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1. INTRODUCTION

In this paper we study the negative eigenvaldg$’) of the Schédinger
operator—A — V(z), = € R% If V decays agz| — oo in a certain
integral sense, then the negative spectrum of the operator is discrete. The
igenvalues\; (V') can accumulate only to the point zero. Moreover, the rate
of the accumulation is controlled by the relation

1) SN < [ V@),

wherey > 0ford > 3, > 0ford =2andy > 1/2ford = 1.

The estimate (1.1) is called the classical Lieb-Thirring inequality. One
needs to remark, that although for aly € L%?*7 the eigenvalue sum
>_; 1A;]" converges for botti” and —V/, it follows from our results that
converse need not be true. The shim [\;[” can converge even for poten-

tials that are not functions of the clas$/?*.

In the present paper we study the question: how typical is the situation
when the right hand side of (1.1) is infinite, but nevertheless the series in
the left hand side converges? For that purpose, we introduce a certain class
of potentials that either decay slower th&fi>+7-functions or do not decay
at all. Potentials in this class will depend on a parameta&vhich runs over
a space with a probability measure, so that one can distinguish between
typical and not typical. Instead of a decay of the potential, our theorems
require random oscillations &f = V,,, which ensure thak[V,(z)] = 0 for
all z. First, we establish the estimate

w2 E[Y ()] < C/E“vw(x)\d”v] dr,  d>3

Then we move one step further and consider potentials with the property
d/24y

(1.3) /’/ |z — y\’(dfl)E[Vw(x)Vw(y)]dy‘ dr < 00.

This condition holds not only i¥/,(x) decays at infinity, but it also holds

when the frequency of random oscillations W6fincreases agr| — oo.
1
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We show that, even though potentidfs satisfying (1.3) do not necessary
decay, the corresponding serigs$; |\;(V;,)[” for them might be still con-
vergent.

The estimates obtained in the paper show that the probability to meet
a L+ -potential for which the corresponding eigenvalue sum diverges is
zero and that, for a typicaf,, one hasy  |\;(V,,)|” < oo. This illustrates
the main difference between (1.2) and the classical Lieb-Thirring estimate
(1.1) that holds for all potentials froth?2+7, even for the worst ones.

Relation (1.2) holds fod > 3. A close result holds in the cage= 2 for
potentials|V,,(z)| < C(1 + |z|)~*. The casel = 1 is essentially different
from other dimensions.

The solution of the problem studied in this paper relies heavily on the
classical Lieb-Thirring estimates. The important role of these estimates in
the theory of Sclisdinger operators is illustrated by the large number of
references we decided to give in the corresponding section (see [1]-[3], [7]-
[15] and [18]).

In the 4th section , we give some examples of applications of the estimate
(1.2) to the theory of the absolutely continuous spectrurfof= —A —

V.. These examples are based on the relation between the negative and the
positive part of the spectrum.

2. PRELIMINARIES. THE BIRMAN-SCHWINGER PRINCIPLE

1. Throughout the paper we denote the probability space.bll ran-
dom variables in our considerations are functions 0n

Blf = [ fw)do

Q

2. For any self adjoint operatdr ands > 0 we define
ny(s,T) = rankEr(s, +00),

where E(-) denotes the spectral measurelofRecall the following rela-
tion (see [5])

(2.1) ny(s+t,T+95) <ni(s,T)+ny(t,S);
The next statement is known as the Birman-Schwinger principle.

Lemma 2.1. LetV be a real valued function defined on the sp&cde Let
N (A, V) be the number of eigenvalues-ef\ — V' below\ < 0. Then

N V) =ni (1, (A = N2V (=A = N2,

Combining this lemma with (2.1) we obtain
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Corollary 2.1. For anye € (0,1)
(2.2) NAVIHVo) S N e V) + N (1 —€)7H).

We would like to remark, that since
(2.3) > I = / s IN(—s, V) ds,
" 0
J
we can always represent the Lieb-Thirring sum as the integral

§ AV = 7/ S (1, (=A + 5) Y2V (=A + 5)7V?) ds.
. 0
J

3. ESTIMATES FOR THE EXPECTATION OF THELIEB-THIRRING SUM

1. Letw, be independent bounded identically distributed random vari-
ables withE[w,] = 0 andE[w?] = 1. Lety, be the characteristic functions
of disjoint measurable sefs,, C R¢ and letn € R? be fixed points in,,.
Consider the potential

Vw = Zvnwan

n

wherev,, are fixed real coefficients. We introduce the operator
H,=-A-1V,

and study the negative eigenvaluesV,,) of H,. For simplicity, assume
that the diameters ak,, are bounded:

(3.1) sup sup |z —y| < 0.

n  xT,YeEA,

Denote

1
Tn :sup/ 0y, A, :/ dx.
z Ja, [t =yl An

The following statement is the main result of the paper. It includes the case
when the diameter af,, tends ta) as|n| — oo.

