4th section , we give some examples of applications of the estimate
(1.2) to the theory of the absolutely continuous spectrum ofHω = −∆ −
Vω. These examples are based on the relation between the negative and the
positive part of the spectrum.

2. PRELIMINARIES. THE BIRMAN -SCHWINGER PRINCIPLE

1. Throughout the paper we denote the probability space byΩ. All ran-
dom variablesf in our considerations are functions onΩ;

E[f ] =

∫
Ω

f(ω)dω.

2. For any self adjoint operatorT ands > 0 we define

n+(s, T ) = rankET (s, +∞),

whereET (·) denotes the spectral measure ofT . Recall the following rela-
tion (see [5])

(2.1) n+(s + t, T + S) ≤ n+(s, T ) + n+(t, S);

The next statement is known as the Birman-Schwinger principle.

Lemma 2.1. Let V be a real valued function defined on the spaceRd. Let
N(λ, V ) be the number of eigenvalues of−∆− V belowλ < 0. Then

N(λ, V ) = n+(1, (−∆− λ)−1/2V (−∆− λ)−1/2).

Combining this lemma with (2.1) we obtain
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Corollary 2.1. For anyε ∈ (0, 1)

(2.2) N(λ, V1 + V2) ≤ N(λ, ε−1V1) + N(λ, (1− ε)−1V2).

We would like to remark, that since

(2.3)
∑

j

|λj(V )|γ =

∫ ∞

0

γsγ−1N(−s, V ) ds,

we can always represent the Lieb-Thirring sum as the integral∑
j

|λj(V )|γ = γ

∫ ∞

0

sγ−1n+(1, (−∆ + s)−1/2V (−∆ + s)−1/2) ds.

3. ESTIMATES FOR THE EXPECTATION OF THEL IEB-THIRRING SUM

1. Let ωn be independent bounded identically distributed random vari-
ables withE[ωn] = 0 andE[ω2

n] = 1. Let χn be the characteristic functions
of disjoint measurable sets∆n ⊂ Rd and letn ∈ Rd be fixed points in∆n.
Consider the potential

Vω :=
∑

n

vnωnχn

wherevn are fixed real coefficients. We introduce the operator

Hω = −∆− Vω

and study the negative eigenvaluesλj(Vω) of Hω. For simplicity, assume
that the diameters of∆n are bounded:

(3.1) sup
n

sup
x,y∈∆n

|x− y| < ∞.

Denote

τn = sup
x

∫
∆n

1

|x− y|d−1
dy, |∆n| =

∫
∆n

dx.

The following statement is the main result of the paper. It includes the case
when the diameter of∆n tends to0 as|n| → ∞.

Theorem 3.1. Let d ≥ 3. Assume that sizes of the sets∆n are uniformly
bounded so that they satisfy(3.1). Then for anyγ ≥ 0

(3.2) E
[∑

j

|λj(Vω)|γ
]
≤ C

∑
n

|vn|d+2γτ d/2+γ
n |∆n|.

In particular, the number of eigenvaluesλj(Vω) is almost surely finite if the
series in the right hand side of(3.2)converges forγ = 0.
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Remarks. 1. If ∆n = [0, 1)d + n with n ∈ Zd, then relation (3.2) can be
written in the following form

E
(∑

j

|λj(Vω)|γ
)
≤ C

∫
E

(
|Vω(x)|d+2γ

)
dx.

2. One can replace functionsχn in the theorem by any collection of
functions whose absolute values are not bigger thanχn

3. Let us note that a non-random potentialV (that isVω with all ωn = 1)
has to be inLq with q = d/2 + γ in order to guarantee that

∑
j |λj(V )|γ <

∞. In the case∆n = [0, 1)d +n with n ∈ Zd, our theorem allows potentials
fromL2q. That means they can decay twice slower. We gain nicer properties
of the discrete spectrum because of random oscillations ofωn.

Proof of Theorem 3.1.We represent the functionVω in the form (see [4])

Vω = div Qω, Qω = ∇
(
∆−1Vω

)
.

