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tThe latti
e Boltzmann method (LBM) is known to have stabilityde�
ien
ies. For example, lo
al blow-ups and spurious os
illations arereadily observed when the method is used to model high-Reynolds 
uid
ow. Beginning from thermodynami
 
onsiderations, the LBM 
an bere
ognised as a dis
rete dynami
al system generated by entropi
 in-volution and free-
ight and the stability analysis is more natural. Inthis paper we solve the stability problem of the LBM on the basis ofthis thermodynami
 point of view. The main instability me
hanismsare identi�ed. The simplest and most e�e
tive re
eipt for stabilisationadds no arti�
ial dissipation, preserves the se
ond-order a

ura
y ofthe method, and pres
ribes 
oupled steps: to start from a lo
al equi-librium, then, after free-
ight, perform the overrelaxation 
ollision, andafter a se
ond free-
ight step go to new lo
al equilibrium. Two otherpres
riptions add some arti�
ial dissipation lo
ally and prevent thesystem from loss of positivity and lo
al blow-up. Demonstration of theproposed stable LBMs are provided by the numeri
al simulation of a1D sho
k tube and the unsteady 2D-
ow around a square-
ylinder upto Reynolds number O(10000).1 Introdu
tionA latti
e Boltzmann method (LBM) is a dis
rete velo
ity method in whi
h a
uid is des
ribed by asso
iating, with ea
h velo
ity vi, a single-parti
le dis-tribution fun
tion fi = fi(x; t) whi
h is evolved by adve
tion and intera
tionon a �xed 
omputational latti
e.The method has been proposed as a dis
retization of Boltzmann's kineti
transport equation: �fi�t + vi � rfi = Qi; (1)where the 
ollision operator, Qi, is subje
t to the fundamental mass, mo-mentum and energy 
onservation laws. Dutifully, the 
ompressible Navier{1



Stokes equations are satis�ed by the dis
rete population moments providedthe studiously 
hosen dis
rete velo
ities have suÆ
ient symmetry; the Ma
hnumber is suÆ
iently low and the long time-s
ale, t, is large 
omparedto the time-s
ale of 
ollisions (for an histori
 review see [23℄). Further-more, the 
ollision operator 
an be alluringly simple, as is the 
ase withthe Bhatnager{Gross{Krook (BGK) operator [5℄, whereby 
ollisions are de-s
ribed by a single-time relaxation to lo
al entropy maximising equilibriaf�i (although other 
hoi
es of equilibria are often preferred [23℄). Here, therelaxation time is proportional to the kinemati
 vis
osity � of the model.The overrelaxation dis
retization of (1) (see, e.g., [4, 11, 19℄) is knownas LBGK and de
ouples vis
osity from the time step, thereby suggestingthat LBGK is 
apable of operating at arbitrarily high-Reynolds number bymaking the relaxation time suÆ
iently small. However, in this low-vis
osityregime, LBGK su�ers from numeri
al instabilities whi
h readily manifestthemselves as lo
al blow-ups and spurious os
illations.To analyse stability, the above histori
 LBM pres
ription is not imme-diately useful. However, there is another approa
h whi
h arises from ther-modynami
 
onsiderations. Central to this alternative pres
ription is thenotion of an entropy maximising or quasiequilibrium manifold in the spa
eof distributions and the Ehrenfests' idea of 
oarse-graining [14, 15℄. In thisnew representation, the main element is the dis
rete (in time) dynami
alsystem generated by entropi
 involution and free-
ight (adve
tion). Thedis
rete velo
ities appear as approximation nodes in 
ertain 
ubatures invelo
ity spa
e, and if the velo
ities from this set are automorphisms of alatti
e, the LBM in its regular spa
e-and-time dis
rete form, as above, isobtained. The ba
kground knowledge ne
essary to dis
uss the LBM in thismanner is presented in Se
t. 2. Then, this pres
ription suggests severalsour
es of numeri
al instabilities in the LBM and allows several re
eipts forstabilisation. Common to ea
h re
eipt is the desire to stay uniformly 
loseto the aforementioned manifold (Se
t. 3).In Se
t. 5 a numeri
al simulation of a 1D sho
k tube and the unsteady2D-
ow around a square-
ylinder using the present stabilised LBMs are pre-sented. For the later problem, the simulation quantitively validates the ex-perimentally obtained Strouhal{Reynolds relationship up to Re = O(10000).This extends previous LBM studies of this problem where the relationshiphad only been su

essfully validated up to Re = O(1000) [1, 3℄.Se
t. 6 
ontains some 
on
luding remarks as well as pra
ti
al re
ommen-dations for LBM realisations.2 Ba
kgroundIn this se
tion, we brie
y introdu
e the thermodynami
 ba
kground of ourapproa
h, and some notations. Proofs of most statements 
ould be extra
ted2



from [15℄. Histori
ally [23℄, the LBM appeared from the dis
retization ideasof: 1. dis
rete velo
ity set;2. latti
e spa
e-and-time representation.The idea of (symmetri
 or almost symmetri
) overrelaxation was introdu
edto de
ouple vis
osity from the time step [4, 11, 19, 23℄. This overrelaxationwas transformed into the notion of entropi
 involution [15, 21, 24℄, and anew understanding of the LBM was a
hieved. In this new representation,the main element is the dis
rete dynami
al system generated by entropi
 in-volution and free-
ight. The dis
rete velo
ity set arises as 
ubature approx-imation nodes for the hydrodynami
 moments, and when these velo
itiesare automorphisms of some latti
e, the LBM in its regular spa
e-and-timedis
rete form is re
overed.The latti
e pres
ription is ni
e and symmetri
, without any di�eren
e be-tween spa
e and time dis
retization, but it requires some e�ort to introdu
ethermodynami
s and to analyse stability of systems of this kind. On the
ontrary, when we start from thermodynami
 
