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Abstract

The lattice Boltzmann method (LBM) is known to have stability
deficiencies. For example, local blow-ups and spurious oscillations are
readily observed when the method is used to model high-Reynolds fluid
flow. Beginning from thermodynamic considerations, the LBM can be
recognised as a discrete dynamical system generated by entropic in-
volution and free-flight and the stability analysis is more natural. In
this paper we solve the stability problem of the LBM on the basis of
this thermodynamic point of view. The main instability mechanisms
are identified. The simplest and most effective receipt for stabilisation
adds no artificial dissipation, preserves the second-order accuracy of
the method, and prescribes coupled steps: to start from a local equi-
librium, then, after free-flight, perform the overrelaxation collision, and
after a second free-flight step go to new local equilibrium. Two other
prescriptions add some artificial dissipation locally and prevent the
system from loss of positivity and local blow-up. Demonstration of the
proposed stable LBMs are provided by the numerical simulation of a
1D shock tube and the unsteady 2D-flow around a square-cylinder up
to Reynolds number (O(10000).

1 Introduction

A lattice Boltzmann method (LBM) is a discrete velocity method in which a
fluid is described by associating, with each velocity v;, a single-particle dis-
tribution function f; = f;(«,t) which is evolved by advection and interaction
on a fixed computational lattice.

The method has been proposed as a discretization of Boltzmann’s kinetic
transport equation:

Ty Vi= Qs (1)

where the collision operator, ();, is subject to the fundamental mass, mo-
mentum and energy conservation laws. Dutifully, the compressible Navier—



Stokes equations are satisfied by the discrete population moments provided
the studiously chosen discrete velocities have sufficient symmetry; the Mach
number is sufficiently low and the long time-scale, ¢, is large compared
to the time-scale of collisions (for an historic review see [23]). Further-
more, the collision operator can be alluringly simple, as is the case with
the Bhatnager—Gross-Krook (BGK) operator [5], whereby collisions are de-
scribed by a single-time relaxation to local entropy maximising equilibria
[ (although other choices of equilibria are often preferred [23]). Here, the
relaxation time is proportional to the kinematic viscosity v of the model.

The overrelaxation discretization of (1) (see, e.g., [4, 11, 19]) is known
as LBGK and decouples viscosity from the time step, thereby suggesting
that LBGK is capable of operating at arbitrarily high-Reynolds number by
making the relaxation time sufficiently small. However, in this low-viscosity
regime, LBGK suffers from numerical instabilities which readily manifest
themselves as local blow-ups and spurious oscillations.

To analyse stability, the above historic LBM prescription is not imme-
diately useful. However, there is another approach which arises from ther-
modynamic considerations. Central to this alternative prescription is the
notion of an entropy maximising or quasiequilibrium manifold in the space
of distributions and the Ehrenfests’ idea of coarse-graining [14, 15]. In this
new representation, the main element is the discrete (in time) dynamical
system generated by entropic involution and free-flight (advection). The
discrete velocities appear as approximation nodes in certain cubatures in
velocity space, and if the velocities from this set are automorphisms of a
lattice, the LBM in its regular space-and-time discrete form, as above, is
obtained. The background knowledge necessary to discuss the LBM in this
manner is presented in Sect. 2. Then, this prescription suggests several
sources of numerical instabilities in the LBM and allows several receipts for
stabilisation. Common to each receipt is the desire to stay uniformly close
to the aforementioned manifold (Sect. 3).

In Sect. 5 a numerical simulation of a 1D shock tube and the unsteady
2D-flow around a square-cylinder using the present stabilised LBMs are pre-
sented. For the later problem, the simulation quantitively validates the ex-
perimentally obtained Strouhal-Reynolds relationship up to Re = O(10000).
This extends previous LBM studies of this problem where the relationship
had only been successfully validated up to Re = O(1000) [1, 3].

Sect. 6 contains some concluding remarks as well as practical recommen-
dations for LBM realisations.

2 Background

In this section, we briefly introduce the thermodynamic background of our
approach, and some notations. Proofs of most statements could be extracted



from [15]. Historically [23], the LBM appeared from the discretization ideas
of:

1. discrete velocity set;
2. lattice space-and-time representation.

The idea of (symmetric or almost symmetric) overrelaxation was introduced
to decouple viscosity from the time step [4, 11, 19, 23]. This overrelaxation
was transformed into the notion of entropic involution [15, 21, 24], and a
new understanding of the LBM was achieved. In this new representation,
the main element is the discrete dynamical system generated by entropic in-
volution and free-flight. The discrete velocity set arises as cubature approx-
imation nodes for the hydrodynamic moments, and when these velocities
are automorphisms of some lattice, the LBM in its regular space-and-time
discrete form is recovered.

