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Abstract. In this note, the present author’s recent works on nonlinear wave
equations via KAM theory are introduced and reviewed.

The existence of solutions, periodic in time, for non-linear wave (NLW) equa-
tions has been studied by many authors. A wide variety of methods such as
bifurcation theory and variational techniques have been brought on this prob-
lem. See [11] and the references therein, for example. There are, however,
relatively less methods to find the quasi-periodic solutions of NLW or other
PDE’s. The KAM theory is a very powerful tool in order to construct fami-
lies of quasi-periodic solutions, which are on an invariant manifold, for some
nearly integrable Hamiltonian systems of finite many degrees of freedom. In the
1980’s,the celebrated KAM theory has been successfully extended to infinitely
dimensional Hamiltonian systems of short range so as to deal with certain class
of Hamiltonian networks of weakly coupled oscillators. Vittot & Bellissard [27],
Frohlich, Spencer & Wayne [15] showed that there are plenty of almost periodic
solutions for some weakly coupled oscillators of short range. In [30], it was also
shown that there are plenty of quasi-periodic solutions for some weakly coupled
oscillators of short range.

Because of the restrict of short range, those results obtained in [27, 15] does
not apply to PDE’s. In the 1980-90’s, the KAM theory has been significantly
generalized, by Kuksin[17, 18, 19], to infinitely dimensional Hamiltonian systems
without being of short range so as to show that there is quasi-periodic solution
for some class of partial differential equations. Also see Pöschel[24]. Let us
focus our attention to the following nonlinear wave equation

utt − uxx + V (x)u + u3 + h.o.t. = 0, (1)

subject to Dirichlet and periodic boundary conditions on the space variable x.
1. Dirichlet boundary condition. In 1990, Wayne[28] obtained the time-quasi-
periodic solutions of (1), when the potential V is lying on the outside of the set
of some “bad” potentials. In [28], the set of all potentials is given some Gaussian
measure and then the set of “bad” potentials is of small measure. Kuksin[17] as-
sumed the potential V depends on n-parameters, namely, V = V (x; a1, ..., an),
and showed that there are many quasi-periodic solutions of (1) for “most” (in
the sense of Lebesgue measure) parameters a’s. However, their results exclude
the constant-value potential V (x) ≡ m ∈ R+, in particular, V (x) ≡ 0. When
the potential V is constant, the parameters required can be extracted from the
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nonlinear term u3. In order to use the KAM theorem, it is necessary to as-
sume that there are some parameters in the Hamiltonian corresponding to (1).
When V (x) ≡ m > 0, these parameters can be extracted from the nonlinear
term u3 by Birkhoff normal form[25], or by regarding (1) as a perturbation of
sine-Gordon/sinh-Gordon equation[4]. And it was then shown that, for a pre-
scribed potential V (x) ≡ m > 0, there are many elliptic invariant tori which
are the closure of some quasi-periodic solutions of (1). By Remark 7 in [25],
the same result holds also true for the parameter values −1 < m < 0. When
m ∈ (−∞,−1) \Z, it is shown in [29] that there are many invariant tori for (1).
In this case, the tori are partially hyperbolic and partially elliptic.
2. periodic boundary condition. In this case, the eigenvalues of the linear
operator − d2

dx2 +V (x) are double (at least, asymptotically double). This results
in some additional difficulties in applying KAM technique since the normal fre-
quencies are double. According to our knowledge, the difficulty arising from the
multiple normal frequencies (including double ones) was overcome in the book
[9] in the year of 1969 when the multiplicity is bounded, although Hamiltonian
systems are not considered. A key point is to bound the inverse of some matrix
by requiring the determinant of the matrix is nonzero. Using Lyapunov-Schmidt
decomposition and Newton’s iteration, Craig and Wayne[12] showed that for an
open dense set of V (x) there exist time periodic solutions of (1) subject to pe-
riodic ( also Dirichlet) boundary condition. (The equation considered by them
contains more general form than (1). By developing Craig-Wayne’s method,
in 1994, Bourgain[7] showed there are many quasi-periodic solutions of (1) for
“most” parameters σ ∈ Rn where V = V (x; σ). In 2000, a similar result was ob-
tained by KAM technique in [13]. When the potential V ≡ m 6= 0, the existence
of the quasi-periodic solutions was also obtained in [5] via the renormalization
group method.

