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Abstract

We give new constants that arise in non linear unimodal maps. We discuss
the arithmetic character of Feigenbaum’s constant and related constants
arising in mathematical physics.
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1. On The Logistic Map

Theorem 1a

Define u(x) by u(x) = 1 if x < 0,u(x) = 0 if x ≥ 0. The logistic map [2] which
is xn+1 = λxn(1 − xn), λ ∈ R we give new results for λ = 4 this is the full
logistic map. The full logistic map has the non-recursive representation

xn = (1−cos(2n arccos(1−2x0)))
2

[2]. It can be shown that if xn+1 = 4xn(1 − xn),and

xn = (1−cos(2n arccos(1−2x0)))
2

then x0 = 1
2

− 1
2

β0 and xn = 1
2

− 1
2

βn with
βn+1 = 2βn

2 − 1, −1 ≤ β0 ≤ 1, n ≥ 0, with β0 = δ, −1 ≤ δ ≤ 1 we have

∑
n=0

∞ u(βn)
2n+1

= ∑
n=0

∞ u(1 − 2xn)
2n+1

= θ

θ = arccos(δ)
2π BitXor

arccos(δ)
π if 0 < δ ≤ 1

θ = 1
2

+ arccos(|δ|)
2π BitXor

arccos(|δ|)
π if − 1 ≤ δ < 0

θ = 1
4

= u(0) + 1
4

if δ = 0

We can show constants of the form, (α = δ ),
u( 1

2
−x0)
2

+ arccos |α|
2π BitXor arccos |α|

π are

irrational we sketch the proof, it is known cos(pπ) = q when p & q are rational
p = 0,± 1

3
,± 1

2
,± 2

3
and 1 and q = 1, 1

2
, 0,− 1

2
and −1 respectively are the only

possible values see [4].

We immediately see that arccos p
π = q is irrational for nearly all and infinitely

many p. The above determines a (finite) total of all the periodic orbits that
have rational initial values. It can be shown that aBitXor a

2
is rational if a is

rational. The bifurcation diagram below shows the relation of Feigenbaum’s

constant [3] and constants of the form
u( 1

2
−x0)
2

+ arccos |α|
2π BitXor arccos |α|

π .
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2. Generalisations

The series ∑n=0
∞ 1

2n+1 u(sin2n) = 1
2π and ∑n=0

∞ 1
2n+1 u(tan2n) = 1

π are given

in [5], [6]. Now define a(n,xk) below recursively, k ∈ N. x is understood

to be xk for some k. a(n,xk) = an with initial value xk we use similiar
definitions for b(n,xk) = bn etc.

a(n,xk) = sin(2n arcsin(a0))
= a0 = xk if n = 0, 0 < xk < 1

= 2a0 1 − a0
2 if n = 1

= 2an−1(1 − 2an−2) if n ≥ 2

this recursive definition and the similar ones that follow can be derived
using the double angle formulae for tan, sine and cos etc. Then

∑n=0
∞ 1

2n+1 u(a(n,xk)) = arcsin(xk)
2π see [5]. Define bn by

b(n,xk) = cos(2n arccos(b0))
= xk = b0, 0 < xk < 1 if n = 0

= 2bn−1
2 − 1 if n ≥ 1

then it can be shown (for example a proof based on theorem 1) that
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∑
n=0

∞
1

2n+1
u(b(n,xk)) = arccos(xk)

π BitXor
arccos(xk)

2π

Define the Plouffe recursion [6] with cn by

c(n,xk) = tan(2n arctan(c0))
= c0 = xk if n = 0

= 2cn−1
2

1 − cn−1
2

if n ≥ 1, |ck | ≠ 1

= −∞ if n ≥ 1, |ck | = 1

we consider 0 < xk < 1, ∑n=0
∞ 1

2n+1 u(c(n,xk)) = arctan(xk)
π see [5]. Let

d(n,x),e(n,x), f(n,x) be the analogous recursions for sec, csc and cot
respectively which can obtained by using the double angle formula
so for example for d(n,x) we have

d(n,xk) = xk = d0 = 0 < xk < 1 if n = 0

= 1
−1 + 2

dn−1
2

if n ≥ 1

then it can be shown that (which is a new result)

∑
n=0

∞
1

2n+1
u(d(n,xk)) = arcsec(xk)

π BitXor
arcsec(xk)

2π

Define

∑
∀n

^

BitXor f(vn) = f(v1)BitXor
f(v1)

2
...f(vn)BitXor

f(vn)
2

Theorem 2

It can be shown that

∑n=0
∞ 1

2n+1 u(∏
∀A

a(n,xA) ∏
∀B

b(n,xB) ∏
∀C

c(n,xC) ∏
∀D

(d(n,xD) ∏
∀E

e(n,xE) ∏
∀F

f(n,xF)) =

(∑
∀A

BitXor 1
π arcsin(xA))BitXor(∑

∀B

^

BitXor 1
π arccos(xB))BitXor(∑

∀C
BitXor

1
π arctan(xC))BitXor(∑

∀D

^

BitXor 1
π arcsec(xD))BitXor(∑

∀E
BitXor 1

π arccsc(xE))

BitXor(∑
∀F

BitXor 1
π arccot(xF))

It is known that the logistic has invariant measure ρ(x) = 1
π x(1−x)

if x0 is

not an element of a set of measure zero [1].

