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Abstract:

We consider Boson systems with non-ground state (q 6= 0)-condensation. This phe-

nomenon is accompanied with spontaneous breaking of the translation symmetry down

to a lattice symmetry as well as of the gauge symmetry. We give a general and rigorous

derivation of the condensate equation for these systems. We discuss model applications.
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1 Introduction

For homogeneous systems of bosons, the phenomenon of Bose-Einstein con-

densation into the ground state is fairly well known and extensively studied.

In this case, condensation arises if the ground state density ρ0 is nonzero, i.e.

we have

ρ0 = lim
Λ

ω(
a∗0a0

V
) > 0 (1.1)

where Λ is a finite subset of Rν with volume V , limΛ is a limit of Λ → Rν ,

and ω(.) denotes the expectation with respect to an equilibrium state ω.
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Moreover the

a∗k,Λ =
1√
V

∫
Λ

dx a∗(x)eik.x (1.2)

are the usual boson creation operators for momentum k for the system in a

cubic domain Λ ⊂ Rν .

Through the recent activity in the domain of condensation in traps (see

e.g. [1],[2],[3]), the possibility of condensation in a mode corresponding to

a nonzero momentum q has arisen. This requires generalizations and/or

adaptations of the properties holding for q = 0 to the case q 6= 0.

In particular, there is the problem of the rigorous derivation of the so-called

condensate equation [10],[5],[4].

What is the condensate equation? The challenging problem is to prove that

there exists equilibrium state(s) ω showing condensation. In our case, this

means to show that the state has the property: for some q 6= 0,

ρq = lim
Λ

ω(
a∗q,Λaq,Λ

V
) > 0 (1.3)

i.e. the expectation value of the number operator of the q-condensed parti-

cles is proportional to the volume. There are many possible techniques to

reach that goal. One can apply correlation inequalities, one uses numerical

methods, all kinds of approximations, etc. One particular way of proceeding

is to derive first for any equilibrium state a general independent equation

for the quantity ρq. This equation is called ”condensate equation”. In many

cases is solving or working with this equation an economical way to show the

existence of Bose-Einstein condensation.

In this paper we give a rigorous derivation of the q-mode condensate equation
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and discuss its applications.

The systems for which we derive the general formula are realistic Bose sys-

tems with two-body interactions in dimension ν = 1. The two-body potential

v is supposed to be well-behaved and in particular superstable [6]. This con-

dition ensures the existence of local Gibbs states and all n-point correlation

functions for any number of creation and annihilation operators [7]. Explic-

itly we consider the following Hamiltonians. Let Λ∗ = {2πn/ ν
√

V |n ∈ Zν} be

the dual momentum set for the cubic region Λ, then

HΛ =
∑
k∈Λ∗

εka
∗
kak +

1

2V

∑
k1,k2,q

v̂(q)a∗k1−qak2+qak1ak2 (1.4)

where the εk are the one-particle energies (e.g. εk = k2/2m) and where

we omit the subscripts Λ in the ak, and with v̂(q) =
∫

dx v(x)e−iq.x, i.e. we

assume the potential v absolutely integrable. We are interested in properties

of equilibrium states corresponding to the systems (1.4). In what follows the

most convenient way to define these states is by means of the correlation

inequalities [8]. In particular a state ω on the algebra A of all polynomials

in the creation and annihilation operators is an equilibrium state at inverse

temperature β and chemical potential µ if it satisfies the following energy-

entropy balance inequalities:

lim
Λ

βω(X∗[HΛ − µNΛ, X]) = ω(X∗X) ln
ω(X∗X)

ω(XX∗)
(1.5)

for each observable X in the domain D of limV [HΛ − µNΛ, .]. In particular

the thermodynamic limit Gibbs states are solutions of (1.5).
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Our aim is to consider solutions ω of (1.5) satisfying the q-condensation (1.3)

and to derive its condensate equation. Of course there may be condensation

into more than one q-vector. There might be condensation into maximum ν

independent vectors. In the rest of the paper we derive our results explicitly

for a single q-vector. The generalizations are straightforward.