However, from the works mentioned above one does not know whether there
is any invariant tori for prescribed (not random) non-constant-value potential
V (x). Recently, the present author has shown that there are many invariant
tori for any prescribed non-zero potential V (x) such as sin x and cos x. To
give the statement of our results, we need to introduce some notations. We
study equation (1) as an infinitely dimensional Hamiltonian system. Following
Pöschel[25], the phase space one may take, for example, the product of the usual
Sobolev spaces W = H1

0 ([0, π])×L2([0, π]) with coordinates u and v = ut. The
Hamiltonian is then

H =
1
2
〈v, v〉+

1
2
〈Au, u〉+

1
4
u4

where A = d2/dx2−V (x) and 〈·, ·〉 denotes the usual scalar product in L2. The
Hamiltonian equation of motions are

ut =
∂H

∂v
= v, −vt =

∂H

∂u
= Au + u3.

Our aim is to construct time-quasi-periodic solutions of small amplitude. Such
quasi-periodic solutions can be written in the form

u(t, x) = U(ω1t, · · · , ωnt, x),

where ω1, · · · , ωn are rationally independent real numbers which are called the
basic frequency of u, and U is an analytic function of period 2π in the first n
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arguments. Thus, u admits a Fourier series expansion

u(t, x) =
∑

k∈Zn

e
√−1〈k,ω〉tUk(x),

where 〈k, ω〉 =
∑

j kjωj and Uk ∈ L2[0, π] with Uk(0) = Uk(π).
Since the quasi-periodic solutions to be constructed are of small amplitude,

Eq.(1) may be considered as the linear equation utt = uxx−V (x)u with a small
nonlinear perturbation u3. Let φj(x) and λj (j = 1, 2, ...) be the eigenfunctions
and eigenvalues of the Sturm-Liouville problem −Ay = λy subject to Dirichlet
boundary conditions y(0) = y(π) = 0, respectively. Then every solution of the
linear system is the superposition of their harmonic oscillations and of the form

u(t, x) =
∑

j≥1

qj(t)φj(x), qj(t) = yj cos(
√

λjt + φ0
j )

with amplitude yj ≥ 0 and initial phase φ0
j . The solution u(t, x) is periodic,

quasi-periodic or almost periodic depending on whether one, finitely many or
infinitely many modes are excited, respectively. In particular, for the choice

Nd = {j1, j2, · · · , jd} ⊂ N,

of finitely many modes there is an invariant 2d-dimensional linear subspace ENd

that is completely foliated into rational tori with frequencies λj1 , · · · , λjd
:

ENd
= {(u, v) = (qj1φj1 + · · ·+ qjd

φjd
, q̇j1φj1 + · · ·+ q̇jd

φjd
)}

=
⋃

y∈P̄d

Tj(y),

where Pd = {y ∈ Rd : yj > 0 for 1 ≤ j ≤ d} is the positive quadrant in Rd

and
TNd

(y) = {(u, v) : q2
jk

+ λ−2
jk

q̇2
jk

= yk, for 1 ≤ k ≤ d}.
Upon restoring the nonlinearity u3 the invariant manifold ENd

with their quasi-
periodic solutions will not persist in their entirety due to resonance among
the modes and the strong perturbing effect of u3 for large amplitudes. In a
sufficiently small neighborhood of the origin, however, there does persist a large
Cantor sub-family of rotational d-tori which are only slightly deformed. More
exactly, we have the following theorem:

Theorem 1.([30])Assume that V (x) is sufficiently smooth in the interval [0, π],
and

∫ π

0
V (x) dx 6= 0. Let K and N be positive constants large enough. Let

Nd = {ip ∈ N : p = 1, 2, · · · , d} with

min Nd > NK, maxNd ≤ C0dNK, and K1 ≤ |ip − iq| ≤ K2, for p 6= q,

where C0 > 1 is an absolute constant and K1,K2, positive constants large
enough, depending on K instead of N . Then, for given compact set C∗ in Pd

with positive Lebesgue measure, there is a set C ⊂ C∗ with meas C > 0, a family
of d-tori

TNd
(C) =

⋃

y∈C
TNd

(y) ⊂ ENd
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over C, and a Lipschitz continuous embedding

Φ : TNd
[C] ↪→ H1

0 ([0, π])× L2([0, π]) = W,

which is a higher order perturbation of the inclusion map Φ0 : ENd
↪→ W

restricted to TNd
[C], such that the restriction of Φ to each TNd

(y) in the family
is an embedding of a rotational invariant d-torus for the nonlinear equation (1).