The lattice prescription is nice and symmetric, without any difference be-
tween space and time discretization, but it requires some effort to introduce
thermodynamics and to analyse stability of systems of this kind. On the
contrary, when we start from thermodynamic considerations, the entropy
introduction and the stability analysis are very natural, but the cubature
approximation and the space discretization requires some additional effort.
Here we can find an analogy to relativistic (quantum) field theory: the La-
grangian formalism is fully covariant, but if we would like to enjoy physics
of the Hamiltonian formalism, we should split space and time, and use a
non-covariant representation [13].

Let us introduce entropic involution in earnest. The starting point is a
conservative kinetic equation

df
— = J.(f). 2
L= ) )
Here, conservative means that this equation preserves values of a concave
functional, the entropy, S(f).

The standard example is the free-flight equation

of

at—i—v-Vf:O, (3)

where f = f(x,v,t) is a single-particle distribution function, x is the space

vector, v is velocity. The choice of entropy for (3) is ambiguous; we can
start from any concave functional of the form

S(f) = /s(f(cc,v,t))f(cc,v,t) dwdv

with concave s(f). The choice by default is s(f) = —In f, which gives the
classical Boltzmann—Gibbs—Shannon entropy.



In addition to the kinetic equation (2) we have a fixed linear mapping
m : f +— M to some macroscopic variables, for example, M is the set of five
hydrodynamic fields n, nu and E (density-momentum—energy),

My=n:= /fdv, M; = nu; := /vifdv, % =F:= %/'02de.
(4)
Further, for each M, a quasiequilibrium (or conditional equilibrium, or gen-
eralised canonical state) fy, is defined as a solution of the optimisation
problem
S(f) = max, m(f) = M. (5)

For each f, a correspondent quasiequilibrium state f; . is defined. The set
of all quasiequilibrium states is parameterised by M and referred to as the
quasiequilibrium manifold. The projector of a point f onto the quasiequi-
librium manifold is the following operator:

Let ©; be the time shift transformation for the initial conservative kinetic
equation (2):
©:(f(0)) = f(?).

For the free-flight equation (3) we have
O : f(x,v) — f(x — vt,v).

For a given time 7, the Ehrenfests’ step is a transformation of the quasiequi-
librium manifold

Ehr, : fi, — Ps(O,(fi))). (6)

The motion starts on the quasiequilibrium manifold, goes time 7 along the
trajectory of the conservative kinetic equation (2), and then follows projec-
tion back onto the quasiequilibrium manifold. Macroscopic variables form
coordinates on the quasiequilibrium manifold. In these coordinates,

Ehr, : M — m(0,:(f3))-

The Ehrenfests’ step gives a second-order in time step 7 approximation to
the solution of the dissipative macroscopic equation

dMm N T
T m(Je(far)) + §m((Dch(f))f=f&Af;‘v,)a (7)
where A f;, 1s the defect of invariance of the quasiequilibrium manifold:
Ay = Je(far) = Du(far)mlJe(fir), (8)

and is the difference between the vector-field J. and its projection on the
quasiequilibrium manifold.



For the free-flight equation and hydrodynamic fields M = M(z,t) (4),
the quasiequilibrium distribution is the well known local Maxwellian

27r7/<7:fT>—3/2 o (_m(v — u)2>7
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and (7) is the system of compressible Navier—Stokes equations
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where m is particle mass, kg is Boltzmann’s constant, 7' is kinetic temper-
ature and P = nkgT is ideal gas pressure [18]. The dynamic viscosity is
p = 5P (the kinematic viscosity is v = %C% where c; is the thermal veloc-
ity for one degree of freedom, ¢? = kgT/m). For 7 — 0, (7) tends to the

conservative macroscopic equation

dM .
S5 = mIin). ©)

For hydrodynamics, this is the (compressible) Euler equations.

The step with a quasiequilibrium state in the middle gives a second-order
in time step 7 approximation to the solution of the conservative macroscopic
equation (9):

M(0) = m(Ps(©_r/2(f3r))) = m(Ps(Or/2(f3,)) = M(r).  (10)

In order to decouple viscosity and time step, we can combine (6) with (10):
M(0) = m(Ps(©_g/2(fir))) = m(Ps(Ocry/a(far))) = M(s +9) = M(7),

where ¢ < 7 and ¢ = 7 —¢. The state M is a mid-point on the trajectory.
This transformation provides a second-order in time approximation for the
equation:

% =m(J.(fiy)) + %m((Dch(f))f:ffwAffw) (11)

for the time step 7 [15]. For the free-flight equation (3) and hydrodynamic
fields (4), the system (11) is the compressible Navier—Stokes equations with
dynamic viscosity 4 = §P (the kinematic viscosity is v = §cf).
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It is worthwhile to mention that all the points ©.(f},;) belong to a
manifold that is a trajectory g of the quasiequilibrium manifold due to
the conservative dynamics (2) (in hydrodynamic applications that is the
free-flight dynamics (3)). We call this manifold the film of non-equilibrium
states [15, 16, 17]. The defect of invariance Ay: (8) is tangent to q at the
point fy,, and belongs to the intersection of this tangent space with kerm.
This intersection is one-dimensional. This means that the direction of A
is selected from the tangent space to q by the condition: derivative of M in
this direction is zero.