Theorem 1b

For x0 = 1−α
2

and 0 < |α| ≤ 1 in the logistic map then except when α is not
an element of the set of measure zero above there are exist infinitely many
numbers i) and ii) defined by i) arccos |α|

π , ii) arccos |α|
2π BitXor arccos |α|

π that satisfy
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the following conditions 1, 2 & 3 (we call these collectively condition A) in a
base 2 f (for f≥ 1), 1) simply normal, 2) normal & 3) digit dense.

Proof

Consider when x0 is not an element of the set of measure zero above.
Observe that from the above probability distribution u( 1

2
− xn) behaves similar

to a binary valued uniformly distributed random variable. From the invariant
measure we see that ∫0

1/2 ρ(x) = ∫1/2
1 ρ(x) = 1

2
it follows that ii) and i) are

simply normal in base two with x0. Normality of a number in base b is
equivalent to the digits being generated by a fair b sided die hence it
follows that ii) are normal in base 2.
The logistic map has chaotic dense orbits with x0 it follows that then ii) are
digit dense and the above result also follows from the invariant measure
of the logistic map.
Say ii) has the binary expansion y0y1....ymym+1... and i) derived from the
above expansion has the expansion z0z1....zm.... then the possibilities for zm

are 1 if ym+1 ≠ ym and 0 otherwise hence the probability of zm being 0 or 1
is 1

2
and so it follows i) are normal and simply normal in base 2.

From the chaotic dense orbits of the logistic map it follows that there can be
any given sequence bits in ii) and this implies i) are digit dense in base 2.
For k ∈ ℜ the digits of k2f , f ≥ 0 can be computed from the digits of k2 it
follows that the above results are true in base 2 f.
For example condition A is true for 1

π 2f and 1
2π BitXor 1

π 2f iff x0 = cos1 is not

an element of the set of measure zero, and x0 = cos1 is not an element of
the set of measure zero see [1] also this is a consequence of Theorem 7
in [7]. By a similar proof it can be shown that condition A is true for

arccos |α|
2Zπ

BitXor arccos |α|
π 2f ,

arcsec(γ)
π 2f and arcsec(γ)

π BitXor arcsec(γ)
2Zπ 2f

for γ not an element of a set of measure zero with Z ≥ 0 and show chaotic
properties with maps associated with the above constants. We can use the
above result to construct sets for x0 so that invariant measure of the logistic
map does not apply or does apply for example we can select α = cos(cπ)
for some non-normal number c or normal number c.

Chaotic Orbits of the Logistic Map

arccos p
π is irrational for infinitely many p (see above) for example take p = cos(fπ)

for some irrational 0 < f < 1 and another value of p can be selected by choosing
another two different irrationals (because aBitXor a

2
is a two to one function for

a∈ ℜ) for the value of f repeating the above shows that there an infinite number
of orbits that are not asymptotically periodic. It is easy to construct a countable
set of infinite irrationals for f. We take the orbit so there is at there are 2 different
symbols in the itinerary. By topological conjugacy the above constructed non
asymptotically orbits mean there are infinite non asymptotic orbits for the tent
map and such an itenary orbit for the tent map cannot be a sequence of k zeroes.
Let L,T,C be the logistic, tent and conjugacy maps respectively. Consider an
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orbit of T and the corresponding orbit in L. By the using the conjugacy map we have
1
k

lnT ′(xk)...T ′(x2)T ′(x1) = 1
k

(ln |C ′(x1)| + ln |C ′(xk+1)| + ∑ i=1
k ln |G ′(C(x i))|).

One way to show the Lyanpunov exponent is positive is to observe the for a not
asymptotically periodic orbit of the tent map that does not have the k consecutive
same symbols in its itinerary the orbit never enters the intervals [0,2−k] and [1-2−k−1,1]
up to the iteration xk. Hence this gives the bounds
π
2

sin( π
2k+1 ) ≤ |C ′(xk)| ≤ π

2
⇒

(ln π
2

+ ln sin( π
2k+1 ))/k ≤ (ln |C ′(xk)|)/k ≤ (ln π

2
)/k⇒ limk→∞(ln |C ′(xk)|)/k = 0 ⇒

limk→∞
1
k ∑ i=1

k ln |T ′(x i)| = limk→∞
1
k ∑ i=1

k ln |G ′(C(x i))|

(it is known that all chaotic orbits of T has Lyanpunov exponent ln2) then the non
asymptotic orbits we have considered for L has Lyanpunov exponent ln2 and hence
are chaotic. Hence there are infinite number of chaotic orbits for L.
We conjecture that the above results can be used to prove that Feigenbaum
constant is simply normal.
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