Basic idea of the proof. It is observed that when
∫ π

0
V (x) dx 6= 0 the

eigenvalues λi’s satisfy

|
√

λi ±
√

λj ±
√

λk ±
√

λl| ≥ Cm min(i, j, k, l)−1, if min(i, j, k, l) À 1,

unless trivial relations like
√

λi −
√

λi +
√

λk −
√

λk,

where Cm is a constant depending on m. This estimate implies that in the
neighborhood of the origin the equation (1) can be put to the Borkhoff normal
form[6] up to terms of the fourth order. Then the application of KAM theorem
for PDEs implies that there are many invariant tori for (1) in the neighborhood
of the origin.
Remarks 1. The assumption

∫ π

0
V (x) dx 6= 0 is not essential. One has

√
λj = j +

c1

j
+

c2

j2
+ · · ·+ cn

jn
+ O

(
1

jn+1

)
,

where cj ’s are some constants depending on V , in particular, c1 = − 1
2π

∫ π

0
V (x) dx.

Then the assumption
∫ π

0
V (x) dx 6= 0 is equivalent to c1 6= 0. The assump-

tion c1 6= 0 is used just only in making Birkhoff normal form. By overcoming
more technical trouble one can still get the normal form true under conditions
c1 = 0, · · · , ck−1 = 0 and ck 6= 0 for some 1 ≤ k ≤ n. Therefore the assumption∫ π

0
V (x) dx 6= 0 can be nearly replaced by V (x) 6= 0 in the Theorem 1. 2.

Theorem 1 still holds true for the following equation

utt = uxx − V (x)u± u3 +
∑

m≥k≥2

aku2k+1

where m is a positive integer and ak’s are some real numbers. 3. The method
in proving Theorem 1 can be applied to NLS equation:

√−1ut − uxx + V (x)u± u3 = 0

subject to Dirichlet boundary conditions. 4. If λ1 > 0, then the obtained
invariant tori are elliptic. If λ1 < 0, then the tori are hyperbolic-elliptic. 5 We
can give the measure estimate of the set C:

meas C ≥ meas C∗ · (1−O(ε1/13)).

Naturally one can ask: Is there any invariant torus for (1) when V (x) ≡ 0?

This problem remains open for a relatively long time, which was proposed
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by many authors, such as Pöschel[25], Craig and Wayne[12], Kuksin[18], and
Marmi and Yoccoz[23]. The present author answers this question:

Theorem 2. ([31])Assume v(x) ≡ 0. For any d ∈ N, the equation (1) subject
to the periodic boundary condition possesses many d + 1-dimensional invariant
tori in the neighborhood of the equilibrium u ≡ 0. The motions on the tori are
quasi-periodic.

Basic idea of the proof. Assume V (x) ≡ 0. Let u0(t) be a non-zero
solution of the equation ü0 + u3

0 = 0. We will construct the invariant tori
or quasi-periodic solutions in the neighborhood of the solution u0(t) which is
uniform in space and periodic in time. To that end, inserting u = u0 + εu into
(1) we get

utt − uxx + 3u2
0(t)u + ε · (h.o.t.) = 0, x ∈ S1. (2)

In considerably rough speaking, by the averaging method we reduce this equa-
tion to

utt − uxx + 3û2
0(0)u + ε · (h.o.t.) = 0, x ∈ S1, (3)

where û2
0(0) = 1

2π

∫ 2π

0
u2

0(t) dt 6= 0. Then we construct the invariant tori or

quasi-periodic solutions of (3) by advantage of û2
0(0) 6= 0. At this time, we

should deal with (3) by the same way as in [25]. Unfortunately, one of the
frequencies of the Hamiltonian corresponding to (3) is zero (see (1.9)). This
causes the “integrable” part of the Hamiltonian serious degenerate, incurring
great expanse in using KAM technique.

Firstly one can easily find the periodic solution u0(t) of ü0 + u3
0 = 0 with its

frequency ω and show that û2
0(0) 6= 0. Then consider a family of Hamiltonian

functions

Hn =
√

λnznz̄n +
3u2

0(t)
4
√

λn

(zn + z̄n)2, λn 6= 0, n ∈ N = {1, 2, ...}. (4)

Notice that their equation of motion is linear. By the reducing theory from
KAM theory [9, 14] we reduce (4 ) to

Hn = µnznz̄n, µn =
√

λn +
3

nπ
ω2 + O(ω23/9/n), n ∈ N, (5)

where λn is the eigenvalues of the Sturm-Liouville problem −y′′ = λy, x ∈ S1.
At the same time by the Floquet theory [22] one can reduce the Hamiltonian