Put it differently, we introduce the vector potential

(3.3) Qω = cd

∫
Rd

x− y

|x− y|d
Vω(y) dy,

wherecd is so chosen that the right hand side of (3.3) is the convolution
of Vω with the kernel of the operator∇∆−1. We will return shortly to the
question of convergence of this integral and show, that under conditions of
the Theorem 3.1,Qω is in the spaceLd+2γ. Note that the idea to introduceQ
appeared in [4] where the author studied the absolutely continuous spectrum
of a random Schr̈odinger operator. SinceVω = div Qω, we obtain that the
operator

−∆− 2Vω + 4Q2
ω = (∇+ 2Qω)∗(∇+ 2Qω) ≥ 0

is positive. Now, since

V = (V − 2Q2) + 2Q2,

we obtain from Corollary 2.1 and formula (2.3), that

(3.4)
∑

|λj(V )|γ ≤
∑

|λj(2V − 4Q2)|γ +
∑

|λj(4Q
2)|γ.

Since the operator−∆−2divQ0 +4Q2
0 is positive, the first sum in the right

hand side of (3.4) equals zero. Thus

(3.5)
∑

|λj(Vω)|γ ≤
∑

|λj(4Q
2
ω)|γ.



ESTIMATES 5

Now formulas (3.5) and (1.1) lead to the following important intermediate
result:

(3.6)
∑

j

|λj(Vω)|γ ≤ C

∫
|Qω|d+2γdx.

Theorem 3.2. Let d ≥ 3 and letQω = ∇∆−1Vω. Assume that sizes of the
sets∆n are uniformly bounded in the sense of(3.1). Then for any integer
numberp ≥ 1

(3.7)
∫

Rd

E
[
|Qω|2p

]
dx ≤ C

∑
n

|vn|2pτ p
n|∆n|.

Proof. We representQ in the form of a sum

Q = Q1 + Q2,

where

Q1 = cd

∫
x− y

|x− y|d
χ(x− y)V (y)dy

andχ is the characteristic function of the unit ball{x : |x| < 1}. We will
establish the estimates

(3.8)
∫

Rd

E
[
|Q1|2p

]
dx ≤ C

∑
n

|vn|2pτ p
n|∆n|,

and

(3.9)
∫

Rd

E
[
|Q2|2p

]
dx ≤ C

∑
n

|vn|2pτ p
n|∆n|

separately. Let us prove the estimate (3.8) forQ1 first.
SinceE[ωn] = 0, we obtain that

E[Q2p
1 (x)] ≤ cd

∑
m1+···+mk=2p

∏
j

2p!

m1! . . . mk!

∑
n

(∫
∆n

vnχ(x− y) dy

|x− y|d−1

)mj

≤ C1

∑
m1+···+mk=2p

∏
j

∑
n

|vn|mjτmj/2
n

(∫
∆n

χ(x− y) dy

|x− y|d−1

)mj/2

≤ C2

∑
m1+···+mk=2p

∏
j

∑
n

|vn|mjτmj/2
n

∫
∆n

χ(x− y) dy

|x− y|d−1

simply because allmj ≥ 2 and∆n are uniformly bounded.
Now by the Ḧolder inequality for sequence spaceslp,∑

n

|vn|mjτmj/2
n

∫
∆n

χ(x− y) dy

|x− y|d−1
≤
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≤ C3

(∑
n

|vn|2pτ p
n

∫
∆n

χ(x− y) dy

|x− y|d−1

)mj/2p(∫
Rd

χ(x− y) dy

|x− y|d−1

)1−mj/2p

Consequently,

E[Q2p
1 (x)] ≤ C4

∑
n

|vn|2pτ p
n

∫
∆n

χ(x− y) dy

|x− y|d−1

Integrating this inequality with respect tox we obtain (3.8).
Similarly we obtain estimate (3.9) forQ2 SinceE[ωn] = 0, we obtain

that

E[Q2p
2 (x)] ≤ C5

∑
m1+···+mk=2p

∏
j

2p!

m1! . . . mk!

