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Abstract

We show that absolutely continuous spectrum of one-dimensional

Schrödinger operators may be destroyed by adding to them decaying

perturbation potentials of bounded variation.

1 Introduction

In this paper we study discrete one-dimensional Schrödinger operators on
ℓ2(N) of the form

HV = H0 + V, (1.1)

where H0 = ∆ + V0 is a discrete Schrödinger operator and V is a decaying
perturbation potential. More explicitly, ∆ is the discrete Dirichlet Laplacian
on ℓ2(N), defined by

(∆ψ)(n) = ψ(n+ 1) + ψ(n− 1) (1.2)
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for n > 1 and (∆ψ)(1) = ψ(2). V0 and V are discrete potentials, that is,

(V0ψ)(n) = V0(n)ψ(n), (V ψ)(n) = V (n)ψ(n), n = 1, 2, . . . , (1.3)

where {V0(n)} and {V (n)} are sequences of real numbers. We say that a
potential V is decaying if V (n) → 0 as n→ ∞.

For operators H = HV of the form (1.1), we define Σac(H), the essential

support of the absolutely continuous spectrum of H , as the equivalence class,
up to sets of zero Lebesgue measure, of the set
{

E ∈ R

∣

∣

∣
lim
ǫ↓0

Im 〈δ1, (H −E − iǫ)−1δ1〉 exists and is finite and non-zero
}

,

where 〈 · , · 〉 denotes the scalar product in ℓ2(N) and δj(n) is 1 if j = n and 0
otherwise. The absolutely continuous spectrum of H , σac(H), coincides with
the essential closure of Σac(H), namely,

σac(H) =
{

E ∈ R
∣

∣ |Σac(H) ∩ (E − ǫ, E + ǫ)| > 0 ∀ ǫ > 0
}

,

where | · | denotes Lebesgue measure. In what follows we may write equalities
of the form Σac(H) = S, where S may be a concrete subset of R. Since
Σac(·) is an equivalence class of sets rather than a concrete subset of R, such
equalities should be understood as equalities up to sets of zero Lebesgue
measure, or more precisely, as saying S ∈ Σac(H).

We say that a potential V is of bounded variation if

∞
∑

n=1

|V (n+ 1) − V (n)| <∞.

Recall Weidmann’s classical result [23]:

Theorem 1.1 (Weidmann’s theorem) If V0 = 0 and V is a decaying

potential of bounded variation, then Σac(HV ) = Σac(∆) = (−2, 2).

Remark. Weidmann [23] actually proves an analog of this for continuous
Schrödinger operators on L2([0,∞), dx). For a proof of the discrete case, see
Dombrowski-Nevai [7] or Simon [19].

Weidmann’s theorem bears some similarity to the following well-known con-
sequence of the Birman-Kato theory (see [18, Chapter XI.3]):

Theorem 1.2 For any V0, if
∑∞

n=1 |V (n)| <∞, then Σac(HV ) = Σac(H0).
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A notable difference, though, is that Theorem 1.2 allows an arbitrary V0,
while Weidmann’s theorem applies only to V0 = 0.

The purpose of this paper is to answer the following natural question:
Does Weidmann’s theorem extends to the general case of V0 6= 0? Namely,
is it true that for a general V0 and a decaying V of bounded variation,
Σac(HV ) = Σac(H0)? The answer turns out to be negative, as indicated
by our first result:

Theorem 1.3 If H0 has nowhere dense spectrum, then there exists a decay-

ing potential V of bounded variation for which Σac(HV ) = ∅.

The point here is that there are known examples of V0’s for which the spec-
trum of H0 is both nowhere dense and absolutely continuous. Such examples,
with limit periodic V0’s, have been constructed by Avron-Simon [1]. Another
example is the weakly coupled irrational almost Mathieu operator, namely,
the case V0(n) = λ cos(2παn + θ), where λ, α, θ ∈ R, |λ| < 2 and α ∈ R \ Q

(see, e.g., [16] and references therein). Thus, Theorem 1.3 provides a fairly
broad class of H0’s whose absolutely continuous spectrum can always be de-
stroyed by adding to them a decaying perturbation potential of bounded
variation. However, the requirement for H0 to have nowhere dense spectrum
along with the fact that Σac(∆) is an interval raises again a natural ques-
tion: Does Weidmann’s theorem extends at least to the case of V0’s for which
Σac(H0) is made of intervals? The answer turns out to be negative, again, as
indicated by our second result:

Theorem 1.4 There exist a decaying potential V0 and a decaying poten-

tial of bounded variation V , such that Σac(H0) = Σac(∆) = (−2, 2), but

Σac(HV ) = ∅.