Theorem 3.1.Letd > 3. Assume that sizes of the séts are uniformly
bounded so that they satiffy.1). Then for anyy > 0

B2 E[Y NP Ol m oA,
J n

In particular, the number of eigenvaluas(V,,) is almost surely finite if the
series in the right hand side ¢B8.2) converges fory = 0.
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Remarks. 1. If A, = [0,1)¢ 4+ n with n € Z¢, then relation (3.2) can be
written in the following form

B(S L) < C’/IE(Ww(x)\d”’Y)da;.

2. One can replace functiong, in the theorem by any collection of
functions whose absolute values are not bigger than

3. Let us note that a non-random potentiaf{that isV,, with all w,, = 1)
has to be in.? with ¢ = d/2 + + in order to guarantee that; |\;(V)|” <
oc. Inthe case\,, = [0, 1)+ n with n € Z%, our theorem allows potentials
from L2?. That means they can decay twice slower. We gain nicer properties
of the discrete spectrum because of random oscillations of

Proof of Theorem 3.1We represent the functioi, in the form (see [4])
V,=divQ,, Q.= V(A”Vw).

Put it differently, we introduce the vector potential

(3.3) Qu = ca /R LYy () dy,

alz—yld®

wherec, is so chosen that the right hand side of (3.3) is the convolution
of V, with the kernel of the operatdv A—!. We will return shortly to the
guestion of convergence of this integral and show, that under conditions of
the Theorem 3.1Q),, is in the spacé.¢*27. Note that the idea to introducg
appeared in [4] where the author studied the absolutely continuous spectrum
of a random Sclirdinger operator. Sincg, = div (),,, we obtain that the
operator

—A =2V, +4Q% = (V +2Q.)"(V +2Q,,) >0
is positive. Now, since
V= (V—20Q% +2Q?
we obtain from Corollary 2.1 and formula (2.3), that
(3.4) DN <Y IRV =47+ ) A H))

Since the operator A — 2divQ, + 4Q?% is positive, the first sum in the right
hand side of (3.4) equals zero. Thus

(3.5) STV <D IR
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Now formulas (3.5) and (1.1) lead to the following important intermediate
result:

(3.6) ZM P < C/|Q 4427y

Theorem 3.2.Letd > 3 and letQ, = VA~!V,,. Assume that sizes of the
setsA,, are uniformly bounded in the sense @.1). Then for any integer
numberp > 1

(3.7) | E[lQu)ar < 03 fuuPrrzia)
Rd -

Proof. We represent) in the form of a sum

Q= Q1+ Q,

where
Q= / P = )V )y

andy is the characteristic function of the unit bglt : |z| < 1}. We will
establish the estimates

(3.8) /E[|Qlyﬂdxg02|vn|2prg|an|,
R4 n

and

3.9 E e < C W[ PTP| A,

(3.9 | Bl1@a]as < > ot

separately. Let us prove the estimate (3.8)Jorfirst.
SinceE[w,] = 0, we obtain that

E[QY (z)] < e Z H mal .. my! Z(/A Unf; i;|d)1dy>mj

mi+-+mEp=2p j "

<G> Han\maij/a(/ #)mﬂ?

mi1+-+mrp=2p j n

SO D |y

mi+-4+mp=2p J n An

simply because ath; > 2 andA,, are uniformly bounded.
Now by the Hblder inequality for sequence spaces

mj, _m;/2 ( )dy
Z‘Un‘ Tn // 7 — yld-! <
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x —y)dy\mi/2p T —y)dy\1-mi/2p
gcg(ZmPst/ X( - yj_ly) (/ X( - y3_1y>
» A, |z =yl re |7 — Y|

Consequently,
— dy
E 2p <C » 2p p/ X(x y)
Q7 (z)] < 4% |von |7 A, |z —yli?

Integrating this inequality with respect towe obtain (3.8).
Similarly we obtain estimate (3.9) fa@p, SinceE[w,] = 0, we obtain
that

serese B Marm (L arew)

mi+--+mp=2p j y|
Applying the Hlder inequality forLP-functions, we get

Un dy )mﬂ' om, dy m; /2
> <3, mJAmJ/2</ ) _
2 </An Trle—gpr) = 2P G ypen) S

. . dy
<C " mJAm]/Q/
D L A e

n

simply because ath; > 2 andA,, are uniformly bounded.
Now applying the Klder inequality for sequences, we derive

. . dy
nm]Amj/Q
2 lunl" 8 / (Lt [ =yl

An

dy m;/2p dy 1-m;/2p
< (lealray )"(f )
a (; ! n/An (14 |z — y])2@-D re (14 |z —y])2@=D

