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Abstract

The spin-fermion model describes a two level quantum sysfefspin 1/2) coupled to finitely many free
Fermi gas reservoir® ; which are in thermal equilibrium at inverse temperatusgs We consider non-equi-
librium initial conditions where not alB; are the same. It is known that, at small coupling, the combine
systemS + Z]. R; has a unique non-equilibrium steady state (NESS) chaiaeteby strictly positive entropy
production. In this paper we study linear response in thiSSE&nd prove the Green-Kubo formula and the
Onsager reciprocity relations for heat fluxes generate@imperature differentials.
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1 Introduction

This is the third in a series of papers dealing with lineapoese theory in quantum statistical mechanics. In
the first two papers in the series [JOP1, JOP2] we have givastnact axiomatic derivation of the Green-Kubo
formula for the heat fluxes generated by temperature diffexis. In this paper we verify that this axiomatic
derivation is applicable to the spin-fermion model (abbatad SFM). We shall assume that the reader is familiar
with general aspects of linear response theory discusgbe introduction of [JOP1].

The Green-Kubo formula is one of the pillars of non-equilibr statistical mechanics and is discussed in many
places in physics literature (see e.g. [KTH]). A mathenadijigstification of this formula is one of the outstanding
open problems in mathematical physics [Si]. In the litematunost existing results concern currents induced
by mechanical driving forces such as time-dependent @emtrmagnetic fields (see [NVW, GVV, BGKS] for
references and additional information). In contrast, eéhee very few results dealing with fluxes generated by
thermodynamical driving forces such as temperature difféals. The central difficulty is that a mathematically
rigorous study of linear response to thermodynamical peations requires as input a detailed understanding
of structural and ergodic properties of non-equilibriureasty states (NESS). In the papers [JOP1, JOP2] we
have bypassed this difficulty by assuming the necessaryaiétyuproperties agxioms The general axiomatic
derivation of the Green-Kubo formula in [JOP1, JOP2] hagd¢esbme new insights concerning the mathematical
structure of non-equilibrium quantum statistical mechanConcerning applications to concrete models, it reduced
the proof of the Green-Kubo formula to the study of regugpitoperties of NESS.

In most cases, the study of NESS of physically relevant noiddbeyond existing mathematical techniques.
The information necessary to study linear response thes\pbken obtained only recently and only for a handful
of models [JP3, JP4, AH, AP, FMU]. To the best of our knowlettge SFM and its obvious generalizations are
the first class of non-trivial models in quantum statisticedchanics for which the Green-Kubo formula and the
Onsager reciprocity relations have been proven. We wouwld léte to mention related works [AJPP1, AJPP2]
where the Green-Kubo formula was established for some lgxsaiivable quasi-free models. Linear response
theory for the quantum Markovian semigroup describing yreaghics of the SFM in the van Hove weak coupling
limit was studied by Lebowitz and Spohn in [LeSp] and this kvbas motivated our program. The Green-Kubo
formula for a class of open systems in classical non-equilib statistical mechanics has been established in
[RBT].

The rest of this introduction is organized as follows. In Sedtion 1.1 we quickly review a few basic no-
tions and results of algebraic quantum statistical medsariihis subsection is primarily intended for notational
and reference purposes. The interested reader may coRsidt JP4, FMU, AJPP1] for recent reviews of non-
equilibrium algebraic quantum statistical mechanics.uhsction 1.2 we review the abstract axiomatic derivation
of the Green-Kubo formula given in [JOP1, JOP2]. In this papewill also give a new proof of the main results of
[JOP1, JOP2] (see Section 2). This new proof emphasizesiharfant connection between linear response theory
and McLennan-Zubarev dynamical ensembles [M, Zu, ZMR1, 2MRM] (this point will be further discussed in
[JOPRY]). In Subsection 1.3 we introduce SFM and in Subsedtié we state our main results. The results of this
paper can be used to refine the existing results concerninifpéiimodynamics of SFM and we discuss this point
in Subsection 1.5. Finally, some generalizations of our @hadd results are discussed in Subsection 1.6.

Acknowledgment. The research of the first author was partly supported by NSERgrt of this work has been
done during the visit of the first author to CPT-CNRS. Y.O.upported by the Japan Society for the Promotion of
Science. This work has been done during the stay of Y.O. te CRRS, partly supported by the Canon Foundation
in Europe and JSPS.

1.1 Basic notions

A quantum dynamical system is a triplé, 7, w) whereO is aC*-algebra (usually called the algebra of observ-
ables) with identityl , 7 is aC™*-dynamics or0, andw is the initial (reference) state of the system. We denote by
N, the set of allo-normal states o® and byZ the set of allr-invariant states of.
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An anti-linear involutivex-automorphisn® : © — O is called time-reversal f0, 7,w) if O ot =77t 0 O
forallt € Randw(O(A4)) = w(A*) forall A € O. More generally, a statgon O is called time-reversal invariant
if n(©(A)) =n(A*)forall A € O.

Thermal equilibrium states di©, 7,w) are characterized by the KMS property. L@&t> 0 be the inverse
temperature. A state.q on O is called(r, 3)-KMS if for all A, B € O there exists a functiof’s z(z), analytic
in the strip0 < Im z < 3, bounded and continuous on its closure, and satisfying tH&#oundary condition

Fa 5(t) = weq(AT'(B)), Fa p(t+iB) = weq(T'(B)A).