We note that in spite of Theorems 1.3 and 1.4, Weidmann’s theorem does
have natural extensions and generalizations. In particular, we note the fol-
lowing result of Golinskii-Nevai [8]:

Theorem 1.5 If V0 = 0, V is decaying, and for some q ∈ N,

∞
∑

n=1

|V (n+ q) − V (n)| <∞, (1.4)

then Σac(HV ) = Σac(∆) = (−2, 2).
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Remarks. 1. The result is actually more general. In particular, it covers cases
where V isn’t decaying, so that (1.4) implies its convergence to a periodic
potential of period q. (This is equivalent, of course, to the case where V is
decaying and obeys (1.4) and V0 is some periodic potential of period q.) The
result says, in this case, that Σac(HV ) coincides with the spectrum of the
limiting periodic operator, and thus, in particular, it extends Theorem 1.1
to the case of any periodic V0.

2. Before [8], some related results were obtained by Stolz [21, 22].

We believe that the following stronger statement should be true:

Conjecture 1.6 If V0 = 0, V is decaying, and for some q ∈ N,

∞
∑

n=1

|V (n+ q) − V (n)|2 <∞, (1.5)

then Σac(HV ) = Σac(∆) = (−2, 2).

We note that this conjecture for the special case q = 1 has also been made by
Simon [20, Chapter 12]. Recently Kupin [13] came quite close to establishing
it by showing that if

∑∞

n=1 |V (n + 1) − V (n)|2 < ∞ and in addition, there
exists some p > 0 for which

∑∞

n=1 |V (n)|p < ∞, then Σac(HV ) = Σac(∆) =
(−2, 2). Kupin’s result is among the strongest of several recent results (see
[12, 14, 24]) in which an ℓp requirement for V itself and an ℓ2 requirement
for some type of variation of V combine to ensure that Σac(HV ) = Σac(∆) =
(−2, 2). In most other results of this genre, p is a concrete number, such as
3 or 4. We consider the proving (or disproving) of the full Conjecture 1.6 to
be an interesting (and potentially hard) open problem. It may have some
connection to the results of Christ-Kiselev [4] for continuous Schrödinger
operators, although it isn’t fully clear what should be considered a discrete
analog of their results and how connected to Conjecture 1.6 it may be.

We also recall the following conjecture of Kiselev-Last-Simon [11]:

Conjecture 1.7 For any V0, if
∑∞

n=1 |V (n)|2 <∞, then Σac(HV ) = Σac(H0).

For the special case V0 = 0, it has been established by Deift-Killip [5], and
for periodic V0, by Killip [10]. A related result concerning general V0 has
been recently obtained by Breuer-Last [2], who show stability of absolutely
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continuous spectrum associated with bounded generalized eigenfunctions un-
der random decaying ℓ2 perturbation potentials (also see a related result by
Kaluzhny-Last [9]).

We believe that Theorems 1.3 and 1.4 elucidate a fundamental difference
between spectral stability under perturbation potentials decaying sufficiently
fast (namely, statements like Theorem 1.2 and Conjecture 1.7) and “Weid-
mann type” statements like Theorem 1.5 and Conjecture 1.6, which appear
not to extend much beyond cases where the unperturbed operator is periodic.

The rest of this paper is organized as follows. In Section 2 we filter some
results from [17] that we use later. In Section 3 we prove Theorem 1.3 and
in Section 4 we prove Theorem 1.4.

It is a pleasure to thank Barry Simon for useful discussions. This research
was supported in part by The Israel Science Foundation (Grant No. 188/02)
and by Grant No. 2002068 from the United States-Israel Binational Science
Foundation (BSF), Jerusalem, Israel.