∑
n

(∫
∆n

vn dy

(1 + |x− y|)d−1

)mj

Applying the Ḧolder inequality forLp-functions, we get∑
n

(∫
∆n

vn dy

(1 + |x− y|)d−1

)mj

≤
∑

n

|vn|mj∆mj/2
n

(∫
∆n

dy

(1 + |x− y|)2(d−1)

)mj/2

≤

≤ C6

∑
n

|vn|mj∆mj/2
n

∫
∆n

dy

(1 + |x− y|)2(d−1)

simply because allmj ≥ 2 and∆n are uniformly bounded.
Now applying the Ḧolder inequality for sequences, we derive∑

n

|vn|mj∆mj/2
n

∫
∆n

dy

(1 + |x− y|)2(d−1)
≤

≤
(∑

n

|vn|2p∆p
n

∫
∆n

dy

(1 + |x− y|)2(d−1)

)mj/2p(∫
Rd

dy

(1 + |x− y|)2(d−1)

)1−mj/2p

Consequently,

E[Q2p
2 (x)] ≤ C7

∑
n

|vn|2p∆p
n

∫
∆n

dy

(1 + |x− y|)2(d−1)

Integrating this inequality with respect tox and estimating∆n by τn we
obtain (3.9). Thus the statement of the theorem follows from the triangle
inequality(∫

E[Q2p(x)] dx
)1/2p

≤
(∫

E[Q2p
1 (x)] dx

)1/2p

+
(∫

E[Q2p
2 (x)] dx

)1/2p

.

The proof is completed.�

Estimate (3.7) is proven only for integerp. It follows for arbitraryp ≥ 1
by interpolation arguments. Indeed, for every integerp ≥ 1, consider the
mapping

T : {qn} 7→ Qω
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whereqn = vnτn. If ∆n are fixed, this mapping is linear and continuous
from the space with the norm(

∑
q2p
n ∆n)1/2p to the spaceL2p(Ω × Rd).

Interpolation ofT leads to estimate (3.7) for arbitraryp ≥ 1.
Now the statement of Theorem 3.1 follows from (3.6) and (3.7) forp =

d/2 + γ.

2. In the two dimensional case Theorem 3.1 holds in a somewhat weaker
form. We assume that the potentialV admits the estimate:

(3.10) |Vω(x)| ≤ C(1 + |x|)−s, s > 0.

Note that thenVω ∈ Ld+2γ for s > d
d+2γ

. Therefore a natural version
of Theorem 3.1 for potentials (3.10) is the following statement, which we
formulate only ford = 2.

Theorem 3.3.Letd = 2, ∆n = [0, 1)d + n, n ∈ Z2 ands > 1
1+γ

. Then

E
[∑

j

|λj(Vω)|γ
]
≤ C

(
sup

n
(1 + |n|)s|vn|

)2+2γ

, γ > 0.

For γ = 0 the conditions > 1 in (3.10)implies that the number of negative
eigenvaluesλj(Vω) is finite with probability 1.

We allow ourself to omit the proof of Theorem 3.3, since it differs very
little from the proof of Theorem 3.1.

Finally, consider the cased = 1. Note that estimate (1.2) withγ = 0
imlies finiteness of the number of eigenvalues below zero. It means that
the operators with potentials (3.10) have finite negative spectrum fors > 1.
The same is true ind = 2. The situation changes ford = 1. It turns out that
the number of eigenvaluesλj(V ) of the operator with a potential satisfying
estimate (3.10) withs > 1 can be infinite. Nevertheless, one can prove the
following result.

Theorem 3.4. Let d = 1 and∆n = [n, n + 1), n ∈ Z. Then the condition
that

|vn| ≤ C(1 + |n|)−3/2−ε, ε > 0,

implies that the number of negative eigenvalues of the operator−d2/dx2−
Vω is finite with probability 1.

This result is sharp in the power scale (see Theorem 5.3).