The three line theorem yields that
|Fa,B(2)| < |A[llB]], (1.1)

for z in the closed stri) < Im z < 3. We shall writew.q(A7*(B)) = Fa,g(z) for suchz.
If wis a(r, 3)-KMS state one expects that

* : t
W' lim ot =,
for all states) € N,,. This property of return to equilibrium is a manifestatidtiree zeroth law of thermodynamics.
It has been established fdF-level systems coupled to free reservoirs under fairly garessumptions (see [JP6,
BFS, DJ, FM])
Non-equilibrium statistical mechanics deals with the caberew is not a KMS state (or more precisely not
normal w.r.t. any KMS state afO, 7,w)). The non-equilibrium steady states (NESS) ©Of 7, w) are defined as

the weakx limit points of the net
1 T
{—/ woT%ds ’ T>O}7
T 0

asT T oo. The set of NESS, denoted hy,, is non-empty and>;. C Z. For information about structural
properties of NESS we refer the reader to [Rul, Ru2, Ru3,JP8,AJPP1].
In typical applications to open systems one expects¥hatonsists of a single NESS, and that

w* — lim nor!=w,,
t——4o0

holds for allp € N,,. Such strong approach to the NESS is a difficult ergodic gmkdnd has been rigorously
established only for a few models.
Throughout the paper we will use the shorthands

t B
£(A, B, t) = %/0 ds/O du weq(T°(A)T™(B)), (1.2)

and
£(A,B) = . liIJP £(A, B, t),

. (1.3)
‘C(AaB) = ti}I-Poo 5 /_t weq(Ts(A)B)dSa
whenever the limits exists.

We shall freely use the well-known properties of KMS-statissussed in classical references [BR1, BR2]. In
particular, we will need the following result:
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Theorem 1.1 Assume that is a (7, 3)-KMS state such that for alt, B € O,

ltl\i_r}noow(ATt(B)) = w(A)w(B).
Then:
(Q)Forall A, B € O,

t

lim w([4,7°(B)])ds = 0.

t——+o0 ¢

(2) Assume in addition thd0), 7, w) is time-reversal invariant and that, B € O are two self-adjoint observables
which are both even or odd undér. Then

Jim [E(A,B,t)— / t w(ATS(B))ds] 0.

t——+oo ¢

The first part of this theorem is a classical result (see Tdmads.4.12 in [BR2]). The second part is proven in
[JOP1, JOP2].
In the sequeB(H) denotes th&™*-algebra of all bounded operators on a Hilbert spgHce

1.2 Abstract Green-Kubo formula

In this subsection we review the abstract derivation of thee@-Kubo formula given in [JOP1, JOP2]. In view of
the specific models we will study in this paper, we considerabstract setup where a "small” (finite dimensional)
guantum systerd is coupled to finitely many reservoif®,, . .., Ras. For a more general framework we refer the
reader to Section 5 in [JOP2].

The systens is described by the finite dimensional Hilbert spate and the Hamiltoniari s. Its algebra of
observables i©s = B(Hs) and its dynamics is

TE(A) = eltfls ge~1tHs
A convenient reference state of the syst&iis

_ 1
"~ dimHs

ws(A) Tr(A),

but none of our results depends on this specific choice.

The reservoifR ; is described by the quantum dynamical syst€m, 7,,w;). We assume that reservoir is in
thermal equilibrium at inverse temperatytg i.e., thatw; is a(7;, 5;)-KMS state onO,;. The complete reservoir
systemR = 3, R; is described by the quantum dynamical syst€M , 7=, wr ) Where

Or=®;1,05, =047, wr=Q5Lw;

Since we are interested in the non-equilibrium statisticathanics, we shall always assume that- 2.

Notation. In the sequel, whenever the meaning is clear within the ebniee will write A for the operatorsl @ I,
I® A

In absence of coupling the joint syste&fr- R is described by the quantum dynamical systémr, w), where

0 =0s®0g, TO =Ts @ TR, w=ws R wR.
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We denote by); the generator of; and by
M
0y = i[Hs, ] + Z(Sj,
j=1

the generator ofj.
Let V € O be a self-adjoint perturbation describing the couplingMeeinS and R and letr be theC*-
dynamics generated by

§ = 0o +i[V, -].
The coupled joint syster§ + R is described by the quantum dynamical systéir, w).
Let 5.4 > 0 be a given reference (equilibrium) inverse temperatuneceSive are interested in linear response
theory, without loss of generality we may restrict the imeetemperatures; of the reservoirs to an interval

(Beq — €, Beq + €), Where0 < e < (.4 is a small number. For our purposes the size igfnot relevant. Our first
assumption is:

(G1) The reference states &; are parametrized by; € (8eq — €, Beq + €) andw; is theunique(r;, 5;)-KMS
state on0;.

We introduce the thermodynamical forces
Xj = ﬁeq - ﬁ_ﬂ

and setX = (Xi,...,Xu). The vectorX uniquely describes the initial state of the system (note the
value X = 0 corresponds to the equilibrium case where@llare the same and equal th,). The restriction
Bi € (Beq — €, Beq + €) is equivalent td X |, < ¢, where| X | = max | X;|. We setl, = {X € RM | |X|; < ¢},

D.={X € CM||X|, < ¢}. We shall explicitly indicate the dependence of the refeeestates oX by denoting
wx; = Wj, Wrx = wx, ® - Quwx,,, and

wg?) =Ws QWRX-

We denote byVy the set of aILuE?)-normal states o).
We now describe a particular state/ifiy which will play a central role in our study of linear resporiseory.
Consider theC*—dynamiCSUES) generated by

6% = D1 = X;/Beq)d.