H0 =
1
2
y2
0 +

λ0

2
x2

0 +
3u2

0(t)
2

x2
0, λ0 = 0, (6)

to
H0(q, p) =

1
2
c0ω

2p2, (7)

where c0 is a constant. In order to exclude the multiplicity of the eigenvalues
λn, one can find a solution which is even in the space variable x. That is,
one can write u(t, x) =

∑
n≥0 xn(t) cos nx. From this we get a Hamiltonian

corresponding to (2) which reads as

H =
1
2

∑

n≥0

y2
n + λnx2

n +
3
2
u2

0(t)x
2
n + εG3 + ε2G4, (8)
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where G3 (and G4, resp. ) is a polynomial of order 3 (and 4, resp. ) in variables
x0, x1, .... Introducing the complex variables we re-write (8):

H = 1
2y2

0 + 3
2u2

0(ϑ)x2
0 +

∑
n≥1

√
λnznz̄n + 3

4
u2

0(t)√
λn

(zn + z̄n)2

+εG3 + ε2G4
(9)

Applying (4-7) we get a symplectic transformation Ψ such that

H := H ◦ Ψ =
1
2
(c0ω

2)p2 +
∑
n>0

µnznz̄n + εG̃3 + ε2G̃4. (10)

Notice that G̃3 and G̃4 involve the time t. Let ϑ = ωt be an angle-variable and
J =Const. be an action-variable. Then (10) can reads as

H := H ◦ Ψ =
1
2
(c0ω

2)p2 + Jω +
∑
n>0

µnznz̄n + εG̃3 + ε2G̃4, (11)

which is autonomous. One can now kill the perturbations G̃3 and the non-
resonant part of the perturbation G̃4 by Birkhoff normal form. The one gets

H = 1
2 (c0ω

2)p2 + ε2c1q
4 + ε3O(q5) +

∑
n6=0 µnznz̄n + Jω

+
∑

j

(
c2ε

2q2 + ε3O(q3)
)
zj z̄j

+
∑

i∈Nd,j∈N
(
ε2c3 + ε3O(q)

)
ziz̄izj z̄j

+ small perturbation ,

(12)

After introducing action-angle variables (I0, φ0) corresponding to (q, p), then
(13) reads as

H = ε2/3c4I
4/3
0 +

∑
j>0 µjzj z̄j + Jω

+Γ(I0, φ0) +
∑

j>0 Γj(I0, φ0)zj z̄j +
∑

j∈N,i∈Nd
Γijziz̄izj z̄j

+
∑

j∈N,i∈Nd
ε2c5ziz̄izj z̄j + small perturbation .

(13)

The ci’s are constants. Using the averaging method we remove the dependence
of Γ, Γj and Γij on the angle variable φ0. After this, we get a Hamiltonian
H = H0+small perturbation, where H0 is integrable and “twist”. The “twist”
property can provide the parameters which we need in using KAM technique.
Finally, one gets the invariant tori for (1) with V (x) ≡ 0, by making use of
KAM theorem.
Remark. Bourgain[8], Bambusi-Paleari [10], Berti- Bolle[2, 3] and Gentile-
Mastropietro-Procesi[16] construct countably many families of periodic solutions
for the nonlinear wave equation utt − uxx ± u3 + h.o.t. = 0. See also [3, 11, 21]
and the references theirin for the related problems. More recently, Procesi [26]
and Baldi[1] constructed quasi-periodic solutions of 2-dimensional frequency and
of Lebesgue measure 0 for the completely resonant nonlinear wave equations.
Their construction of quasi-periodic solutions is concise and elegant.
Theorem 3. ([31])For any d ∈ N, the equation

utt − uxx − u3 = 0 (14)

subject to the Dirichlet boundary condition

u(t, 0) = u(t, π) = 0 (15)
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possesses many d-dimensional hyperbolic-elliptic invariant tori in the neighbor-
hood of the equilibrium u ≡ 0. The motions on the tori are quasi-periodic.

Basic idea of the proof. Let u0(t, x) ≡ u0(x) solve ODE uxx + u3 = 0
with b.c. (15). let

u = u0 + εũ. (16)

Inserting (16) into (14) we get ũ obeys the following equation and b.c.
{

ũtt − ũxx − 3u2
0ũ− 3εu0ũ

2 − ε2ũ3 = 0,
ũ(t, 0) = ũ(t, π) = 0.

(17)

Let V (x) = −3u2
0. It is easy to verify

∫ π

0
V (x) dx 6= 0. By the method similar

to that of Theorem 1 we can show that the existence of invariant tori.
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