A point f on the film of non-equilibrium states g is naturally parame-
terised by (M, 7): f = qu,r, where M = m(f) is the value of the macro-
scopic variables, and 7 = 7(f) is the time shift from a quasiequilibrium
state: ©_.(f) is a quasiequilibrium state for some (other) value of M. To
the first-order in 7,

M = fu + 70, (12)

The quasiequilibrium manifold divides q into two parts, g = q— U qo U q,
where g = {qm,-| 7 < 0}, 9+ = {qm,-| 7 > 0}, and qp is the quasiequilib-
rium manifold: qo = {qmo} = {f}/}-

For each M and positive s from some interval |0, <[ there exist two num-
bers 74 (M, s) (14 (M,s) > 0, (M, s) < 0) such that

S(qM,Ti(M,S)) = S(f;\(/[) - S.
The numbers 71 coincide to the first-order: 7. = —7_ + o(7_).
We define the entropic involution as a transformation of g:
IS(qM,Ti) - QM,T; .

The pair of points fi,f— € q connected by the involution Ig (i.e., fr =
Is(f+)) is defined (in q) by two conditions:

S(fv) =S8(f-), m(fy) =m(f-).

The values of entropy and macroscopic variables at these points coincide.
Let us choose an initial macroscopic state My, and suppose the initial
microscopic state fo belongs to q— U q4 in a 7-small vicinity of fj, -

m(fo) = Mo, fo=qug, —7<9=L0.

Then the step
Mo = m(Is(0:(1s(0-(f0))))) (13)

gives a second-order in time step 7 approximation to the conservative macro-
scopic equations (9) with time step 27 (the second application of Ig in (13)
is added for symmetry and does not effect M). One shift I¢O, guarantees
first-order accuracy only [15].



For modelling the viscous motion (11) we can combine involution and
projection in the following manner: for fy € qi the point f; = Ig (fo),
B € [1/2,1], is defined in g+ by two conditions:

m(f1) =m(fo), S(f1) —S(Ps(fo)) = (28 — 1)*(S(fo) — S(Ps(fo)))-

The point [ g( fo) is closer to the quasiequilibrium point Pg(fo) than Is(fo).
For f = 1 we get the entropic involution: Ié = Ig, and for f = 1/2 we
receive the operator Ié/ 2 = Ps.

If, for t € [0, 7], the trajectory ©;(fp) intersects the quasiequilibrium
manifold (i.e., fo = qaw and —7 < ¥ < 0), then, after some initial steps,
the following sequence gives a second-order in time step 7 approximation

of (11) with ¢ = (1 — B)/8, B € [1/2,1]
M, = m((Ig@T)nfO) (14)

In order to prove this statement we consider a transformation of the second
coordinate in gpry (—7 < ¢ < 0): in linear approximation in ¥ and 7 we
have

(Iger)QM,ﬂ =dm'
where

V' =—28-1)+ 7).
This transformation has a fixed point ¥* = —7(28 — 1)/(26) and

(I[g@T)”QM,v = QM 00>

where

Un = 9"+ (=1)"(26 = 1)"3 + o(7),

for some 6. This asymptotic formula is valid for the given £ € [1/2,1] and
7 — 0, but if 1 — 3 is small it has no practical sense because relaxation may
be too slow: ¥, ~ 9* + (—1)" exp(—2n(l — B))d, and relaxation requires
~ 1/(1 — ) steps.

If 9, = 9* + o(7) then the sequence M, (14) approximates (11) with
¢ =171 —2|9*| = (1 — B)7/p and second-order accuracy in time step 7.

As we have already mentioned, for the transfer from free-flight with
entropic involution to the standard LBGK models we must:

1. transfer to a finite number of velocities with the same macroscopic
equations;

2. transfer from space to a lattice, where these velocities are automor-
phisms;

and also,



3. transfer from dynamics and involution on g to the whole space of
states.

Instead of I g the transformation

I s f e Ps(f) + (26 = 1)(Ps(f) - f) (15)

is used. If, for a given fj, the sequence (14) gives a second-order in time
step 7 approximation of (11), then the sequence

M, = m((Ig@T)nfO) (16)

also gives a second-order approximation to the same equation.

Entropic LBGK (ELBM) methods [7, 15, 21, 24] differ only in the defi-
nition of (15): for 8 = 1 it should conserve the entropy, and in general has
the following form:

1) = -B)f +8F, (17)

with f = (1 — @)f + aPs(f). The number o = «(f) is chosen so that
the constant entropy condition is satisfied: S(f) = S(f). For LBGK (15),
a=2.