Consequently,

EQ¥ ()] < Cr Y [oaf2 / 4y

- A, (L4 [z —yl)2e@y

Integrating this inequality with respect toand estimating),, by 7,, we
obtain (3.9). Thus the statement of the theorem follows from the triangle
inequality

([Er@ld)™ < ([BoP@la) ™+ ([Ez@)a)"

The proof is completed.(d

Estimate (3.7) is proven only for integgr It follows for arbitraryp > 1
by interpolation arguments. Indeed, for every integer 1, consider the
mapping

T {gn} — Qu
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whereq, = v,7,. If A, are fixed, this mapping is linear and continuous
from the space with the norrtd_ ¢??A,,)'/? to the space. (2 x R%),
Interpolation of% leads to estimate (3.7) for arbitrapy> 1.

Now the statement of Theorem 3.1 follows from (3.6) and (3.7 pfer
d/2+ 7.

2. In the two dimensional case Theorem 3.1 holds in a somewhat weaker
form. We assume that the potentialadmits the estimate:

(3.10) Vo(@)] <C(+z])™, s>0.

Note that thenl, € L2 for s > ﬁ. Therefore a natural version

of Theorem 3.1 for potentials (3.10) is the following statement, which we
formulate only ford = 2.

Theorem 3.3.Letd = 2, A, = [0,1)" +n,n € Z* ands > 11-. Then
242
B[S 00 < o(sup+ )L >0
j n

For v = 0 the conditions > 1 in (3.10)implies that the number of negative
eigenvalues\;(V,,) is finite with probability 1.

We allow ourself to omit the proof of Theorem 3.3, since it differs very
little from the proof of Theorem 3.1.

Finally, consider the casé = 1. Note that estimate (1.2) with = 0
imlies finiteness of the number of eigenvalues below zero. It means that
the operators with potentials (3.10) have finite negative spectrumor.

The same is true id = 2. The situation changes fdr= 1. It turns out that
the number of eigenvalueg (V') of the operator with a potential satisfying
estimate (3.10) witly > 1 can be infinite. Nevertheless, one can prove the
following result.

Theorem 3.4.Letd = 1 andA,, = [n,n + 1), n € Z. Then the condition
that

[oa] S CA+ )27 e>0,
implies that the number of negative eigenvalues of the operaddydz? —
V,, is finite with probability 1.

This result is sharp in the power scale (see Theorem 5.3).

4, CONSEQUENCES OF THE MAIN THEOREM

In this section we give some examples of applications of Theorem 3.1 to
the problems, where instead of negative eigenvalues one studies the positive
spectrum. We shall say that the absolutely continuous spectrum of the oper-
atorH, = —A+V,, is essentially supported I#, if the spectral projection
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Ey,(0) is different from zero, as soon as the Lebesgue measure of the set
d C Ry = (0,00) is positive. In other words,

Eyp,(0)=0, 6 CR;, implies |[0] =0.

It is known that the singular spectrum of a self-adjoint operator on a sep-
arable Hilbert space is concentrated on the set of zero Lebesgue measure.
Therefore the property of the spectral projections, mentioned above, holds
only for operators, whose absolutely continuous spectrum fills the positive
real line.

Our first theorem in this section is based on the connection between the
properties of the absolutely continuous spectrum and behavior of the nega-
tive eigenvalues off,.

Theorem 4.1. Letd > 3. Assume thafv, } € [* and
(4.1) D o THIR|A, | < oo

n

Then the absolutely continuous spectrum of the operAtors essentially
supported by0, co) with prbability one.

Proof. This theorem follows from the main result of [16] that says that

the condition
DA D (V)] < o0

implies that the absolutely continuous spectrum-a&f — V' is essentially
supported by0,00). O

Without any doubt, this result can not be considered as a trivial conse-
guence of the classical scattering theory, because the potentials satisfying
(4.1) do not have to decay faster than the Coulomb potential. On the other
hand the presence of the absolutely continuous spectrum is expected in the
case when

V?(x)
4.2 —d
(4.2) /<1+|x|>d—1 T
or, which is almost the same, at least under the condition
(4.3) V € L*(RY), for some ¢ < d.

The statement that the absolutely continuous spectrum/of- V () fills
the positive real line under the condition (4.2) is called B. Simon’s conjec-
ture. There is no proof of this conjecture in the full extent. However, given
thatV = V,, is random Q\, = [0,1)? + n, n € Z%) andE(V,,) = 0, this
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statement can be considered to be proven (see[4]) under a certain conven-
tion. Namely, instead of (4.2) one has to impose the condition

V)<
(1 + =)

In this sense, any integral condition of type (4.3) or (4.1) are again meaning-

ful, because they do not assume that the decdy a$|x| — oc is uniform

with respect to the direction.