J
The stateug(()) is the unique{ag(()) , Beq)-KMS state on0. Letox be theC*-dynamics or© generated by
X
6eq

Ox =0 +ilHs +V, -] =8> =L4;.
J

The Araki perturbation theory [Ar, BR2, DJP] yields that thexists a uniquéox, feq)-KMS state onO. We

denote this state hyx. The states x andwﬁ?) are mutually normal. Note thatx — is the uniquér, Geq)-KMS
state on0. We denote this state by., and assume:

(G2)ForallA, B € O,
lim weq(7"(A)B) = Weq(A)weq(B).

|t|—o0
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In the next assumption we postulate the existence of NESE the reference statex

(G3) For all X € I, there exists a statex on O such that for ald € O,

lim wx(7'(4)) = wx, (A).

t——+o0

As we have already remarked in Subsection 1.1, under nownditions one expects that the NESS is indepen-
dent of the choice of reference stateNfx, i.e., that for all) € Nx andA € O, lim— oo N(7(A)) = wx+(A).
We however do not need such an assumption in our derivatitreadibstract Green-Kubo formula.

Our next assumption deals with time-reversal invariance.

(G4) There exists a time-reversalof (O, 1) such tha®(V) = V and® o 7} = Tj*t o O forall 5.
To define heat fluxes observables we need
(G5)Forallj, V € Dom (6;).
The observable describing the heat flux oulgfis
P = 3;(V).
Itis not difficult to show (see [JP4]) that

M
ZWX-i-((I)j) =0,
j=1

which is the first law of thermodynamics (conservation ofrggg The entropy production of the NESS, ; is
defined by

M
Ep(wxy) = Y Xjwxi (D)),
J=1

and
Ep(wx4) >0,

see [Ru2, JP2]. The heat flux observables are odd under éueesal, i.e., if (G4) holds, then
O(®;) =—-9,. (1.4)

An observabled € O is calledcenteredf wx (A) = 0 for all X € I.. We denote by the set of all centered
observables. If (G1) and (G4) hold, then it is not difficulstoow that the state x is time-reversal invariant (see
Lemma 3.1 in [JOP1]). This fact and (1.4) imphk (®;) = —wx (®;), and sod; € C.

Itis an important fact that the heat flux observables arestedtirrespectively of the time-reversal assumption.
The following result was proven in [JOP2].

Proposition 1.2 If (G1) and (G5) hold, the®; < C for all j.

The key result in the abstract derivation of the Green-Kubimfila is the followindinite time linear response
formulaproven in [JOP1, JOP2]. Recall th&fA, B,t), £(A, B), L(A, B), are defined by (1.2) and (1.3). Set

O. = (ﬂﬁlDom (6;)) NC.
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Theorem 1.3 Suppose that Assumptions (G1) and (G5) hold andletO.. Then for allt € R the function
X = wx(r'(4)),

is differentiable atX = 0 and
8ijX(¢t(A))\X:0 = £(4,,,1).

In Section 2 we shall give a new proof of Theorem 1.3 which fiedént then the original argument in [JOP1,
JOP2] and which will play an important role in future devetmgnts [JOPR].

To derive the Green-Kubo formula from Theorem 1.3 we needdheept of regular observable. An observable
A'is called regular if the limit and derivative in the express

i 05y

can be interchanged. More precisely:
Definition 1.4 Suppose that (G1) and (G3) hold. Léte O be an observable such that the function
X - wx (r'(A)),
is differentiable atX = 0 for all ¢. We call such an observable regular if the function
X —wx4(4),
is also differentiable aX' = 0 and for all 7,

tEToo Ox,wx (' (4)) ’X:O = Ox;wx +(4) ’X:O'

In study of concrete models one of the key steps is verifinatiat physically relevant observables like heat
fluxes are regular. Our justification of this step will be lthea the following general result.

Proposition 1.5 Suppose that Assumptions (G1) and (G3) hold. A&t O be an observable such that for some
e > 0 and allt > 0 the functions
X = wx (r'(4)), (1.5)

have an analytic extension 0. satisfying

sup  |wx (77(A4))] < oo.
XeD. t>0
Then for allX € D, the limit
h(X) = lim wx(r'(A)),

t——4o0

exists and is an analytic function db.. Moreover, ag — +oo, all derivatives of the functions (1.5) converge
uniformly on compact subsets bf to the corresponding derivatives bfX).