onsiderations, the entropyintrodu
tion and the stability analysis are very natural, but the 
ubatureapproximation and the spa
e dis
retization requires some additional e�ort.Here we 
an �nd an analogy to relativisti
 (quantum) �eld theory: the La-grangian formalism is fully 
ovariant, but if we would like to enjoy physi
sof the Hamiltonian formalism, we should split spa
e and time, and use anon-
ovariant representation [13℄.Let us introdu
e entropi
 involution in earnest. The starting point is a
onservative kineti
 equation dfdt = J
(f): (2)Here, 
onservative means that this equation preserves values of a 
on
avefun
tional, the entropy, S(f).The standard example is the free-
ight equation�f�t + v � rf = 0; (3)where f = f(x;v; t) is a single-parti
le distribution fun
tion, x is the spa
eve
tor, v is velo
ity. The 
hoi
e of entropy for (3) is ambiguous; we 
anstart from any 
on
ave fun
tional of the formS(f) = Z s(f(x;v; t))f(x;v; t) dxdvwith 
on
ave s(f). The 
hoi
e by default is s(f) = � lnf , whi
h gives the
lassi
al Boltzmann{Gibbs{Shannon entropy.3



In addition to the kineti
 equation (2) we have a �xed linear mappingm : f 7!M to some ma
ros
opi
 variables, for example, M is the set of �vehydrodynami
 �elds n, nu and E (density{momentum{energy),M0 = n := Z fdv; Mi = nui := Z vifdv; M42 = E := 12 Z v2fdv:(4)Further, for ea
h M , a quasiequilibrium (or 
onditional equilibrium, or gen-eralised 
anoni
al state) f�M is de�ned as a solution of the optimisationproblem S(f)! max; m(f) =M: (5)For ea
h f , a 
orrespondent quasiequilibrium state f�m(f) is de�ned. The setof all quasiequilibrium states is parameterised by M and referred to as thequasiequilibrium manifold. The proje
tor of a point f onto the quasiequi-librium manifold is the following operator:PS : f 7! f�m(f):Let �t be the time shift transformation for the initial 
onservative kineti
equation (2): �t(f(0)) = f(t):For the free-
ight equation (3) we have�t : f(x;v) 7! f(x� vt;v):For a given time � , the Ehrenfests' step is a transformation of the quasiequi-librium manifold Ehr� : f�M 7! PS(�� (f�M )): (6)The motion starts on the quasiequilibrium manifold, goes time � along thetraje
tory of the 
onservative kineti
 equation (2), and then follows proje
-tion ba
k onto the quasiequilibrium manifold. Ma
ros
opi
 variables form
oordinates on the quasiequilibrium manifold. In these 
oordinates,Ehr� :M 7! m(�� (f�M)):The Ehrenfests' step gives a se
ond-order in time step � approximation tothe solution of the dissipative ma
ros
opi
 equationdMdt = m(J
(f�M )) + �2m((DfJ
(f))f=f�M�f�M ); (7)where �f�M is the defe
t of invarian
e of the quasiequilibrium manifold:�f�M = J
(f�M)�DM (f�M )m(J
(f�M )); (8)and is the di�eren
e between the ve
tor-�eld J
 and its proje
tion on thequasiequilibrium manifold. 4



For the free-
ight equation and hydrodynami
 �elds M = M(x; t) (4),the quasiequilibrium distribution is the well known lo
al Maxwellianf�M (v) = n�2�kBTm ��3=2 exp��m(v � u)22kBT �;and (7) is the system of 
ompressible Navier{Stokes equations�n�t = �Xi �(nui)�xi ;�(nuj)�t = � 1m �P�xj �Xi �(nuiuj)�xi+ �2Xi ��xi�Pm��uj�xi + �ui�xj � 2Æij3 r � u��;�E�t = � 1mXi �(Pui)�xi �Xi �(Eui)�xi + �2 5kB2m Xi ��xi�Pm �T�xi�;where m is parti
le mass, kB is Boltzmann's 
onstant, T is kineti
 temper-ature and P = nkBT is ideal gas pressure [18℄. The dynami
 vis
osity is� = �2P (the kinemati
 vis
osity is � = �2 
21 where 
1 is the thermal velo
-ity for one degree of freedom, 
21 = kBT=m). For � ! 0, (7) tends to the
onservative ma
ros
opi
 equationdMdt = m(J
(f�M )): (9)For hydrodynami
s, this is the (
ompressible) Euler equations.The step with a quasiequilibrium state in the middle gives a se
ond-orderin time step � approximation to the solution of the 
onservative ma
ros
opi
equation (9):M(0) = m(PS(���=2(f�M ))) 7! m(PS(��=2(f�M))) =M(�): (10)In order to de
ouple vis
osity and time step, we 
an 
ombine (6) with (10):M(0) = m(PS(��#=2(f�M ))) 7! m(PS(�&+#=2(f�M ))) =M(& + #) =M(�);where & � � and # = � � &. The state M is a mid-point on the traje
tory.This transformation provides a se
ond-order in time approximation for theequation: dMdt = m(J
(f�M )) + &2m((DfJ
(f))f=f�M�f�M ) (11)for the time step � [15℄. For the free-
ight equation (3) and hydrodynami
�elds (4), the system (11) is the 
ompressible Navier{Stokes equations withdynami
 vis
osity � = &2P (the kinemati
 vis
osity is � = &2
21).5