In the next theorem we say that a random potential of class (4.3) can be
slightly perturbed so that the spectrum of the $cimger operator will gain
nicer properties.

We shall say that a real valued potenti&l belongs to the class of fast

decaying potentialg( if
[ W(a)ldz
ra (1 [])o!

Theorem 4.2.Letd > 3 and let{v,} € [*. Assume that

Z 10,297 A, | < 00
n

s>1/2.

for somel < ¢ < d. Then for almost every € () there is a potential
W, € 2 such that the absolutely continuous spectrum of the operator

H,+W,=-A+V,+W,
is essentially supported 49, co).

Proof. As the matter of fact,
W, = Q3
where@),, = VA~'V,. According to estimate (3.7),
Qe L%
Consequentiil” € L7 with ¢ < d. Therefore,

(W (x)|dx a0\ dx 1-1/q
Lo < (fwre) ([ s ppes) <o

it remains to refer to [17] where it is proven that if both operatlrs =
—A+V+WandH_ = —A -V + W are positive, then the absolutely
continuous spectra of operatof. are essentially supported K9, co).
Positivity of the operator&l.. follows in its turn from the relationd” = ?
andV =divQ. 0O

In the case of the normal lattic®,, = [0, 1)? + n with n € Z¢, this result
can be improved. Namely, as it was shown by Denissov f4),has a.c.
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spectrum allover the positive real line under conditions that are similar to
the ones in Theorem 4.2.

5. CONDITIONS THAT GUARANTEE THE PRESENCE OF INFINITELY
MANY EIGENVALUES IN LOW DIMENSIONS.

Inequality (3.2) fory = 0 guarantees that the number of eigenvalues
below zero is finite. Let us discuss the converse question. Namely, under
what conditions ori/ the operator-A + V,, has infinitely many negative
eigenvalues. Here we shall consider the case of the standard laffiee
[0,1) +n, n € Z4in dimensions! = 1,2 and shall be interested only in
potentials, satisfying the condition

V| < L, s> 0.
(1+ |zf)®
For simplicity of calculations we shall assume that the random variables
are normally distributed. This means that the density of distributioofor
is a function of the form

ft) = T

Consider first the two-dimensional case, when are the characteristic
functions of the squared,, = [0,1)> + n, n € Z?. We intend to con-
struct a potential/, that decays alg|~'* as|z| — oo, but nevertheless the
operator— A — V,, has infinitely many eigenvalues below zero.

1 t2
exp(—@)

Theorem 5.1. Letd = 2 For anye > 0 there exist coefficients, satisfying
the estimate

[oa] < (1 +[nf) =",
such that the operator A — V,, with the potential

Vw = Z UnWnXn

has infinite number of negative eigenvalues.

Proof. In order to construct’ = V,, we introduce characteristic functions
0,, of the spherical layers

{zeR*: 2-4" < |o| <3-4"}.

The potential/, in our example will be the function

V, = ZIGmen(l + |n]) "oy (2)
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Note that the quantity
& = / 0,,V dx

is a normally distributed random variable having the variance

o2 = c/ O () Z(l + |n|)"* 2y, (z) dz — 00, as m — oc.
R2

n

Consequently, the probability, that

Em 1 /°° 5
-— >s, equals —— exp(—t~/2)dt.
q Nzl p(—t7/2)

Om

Consider now functions
On(x) = gb(f—n), where ¢ € H'(R?)

equalsl on the layer{z € R? : 2 < |z| < 3} and supported in the set
{x € R?: 1 < |z| < 4}. We note that the supports of the functiafsare
disjoint. Besides that,

/|V¢n|2d:c :/|V¢|2dx = const.

Consequently, the probability that

(5.1) [v6uPds— [Vewlo,Pas <o

tends tol /2 as|n| — oo. In other words, (5.1) holds approximately for
"one half’ of the indicesn. Since the number of indices in question is
infinite, the inequality (5.1) holds for infinitely many, which means that
the operator{,, = —A — V,, has infinitely many negative eigenvalues[]

As a matter of fact, one can prove
Theorem 5.2. Letd = 2. There exist coefficients, satisfying the estimate
[val < (14 |n]) ™,

such that the operator A — V,, with the potential
Vw = Z UnWnXn

has infinite number of negative eigenvalues.

The same arguments work in the one-dimensional case
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Theorem 5.3. Letd = 1 and lety,, be the characteristic functions of the
intervals|n,n + 1). For anye > 0 there exist coefficients, satisfying the
estimate

[on] < (1 [n]) =224,
such that the operator A — V,, with the potential

Vw = Z UnWnXn

has infinite number of negative eigenvalues.

On the other hand, the number of negative eigenvalues of thé&@oler
operator with the potential

Vo= O (14 [nl) 2w

is finite. That shows that the corresponding result is sharp.
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