2 Preliminaries

Given a discrete Schrödinger operator of the form H̃ = ∆ + Ṽ , we denote its
associated 2 × 2 transfer matrices as follows:

Tn(E) =

(

E − Ṽ (n) −1
1 0

)

,

Φm,n(E) = Tn(E)Tn−1(E) · · · Tm(E) ,

Φn(E) = Φ1,n(E) = Tn(E)Tn−1(E) · · · T1(E) .

The following is an immediate consequence of [17, Theorem 3.10]:

Proposition 2.1 For Lebesgue a.e. E ∈ Σac(H̃),

lim sup
N→∞

1

N(logN)2

N
∑

n=1

‖Φn(E)‖2 <∞ .

The following is an easy consequence of [17, Theorem 4.2] and its proof:
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Proposition 2.2 Let H1 = ∆+V1 be another discrete Schrödinger operator

on ℓ2(N) or ℓ2(Z). Suppose that for some m, k ∈ N, k ≥ 4, we have Ṽ (n) =
V1(n) for every n ∈ {m,m+ 1, . . . , k}, and that for some E ∈ R and δ > 0,
σ(H1)∩ (E− δ, E+ δ) = ∅, where σ( · ) denotes the spectrum of the operator.

Then for every ℓ ∈ {4, 5, . . . , k},

‖Φm,m+ℓ(E)‖ ≥
1

2
δ2(1 + δ2)

ℓ−3

2 .

3 Proof of Theorem 1.3

Proof of Theorem 1.3. If V0 is unbounded, then so is V0+V for any decaying
V , and thus, by well known results (see, e.g., [17, Theorem 4.1]), we would
get Σac(HV ) = ∅ for any decaying V . We may thus assume, without loss
of generality, that V0 is bounded, so that the spectrum of H0, σ(H0), is a
compact set. Its complement, R \ σ(H0), is an open set and thus a union of
countably many disjoint open intervals: R \ σ(H0) =

⋃∞

ν=1 Iν , Iν = (aν , bν).
We call the Iν ’s gaps in σ(H0), and denote the collection of all these gaps
by G, that is, G = {Iν}

∞
ν=1. Since σ(H0) is compact, G contains exactly two

elements of infinite length, which are (−∞,minσ(H0)) and (maxσ(H0),∞).
The other elements of G are open intervals of finite length and contained in
(min σ(H0),maxσ(H0)).

For every δ > 0, we let Gδ denote the collection of elements in G of length
larger than δ, that is, Gδ = {Iν ∈ G | |Iν| > δ}, where |Iν| = bν − aν . We note
that for each δ > 0, Gδ is a finite set, and denote m(δ) = #Gδ. We reorder
the elements of Gδ, so that they are ordered by their order of occurrence on
the real line. That is, we assume that Gδ = {I1, . . . , Im(δ)}, where aν+1 > bν
for every 1 ≤ ν < m(δ).

We define a positive function η(δ) to be the maximal distance between
neighboring elements of Gδ, that is,

η(δ) = max{aν+1 − bν | Iν, Iν+1 ∈ Gδ} .

Clearly, η(δ) is monotonely decreasing. Moreover, since σ(H0) is nowhere
dense, one easily sees that η(δ) → 0 as δ → 0. We can thus pick a monotonely
decreasing sequence {δj}

∞
j=1 ⊂ (0, 1), such that

∑∞

j=1(η(δj) + δj) < ∞. We
also define, for each j,

mj = [2η(δj)/δj] + 3 ,
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where [ · ] denotes integer part.
We will now show that we can construct recursively a sequence {Lj}

∞
j=1 ⊂

N, numbers {nj,1, . . . , nj,mj
}, so that nj,k+1 > nj,k, nj,1 = Lj , nj,mj

= Lj+1,
and a bounded monotonely increasing step potential V , so thatH0+V has no
absolutely continuous spectrum. The resulting V will not be decaying, but
converge to some constant limn→∞ V (n). Since we can simply subtract this
constant from V to obtain a decaying potential, Theorem 1.3 would follow.