It is worthwhile to mention that all the points �t(f�M ) belong to amanifold that is a traje
tory q of the quasiequilibrium manifold due tothe 
onservative dynami
s (2) (in hydrodynami
 appli
ations that is thefree-
ight dynami
s (3)). We 
all this manifold the �lm of non-equilibriumstates [15, 16, 17℄. The defe
t of invarian
e �f�M (8) is tangent to q at thepoint f�M , and belongs to the interse
tion of this tangent spa
e with kerm.This interse
tion is one-dimensional. This means that the dire
tion of �f�Mis sele
ted from the tangent spa
e to q by the 
ondition: derivative of M inthis dire
tion is zero.A point f on the �lm of non-equilibrium states q is naturally parame-terised by (M; �): f = qM;� , where M = m(f) is the value of the ma
ro-s
opi
 variables, and � = �(f) is the time shift from a quasiequilibriumstate: ��� (f) is a quasiequilibrium state for some (other) value of M . Tothe �rst-order in � , qM;� = f�M + ��f�M : (12)The quasiequilibrium manifold divides q into two parts, q = q� [ q0 [ q+,where q� = fqM;� j � < 0g, q+ = fqM;� j � > 0g, and q0 is the quasiequilib-rium manifold: q0 = fqM;0g = ff�Mg.For ea
h M and positive s from some interval ℄0; &[ there exist two num-bers ��(M; s) (�+(M; s) > 0, ��(M; s) < 0) su
h thatS(qM;��(M;s)) = S(f�M )� s:The numbers �� 
oin
ide to the �rst-order: �+ = ��� + o(��).We de�ne the entropi
 involution as a transformation of q:IS(qM;��) = qM;�� :The pair of points f+; f� 2 q 
onne
ted by the involution IS (i.e., f� =IS(f�)) is de�ned (in q) by two 
onditions:S(f+) = S(f�); m(f+) = m(f�):The values of entropy and ma
ros
opi
 variables at these points 
oin
ide.Let us 
hoose an initial ma
ros
opi
 state M0, and suppose the initialmi
ros
opi
 state f0 belongs to q� [ q+ in a � -small vi
inity of f�M0 :m(f0) =M0; f0 = qM;#; �� < # � 0:Then the step M0 7! m(IS(�� (IS(�� (f0))))) (13)gives a se
ond-order in time step � approximation to the 
onservative ma
ro-s
opi
 equations (9) with time step 2� (the se
ond appli
ation of IS in (13)is added for symmetry and does not e�e
t M). One shift IS�� guarantees�rst-order a

ura
y only [15℄. 6



For modelling the vis
ous motion (11) we 
an 
ombine involution andproje
tion in the following manner: for f0 2 q� the point f1 = I�S (f0),� 2 [1=2; 1℄, is de�ned in q� by two 
onditions:m(f1) = m(f0); S(f1)� S(PS(f0)) = (2� � 1)2(S(f0)� S(PS(f0))):The point I�S (f0) is 
loser to the quasiequilibrium point PS(f0) than IS(f0).For � = 1 we get the entropi
 involution: I1S = IS , and for � = 1=2 were
eive the operator I1=2S = PS .If, for t 2 [0; � ℄, the traje
tory �t(f0) interse
ts the quasiequilibriummanifold (i.e., f0 = qM0;# and �� < # � 0), then, after some initial steps,the following sequen
e gives a se
ond-order in time step � approximationof (11) with & = (1� �)�=�, � 2 [1=2; 1℄:Mn = m((I�S�� )nf0): (14)In order to prove this statement we 
onsider a transformation of the se
ond
oordinate in qM;# (�� < # � 0): in linear approximation in # and � wehave (I�S�� )qM;# = qM 0;#0 ;where #0 = �(2� � 1)(#+ �):This transformation has a �xed point #� = ��(2� � 1)=(2�) and(I�S�� )nqM;# = qMn;#n ;where #n = #� + (�1)n(2� � 1)nÆ + o(�);for some Æ. This asymptoti
 formula is valid for the given � 2 [1=2; 1℄ and� ! 0, but if 1�� is small it has no pra
ti
al sense be
ause relaxation maybe too slow: #n � #� + (�1)n exp(�2n(1 � �))Æ, and relaxation requires� 1=(1 � �) steps.If #n = #� + o(�) then the sequen
e Mn (14) approximates (11) with& = � � 2j#�j = (1� �)�=� and se
ond-order a

ura
y in time step � .As we have already mentioned, for the transfer from free-
ight withentropi
 involution to the standard LBGK models we must:1. transfer to a �nite number of velo
ities with the same ma
ros
opi
equations;2. transfer from spa
e to a latti
e, where these velo
ities are automor-phisms;and also, 7