Proof. This result follows from the multivariable Vitali theoreMle sketch the proof for the reader convenience.
Seth:(X) = wx (7'(4)). For0 < p < e we denote

T,={X € CM||X;| =pforallj}.
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The Cauchy integral formula for polydisk yields that fére D,,

1 he(Ers .. Enr)
(%) = (2mi)M /Tp (& —X1)- - (Em — Xur)

It follows that the family of functiong k. }:+>¢ is equicontinuous o, for any p’ < p. Hence, by the Arzela-
Ascoli theorem, for any’ < p the set{h;};>0 is precompact in the Banach spacéD, ) of all continuous
functions onD,, equipped with the sup norm. The Cauchy integral formula)(IMBere nowX € D, and the
integral is overT,,, yields that any limit inC(D,/) of the net{h;} ast — o0 is an analytic function inD,,.
Assumption (G3) implies that any two limit functions coideifor X real, and hence they are identical. This yields
the first part of the theorem. The convergence of partialvdévies ofh,(X) is an immediate consequence of the
Cauchy integral formulaX

déy - -dém. (1.6)

The next two theorems are an immediate consequence of Theoge

Theorem 1.6 Suppose that Assumptions (G1), (G3) and (G5) hold.
(1) Let A € O. be aregular observable. Then

Ox;wx+(A)| o = L(A, 9;). (1.7)

(2) If in addition (G2) and (G4) hold andl € N;Dom (d;) is a regular self-adjoint observable such thatA) =
—A, then
Ox,wx+(A)| _y = L(A, ®;). (1.8)

Relation (1.7) is the Green-Kubo formula without the timearsal assumption. Relation (1.8), which follows from
(1.7) and Part (2) of Theorem 1.1, is the Green-Kubo formuthé standard form.
Specializing Theorem 1.6 to the heat-flux observables wigaler

Theorem 1.7 Suppose that Assumptions (G1), (G3) and (G5) hold and@#jat N;Dom (J;). Then:
(1) The kinetic transport coefficients

Ly; = axij+(‘1>k)’X:0,
satisfy
Li; = £(®, D5).
(2) If in addition (G2) and (G4) hold, then
Ly; = L(Dg, D;), (1.9

and
Ly; = Ljp. (1.10)

The Onsager reciprocity relations (1.10) follow from (1a@d Part (1) of Theorem 1.1.

1.3 Spin-fermion model

The spin-fermion model is an example of abstget R model which describes a two level quantum system (spin
1/2) coupled toM free Fermi gas reservoirs. This model—a paradigm of opentguasystem—has been much
studied and we shall be brief in its description. The readéfamiliar with the model may consult [JP3] or any of
the references [Da, BR1, BR2, LeSp, JP4] for additionalrimfation.

The small systens is described by the Hilbert spagés = C? and the Hamiltoniais = o, (we denote the
usual Pauli matrices by, oy, 0,).



The Green-Kubo formula for the spin-fermion system 9

The reservoirR; is a free Fermi gas in thermal equilibrium at inverse temjpeeas;. It is described by
the quantum dynamical syste(@;, 7;,w;), whereQ,; = CAR(h;) is the CAR algebra over a single fermion
Hilbert spacd), theC’*-dynamiCSr} is the group of Bogoliubo¥-automorphisms generated by a single particle
Hamiltonianh; andw; is the uniqueT;, 5;)-KMS state on0;. The assumption (G1) is automatically satisfied.

Let

ij =0, ©® (pj(aj)7 (111)

whereq; € b, is a given vector (sometimes called "form-factor"), and
1 *
pjla;) = E(%‘(%‘) + aj(ay)) € O,

is the field operator associateditp. The interaction o with R ; is described bp\V; whereA € R is the coupling
constant. The complete interaction betweeandR is described by

M
=AY V.
j=1

In the sequel we shall explicitly indicate thedependence by writingy, = d, 7, = 7, wax = wx, €etc.

The spin-fermion system is time-reversal invariant. Irijder all j there exists a complex conjugation
on h; which commutes witth; and satisfieg;a; = «;. The mapO;(a(f;)) = a(c;f;) uniquely extends to
an involutive anti-lineax-automorphism o, such tha®; o 7} = T;t 0 ©;. Let©¢ be the standard complex
conjugation onOs. Obviously,Os(0.) = 0., Os(c,;) = 0., and in particula®s o 75 = Tg-t 0 Og. Let
O=05®0;® - ®06y. Thend(V;) =V, forall j,and® o 7{ = 7, " 0 © for all A € R. Hence, Assumption
(G4) holds.

Concerning Assumptions (G2) and (G3), we need to recallraékesults concerning non-equilibrium thermo-
dynamics ofS + R established in [JP3]. We first list technical conditionsdezkfor these results.

(Al)h; = L*(R,,ds; H;) for some auxiliary Hilbert spac®; andh; is the operator of multiplication by € R ..
LetI(0) = {z € C|[Imz| < &} and letH?(§) be the usual Hardy class of analytic functighs(5) — $);.

(A2) For somey > 0, k > f(eq, and allj, e™"*a;(|s|) € HZ(6).

(A3) Forallj, |[a;(2)]|,; > 0.

(A1) and (A2) are regularity assumptions needed for thetspleiheory of NESS developed in [JP3]. As-
sumption (A3) is the "Fermi Golden Rule" condition which eres thatS is effectively coupled to each reservoir
R;.
The following result was proven in [JP3].