To accomplish the recursive construction, let L1 = 1, V (1) = 0, and
assume that Lj and V (n) for 1 < n ≤ Lj are determined. Define V (n), for
Lj < n ≤ Lj+1, by

V (n) = V (Lj) + kδj/2

for nj,k < n ≤ nj,k+1, where nj,2, . . . , nj,mj
will be determined later. Note

that, by the construction, V (Lj+1) − V (Lj) = mjδj/2 ≤ η(δj) + 3δj/2, and
thus V is positive and supn V (n) = limn→∞ V (n) ≤

∑∞

j=1(η(δj) + 3δj/2).
Consider now some fixed k ∈ {1, . . . , mj}. Suppose that nj,2, . . . , nj,k

are already determined and that E ∈ R obeys

(E − δj/4, E + δj/4) ∩ σ(H0 + V (Lj) + kδj/2) = ∅ . (3.1)

Since V (n) coincides with the constant V (Lj) + kδj/2 for nj,k < n ≤ nj,k+1,
it follows from Proposition 2.2 that for 4 < ℓ ≤ nj,k+1 − nj,k,

‖Φnj,k+1,nj,k+ℓ(E)‖ ≥
1

2
(δj/4)2(1 + (δj/4)2)

ℓ−4

2 , (3.2)

where we use the notations of Section 2 for Ṽ = V0 + V . If ‖Φnj,k
(E)‖ >

(jnj,k)
1/2 log nj,k, then we clearly have

1

N(logN)2

N
∑

n=1

‖Φn(E)‖2 > j (3.3)

for N = nj,k. Otherwise, since

‖Φnj,k+1,nj,k+ℓ(E)‖ = ‖Φnj,k
(E)−1Φnj,k+ℓ(E)‖ ≤ ‖Φnj,k

(E)−1‖‖Φnj,k+ℓ(E)‖

and det(Φnj,k
(E)) = 1 implies ‖Φnj,k

(E)−1‖ = ‖Φnj,k
(E)‖, (3.2) implies

‖Φnj,k+ℓ(E)‖ ≥
‖Φnj,k+1,nj,k+ℓ(E)‖

‖Φnj,k
(E)‖

≥
(δj/4)2

2(jnj,k)1/2 log nj,k

(1 + (δj/4)2)
ℓ−4

2 .

(3.4)
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This implies that, by choosing nj,k+1 to be sufficiently large, we can ensure
that for any E obeying (3.1), (3.3) will hold either for N = nj,k or for
N = nj,k+1.

Now given any fixed E ∈ R, the definitions of η(δ) and mj ensure that
there will be some k ∈ {1, . . . , mj} for which (3.1) holds. We thus see that
we can choose nj,2, . . . , nj,mj

so that for every E ∈ R, there will be some
Lj ≤ N ≤ Lj+1 for which (3.3) holds. Thus, by choosing nj,2, . . . , nj,mj

appropriately for each j, we ensure that

lim sup
N→∞

1

N(logN)2

N
∑

n=1

‖Φn(E)‖2 = ∞ , (3.5)

for every E ∈ R. By Proposition 2.1, this implies Σac(HV ) = ∅, which
completes the proof. 2

While we formulated and proved Theorem 1.3 for discrete Schrödinger
operators, the theorem also applies to continuous Schrödinger operators on
L2([0,∞)), as well as to cases where H0 is a more general tridiagonal operator
on ℓ2(N), which may have unbounded absolutely continuous spectrum. The
proof for these cases is very similar to the above. The main difference is
that we cannot assume σ(H0) to be bounded. This technical difference can
be easily accommodated by considering in the jth stage of the construction
only E ∈ (−j, j). More explicitly, instead of considering Gδ and η(δ) as
above, we consider Gj,δ = {Iν ∈ G | |Iν | > δ , Iν ∩ (−j, j) 6= ∅} and ηj(δ),
which is defined to be the maximal distance between neighboring elements
of Gj,δ. Since, for a fixed j, limδ→0 ηj(δ) = 0, we can find {δj}

∞
j=1 ⊂ (0, 1) so

that
∑∞

j=1(ηj(δj) + δj) < ∞. By proceeding as above with ηj(δj) instead of
η(δj), we then obtain that for every E ∈ (−j, j) (instead of every E ∈ R),
(3.3) holds for some Lj ≤ N ≤ Lj+1. It then follows that (3.5) holds for
every E ∈ R, and thus Σac(HV ) = ∅.