3. transfer from dynami
s and involution on q to the whole spa
e ofstates.Instead of I�S the transformationI�0 : f 7! PS(f) + (2� � 1)(PS(f)� f) (15)is used. If, for a given f0, the sequen
e (14) gives a se
ond-order in timestep � approximation of (11), then the sequen
eMn = m((I�0�� )nf0) (16)also gives a se
ond-order approximation to the same equation.Entropi
 LBGK (ELBM) methods [7, 15, 21, 24℄ di�er only in the de�-nition of (15): for � = 1 it should 
onserve the entropy, and in general hasthe following form: I�E(f) = (1� �)f + � ~f; (17)with ~f = (1 � �)f + �PS(f). The number � = �(f) is 
hosen so thatthe 
onstant entropy 
ondition is satis�ed: S(f) = S( ~f). For LBGK (15),� = 2.Of 
ourse, 
omputation of I�0 is mu
h easier than that of I�S or I�E : itis not ne
essary to follow exa
tly the manifold q and to solve the nonlinear
onstant entropy 
ondition equation. For an appropriate initial 
onditionfrom q (not suÆ
iently 
lose to q0), two steps of ELBM with I�0 gives thesame se
ond-order a

ura
y as (14). But a long 
hain of su
h steps 
anlead far from the quasiequilibrium manifold and even from q. Here, we seestability problems arising.3 Stability and re
eipts for stabilisationFirst of all, if f is far from the quasiequilibrium, the state I�0 (f) may benon-physi
al. The positivity 
onditions (positivity of probabilities or pop-ulations) may be violated. For multi-dimensional and in�nite-dimensionalproblems it is ne
essary to spe
ify what one means by far. In the previousse
tion, f is the whole state whi
h in
ludes the states of all sites of the lat-ti
e. All the inversion operators with 
lassi
al entropies (ones that do notdepend on gradients) are de�ned for latti
e sites independently. Violation ofpositivity at one site makes the whole state non-physi
al. Hen
e, we shoulduse here the `1-norm: 
lose states are 
lose uniformly, at all sites.There is a simple re
eipt for positivity preservation: to substitute non-positive I�0 (f) by the 
losest non-negative state that belongs to the straightline n�f + (1� �)PS(f)j � 2 Ro8



Figure 1: Neutral stability and one-step os
illations in a sequen
e of re-
e
tions. Bold dotted line { a perturbed motion, � { dire
tion of neutralstability.de�ned by the two points, f and 
orrespondent quasiequilibrium. Let us 
allthis re
eipt the positivity rule. It has been demonstrated [8℄ (also, indepen-dently, in [25℄) that the 
lassi
 LBGK model with the positivity rule providesthe same results (in the sense of stability and absen
e/presen
e of spuriousos
illations) as the entropi
 LBGK models. This re
eipt preserves positivityof populations and probabilities, but 
an a�e
t a

ura
y of approximation:to avoid the 
hange of a

ura
y order, the number of sites with this stepshould be of the order O(Nh=L) where N is the total number of sites, h isthe step of the spa
e dis
retization and L is the ma
ros
opi
 
hara
teristi
length.The se
ond problem is non-linearity: for a

ura
y estimates we alwaysuse the assumption that f is suÆ
iently 
lose to quasiequilibrium. Far fromthe quasiequilibrium manifold these estimates do not work be
ause of non-linearity (�rst of all, the quasiequilibrium distribution, f�M , depends nonlin-early on M and hen
e the proje
tion operator, PS , is nonlinear). Again weneed to keep the states not far from the quasiequilibrium manifold.The third problem is a dire
tional instability that 
an a�e
t a

ura
y:the ve
tor f�PS(f) 
an deviate far from the tangent to q. Hen
e, we shouldnot only keep f 
lose to the quasiequilibrium, but also guarantee smallnessof the angle between the dire
tion f � PS(f) and tangent spa
e to q.One 
ould rely on the stability of this dire
tion, but we fail to provethis in any general 
ase. The dire
tional instability 
hanges the stru
ture ofdissipation terms: the a

ura
y de
reases to the �rst-order in � and signi�-
ant 
u
tuations of the Prandtl number and vis
osity, et
 may o

ur. This
arries a danger even without blow-ups; one 
ould 
on
eivably be relying onnon-reliable 
omputational results.Furthermore, there exists a neutral stability of all des
ribed approxima-tions that 
auses one-step os
illations: a small shift of f in the dire
tion of�f�M does not relax ba
k for � = 1, and its relaxation is slow for � � 1 (forsmall vis
osity). This e�e
t is demonstrated for a 
hain of mirror re
e
tionsin Fig. 1. 9



Three pres
riptions allow us to improve the situation:1. Positivity rule.The te
hni
al advise is to use this rule in all dis
rete kineti
 models.This rule guarantees positivity of populations and probabilities, andelementary post-pro
essing allows one to estimate how these steps af-fe
t the whole pi
ture. Tests prove that this rule is as e�e
tive asentropi
 methods, and they are mu
h simpler for realisation (see, [8℄and Se
t. 5).For the stabilisation of LBMs, the entropi
 version of (17) was proposedand is used. This approa
h somehow improves stability, indeed, but 
annoterase spurious os
illation and large lo
al deviation from quasiequilibrium [6,8, 9℄. The H-theorem implies stability of equilibrium in the entropi
 norm(that is, a weighted `2-norm, a weighted sum of squared point evaluations)for isolated systems. For non-isolated systems (e.g., the sho
k tube, systemswith external 
ows, et
.) the H-theorem (positivity of entropy produ
tion)does not guarantee stability in any norm, but 
an be used to establish 
ertainestimates of boundedness with respe
t to the entropi
 norm. However, tosuppress lo
al blow-ups we need estimates in `1-norm, and to suppresshigh-frequen
y os
illations we need boundedness in the Sobolev norm thatdepends on derivatives.2. Ehrenfests' regularisation.In order to keep the 
urrent state uniformly 
lose to the quasiequi-librium manifold we monitor lo
al deviation of f from the 
orrespon-dent quasiequilibrium, and when this deviation is large perform lo
alEhrenfests' steps [18℄, 1 fj 7! f�j ; (18)where j is the number of the site, fj is the state at this site, and f�j isthe 
orrespondent lo
al quasiequilibrium (we assume that the entropyis the sum of nodal values, and the problem of quasiequilibrium (5) isfully split into lo
al problems at the sites).In order to preserve the se
ond-order of a