Theorem 1.8 Assume that (A1)-(A3) hold. Then there exist- 0, ¢ > 0 and statesv) x4+ on O such that for
0<|MN <A Xel,neNx,andA € O,

lim_n(r{(4)) = wax 4 (A). (112)

t——+oo

The statesv) x 1 are the NESS of the joint systeh+ R and are the central objects of the non-equilibrium
statistical mechanics of this system. We remark that—o is the unique(ry, 8.q)-KMS state onO (hence,
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Wreq = Wrax=0+), and in this case Relation (1.12) is the statement of thetzdaw of thermodynamics. In
particular, Theorem 1.8 implies that for< |\| < Aand allA, B € O,

|t1\im w/\eq(AT;\(B)) = W/\eq(A)Wkeq(B)-

Note also that (A1)-(A2) imply (G5). The observable desagithe heat flux out oR; is
®; = A5;(Vj) = Aow ® @;(ih;y).
We summarize:

Theorem 1.9 Suppose that Assumptions (A1)-(A3) are satisfied. Thep théstsc > 0 and A > 0 such that
Assumptions (G1)-(G5) hold for< |A\| < A.

If the thermodynamical forceX ; are not all the same, then one expects that the NESS. is thermodynam-
ically non-trivial and has strictly positive entropy pradion. This result was also established in [JP3] (see also
[JP4]). If (A1)-(A3) hold and theX;'s are not all the same, then famon-zero and small enouglip(wyx ) > 0.

We will return to this topic in Subsection 1.5.

1.4 Green-Kubo formula for the spin-fermion system

In this subsection we state our main results concerningtinesponse o, x+ to the thermodynamical forces
X

J

Suppose that (A1) and (A2) hold and l}gt: L?(R,ds; ;). Toanyf; € h; we associatéj € 6]- by

3 {ﬁ@) if s >0, (1.13)

BO=enish ifs <o
Leto andx be asin (A2) and
Aj ={fj €| et fi(s) € HZ(5) for someb > (k + feq)/2 }-
Let O be ax-subalgebra o® generated by
{Qeadf(f;) | Qe 0s, fj€ Ay, j=1,.... M},

wherea# stands either fos or a*. Let ~ y
O.=0nC.
Obviously,®, is a vector subspace 6F. In addition, we have
Proposition 1.10 Suppose that (A1) and (A2) hold. Then
1) 0. C mj-”ilDom (05).
2)®; €0.. N )
(3) The algebra® is dense i and forallA € O, A — ©(A*) € O.. .
(4) Suppose in addition that (A3) holds. Then there exists 0 such that fol0 < |A\| < Aand all 4, B € O,

Wreq(TX(A)B) = O(e_"Y(’\)W)7

wherey(\) > 0. In particular, £(A, B) is well-defined for alld, B € O...
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Proof. Part (1) is obvious. One easily checks tifain; € A; and this yields (2). Let; € bh; be given. Write
¢j = dj+ + ¢j—, wherec;(¢;+) = £¢;+. Then

{e™ g la>0tC Ay, {ieT g |a >0} C A,

and so the linear span of; is dense irh;. This yields that) is dense in®. Sincew, x is time-reversal invariant
(see [JOP1])wrx (A — ©(A*)) = 0. Hence, A — ©(A*) € C for all A € O and the second part of (3) follows.
Part (4) was proven in [JP3J

The main technical result of this paper is:

Theorem 1.11 Suppose that (A1) and (A2) hold. Then there eXist 0 ande > 0 such that for0 < [A] < A,
t > 0andA € O the function
X = wax (15(4)),

has an analytic extension 0. such that

sup ‘wa(’T;\(A))‘ < o0.
XeD. >0

Combining Theorem 1.11 with Propositions 1.5, 1.10 and Téms 1.6, 1.7, 1.9, we derive our main result:

Theorem 1.12 Suppose that Assumptions (A1)-(A3) are satisfied. Thea théstsA > 0 ande > 0 such that
for 0 < |A\| < A the following holds.
(1) For all A € O the map

> X +— w,\x+(A),

extends to an analytic function adp,. B
In the remaining statements we assume that O..
(2) For all 7,

1 [ee) Beq X i
8ij/\X+(A)‘X:0 = 6—/0 dS/O duwz\eq(T;(A)T/\ ((I)j))'
eq

(3) If in addition A is a self-adjoint observable such that A) = — A, then

1 oo
anw/\X+(A)|X:O = 5/ Wieq(73(A)®;)dt.
(4) The kinetic transport coefficients
Lkj = Ox,wax+(®r)] x_,» (1.14)
satisfy
1 [~
Lakj = 5 / Waeq (T3 (L) ®;)dt, (1.15)
and
Lkj = Lijk- (1.16)

Our final result is:
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Theorem 1.13 Assume that (A1)-(A3) hold. Then there\is> 0 such that the functions — L,; are analytic
for |A\| < A and have power expansions

o0

Lk = Y ALY, (1.17)
n=2
Moreover, fork # 7,
#J , ,
T k()15 1oy (2[5,

2
L) = -

.18
(coshBeq)? i llai2)l, (1.18)

2) (2
andL§j == ks ij).