4 Proof of Theorem 1.4

The potential V0 will be constructed in conjunction with three sequences,
{qj}

∞
j=1, {ℓj}

∞
j=1, {Lj}

∞
j=1 ⊂ N, connected by L1 = 0, Lj+1 = Lj + ℓjqj , and a

sequence of coupling constants {λj}
∞
j=1 ⊂ (0, 1). We let

V0(n) = λj cos(2π(n− Lj)/qj) (4.1)
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for Lj < n ≤ Lj+1. For the sequence {qj}
∞
j=1, we could take, in principle, any

strictly increasing sequence of positive integers, but it is more convenient to
take qj ’s that are odd and obey

∑∞

j=1 q
−1
j < ∞. We thus fix, once and for

all, qj = (2j+1)2, and so {ℓj}
∞
j=1 uniquely determines {Lj}

∞
j=1. We have the

following:

Theorem 4.1 For V0 as above, there exists a sequence {λj}
∞
j=1 ⊂ (0, 1),

obeying λj → 0 as j → ∞, such that for any choice of the sequence {ℓj}
∞
j=1,

Σac(∆ + V0) = (−2, 2).

Remark. The proof below actually establishes a more general theorem in the
following sense: {qj}

∞
j=1 may be any arbitrary sequence of positive integers

and cos(2π(n−Lj)/qj), for Lj < n ≤ Lj+1, can be replaced by any real-valued
periodic sequence of period qj and norm one.

Proof. Given λ ∈ (0, 1) and q ∈ N, we denote by Vλ,q the periodic potential
given by Vλ,q(n) = λ cos(2πn/q), n ∈ Z, and let Hλ,q = ∆ + Vλ,q on ℓ2(Z).
We also denote, for ℓ = 0, . . . , q, Eq,ℓ = 2 cos(πℓ/q) and

S(λ, q) = [−2, 2] \

q
⋃

ℓ=0

[Eq,ℓ − λ, Eq,ℓ + λ] .

The periodic spectrum σ(Hλ,q) is well known to consist of q bands (closed
intervals) separated by q − 1 gaps. The edges of these bands are well known
to coincide with eigenvalues of certain q × q matrices (see, e.g., [15]), from
which it is easy to see (and also well known) that all of them are contained
in the set

q
⋃

ℓ=0

[Eq,ℓ − λ, Eq,ℓ + λ] .

Thus, denoting by σ̃λ,q the union of the interiors of the bands that make up
σ(Hλ,q), we have S(λ, q) ⊂ σ̃λ,q ⊂ σ(Hλ,q). Moreover, if λ ∈ (0, λ0), then
S(λ0, q) ⊂ σ̃λ,q. For any ℓ ∈ N, let Φℓ(q, λ, E) be the transfer matrix for Hλ,q

from 1 to ℓ, namely,

Φℓ(q, λ, E) =

(

E − Vλ,q(1) −1
1 0

)

· · ·

(

E − Vλ,q(ℓ) −1
1 0

)

.

σ(Hλ,q) is well known to coincide with the set {E ∈ R |TrΦq(q, λ, E) ≤ 2}
and σ̃λ,q = {E ∈ R |TrΦq(q, λ, E) < 2}. Thus, for E ∈ σ̃λ,q, Φq(q, λ, E) has
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two complex eigenvalues of the form e±iqθ. Let (ϕq(λ,E), 1)T be an appropri-
ately normalized eigenvector of Φq(q, λ, E), corresponding to the eigenvalue
eiqθ, then (ϕ∗

q(λ,E), 1)T , where · ∗ denotes complex conjugation, is an eigen-
vector corresponding to the eigenvalue e−iqθ. It is thus easy to see that for
E ∈ σ̃λ,q, we have the equality

Φq(q, λ, E) = Uq(λ,E)R(qθ)Uq(λ,E)−1 ,

where

R(qθ) =

(

eiqθ 0
0 e−iqθ

)

, Uq(λ,E) =

(

ϕq(λ,E) ϕ∗
q(λ,E)

1 1

)

.