Of course, computation of Ig is much easier than that of I g or [ g: it
is not necessary to follow exactly the manifold q and to solve the nonlinear
constant entropy condition equation. For an appropriate initial condition
from q (not sufficiently close to qo), two steps of ELBM with Ioﬁ gives the
same second-order accuracy as (14). But a long chain of such steps can
lead far from the quasiequilibrium manifold and even from g. Here, we see
stability problems arising.

3 Stability and receipts for stabilisation

First of all, if f is far from the quasiequilibrium, the state Ig (f) may be
non-physical. The positivity conditions (positivity of probabilities or pop-
ulations) may be violated. For multi-dimensional and infinite-dimensional
problems it is necessary to specify what one means by far. In the previous
section, f is the whole state which includes the states of all sites of the lat-
tice. All the inversion operators with classical entropies (ones that do not
depend on gradients) are defined for lattice sites independently. Violation of
positivity at one site makes the whole state non-physical. Hence, we should
use here the /,,-norm: close states are close uniformly, at all sites.

There is a simple receipt for positivity preservation: to substitute non-
positive Ioﬁ (f) by the closest non-negative state that belongs to the straight
line

Prea-npsire )
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Figure 1: Neutral stability and one-step oscillations in a sequence of re-
flections. Bold dotted line — a perturbed motion, A — direction of neutral
stability.

defined by the two points, f and correspondent quasiequilibrium. Let us call
this receipt the positivity rule. It has been demonstrated [8] (also, indepen-
dently, in [25]) that the classic LBGK model with the positivity rule provides
the same results (in the sense of stability and absence/presence of spurious
oscillations) as the entropic LBGK models. This receipt preserves positivity
of populations and probabilities, but can affect accuracy of approximation:
to avoid the change of accuracy order, the number of sites with this step
should be of the order O(Nh/L) where N is the total number of sites, h is
the step of the space discretization and L is the macroscopic characteristic
length.

The second problem is non-linearity: for accuracy estimates we always
use the assumption that f is sufficiently close to quasiequilibrium. Far from
the quasiequilibrium manifold these estimates do not work because of non-
linearity (first of all, the quasiequilibrium distribution, f;,, depends nonlin-
early on M and hence the projection operator, Pg, is nonlinear). Again we
need to keep the states not far from the quasiequilibrium manifold.

The third problem is a directional instability that can affect accuracy:
the vector f— Pg(f) can deviate far from the tangent to q. Hence, we should
not only keep f close to the quasiequilibrium, but also guarantee smallness
of the angle between the direction f — Pg(f) and tangent space to g.

One could rely on the stability of this direction, but we fail to prove
this in any general case. The directional instability changes the structure of
dissipation terms: the accuracy decreases to the first-order in 7 and signifi-
cant fluctuations of the Prandtl number and viscosity, etc may occur. This
carries a danger even without blow-ups; one could conceivably be relying on
non-reliable computational results.

Furthermore, there exists a neutral stability of all described approxima-
tions that causes one-step oscillations: a small shift of f in the direction of
A f;, does not relax back for § = 1, and its relaxation is slow for 5 ~ 1 (for
small viscosity). This effect is demonstrated for a chain of mirror reflections
in Fig. 1.



Three prescriptions allow us to improve the situation:

1. Positivity rule.
The technical advise is to use this rule in all discrete kinetic models.
This rule guarantees positivity of populations and probabilities, and
elementary post-processing allows one to estimate how these steps af-
fect the whole picture. Tests prove that this rule is as effective as
entropic methods, and they are much simpler for realisation (see, [8]
and Sect. 5).

For the stabilisation of LBMs, the entropic version of (17) was proposed
and is used. This approach somehow improves stability, indeed, but cannot
erase spurious oscillation and large local deviation from quasiequilibrium [6,
8, 9]. The H-theorem implies stability of equilibrium in the entropic norm
(that is, a weighted fo-norm, a weighted sum of squared point evaluations)
for isolated systems. For non-isolated systems (e.g., the shock tube, systems
with external flows, etc.) the H-theorem (positivity of entropy production)
does not guarantee stability in any norm, but can be used to establish certain
estimates of boundedness with respect to the entropic norm. However, to
suppress local blow-ups we need estimates in £.,-norm, and to suppress
high-frequency oscillations we need boundedness in the Sobolev norm that
depends on derivatives.

2. Ehrenfests’ regularisation.
In order to keep the current state uniformly close to the quasiequi-
librium manifold we monitor local deviation of f from the correspon-
dent quasiequilibrium, and when this deviation is large perform local
Ehrenfests’ steps [18], !

where j is the number of the site, f; is the state at this site, and f;‘ is
the correspondent local quasiequilibrium (we assume that the entropy
is the sum of nodal values, and the problem of quasiequilibrium (5) is
fully split into local problems at the sites).