2 The condensate equation

First of all we may assume that the matrix elements

ω(Aδ(B)C) + lim
Λ

ω(A[HΛ − µNΛ, C]) (2.1)

define operators δ(B) on the common coreD containing all polynomials in the

creation and annihilation operators in the sense of the GNS-representation

[7] of the state ω, and that the map δ : B → δ(B) satisfies the properties of

a derivation: δ(AB) = δ(A)B + Aδ(B) and δ(A)∗ = −δ(A∗).

In [9] we introduced the operator αq

αq,Λ =
aq√
V

(2.2)

αq = s− lim
Λ

αq,Λ (2.3)

where s−limV means the strong operator limit in the ω-state GNS-representation.

The existence of the operator is ensured for all states which are invariant un-

der a lattice translation group, by the fact that it is an average of operators.
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Remark that limit Gibbs states are homogeneous. Spontaneous symmetry

breaking leads to extremal lattice invariant states (see further on).

This operator has the following remarkable properties, see [9]:

1. The operator commutes with all creation and annihilation operators. It

is affiliated to the center of the von Neumann algebra generated by all

observables, i.e. generated by all polynomials of creation/annihilation

operators, [7].

2. In particular, it is a normal operator: α∗qαq = αqα
∗
q .

3. Its relation to the condensate density operator is the following: nq =

α∗qαq, where nq is the q-density operator of the q-condensate ρq =

ω(nq) > 0.

4. The operator has a well defined polar decomposition: αq = Uq
√

nq with

Uq a unitary operator.

5. From its definition, it readily follows that it is not translation invariant,

but periodic in the q-direction:

τy(αq) ≡ lim
Λ

1/
√

V

∫
Λ

dx a(x + y) eiq.xτq(αq) = e−iq.yαq

Now we are able to state the main result.

Theorem 2.1. Let ω (for notational convenience from now on we leave

out the β-index) be any equilibrium state, i.e. satisfying (1.5), then for any

polynomial P (a∗k, ak, α
∗
q , αq) in the creation and annihilation operators ak and
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the αq-operators, and for any polynomial Q(α∗q , αq) in the αq-operators, one

has the equation

ω(P (a∗k, ak)δ(Q(α∗q)) = 0. (2.4)

Proof. Take any arbitrary complex number λ and substitutes X = P ∗ + λQ

in (1.5). Using the inequality a ln a
b
≥ a− b for positive real numbers and the

fact that the operators P and Q commute one gets

β(|λ|2ω(Pδ(P ∗))+λ̄ω(Pδ(Q))+λω(Q∗δ(P ∗))+ω(Q∗δ(Q))) ≥ |λ|2ω(PP ∗−P ∗P )

If we show that the λ-constant term ω(Q∗δ(Q)) vanishes, then the theorem

follows from this inequality by virtue of the vanishing of the linear terms in

λ. Now we show that this constant term vanishes.

By taking λ = 0 in the inequality, one gets ω(Q∗δ(Q)) > 0. After repeating

the argument with Q replaced by Q∗, one gets as well ω(Qδ(Q∗)) ≥ 0.

On the other hand using the time invariance of the state ω one gets

0 = ω(δ(Q∗Q)) = ω(δ(Q∗)Q) + ω(Q∗δ(Q))

This together with the positivity of both terms yields ω(Q∗δ(Q)) = 0, finish-

ing the proof of the theorem.

Now we are in a position to get the main result, namely the derivation of

the condensate equation for the q-mode. This equation is in general referred

to as the Euler equation resulting from the minimization of the free energy

density functional with respect to variations of the condensate density. We

derive two versions of this equation. The first one is intended for general
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limit Gibbs states which are homogeneous states but not necessarily extremal

invariant equilibrium states. The second version which we derive is for the

extremal equilibrium states which are non-homogeneous but q-periodic and

which show spontaneous gauge symmetry breaking.