ura
y, it is worthwhile per-forming Ehrenfests' steps at only a small number of sites (the number ofsites should be O(Nh=L), where N is the total number of sites, L is thema
ros
opi
 
hara
teristi
 length and h is the latti
e step). If only k sitesare required then this 
onstitutes a 
omputational 
ost of O(kN). Numeri-
al experiments show (see, e.g., [8, 9℄ and Se
t. 5) that even a small numberof su
h steps drasti
ally improves stability.1In our paper [9℄ we used another de�nition that follows the Euler dis
retization of theBGK equation, but, for small vis
osity this is essentially the same10



PS

QE-manifold 0I

0IFigure 2: The s
heme of 
oupled steps (19).3. Coupled steps with quasiequilibrium ends.Let us take f�M as the initial state with given M , then evolve the stateby �� , apply LBGK re
e
tion I�0 , again evolve by �� , and �nallyproje
t by PS onto quasiequilibrium manifold:M 7! m(PS(�� (I�0 (�� (f�M ))))) (19)The analysis of entropy produ
tion easily shows that this step (Fig. 2)gives a se
ond-order in time � approximation to the shift in time 2�for (11) with & = 2(1� �)� , � 2 [1=2; 1℄. The stabilisation (restart ex-a
tly from a quasiequilibrium point) introdu
es additional dissipationof order �2, and the perturbation of a

ura
y is of order �3. Hen
e,the method has the se
ond-order a

ura
y.It is ne
essary to stress that the vis
osity 
oeÆ
ient is proportional to &and signi�
antly depends on the 
hain 
onstru
tion: for the sequen
e (14)we have & = (1��)�=�, and for the sequen
e of steps (19) & = 2(1��)� (thepro
edure for 
al
ulating this vis
osity 
oeÆ
ient is 
ontained in Se
t. 4).For small 1 � � the later gives around two times larger vis
osity (and forrealisation of the same vis
osity we must take this in to a

ount).4 Vis
osity 
omputationIn this se
tion, we demonstrate how to 
ompute vis
osity for any 
onstru
-tion of steps on the base of (7) and the representation (12). We 
ompute theentropy produ
tion and 
ompare it to the entropy produ
tion in Ehrenfests'steps.First of all, for any f , the distribution PS(f) = f�m(f) is the entropymaximiser for the given ma
ros
opi
 variablesM = m(f). Hen
e, by Taylorexpansion,S(f) = S(PS(f)) + 12 hf � PS(f); f � PS(f)iPS(f) + o(kf � PS(f)k2);11



where h � ; � ig is the entropi
 inner-produ
t, i.e., the negative of the bilinearform of the se
ond di�erential of entropy: h'; ig := �(D2fS(f))f=g('; ).In parti
ular, using (12), we haveS(qM;� ) = S(f�M ) + �22 h�f�M ;�f�M if�M + o(�2):For the operation I�0 (15) we haveS(I�0 f) = S(PS(f))+ (2� � 1)22 hf � PS(f); f � PS(f)iPS(f) + o(kf � PS(f)k2):In parti
ular,S(I�0 qM;� ) = S(f�M ) + �2(2� � 1)22 h�f�M ;�f�M if�M + o(�2);and for the 
orrespondent entropy gain �S1 we have�S1 = 2�2�(1� �)h�f�M ;�f�M if�M + o(�2):Entropy produ
tion is the ratio of entropy gain to time. For the Ehrenfests'step (6) in time � the entropy gain �SEhr;� is�SEhr;� = �22 h�f�M ;�f�M if�M + o(�2);with entropy produ
tion �Ehr;� given by the expression�Ehr;� = �SEhr;�� = �2 h�f�M ;�f�M if�M + o(�): (20)Now, for a 
oupled step (19) (see Fig. 2)f�M 7! PS(�� (I�0 (�� (f�M))));the free-
ight does not 
hange entropy and the entropy gain is�S = �S1 +�S2;with �S2 = �SEhr;2(1��)� . Thus,�S = 2�2�(1� �)h�f�M ;�f�M if�M + 2�2(1� �)2h�f�M ;�f�M if�M + o(�2)= 2�2(1� �)h�f�M ;�f�M if�M + o(�2):The 
orresponding entropy produ
tion is� = �S� = �(1� �)h�f�M ;�f�M if�M + o(�): (21)After 
omparison of the two entropy produ
tion formulas (20) and (21)we 
an immediately 
on
lude that the 
oupled step (19) gives a se
ond-orderin time approximation of (11) with & = 2(1 � �)� . For any other variantsof step 
onstru
tion the method of vis
osity 
omputation is the same: weestimate the entropy gain up to the se
ond-order, and �nd the 
orrespondentvalue of &. 12