Remark. Starting with formula (1.15), this theorem can be provenibgéplicit computation based on the spectral
theory of the standard Liouvillean. Our proof in Section 4&@newhat indirect and emphasizes the important
connection betweeﬂ,(f.) and the weak coupling Green-Kubo formula established irsfi]e This connection is
discussed in more detail in Subsection 1.6

1.5 Thermodynamics of the SFM revisited

The results established in this paper could be used to ineggisting results concerning the thermodynamics of
the SFM. In this subsection we do not assume thatsmall ands., does not play any particular role. For this
reason, in this subsection we replace the subscXpbyB = (B1,...,0m). Hencews, = wj is the initial state

of the reservoifR ;, wy 5 = wp, @ - Qwg,,, wz = ws Qw7 is the reference state of the joint syste!n‘b is the

set of allwz -normal states o, etc. For0 < v; < 7, we denotdl,,,, = [v1,72]M < RM. In this subsection
we will always assume the constanin Assumption (A2) satisfies > ~,.
The following results hold:

Theorem 1.14Let0 < v; < 2 be given and assume that (A1)-(A3) hold. Then there éxist 0 and states

wygy ONO such that:

() Forall 0 < [A| < A, B €L, n €Ny andA € O,
lim 7(7{(4))

t——+oo

= w3, (A). (1.19)

(2) The limit (1.19) is exponentially fast in the following sen3here exisbm > 0, a norm dense set of states

Ny C N3, and a norm-dense-subalgebrady C O such that fom € N5, A € O, andt > 0,

IN(T3(4)) — w, 5, (A)] < Capre™ ™", (1.20)

Moreoverw; € Nog, ®; € Oy, and

™
pai =53 | 22 les@Il5, | A+ 00", (1.21)
J

where the remainder is uniform i € Ly qs-
(3) There exists a neighborhodd,, ,, of L, ,, in C such that for allA € O, the functions

-,

(>‘a 6) = W,\[§+ (A)v (1-22)

extend to analytic functions o\ | || < A} X O, +,-



The Green-Kubo formula for the spin-fermion system 13

Remark. Parts (1) and (2) are proven in [JP3] and are stated hereflaeree purposes. The new result is (3)—in
[JP3] the analyticity of the functions (1.22) was discussely w.r.t. \.
We denote by, ,, the "off-diagonal” part of,, -, , i.e.,

]AI%’Yz = H’YI’YZ \ {Elﬁl = ... = ﬁ]u}

Theorem 1.15Let0 < 1 < 72 be given and assume that (A1)-(A3) hold. Then there eXists) such that for
0 < |\ < Aandg € L,, -, the following holds:

(1) Ep(w,z,) > 0.

(2) There are nary-invariant states in\/ 2

Remark 1. Statements (1) and (2) are equivalent. Indeed, the expiafigriast approach to NESS (Part (2)
of Theorem 1.14) and Theorem 1.1 in [JP3] yield that (2) iepl{1). On the other hand, if is a normalr,-
invariant state in\/g, then, by Part (1) of Theorem 1.14 = AR This fact and Theorem 1.3 in [JP5] yield that
Ep(w,;,) = 0, and so (2) implies (1).

Remark 2. Theorem 1.15 was proven in [JP3] under the additional assamihat for some > 0,

Z|ﬁi—ﬁj| > 0.

%,

The constan\ was dependent oh
Remark 3. A result related to Part (2) of Theorem 1.15 was recentlybdistaed in [MMS].
The proofs of Theorems 1.14 and 1.15 are given in Section 5.

1.6 Some generalizations

All our results easily extend to more general models witeie an N-level atom described by the Hilbert space
Hs = CV and the Hamiltonia s. EachV; is a finite sum of terms of the form

Qjk @ wj(ajr1)  ¢i(Qkmn,,) +hc,

wheren;, > 1,Q;x € Os = M(CN) anda; . ,, € b; satisfy:
(A0) If k # 1 orn # m, then(aj k.n,eia;;,,) = 0forall t € R.

We shall call this modethe general spin-fermion modébbreviated GSFM). The GSFM may not be time-
reversal invariant. Assume that (A1) holds. ketbe a distinguished complex conjugationipnand letd; i, (s)
be defined by (1.13).

(A4) For some) > 0, k > feq, and allj, k,n, e™**a; .n(s) € H;(0).

The general "Fermi Golden Rule" non-degeneracy condiidarmulated as follows. Assumptions (AQ), (A1)
and (A4) ensure that for alt’ there exists a linear malix : Os — Ogs such that for all4, B € Og,

Jim o (A7 0¥ (B)) = %Tr(AetKX (B)). (1.23)
As usual, we write{,q = K x—o. This relation (the quantum Markovian semigroup approxiomeof the dynam-
ics of an open quantum system in the van Hove weak couplinig) lisra celebrated result of Davies [Da] who has
proven it under very general technical conditions (see @& JP3, JP4]). The result of Davies was the starting
point of numerous studies of thermodynamics of open quasystems in weak coupling limit (see [LeSp, AJPP1]
for references and additional information). We will rettiorthis point at the end of this subsection.
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We recall that the generatéf x has the form

M
Kx = ZKXj,
j=1

where K x; is the generator obtained by considering the weak coupimig of the systemS + R; w.r.t. the
initial statews ® wy,. By construction, the spectrum &fx is contained in{z |Rez < 0} and0 € o(Kx;).
Assumption (A3) is replaced with

(A5) Forallj and|X| < ¢, 0(Kx,) NiR = {0} and0 is a simple eigenvalue dfx ;.

In the literature one can find various algebraic charaaédns of (A5) (see [Sp, De] for references and additional
information).

If Assumptions (A1), (A4) and (A5) hold, then Theorem 1.8d®for the GSFM. The heat fluxes are again
defined by®; = \J;(V;), and if not allX;’s are the same, the entropy production.qfy ;- is strictly positive for
small A (see [JP3, JP4]).

Our next assumption concerns time-reversal invariance.