Theorem 2.2. Let ω be a general limit Gibbs state, satisfying (1.5), then

the q-condensate equation is given by

ω(α∗qδ(αq)) = 0 (2.5)

Proof. The formula (2.5) follows immediately from the previous theorem by

the substitutions P = α∗q and Q = αq.

The reader will remark the compact form of our equation (2.5) and could

ask for its relation to what is usually understood to be the condensate equa-

tion. In other words it remains to show that our result of the theorem, does

correspond to the Euler equation of the variational principle for the free en-

ergy functional with respect to a variation of the condensate. Let us explain

the relation between our equation and this variational problem. The latter

one is defined as usual. Consider the real map f , called the free energy den-

sity functional, defined on the state space: for any state ρ, f : ρ → f(ρ)

where

f(ρ) = lim
Λ

1

V
(βρ(HΛ − µNΛ)− S(ρΛ))

with µ the chemical potential and S(ρΛ) the entropy of the restriction of

the state to the finite volume Λ. The variational principle of statistical

mechanics implies that each homogeneous (or periodic) equilibrium state ω
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minimizes the free energy density functional, i.e. one has for any arbitrary

state ρ: f(ω) 5 f(ρ). The following inequality, proved for lattice systems

but immediately extended to continuous systems, is proved in [8]: for any

observable X one has

lim
Λ

βω(X∗[HΛ−µNΛ, X])−ω(X∗X) ln
ω(X∗X)

ω(XX∗)
= lim

λ→0+

1

λ
(f(ω◦γλ)−f(ω)) = 0

(2.6)

where γλ with λ ∈ R+ is a one parameter semigroup of completely positive

map of perturbations of the system given by (γλ = eλΓ) and where

Γ(.) = lim
Λ

ΓΛ = lim
Λ

∫
Λ

dx ([τx(X
∗), . ]τx(X) + τx(X

∗)[ . , τx(X)] (2.7)

The notation τx is used to denote the translation over the distance x.

Remark that for the particular choice X = αq in (2.6), one gets, on the basis

of (2.5), that the left hand side of (2.6) vanishes showing that the equilibrium

state ω satisfies the Euler equation of the variational principle for all varia-

tions of this particular type. The physical meaning of these variations follows

from the direct computation γλ(αq) = limΛ eλΓΛ(αq,Λ) = e−λαq, i.e. the γλ-

operation is nothing but the operation changing the values of the creation

and/or the annihilation operators of a condensate particle. In other words

these arguments yield also an alternative proof of the existence of the Euler

equation of the variational principle leading to the condensate equation. In

any case this proves that (2.5) is the condensate equation as it is usually

defined.
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Now we proceed to the second formulation of the condensate equation

valid only for extremal equilibrium states. Indeed if there is q-condensation

for a homogeneous equilibrium state ω, satisfying (1.3), then we proved that

there is spontaneous symmetry breaking of the gauge symmetry as well as

of the space translation symmetry, the latter one into periodic states in the

q-direction, determined by the unit vector e, with period κ = 2π
|q| . In other

words, we proved in [9] that there exists a set {ωte}, with t running in the

interval [0, κ], of equilibrium states, all satisfying the equilibrium condition

(1.5), and all different. For these states also the gauge symmetry is broken

only for the q-mode. All these states are extremal equilibrium states satisfy-

ing the property that the limit operators αq are reduced to multiples of the

unit operator in the GNS-representation of each state ωte, i.e.

αq =
√

ρqe
iφ(t) (2.8)

where φ(t) is a real phase. Remark that this result yields a rigorous mathe-

matical proof of the so-called Bogoliubov procedure which consists in replac-

ing the average operators αq by c-numbers, see [10].