Consider now some j ∈ N, E ∈ S(j−2q−1
j , qj), and λ ∈ (0, j−2q−1

j ). As

λ→ 0 inside (0, j−2q−1
j ), E ∈ σ̃λ,qj

and thus ϕqj
(λ,E) is well defined and con-

verges (continuously) to ϕqj
(0, E) = eiθ(E), where θ(E) ∈ (0, π) is determined

by E = 2 cos θ(E). Similarly, max1≤ℓ≤qj
‖Φℓ(qj , λ, E)‖ converges to the cor-

responding value for λ = 0, which is bounded from above by 1/ sin θ(E).
By the Egoroff theorem, there is a measurable subset Sj ⊂ S(j−2q−1

j , qj),

with |Sj| > |S(j−2q−1
j , qj)| − j−2 ≥ 4 − 3j−2, on which these convergences

are uniform. Thus, we can pick λj ∈ (0, j−2q−1
j ), so that, for every E ∈ Sj ,

|ϕqj
(λj, E) − eiθ(E)| < j−2 and max1≤ℓ≤qj

‖Φℓ(qj , λj, E)‖ < 1 + (sin θ(E))−1.
Now let j0, j1 ∈ N, 2 < j0 < j1, and let E ∈

⋂∞

j=j0
Sj be such that

sin θ(E) > j−2
0 . The transfer matrix for ∆ + V0 from Lj0 + 1 to Lj1 is given

by

ΦLj0
+1,Lj1

(E) =

j1−1
∏

j=j0

(Φqj
(qj , λj, E))ℓj .

Since
Φqj

(qj, λj , E) = Uqj
(λj, E)R(qjθj)Uqj

(λj , E)−1 , (4.2)

(Φqj
(qj , λj, E))ℓj = Uqj

(λj, E) (R(qjθj))
ℓj Uqj

(λj, E)−1 ,

and thus, since ‖R(qjθj)‖ = 1, we see that ‖ΦLj0
+1,Lj1

(E)‖ is bounded from
above by

‖Uqj0
(λj0, E)‖‖Uqj1−1

(λj1−1, E)−1‖

j1−2
∏

j=j0

‖Uqj
(λj, E)−1 Uqj+1

(λj+1, E)‖ .
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Denote ϕj = ϕqj
(λj , E), then we see by a simple calculation that

Uqj
(λj , E)−1Uqj+1

(λj+1, E) =
1

ϕj − ϕ∗
j

(

ϕj+1 − ϕ∗
j ϕ∗

j+1 − ϕ∗
j

ϕj+1 − ϕj ϕj − ϕ∗
j+1

)

,

and thus, since |ϕj − eiθ(E)| < j−2, we obtain

‖Uqj
(λj, E)−1 Uqj+1

(λj+1, E)‖ ≤ 1 +
2j−2

sin θ(E) − j−2
.

Similarly, it’s easy to see that ‖Uqj0
(λj0, E)‖ < 3 and

‖Uqj1−1
(λj1−1, E)−1‖ <

3

2(sin θ(E) − (j1 − 1)−2)
,

and so we can conclude that

‖ΦLj0
+1,Lj1

(E)‖ ≤
9

2(sin θ(E) − j−2
0 )

j1−2
∏

j=j0

(

1 +
2j−2

sin θ(E) − j−2

)

.

Since the product in the last expression clearly converges as j1 → ∞, we
conclude that lim supj1→∞ ‖ΦLj0

+1,Lj1
(E)‖ <∞.

Consider now any Lj1 < n < Lj1+1. By using (4.2), one easily sees that

‖ΦLj1
+1,n(E)‖ ≤ ‖Uqj1

(λj1, E)‖‖Uqj1
(λj1 , E)−1‖ max

1≤ℓ≤qj1

‖Φℓ(qj1 , λj1, E)‖

and thus, since max1≤ℓ≤qj1
‖Φℓ(qj1 , λj1, E)‖ < 1 + (sin θ(E))−1,

‖ΦLj1
+1,n(E)‖ ≤

9(1 + (sin θ(E))−1)

2(sin θ(E) − j−2
1 )

.

Since
‖ΦLj0

+1,n(E)‖ ≤ ‖ΦLj0
+1,Lj1

(E)‖‖ΦLj1
+1,n(E)‖ ,

we conclude that lim supn→∞ ‖ΦLj0
+1,n(E)‖ <∞.