(A6) The complex conjugations; commute withh; and satisfyc;o; ,.n = ;. n for all j, k,n. Moreover, the
matricesHs and@); » are real w.r.t. the usual complex conjugation®(ts).

This assumption ensures that there exists an involutitelinear x-automorphism (time-reversat) of O such
that for allj, ©(V;) = V;, 007! = Tj_t 00,and0oth = 75" 00. Inparticular® o 7t = 7, " 0O forall A € R.

Theorem 1.9 holds for the GSFM under the Assumptions (AOL)(#A4), (A5), (A6). The definition oD
andO. and Proposition 1.10 holds under the Assumptions (A0), (#43) (obviously, in the second part of Part
(3) we also need (A6)). Theorem 1.11 holds under the Assamgf0), (Al), (A4). Finally, Parts (1) and (2)
of Theorem 1.12 hold for the GSFM under the Assumptions (A8)), (A4), (A5). Parts (3) and (4) require in
addition the time reversal assumption (A6).

Before discussing the generalization of Theorem 1.13 wallrecfew basic definitions and results of the
weak coupling (sometimes also called Fermi Golden Rule dRtBermodynamics of open quantum systems.
Assumption (A5) ensures that there exists a density maffix, onHs such that for any initial density matrjx
onHs andA € Og,

lim Tr(pe'™¥(A)) = Tr(wsx4+ A) = wsx 1 (A).

t——+o0

The density matrixwsx - is the weak coupling NESS of the open quantum sysfem} _; R;. Clearly,
WSX=04 = e Pealls /Tr(e*ﬁchs),

and we will writewsx =0+ = wseq. Weak coupling heat flux observables are define@py = Kx,(Hs) and

we denoteb ., = ®,x—o. The weak coupling entropy production is

M

Ep =) Xjwsx+(®jx).

j=1

One always ha&p > 0. Lebowitz and Spohn [LeSp] have shown that if (A4) holds thgn> 0 wheneverX
are not all equal. In the same paper they have also provenrgendKubo formula for weak coupling heat fluxes:
If (A5) holds, then the functionX — wsx 4 (Prx) are differentiable ak = 0 and

Lij = Ox,wsx+(Pux)| y_o = / Wseq (€71 (Ppeq) P joq)dt. (1.24)
0
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These results are very robust and can be derived under véaytenhnical conditions. If in addition (A6) holds,
thenLy; = L;i, that is, the weak coupling Onsager reciprocity relatiosis h

One naturally expects that the weak coupling thermodyngisithe first non-trivial contribution (ir\) to
the microscopic thermodynamics. Indeed, it was provenR3[JP4] that if (A0), (A4) and (A5) hold, then for
A € Og andX small enough,

wax+(4) = wsx+(A) +O(N),
wax+(P)) = Nwsx+(®jx) +ON), (1.25)

Ep(wax+) = A?Ep + O(\).

In the next theorem we relafe,;; andL,; and complete the link between the microscopic and the weagliTg
thermodynamics for this class of models.

Theorem 1.16 Assume that (A0), (A1), (A4) and (A5) hold. Then there is 0 such that the functions — L ;
are analytic for|]A| < A and have power expansions

Lakj = > ALy
n=2

Moreover,
9 _
Ly) = Ty;.

Remark 1. It follows immediately from this result, the Green-Kuborfla and Relation (1.24) that

1 0o *Beq . 0o . .
lim )\72—/ dt/ AU Weq (T4 (Pr) T3 () dt :/ Wseq (€ (Dreq ) @ jeq)dt.
A=0 Peq Jo 0 0

If in addition (A6) holds, then we also get

EM”%/wwaﬁ@WMMZA wseq (€ (Breq) P jeq )1,
i.e. the rescaled microscopic flux-flux correlation funo@onverge to the corresponding weak coupling correla-
tion functions.

Remark 2. The relation between the microscopic and the weak coupiegriodynamics is discussed in detail in
the lecture notes [AJPP1] in the context of an exactly sdévgbasi-free model.

The proofs of the results described in this subsection asermtationally different from the proofs of Theo-
rems 1.12 and 1.13 and details can be found in the forthcoreirigw article [JP7].

Theorems 1.14 and 1.15 also hold for the GSFM under the Assongp(A0), (Al), (A4) withx > ~5, and
(A5) for all ge I,,~,. The only parts that need to be modified are Relations (1.20X%&.21). In general, the
constantCy ,, » is replaced by a polynomial in The leading term in the expansion (1.21) is equal to thelateso
value of the real part of the non-zero eigenvalué(%f closest tadRR and in general depends qﬁn For additional
discussion of these points we refer the reader to [JP7].

2 Abstract Green-Kubo formula

In this section we give a new proof of Theorem 1.3 and henceavadeeivation of the abstract Green-Kubo formula.
To motivate the argument, we shall first prove Theorem 1.Jhéndase where the reservoiRs are finite
dimensional. The interested reader should compare thisvagt with the finite dimensional computation given

in the introduction of [JOP1].
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2.1 Finite dimensional case

We shall identify the finite dimensional states with assclalensity matrices and writg( A) = Tr(Aw).
Suppose thaR; is described by the finite dimensional Hilbert spa¢e and the HamiltoniarfZ;. Hence,
0; = B(H;), _ _
T;(A) —_ eltHjAe—ltHj,

andw; = e~%ii /7, whereZ; is the normalization constant. The complete reservoiresyss described by the
Hilbert spaceHr = ®;H; and the HamiltoniarHz = Zj Hj;. Finally, the interacting joint systeid + R is
described by the Hilbert spaéé = Hs ® Hxr and the Hamiltoniaif = Hs + Hir + V. We set

M X,
Hx=H-Y =LH
* Zl Beq
]_
Clearly,0 = B(H) and
7_t (A) _ eitHAefitH,
JE( (A) — eitHerfitHX,
wx = ef*B”qHX/ZX.