5 Numeri
al experimentTo 
on
lude this paper we report two numeri
al experiments 
ondu
ted todemonstrate the performan
e of the proposed LBM stabilisation re
eiptsfrom Se
t. 3. The �rst test is a 1D sho
k tube and we are interested in
omparing the Ehrenfests' regularisation (18), the 
oupled step (19) withLBGK (15) and ELBM (17).The se
ond test is the 2D unsteady 
ow around a square-
ylinder. Theunsteady 
ow around a square-
ylinder has been widely experimentally in-vestigated in the literature (see, e.g., [12, 22, 26℄). We demonstrate thatLBGK (15), with the Ehrenfests' regularisation (18), is 
apable of quan-titively 
apturing the Strouhal{Reynolds relationship. The relationship isveri�ed up to Re = 20000 and 
ompares well with Okajima's experimentaldata [22℄.As we are advised in Se
t. 3, in all of the experiments, we implement thepositivity rule.5.1 Sho
k tubeThe 1D sho
k tube for a 
ompressible isothermal 
uid is a standard ben
h-mark test for hydrodynami
 
odes. We will �x the kinemati
 vis
osity ofthe 
uid at � = 10�9. Our 
omputational domain will be the interval [0; 1℄and we dis
retize this interval with 801 uniformly spa
ed latti
e sites. We
hoose the initial density ratio as 1:2 so that for x � 400 we set n = 1:0 elsewe set n = 0:5.In all of our simulations we use a latti
e with spa
ing h = 1, time step� = 1 and a dis
rete velo
ity set fv1; v2; v3g := f0;�1; 1g so that the model
onsists of stati
, left- and right-moving populations only. The governingequations for LBGK are thenfi(x+ vi; t+ 1) = f�i (x; t) + (2� � 1)(f�i (x; t) � fi(x; t)); (22)where the subs
ript i denotes population (not latti
e site number) and f1,f2 and f3 denote the stati
, left- and right-moving populations, respe
tively.The entropy is S = �H, withH = f1 log(f1=4) + f2 log(f2) + f3 log(f3);(see, e.g., [20℄) and, for this entropy, the lo
al quasiequilibrium state f� isavailable expli
itly: f�1 = 2n3 �2�p1 + 3u2�;f�2 = n6 �(3u� 1) + 2p1 + 3u2�;f�3 = �n6 �(3u+ 1)� 2p1 + 3u2�;13



where n :=Xi fi; u := 1nXi vifi:For 
ontrast we are interested in 
omparison with ELBM (17):fi(x+ vi; t+ 1) = (1� �)f�i (x; t) + � ~fi(x; t); (23)with ~f = (1 � �)f + �f�. As previously mentioned, the parameter, �, is
hosen to satisfy a 
onstant entropy 
ondition. This involves �nding thenontrivial root of the equationS((1� �)f + �f�) = S(f): (24)Ina

ura
y in the solution of this equation 
an introdu
e arti�
ial vis
osity.To solve (24) numeri
ally we employ a robust routine based on bise
tion.The root is solved to an a

ura
y of 10�15 and we always ensure that thereturned value of � does not lead to a numeri
al entropy de
rease. Westipulate that if, at some site, no nontrivial root of (24) exists we will employthe positivity rule instead.For the realisation of the Ehrenfests' regularisation of LBGK, whi
h isintended to keep states uniformly 
lose to the quasiequilibriummanifold, weshould monitor non-equilibrium entropy �S at every latti
e site:�S := S(f�)� S(f);throughout the simulation. If a pre-spe
i�ed threshold value Æ is ex
eeded,then an Ehrenfests' step is taken at the 
orresponding site. Now, the gov-erning equations be
ome:fi(x+ vi; t+ 1) = ( f�i (x; t) + (2� � 1)(f�i (x; t)� fi(x; t)); �S � Æ,f�i (x; t); otherwise.(25)Furthermore, so that the Ehrenfests' steps are not allowed to degrade thea

ura
y of LBGK it is pertinent to sele
t the k sites with highest �S > Æ.The a posteriori estimates of added dissipation 
ould easily be performedby analysis of entropy produ
tion in Ehrenfests' steps.The governing equations for the 
oupled step regularisation of LBGKalternates between 
lassi
 LBGK and Ehrenfests' steps:fi(x+ vi; t+ 1) = ( f�i (x; t) + (2� � 1)(f�i (x; t)� fi(x; t)); Nstep even,f�i (x; t); Nstep odd,(26)where Nstep is the 
umulative total number of time steps taken in the sim-ulation. Of 
ourse, one is at liberty to 
ombine the 
oupled step (26) with14



the Ehrenfests' regularisation (25) to 
reate another method, and we will dothis as well.In a

ordan
e with the 
losing remark of Se
t. 3, as the kinemati
 vis
os-ity of the model 
uid is �xed at � = 10�9 we should take � = 1=(2� + 1) �1 � 2� for LBGK, ELBM and the Ehrenfests' regularisation. Whereas, forthe 
oupled step regularisation, we should take � = 1� �.We observe that the proposed stabilisation re
eipts (25) and (26) are
apable of subduing spurious post-sho
k os
illations whereas LBGK andELBM fail in this respe
t (Fig. 3). The 
oupled step simulation (Fig. 3e)is strikingly impressive as the s
heme introdu
es zero arti�
ial dissipation.Furthermore, the small post-sho
k deviation in Fig. 3e (we believe this phe-nomenon is unavoidable without adding dissipation) 
an be eradi
ated usingEhrenfests' steps (Fig. 3f and Fig. 3g).In the example, we have 
onsidered �xed toleran
es of (k; Æ) = (4; 10�3)and (k; Æ) = (4; 10�4) only. We reiterate that it is important for Ehrenfests'steps to be employed at only a small share of sites. To illustrate, in Fig. 4we have allowed k to be unbounded and let Æ vary. As Æ de
reases, thenumber of Ehrenfests' steps qui
kly begins to grow (as shown in the a