In order to preserve the second-order of accuracy, it is worthwhile per-
forming Ehrenfests’ steps at only a small number of sites (the number of
sites should be O(Nh/L), where N is the total number of sites, L is the
macroscopic characteristic length and A is the lattice step). If only k sites
are required then this constitutes a computational cost of O(kN). Numeri-
cal experiments show (see, e.g., [8, 9] and Sect. 5) that even a small number
of such steps drastically improves stability.

Tn our paper [9] we used another definition that follows the Euler discretization of the
BGK equation, but, for small viscosity this is essentially the same
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Figure 2: The scheme of coupled steps (19).

3. Coupled steps with quasiequilibrium ends.
Let us take fj, as the initial state with given M, then evolve the state
by ©,, apply LBGK reflection Ioﬁ , again evolve by ©;, and finally
project by Ps onto quasiequilibrium manifold:

M — m(Ps(0, (I3 (©:(fir)) (19)

The analysis of entropy production easily shows that this step (Fig. 2)
gives a second-order in time 7 approximation to the shift in time 27
for (11) with ¢ =2(1 — 8)7, B € [1/2,1]. The stabilisation (restart ex-
actly from a quasiequilibrium point) introduces additional dissipation
of order 72, and the perturbation of accuracy is of order 73. Hence,
the method has the second-order accuracy.

It is necessary to stress that the viscosity coefficient is proportional to ¢
and significantly depends on the chain construction: for the sequence (14)
we have ¢ = (1— )7/, and for the sequence of steps (19) ¢ = 2(1— /)7 (the
procedure for calculating this viscosity coefficient is contained in Sect. 4).
For small 1 — § the later gives around two times larger viscosity (and for
realisation of the same viscosity we must take this in to account).

4 Viscosity computation

In this section, we demonstrate how to compute viscosity for any construc-
tion of steps on the base of (7) and the representation (12). We compute the
entropy production and compare it to the entropy production in Ehrenfests’
steps.

First of all, for any f, the distribution Ps(f) = fi;z(f) is the entropy
maximiser for the given macroscopic variables M = m(f). Hence, by Taylor
expansion,

S() = S(Ps(N) + 3F — Ps(F).f = Ps(D)pagy + ol = Ps(1)IP),
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where (-, )4 is the entropic inner-product, i.e., the negative of the bilinear
form of the second differential of entropy: (p, 1), := —(D?S(f))f:g((p, ).
In particular, using (12), we have

2
% T
Slanr) = S + 5 (Brs By, )z, + 07

For the operation Ioﬂ (15) we have

S(Iy f) = S(Ps(f))

_1)2
+ B poh). £ PP sty + o = B (DI,

In particular,
* 7—2(26 - 1)2
SIS aner) = S(f3y) + g ABpp B T o(7?),
and for the correspondent entropy gain AS; we have
ASy = 272B(1 = B)(Af: , Agz )z, + o(T7).

Entropy production is the ratio of entropy gain to time. For the Ehrenfests’
step (6) in time 7 the entropy gain ASgp, , is
72 9
ASEhr,T = 7<Af}(/[7Af}f/[>f}f/[ + O(T )7

with entropy production ogy,, given by the expression
ASEhr,T

T

OEhr,r —

-
=5 (Bsp Ar )iy +o(7)- (20)

Now, for a coupled step (19) (see Fig. 2)

fir = Ps(0:(I5(0:(31)))),
the free-flight does not change entropy and the entropy gain is
AS = AS] + ASy,

with ASQ = ASEhI‘,Q(].*ﬂ)T‘ Thus,

AS =2r2B(1 = B)( Ay A Vs, +27° (1= B)(Ags Ags, )z, +0(77)

= 27‘2(1 — ﬂ)(Afx/[, Af;/[)f;/[ + 0(7‘2).

The corresponding entropy production is

AS
=— =71 =B) (A, As;, ) p;, +o(7). (21)

After comparison of the two entropy production formulas (20) and (21)
we can immediately conclude that the coupled step (19) gives a second-order
in time approximation of (11) with ¢ = 2(1 — )7. For any other variants
of step construction the method of viscosity computation is the same: we
estimate the entropy gain up to the second-order, and find the correspondent
value of <.

o
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5 Numerical experiment

To conclude this paper we report two numerical experiments conducted to
demonstrate the performance of the proposed LBM stabilisation receipts
from Sect. 3. The first test is a 1D shock tube and we are interested in
comparing the Ehrenfests’ regularisation (18), the coupled step (19) with
LBGK (15) and ELBM (17).

The second test is the 2D unsteady flow around a square-cylinder. The
unsteady flow around a square-cylinder has been widely experimentally in-
vestigated in the literature (see, e.g., [12, 22, 26]). We demonstrate that
LBGK (15), with the Ehrenfests’ regularisation (18), is capable of quan-
titively capturing the Strouhal-Reynolds relationship. The relationship is
verified up to Re = 20000 and compares well with Okajima’s experimental
data [22].

As we are advised in Sect. 3, in all of the experiments, we implement the
positivity rule.