Now given any E ∈ lim infj→∞ Sj ⊂ (−2, 2), there will be some j0 for
which E ∈

⋂∞

j=j0
Sj and sin θ(E) > j−2

0 . Thus, we conclude that for any E ∈
lim infj→∞ Sj , lim supn→∞ ‖Φ1,n(E)‖ < ∞. By well known results (see, e.g.,
[17, 19]), this implies lim infj→∞ Sj ⊂ Σac(∆+V0). Since |(−2, 2)\Sj| ≤ 3j−2,
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it follows from the Borel-Cantelli lemma that |(−2, 2) \ lim infj→∞ Sj | = 0
and thus Σac(∆ + V0) = (−2, 2) as required. 2

Proof of Theorem 1.4. We let V0 be as above and fix {λj}
∞
j=1 ⊂ (0, 1)

to be some sequence of the type whose existence is ensured by Theorem 4.1,
namely, λj → 0 as j → ∞ and Σac(∆+V0) = (−2, 2) for any choice of {ℓj}

∞
j=1.

Theorem 1.4 would now follow by showing that we can simultaneously pick
the sequence {ℓj}

∞
j=1 and construct a bounded monotonely increasing poten-

tial V , such that Σac(∆ + V0 + V ) = ∅. This construction is very similar to
(and will rely upon) the one done in the proof of Theorem 1.3.

Consider j ∈ N and suppose that ℓ1, . . . , ℓj−1 and thus Lj are determined
and that V (n) is determined for 1 ≤ n ≤ Lj . By a result of Choi-Elliott-Yui
[3], σ(Hλj ,qj

) is known to have qj − 1 open gaps and the length of each of
these gaps is larger than δj = (λj/16)qj . By a general result of Deift-Simon [6,
Corollary 1.5], the distance between every two neighboring gaps is bounded
from above by ηj = 4π/qj. Denote

mj = [2ηj/δj ] + 3 .

We will construct the potential V (n), for Lj < n ≤ Lj+1, in conjunction
with numbers {nj,1, . . . , nj,mj

}, so that nj,k+1 > nj,k, (nj,k+1 − nj,k)/qj is an
integer, nj,1 = Lj and nj,mj

= Lj+1. Note that ℓj will be determined by this
construction as ℓj = (nj,mj

− nj,1)/qj. Similarly to the proof of Theorem 1.3,
we define

V (n) = V (Lj) + kδj/2

for nj,k < n ≤ nj,k+1, and determine nj,2, . . . , nj,mj
recursively. Note that

V (Lj+1)−V (Lj) = mjδj/2 ≤ ηj +3δj/2, and thus, since
∑∞

j=1(ηj + δj) <∞,
V will be bounded.

Assuming that nj,2, . . . , nj,k are determined, we can repeat the consider-
ations of (3.1)–(3.4), except that we replace (3.1) by

(E − δj/4, E + δj/4) ∩ σ(Hλj ,qj
+ V (Lj) + kδj/2) = ∅ , (4.3)

and use the fact that V0(n) coincides with Vλj ,qj
(n) for Lj < n ≤ Lj+1, so

that Φnj,k+1,nj,k+ℓ(E) doesn’t change if we change the potential from V0 to
Vλj ,qj

. We thus show that we can choose nj,k+1 to be sufficiently large, so that
for any E obeying (4.3), (3.3) will hold either for N = nj,k or for N = nj,k+1.
Another difference from the proof of Theorem 1.3 is that we now also need to
ensure that (nj,k+1 − nj,k)/qj is an integer, but this is clearly not a problem.

12



Now given any fixed E ∈ R, the definitions of δj, ηj , and mj ensure that
there will be some k ∈ {1, . . . , mj} for which (4.3) holds. We thus see that
we can choose nj,2, . . . , nj,mj

so that for every E ∈ R, there will be some
Lj ≤ N ≤ Lj+1 for which (3.3) holds. Thus, by choosing nj,2, . . . , nj,mj

appropriately for each j, we ensure that (3.5) holds for every E ∈ R. By
Proposition 2.1, this implies Σac(HV ) = ∅. 2
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