4. CONSEQUENCES OF THE MAIN THEOREM

In this section we give some examples of applications of Theorem 3.1 to
the problems, where instead of negative eigenvalues one studies the positive
spectrum. We shall say that the absolutely continuous spectrum of the oper-
atorHω = −∆+Vω is essentially supported byR+ if the spectral projection
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EHω(δ) is different from zero, as soon as the Lebesgue measure of the set
δ ⊂ R+ = (0,∞) is positive. In other words,

EHω(δ) = 0, δ ⊂ R+, implies |δ| = 0.

It is known that the singular spectrum of a self-adjoint operator on a sep-
arable Hilbert space is concentrated on the set of zero Lebesgue measure.
Therefore the property of the spectral projections, mentioned above, holds
only for operators, whose absolutely continuous spectrum fills the positive
real line.

Our first theorem in this section is based on the connection between the
properties of the absolutely continuous spectrum and behavior of the nega-
tive eigenvalues ofHω.

Theorem 4.1.Letd ≥ 3. Assume that{vn} ∈ l∞ and

(4.1)
∑

n

|vn|d+1τ (d+1)/2
n |∆n| < ∞.

Then the absolutely continuous spectrum of the operatorHω is essentially
supported by(0,∞) with prbability one.

Proof. This theorem follows from the main result of [16] that says that
the condition ∑

j

√
|λj(V )|+

∑
j

√
|λj(−V )| < ∞

implies that the absolutely continuous spectrum of−∆ − V is essentially
supported by(0,∞). �

Without any doubt, this result can not be considered as a trivial conse-
quence of the classical scattering theory, because the potentials satisfying
(4.1) do not have to decay faster than the Coulomb potential. On the other
hand the presence of the absolutely continuous spectrum is expected in the
case when

(4.2)
∫

V 2(x)

(1 + |x|)d−1
dx < ∞

or, which is almost the same, at least under the condition

(4.3) V ∈ L2q(Rd), for some q < d.

The statement that the absolutely continuous spectrum of−∆ − V (x) fills
the positive real line under the condition (4.2) is called B. Simon’s conjec-
ture. There is no proof of this conjecture in the full extent. However, given
thatV = Vω is random (∆n = [0, 1)d + n, n ∈ Zd) andE(Vω) = 0, this
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statement can be considered to be proven (see[4]) under a certain conven-
tion. Namely, instead of (4.2) one has to impose the condition

|V (x)| ≤ C

(1 + |x|)s
, s > 1/2.

In this sense, any integral condition of type (4.3) or (4.1) are again meaning-
ful, because they do not assume that the decay ofV as|x| → ∞ is uniform
with respect to the direction.

In the next theorem we say that a random potential of class (4.3) can be
slightly perturbed so that the spectrum of the Schrödinger operator will gain
nicer properties.

We shall say that a real valued potentialW belongs to the class of fast
decaying potentialsA if ∫

Rd

|W (x)|dx

(1 + |x|)d−1
< ∞.

Theorem 4.2.Letd ≥ 3 and let{vn} ∈ l∞. Assume that∑
n

|vn|2qτ q
n|∆n| < ∞

for some1 < q < d. Then for almost everyω ∈ Ω there is a potential
Wω ∈ A such that the absolutely continuous spectrum of the operator

Hω + Wω = −∆ + Vω + Wω

is essentially supported by(0,∞).

Proof. As the matter of fact,

Wω = Q2
ω,

whereQω = ∇∆−1Vω. According to estimate (3.7),

Q ∈ L2q.

Consequently,W ∈ Lq with q < d. Therefore,∫
Rd

|W (x)|dx

(1 + |x|)d−1
≤

(∫
|W |qdx

)1/q(∫
dx

(1 + |x|)q(d−1)/(q−1)

)1−1/q

< ∞

it remains to refer to [17] where it is proven that if both operatorsH+ =
−∆ + V + W andH− = −∆ − V + W are positive, then the absolutely
continuous spectra of operatorsH± are essentially supported by(0,∞).
Positivity of the operatorsH± follows in its turn from the relationsW = Q2

andV = div Q. �

In the case of the normal lattice∆n = [0, 1)d +n with n ∈ Zd, this result
can be improved. Namely, as it was shown by Denissov [4],Hω has a.c.
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spectrum allover the positive real line under conditions that are similar to
the ones in Theorem 4.2.