5.1 Shock tube

The 1D shock tube for a compressible isothermal fluid is a standard bench-
mark test for hydrodynamic codes. We will fix the kinematic viscosity of
the fluid at » = 107°. Our computational domain will be the interval [0, 1]
and we discretize this interval with 801 uniformly spaced lattice sites. We
choose the initial density ratio as 1:2 so that for z < 400 we set n = 1.0 else
we set n = 0.5.

In all of our simulations we use a lattice with spacing h = 1, time step
7 =1 and a discrete velocity set {vi,ve,v3} := {0,—1,1} so that the model
consists of static, left- and right-moving populations only. The governing
equations for LBGK are then

filw +vi, t +1) = fi'(2,t) + (26 = )(f7 (2, 1) — fi(x,1)), (22)

where the subscript ¢ denotes population (not lattice site number) and fi,
fo and f3 denote the static, left- and right-moving populations, respectively.
The entropy is S = —H, with

H = f1log(f1/4) + falog(f2) + f3log(f3),

(see, e.g., [20]) and, for this entropy, the local quasiequilibrium state f* is
available explicitly:

fi=2"2 - Vit 3a),
f1=2(Bu—1) +2V1 + 3u?),

fi = —5(Bu+ 1) —2V1+30),

w

(=]
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where )
ni:Zfi, u = Ezvifi-
i i

For contrast we are interested in comparison with ELBM (17):

file +vit+1) = (L= B)f} (a,0) + Bfila, 1), (23)

with f = (1 —a)f + af*. As previously mentioned, the parameter, «, is
chosen to satisfy a constant entropy condition. This involves finding the
nontrivial root of the equation

S(—a)f +af) = S(f). (24)

Inaccuracy in the solution of this equation can introduce artificial viscosity.
To solve (24) numerically we employ a robust routine based on bisection.
The root is solved to an accuracy of 107" and we always ensure that the
returned value of « does not lead to a numerical entropy decrease. We
stipulate that if, at some site, no nontrivial root of (24) exists we will employ
the positivity rule instead.

For the realisation of the Ehrenfests’ regularisation of LBGK, which is
intended to keep states uniformly close to the quasiequilibrium manifold, we
should monitor non-equilibrium entropy AS at every lattice site:

AS:=S(f%) = 5(f),

throughout the simulation. If a pre-specified threshold value § is exceeded,
then an Ehrenfests’ step is taken at the corresponding site. Now, the gov-
erning equations become:

fi(@,t) + (26 — D(fi'(z,t) — fi(z,1)), AS <,
fi(x,t), otherwise.
(25)

Furthermore, so that the Ehrenfests’ steps are not allowed to degrade the
accuracy of LBGK it is pertinent to select the k sites with highest AS > 4.
The a posteriori estimates of added dissipation could easily be performed
by analysis of entropy production in Ehrenfests’ steps.

The governing equations for the coupled step regularisation of LBGK
alternates between classic LBGK and Ehrenfests’ steps:

fi(.’I,‘+Ui,t+1) = {

F(@,8) + (2B = D(f{ (@.8) = fi(e1)),  Nuep even,
fi* ($7 t)7 Nstep Odd7
(26)
where Ngiep is the cumulative total number of time steps taken in the sim-
ulation. Of course, one is at liberty to combine the coupled step (26) with

fi(.’I,‘+Ui,t+1) = {
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the Ehrenfests’ regularisation (25) to create another method, and we will do
this as well.

In accordance with the closing remark of Sect. 3, as the kinematic viscos-
ity of the model fluid is fixed at v = 10~ we should take 8 = 1/(2v + 1) ~
1 —2v for LBGK, ELBM and the Ehrenfests’ regularisation. Whereas, for
the coupled step regularisation, we should take 8 =1 — v.

We observe that the proposed stabilisation receipts (25) and (26) are
capable of subduing spurious post-shock oscillations whereas LBGK and
ELBM fail in this respect (Fig. 3). The coupled step simulation (Fig. 3e)
is strikingly impressive as the scheme introduces zero artificial dissipation.
Furthermore, the small post-shock deviation in Fig. 3e (we believe this phe-
nomenon is unavoidable without adding dissipation) can be eradicated using
Ehrenfests’ steps (Fig. 3f and Fig. 3g).

In the example, we have considered fixed tolerances of (k,d) = (4,1073)
and (k,0) = (4,10~%) only. We reiterate that it is important for Ehrenfests’
steps to be employed at only a small share of sites. To illustrate, in Fig. 4
we have allowed k to be unbounded and let § vary. As § decreases, the
number of Ehrenfests’ steps quickly begins to grow (as shown in the accom-
panying histograms) and excessive and unnecessary smoothing is observed
on the shock and rarefaction wave. The second-order accuracy of LBGK is
corrupted. In Fig. 5, we have kept § fixed at § = 10~* and instead let &k vary.
We observe that even small values of k (e.g., &k = 1) dramatically improves
the stability of LBGK.