Without loss of generality we limit the rest of our discussion to the case of

one extremal state where we put the phase φ(t) = 0. Also in the rest of this

section we denote any of these extremal states shortly by ω̃. Moreover we will

not work out explicitly the most general formula covering all cases, because

the most general formula depends explicitly on the dimensions of the lattice

created by the condensate vectors q which contribute to the condensation.

Corrolary 1. For any extremal state ω̃ the condensate equation reads as
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follows

(µ− εq)ρq − v̂(0)ρ2
q − ρq

∫
dk (v̂(0) + v̂(k − q))ω̃(a∗kak)

−ρq

∫
dk (v̂(0) + v̂(k − q))ω̃(a∗k−qak)−

√
ρq lim

Λ

1

V
3
2

∑
k1,k2

ω̃(a∗k1+k2−qak2ak1) = 0

(2.9)

Proof. The proof follows directly by an explicit computation from (2.5) using

the extremal property of the state ω̃ yielding the formulae: for all n, m, r, s ∈

N one has the equalities

lim
Λ

ω̃(a∗k1
...(

a∗q√
V

)n...a∗kr
ap1 ...(

aq√
V

)m...aps)

= (ρq)
n+m

2 ω̃(a∗k1
......a∗kr

ap1 ...(
aq√
V

)m...aps)

(2.10)

3 Discussion

In general the condensate equation is used as a handy way in order to obtain

an idea about the existence of condensation and/or the amount of condensa-

tion in a physical Boson model system. For example the condensate equation

for the free Bose gas in three dimensions yields immediately that if the chem-

ical potential µ 6= 0 then there is no condensation. Given the total density,

then it determines also the the amount of condensate if µ = 0. For the so-

called imperfect Bose gas, the condensate equation reduces the problem to

the free bose gas case. For Bose models with realistic two-body interactions,

10



the condensate equation is a good way to the construction of bounds and/or

approximations for the amount of condensate.

Finally we discuss the use of the condensate equation for a model with a

q-condensate as studied above. We consider a Bose gas model irradiated by

a laser mode treated in [2]. The Hamiltonian of the model is given by

HΛ =
∑

k

εka
∗
kak + Ω b∗qbq +

λ

2V
N2

Λ +
g√
V

(a∗qa0bq + aqa
∗
0b
∗
q) (3.1)

The first term is the kinetic energy of the bosons, the second one is the kinetic

energy of the photon, the third term is the stabilizing boson mean field term

and the last term is the interaction between the laser with frequency Ω and

the boson modes. The λ and g are positive coupling constants.

The total Hamiltonian is homogeneous as in (1.4). We suppose that we have

the system in an extremal equilibrium state for the bosons as well as for the

laser mode which we consider as a collective mode like the boson modes. The

symmetry is spontaneously broken to a lattice symmetry in the q-direction.

We consider the condensate equations (2.9) for the three modes, a0, aq and

bq appearing in the interaction. One gets:

(µ− ε0 − λρ)ρ0 = g
√

ρ0ρqρ̃q

(µ− εq − λρ)ρq = g
√

ρ0ρqρ̃q

ρ̃q =
g

Ω
ρ0ρq

(3.2)

We denote ρ̃q = limΛ ω̃(
b∗qbq

V
) the q-mode laser density of the photons and
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here we denote by ρ the total density of the boson particles. A solution of

these equations in terms of the chemical µ, which is itself fixed by the density

of bosons through the formula ρ = limΛ ω̃(NΛ

V
) is the following

ρ0 =
Ω

g2
(µ− εq − λρ)

ρq =
Ω

g2
(µ− ε0 − λρ)

ρ̃q =
1

g2
(µ− εq − λρ)(µ− ε0 − λρ)

(3.3)

Looking at the paper [2], where this model is analyzed, the reader should

realize the power of the condensate equation for the derivation of these results

above. For the final analysis of these equations in terms of the chemical

potential we refer nevertheless to the original paper [2].
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[4] Fannes M., Pulé J.V., Verbeure A.F.: On Bose codensation, Helv. Phys.

Acta, 55, 391-399(1982)

12
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