om-panying histograms) and ex
essive and unne
essary smoothing is observedon the sho
k and rarefa
tion wave. The se
ond-order a

ura
y of LBGK is
orrupted. In Fig. 5, we have kept Æ �xed at Æ = 10�4 and instead let k vary.We observe that even small values of k (e.g., k = 1) dramati
ally improvesthe stability of LBGK.5.2 Flow around a square-
ylinderOur se
ond test is the 2D unsteady 
ow around a square-
ylinder. Therealisation of LBGK that we use will employ a uniform 9-speed square latti
ewith dis
rete velo
itiesvi = 8>>>>><>>>>>: 0; i = 0,�
os�(i� 1)�2�; sin�(i� 1)�2��; i = 1; 2; 3; 4,p2�
os�(i� 5)�2 + �4�; sin�(i� 5)�2 + �4��; i = 5; 6; 7; 8.The numbering f0, f1; : : : ; f8 are for the stati
, east-, north-, west-, south-,northeast-, northwest-, southwest- and southeast-moving populations, re-spe
tively. As usual, the quasiequilibrium state, f�, 
an be uniquely deter-mined by maximising an entropy fun
tionalS(f) = �Xi fi log� fiWi�;15
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ity pro�le of the 1:2 isothermal sho
k tubesimulation after 400 time steps using (a) ELBM (23); (b) LBGK (22);(
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ombined with Ehrenfests' regularisation with(k; Æ) = (4; 10�3); (g) 
oupled step 
ombined with Ehrenfests' regularisationwith (k; Æ) = (4; 10�4). In this example, no negative population are pro-du
ed by any of the methods so the positivity rule is redundant. For ELBMin this example, (24) always has a nontrivial root. Sites where Ehrenfests'steps are employed are indi
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Figure 4: LBGK (22) regularised with Ehrenfests' steps (25). Density pro-�le of the 1:2 isothermal sho
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subje
t to the 
onstraints of 
onservation of mass and momentum:f�i = nWi 2Yj=1�2�q1 + 3u2j� 2uj +q1 + 3u2j1� uj !vi;j (27)Here, the latti
e weights, Wi, are given latti
e-spe
i�
 
onstants: W0 = 4=9,W1;2;3;4 = 1=9 and W5;6;7;8 = 1=36. The ma
ros
opi
 variables are given bythe expressions n :=Xi fi; (u1; u2) := 1nXi vifi:The 
omputational set up for the 
ow is as follows. A square-
ylinder ofside length L, initially at rest, is emersed in a 
onstant 
ow in a re
tangular
hannel of length 30L and height 25L. The 
ylinder is pla
e on the 
entreline in the y-dire
tion resulting in a blo
kage ratio of 4%. The 
entre ofthe 
ylinder is pla
ed at a distan
e 10:5L from the inlet. The free-streamvelo
ity is �xed at (u1; v1) = (0:05; 0) (in latti
e units) for all simulations.On the north and south 
hannel walls a free-slip boundary 
onditionis imposed (see, e.g., [23℄). At the inlet, the inward pointing velo
ities arerepla
ed with their quasiequilibrium values 
orresponding to the free-streamvelo
ity. At the outlet, the inward pointing velo
ities are repla
ed with theirasso
iated quasiequilibrium values 
orresponding to the velo
ity and densityof the penultimate row of the latti
e.5.2.1 Maxwell boundary 
onditionThe boundary 
ondition on the 
ylinder that we prefer is the di�usiveMaxwell boundary 
ondition (see, e.g., [10℄), whi
h was �rst applied to LBMsin [2℄. The essen
e of the 
ondition is that populations rea
hing a boundaryare re
e
ted, proportional to equilibrium, su
h that mass-balan
e (in thebulk) and detail-balan
e are a
hieved. We will des
ribe two possible realisa-tions of the boundary 
ondition { time-delayed and instantaneous re
e
tionof equilibrated populations. In both instan
es, immediately prior to the ad-ve
tion of populations, only those populations pointing in to the 
uid at aboundary site are updated. Boundary sites do not undergo the 
ollisionalstep that the bulk of the sites are subje
ted to.To illustrate, 
onsider the situation of a wall, aligned with the latti
e,moving with velo
ity uwall and with outward pointing normal to the wallpointing in the positive y-dire
tion (this is the situation on the north wallof the square-
ylinder with uwall = 0). The time-delayed re
e
tion imple-mentation of the di�usive Maxwell boundary 
ondition at a boundary site
19