5.2 Flow around a square-cylinder

Our second test is the 2D unsteady flow around a square-cylinder. The
realisation of LBGK that we use will employ a uniform 9-speed square lattice
with discrete velocities

0, i=0,

= (COS((i - 1)%),sin<(7j - 1)%)), i=1,2,3,4,
ﬁ(cos((i—'{))g+%>,sin((7j—5)g+%>>, i=5,6,7,8.

The numbering fo, fi,..., fs are for the static, east-, north-, west-, south-,
northeast-, northwest-, southwest- and southeast-moving populations, re-
spectively. As usual, the quasiequilibrium state, f*, can be uniquely deter-
mined by maximising an entropy functional

5() ==X sitos (1),
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Figure 3: Deunsity and velocity profile of the 1:2 isothermal shock tube
simulation after 400 time steps using (a) ELBM (23); (b) LBGK (22);
(c) Ehrenfests’ regularisation (25) with (k,6) = (4,1073); (d) Ehrenfests’
regularisation (25) with (k,d) = (4,107%); (e) coupled step regularisa-
tion (26); (f) coupled step combined with Ehrenfests’ regularisation with
(k,8) = (4,1073); (g) coupled step combined with Ehrenfests’ regularisation
with (k,0) = (4,107%). In this example, no negative population are pro-
duced by any of the methods so the positivity rule is redundant. For ELBM
in this example, (24) always has a nontrivial root. Sites where Ehrenfests’
steps are employed are indicated by crosses.
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Figure 4: LBGK (22) regularised with Ehrenfests’ steps (25). Density pro-
file of the 1:2 isothermal shock tube simulation and Ehrenfests’ steps his-
togram after 400 time steps using the tolerances (a) (k,d) = (oo, 1073);
(b) (k,8) = (00,107%); (¢) (k,d) = (00,107°); (d) (k,8) = (00,107°); (e)
(k,0) = (00,1077). Sites where Ehrenfests’ steps are employed are indicated
by crosses.
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subject to the constraints of conservation of mass and momentum:

fi = nWiﬁ(2— /1 +3u3) <2“9' +yl +3u§>vi,j (27)

1—wu,;
j=1 J

Here, the lattice weights, W;, are given lattice-specific constants: Wy = 4/9,
Wi234 =1/9 and W5¢78 = 1/36. The macroscopic variables are given by

the expressions
1
ni=> fi (u1,up) = - > wifie
i i

The computational set up for the flow is as follows. A square-cylinder of
side length L, initially at rest, is emersed in a constant flow in a rectangular
channel of length 30L and height 25L. The cylinder is place on the centre
line in the y-direction resulting in a blockage ratio of 4%. The centre of
the cylinder is placed at a distance 10.5L from the inlet. The free-stream
velocity is fixed at (Ueo, Vo) = (0.05,0) (in lattice units) for all simulations.

On the north and south channel walls a free-slip boundary condition
is imposed (see, e.g., [23]). At the inlet, the inward pointing velocities are
replaced with their quasiequilibrium values corresponding to the free-stream
velocity. At the outlet, the inward pointing velocities are replaced with their
associated quasiequilibrium values corresponding to the velocity and density
of the penultimate row of the lattice.

5.2.1 Maxwell boundary condition

The boundary condition on the cylinder that we prefer is the diffusive
Maxwell boundary condition (see, e.g., [10]), which was first applied to LBMs
in [2]. The essence of the condition is that populations reaching a boundary
are reflected, proportional to equilibrium, such that mass-balance (in the
bulk) and detail-balance are achieved. We will describe two possible realisa-
tions of the boundary condition — time-delayed and instantaneous reflection
of equilibrated populations. In both instances, immediately prior to the ad-
vection of populations, only those populations pointing in to the fluid at a
boundary site are updated. Boundary sites do not undergo the collisional
step that the bulk of the sites are subjected to.

To illustrate, consider the situation of a wall, aligned with the lattice,
moving with velocity uy,) and with outward pointing normal to the wall
pointing in the positive y-direction (this is the situation on the north wall
of the square-cylinder with uy,; = 0). The time-delayed reflection imple-
mentation of the diffusive Maxwell boundary condition at a boundary site
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(x,y) on this wall consists of the update

fa(z,y,t +1) = Af3 (vwan),
fs(z,y, t + 1) = Af5 (uyan),
fo(z,y,t + 1) = Af§ (uyan),
with
N\ = falz,y,t) + fr(z,y,1) + fs(I,yat)'
f3 (Uan) + f3 (uyant) + f§ (Uwan)

Whereas for the instantaneous reflection implementation,

f4(xay+17t)+f7(x+]-ay+17t)+f8(x_17y+17t)

A= I3 (Uwant) + f2 (Uwant) + f¢ (Uwall)

Observe that, because density is a linear factor of the equilibria (27), the
density of the wall is inconsequential in the boundary condition and can
therefore be taken as unity for convenience.