5. CONDITIONS THAT GUARANTEE THE PRESENCE OF INFINITELY

MANY EIGENVALUES IN LOW DIMENSIONS.

Inequality (3.2) forγ = 0 guarantees that the number of eigenvalues
below zero is finite. Let us discuss the converse question. Namely, under
what conditions onV the operator−∆ + Vω has infinitely many negative
eigenvalues. Here we shall consider the case of the standard lattice∆n =
[0, 1)d + n, n ∈ Zd in dimensionsd = 1, 2 and shall be interested only in
potentialsVω satisfying the condition

|Vω| ≤
C

(1 + |x|)s
, s > 0.

For simplicity of calculations we shall assume that the random variablesωn

are normally distributed. This means that the density of distribution forωn

is a function of the form

f(t) =
1√
2πσ

exp
(
− t2

2σ2

)
.

Consider first the two-dimensional case, whenχn are the characteristic
functions of the squares∆n = [0, 1)2 + n, n ∈ Z2. We intend to con-
struct a potentialVω that decays as|x|−1+ε as|x| → ∞, but nevertheless the
operator−∆− Vω has infinitely many eigenvalues below zero.

Theorem 5.1.Letd = 2 For anyε > 0 there exist coefficientsvn satisfying
the estimate

|vn| ≤ (1 + |n|)−1+ε,

such that the operator−∆− Vω with the potential

Vω =
∑

n

vnωnχn

has infinite number of negative eigenvalues.

Proof. In order to constructV = Vω we introduce characteristic functions
θm of the spherical layers

{x ∈ R2 : 2 · 4n ≤ |x| < 3 · 4n }.

The potentialVω in our example will be the function

Vω =
∞∑

m=1

θm

∑
n

ωn(1 + |n|)−1+εχn(x)



ESTIMATES 11

Note that the quantity

ξm =

∫
θmV dx

is a normally distributed random variable having the variance

σ2
m = c

∫
R2

θm(x)
∑

n

(1 + |n|)−2+2εχn(x) dx →∞, as m →∞.

Consequently, the probability, that

ξm

σm

> s, equals
1√
2π

∫ ∞

s

exp(−t2/2) dt.

Consider now functions

φn(x) = φ
( x

4n

)
, where φ ∈ H1(R2)

equals1 on the layer{x ∈ R2 : 2 < |x| < 3} and supported in the set
{x ∈ R2 : 1 < |x| < 4}. We note that the supports of the functionsφn are
disjoint. Besides that,∫

|∇φn|2 dx =

∫
|∇φ|2 dx = const.

Consequently, the probability that

(5.1)
∫
|∇φn|2 dx−

∫
Vω(x)|φn|2 dx < 0

tends to1/2 as |n| → ∞. In other words, (5.1) holds approximately for
”one half” of the indicesn. Since the number of indices in question is
infinite, the inequality (5.1) holds for infinitely manyn, which means that
the operatorHω = −∆−Vω has infinitely many negative eigenvalues.�

As a matter of fact, one can prove

Theorem 5.2.Letd = 2. There exist coefficientsvn satisfying the estimate

|vn| ≤ (1 + |n|)−1,

such that the operator−∆− Vω with the potential

Vω =
∑

n

vnωnχn

has infinite number of negative eigenvalues.

The same arguments work in the one-dimensional case
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Theorem 5.3. Let d = 1 and letχn be the characteristic functions of the
intervals[n, n + 1). For anyε > 0 there exist coefficientsvn satisfying the
estimate

|vn| ≤ (1 + |n|)−3/2+ε,

such that the operator−∆− Vω with the potential

Vω =
∑

n

vnωnχn

has infinite number of negative eigenvalues.

On the other hand, the number of negative eigenvalues of the Schrödinger
operator with the potential

Vω = C
∑

n

(1 + |n|)−3/2−εωnχn

is finite. That shows that the corresponding result is sharp.
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