(x; y) on this wall 
onsists of the updatef2(x; y; t+ 1) = �f�2 (uwall);f5(x; y; t+ 1) = �f�5 (uwall);f6(x; y; t+ 1) = �f�6 (uwall);with � = f4(x; y; t) + f7(x; y; t) + f8(x; y; t)f�2 (uwall) + f�5 (uwall) + f�6 (uwall) :Whereas for the instantaneous re
e
tion implementation,� = f4(x; y + 1; t) + f7(x+ 1; y + 1; t) + f8(x� 1; y + 1; t)f�2 (uwall) + f�5 (uwall) + f�6 (uwall) :Observe that, be
ause density is a linear fa
tor of the equilibria (27), thedensity of the wall is in
onsequential in the boundary 
ondition and 
antherefore be taken as unity for 
onvenien
e.We point out that, although both realisations agree in the 
ontinuumlimit, the time-delayed implementation does not a

omplish mass-balan
e.Therefore, instantaneous re
e
tion is preferred and will be the implementa-tion that we employ in the present example.Finally, it is instru
tive to illustrate the situation for a boundary site(x; y) on a 
orner of the square-
ylinder, say the north-west 
orner. The(instantaneous re
e
tion) update is thenf2(x; y; t+ 1) = �f�2 (uwall);f3(x; y; t+ 1) = �f�3 (uwall);f5(x; y; t+ 1) = �f�5 (uwall);f6(x; y; t+ 1) = �f�6 (uwall);f7(x; y; t+ 1) = �f�7 (uwall);where� = �f1(x� 1; y; t) + f4(x; y + 1; t) + f5(x� 1; y � 1; t)+ f7(x+ 1; y + 1; t) + f8(x� 1; y + 1; t)�.�f�2 (uwall) + f�3 (uwall) + f�5 (uwall) + f�6 (uwall) + f�7 (uwall)�:5.2.2 Strouhal{Reynolds relationshipAs a test of the Ehrenfests' regularisation (18), a series of simulations, allwith 
hara
teristi
 length �xed at L = 20, were 
ondu
ted over a range ofReynolds numbers Re = Lu1� :20
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Figure 6: Variation of Strouhal number as a fun
tion of Reynolds. Dotsare Okajima's experimental data [22℄ (the data has been digitally extra
tedfrom the original paper). Diamonds are the Ehrenfests' regularisation ofLBGK and the squares are the ELBM simulation from [1℄.The parameter pair (k; Æ), whi
h 
ontrol the Ehrenfests' steps toleran
es,are �xed at (L=2; 10�3).We are interested in 
omputing the Strouhal{Reynolds relationship. TheStrouhal number S is a dimensionless measure of the vortex shedding fre-quen
y in the wake of one side of the 
ylinder:S = Lf!u1 ;where f! is the shedding frequen
y.For our 
omputational set up, the vortex shedding frequen
y is 
omputedusing the following algorithmi
 te
hnique. Firstly, the x-
omponent of ve-lo
ity is re
orded during the simulation over tmax = 1250L=u1 time steps.The monitoring points is positioned at 
oordinates (4L;�2L) (assuming theorigin is at the 
entre of the 
ylinder). Next, the dominant frequen
y isextra
ted from the �nal 25% of the signal using the dis
rete Fourier trans-form. The monitoring point is purposefully pla
ed suÆ
iently downstreamand away from the 
entre line so that only the in
uen
e of one side of the
ylinder is re
orded.The 
omputed Strouhal{Reynolds relationship using the Ehrenfests' reg-21



ularisation of LBGK is shown in Fig. 6. The simulation 
ompares well withOkajima's data from wind tunnel and water tank experiment [22℄. Thepresent simulation extends previous LBM studies of this problem [1, 3℄ whi
hhave been able to quantitively 
aptured the relationship up to Re = O(1000).Fig. 6 also shows the ELBM simulation results from [1℄. Furthermore, the
omputational domain was �xed for all the present 
omputations, with thesmallest value of the kinemati
 vis
osity attained being � = 5 � 10�5 atRe = 20000. It is worth mentioning that, for this 
hara
teristi
 length,LBGK exhibits numeri
al divergen
e at around Re = 1000. We estimatethat, for the present set up, the 
omputational domain would require atleast O(107) latti
e sites for the kinemati
 vis
osity to be large enough forLBGK to 
onverge at Re = 20000. This is 
ompared with O(105) sites forthe present simulation.6 Con
lusionsWe have presented the main me
hanisms of observed LBM instabilities:1. Positivity loss due to high lo
al deviation from (quasi)equilibrium;2. Appearan
e of neutral stability in some dire
tions in the zero vis
ositylimit;3. Dire
tional instability.We found three methods of stability preservation. Two of them, the pos-itivity rule and the Ehrenfests' regularisation, are \salvation" (or \SOS")operations. They preserve the system from positivity loss or from the lo
alblow-ups, but introdu
e arti�
ial dissipation and it is ne
essary to 
ontrolthe number of sites where these steps are applied. In order to preservethe se
ond-order of LBM a

ura
y, it is worthwhile to perform these stepson only a small number of sites; the number of sites should not be higherthan O(Nh=L), where N is the total number of sites, L is the ma
ros
opi

hara
teristi
 length and h is the latti
e step. The added dissipation 
ouldeasily be estimated a posterior by summarising the entropy produ
tion ofthe \SOS" steps.But most e�e
tive is the spe
ial new 
hoi
e of 
ollisions: the 
oupledsteps (26). These steps alternate between 
lassi
 LBM and Ehrenfests' steps,introdu
e no arti�
ial vis
osity, have the se
ond-order a

ura
y, and providedire
tional stability as well as obliterate the e�e
ts of neutral stability. In-deed, the sho
k tube simulation in Fig. 3e is a 
ompelling demonstrationof the proposed s
heme's 
apabilities. Furthermore, the 
oupled step intro-du
es no additional 
omputational 
ost 
ompared to 
lassi
al LBMs.The pra
ti
al re
ommendation is to always use the 
oupled steps, andto keep the positivity rule and the Ehrenfests' steps as an \SOS" in reserve22



in order to make rare 
orre
tions of positivity loss and of too high lo
aldeviation from equilibrium.A
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