We point out that, although both realisations agree in the continuum
limit, the time-delayed implementation does not accomplish mass-balance.
Therefore, instantaneous reflection is preferred and will be the implementa-
tion that we employ in the present example.

Finally, it is instructive to illustrate the situation for a boundary site
(z,y) on a corner of the square-cylinder, say the north-west corner. The
(instantaneous reflection) update is then

fo(z,y,t + 1) = puf3 (Uwan),
f3(@,y,t +1) = pfs (uwan),
fs(@,y,t +1) = pfs (uwan),
fo(z,y,t +1) = pfg (uwan),
fr(z,y,t +1) = pf7 (uswan),

where

n= (fl(x_17y7t)+f4($7y+17t)+f5($_]-7y_]—7t)
+frlz+ Ly + L)+ fs(z — Ly +1,1))

/(f;(uwall) + £3 (uwan) + f5 (uwan) + f¢ (uwan) + f7 (Uwan)) -

5.2.2 Strouhal-Reynolds relationship

As a test of the Ehrenfests’ regularisation (18), a series of simulations, all
with characteristic length fixed at L = 20, were conducted over a range of

Reynolds numbers
_ Lug

Re =

v
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Figure 6: Variation of Strouhal number as a function of Reynolds. Dots
are Okajima’s experimental data [22] (the data has been digitally extracted
from the original paper). Diamonds are the Ehrenfests’ regularisation of
LBGK and the squares are the ELBM simulation from [1].

The parameter pair (k,d), which control the Ehrenfests’ steps tolerances,
are fixed at (L/2,1073).

We are interested in computing the Strouhal-Reynolds relationship. The
Strouhal number S is a dimensionless measure of the vortex shedding fre-
quency in the wake of one side of the cylinder:

g Lhe

Uoo
where f,, is the shedding frequency.

For our computational set up, the vortex shedding frequency is computed
using the following algorithmic technique. Firstly, the z-component of ve-
locity is recorded during the simulation over tmayx = 1250L/uy, time steps.
The monitoring points is positioned at coordinates (4L, —2L) (assuming the
origin is at the centre of the cylinder). Next, the dominant frequency is
extracted from the final 25% of the signal using the discrete Fourier trans-
form. The monitoring point is purposefully placed sufficiently downstream
and away from the centre line so that only the influence of one side of the
cylinder is recorded.

The computed Strouhal-Reynolds relationship using the Ehrenfests’ reg-

21



ularisation of LBGK is shown in Fig. 6. The simulation compares well with
Okajima’s data from wind tunnel and water tank experiment [22]. The
present simulation extends previous LBM studies of this problem [1, 3] which
have been able to quantitively captured the relationship up to Re = O(1000).
Fig. 6 also shows the ELBM simulation results from [1]. Furthermore, the
computational domain was fixed for all the present computations, with the
smallest value of the kinematic viscosity attained being v = 5 x 107> at
Re = 20000. It is worth mentioning that, for this characteristic length,
LBGK exhibits numerical divergence at around Re = 1000. We estimate
that, for the present set up, the computational domain would require at
least O(107) lattice sites for the kinematic viscosity to be large enough for
LBGK to converge at Re = 20000. This is compared with O(10°) sites for
the present simulation.

6 Conclusions

We have presented the main mechanisms of observed LBM instabilities:
1. Positivity loss due to high local deviation from (quasi)equilibrium;

2. Appearance of neutral stability in some directions in the zero viscosity
limit;

3. Directional instability.

We found three methods of stability preservation. Two of them, the pos-
itivity rule and the Ehrenfests’ regularisation, are “salvation” (or “SOS”)
operations. They preserve the system from positivity loss or from the local
blow-ups, but introduce artificial dissipation and it is necessary to control
the number of sites where these steps are applied. In order to preserve
the second-order of LBM accuracy, it is worthwhile to perform these steps
on only a small number of sites; the number of sites should not be higher
than O(Nh/L), where N is the total number of sites, L is the macroscopic
characteristic length and A is the lattice step. The added dissipation could
easily be estimated a posterior by summarising the entropy production of
the “SOS” steps.

But most effective is the special new choice of collisions: the coupled
steps (26). These steps alternate between classic LBM and Ehrenfests’ steps,
introduce no artificial viscosity, have the second-order accuracy, and provide
directional stability as well as obliterate the effects of neutral stability. In-
deed, the shock tube simulation in Fig. 3e is a compelling demonstration
of the proposed scheme’s capabilities. Furthermore, the coupled step intro-
duces no additional computational cost compared to classical LBMs.

The practical recommendation is to always use the coupled steps, and
to keep the positivity rule and the Ehrenfests’ steps as an “SOS” in reserve
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in order to make rare corrections of positivity loss and of too high local
deviation from equilibrium.
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