Note also that

. d
; =i[H;, V] = _ET Hy)|,_y-

The next four steps complete the proof of Theorem 1.3 in thtefdimensional case.

Step 1.The relationr—*(Hx) = Hx — >_(X;/Beq) fo ;)ds yields that

X

Step 2.Step 1 and the Duhamel formula (see, for example, [BR2], p84€95) yield

wx (T(A)) = wx (4) (1 - ij /0 wX(T—S@j))ds)

X; Bea
#3552 [as [ awextack @) + 0P
eq
Step 3.If Ais centered, thewX(A) = 0 andwx—o(7"(A4)) = wx—o(A) = 0. Hence, Step 2 yields
ﬁeq
wx (T4(A)) — wx—o Z 2 / ds/ duwx (At (775(®,))) + O(|X %), (2.27)
eq
Step 4.Sinceo x—¢ = 7 (recall also thateq = wx=0),
/Buq ﬁuq
i | ds [ duextack / s [ dusno(r (A)7 @)

and (2.27) yields
Beq
Ox,;wx (T |X 0= 5 /ds/ du weq (T )7‘ (®,)).
eq
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2.2 Proof of Theorem 1.3

Throughout this subsection we suppose that (G1) and (GH8) hdhder these assumptions each of the Steps 1-4
can be extended to the abstract system R.
We start with the Step 4. The following result was establisingJOP1] (Lemmas 3.3 and 3.4).

Lemma 2.1 (1) The groupr preserves);Dom (4;).
(2)Forall A € O,

)1(iin0 wx (A) = weq(4).

(3)Forall A€ O andt € R,
lim o (A) = Tt(A).

X—0
We shall also need:
Lemma 2.2 Forall A, B € O and0 < u < (e,

Jim wox (Ao (B) = weg(Ar(B).

Proof. Forj =1,2,...let
BjX = \/Z/e_‘jt20'§((3)dﬁ.
T JR
By the properties of analytic approximations (see Sectiéi3an [BR1]),
lim ||B - Bjx| =0, (2.28)
j‘)OO

and
o¥(Bjx) = \/Z / e I(=1w7 5t (B)dt. (2.29)
™ JR
We write B; = B;x—¢. Relation (2.29) and Lemma 2.1 yield that
lim 0% (Bjx) = 7"(B)),
(2.30)
Lim wx (Ao (Bjx)) = weq(AT™(B;))-
Sincewy is a(ox, feq)-KMS state, the bound (1.1) implies that for All,
lwx (Ao¥ (B)) — wx (Aok (Bjx))| < |AlllB - Bjx|,
and so for allj,
lwx (Ao (B)) — weq(AT™(B))|| < [|A||(IIB — Bix|| + | B - B;|)

+ |wx (A0¥ (Bjx)) — weq(AT™(B;))].
Relations (2.30) imply that for al,

timsup o (A% (B)) — weq(AT" (B)| < 2/ A]||B - B,]|

and (2.28) yields the statemeant.

Lemma 2.2 and the bound _
[wx (Ao’ (772 (@) < APy,
yield the extension of the Step 4 to the abstract systemR.
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Proposition 2.3

Beq Beq
)1(im0 ds/ duwy (Aa / ds/ du weq (T

We now turn to the Step 1. L& be the unitary cocycle such that
TH(A) = Terg (AT},
explicitly

t1 tn—1
Ty=1+) i /dtl/ dty - - / dtp, i (V) - -

n>1

see Proposition 5.4.1 in [BR2].
Lemma 2.4 T, € N;Dom (4;) and

t
§;(T)TF = i/ 75(®,)ds.
0

Proof. SinceV € Dom (§,), one easily shows th@; € Dom (J,) and that

j(T) =) i /dt1/ dty - - /tnldthTO"(V
k

n>1

This formula yields that the functidR > ¢ — §,(I';) € O is continuously differentiable and that

ds;(Ty) _s, dr,
dt dt

To prove relations (2.31), we recall that

ar, . dry . "
= = iryri(V), dtt = —ir(V)I;.
The first relation and (2.32) yield
dé; (T . .
T o, mg(@,) + iTeri(@,).
Hence,
(I
déjd(t t)rf = 10;(T¢) 7 (V)T +iler) (@)1
ary .
—85(D0) - +ir' (@),
and (2.31) followsO
Set
X; ;
Px, = 3 7‘_5(<I>j)ds.
eq

Lett be fixed and let x; be theC*-dynamics generated by
dxt = 0x +i[Px¢, -],

18
7(D5)).
(2.31)
(V).
(2.32)
(2.33)

i.e. oY%, = e“9xt, The next proposition is the extension of the Step 1 to theattsystens + R.
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Proposition 2.5 wx o 7! is a (o x+, Beq)-KMS state orO.

Proof. Let A € N;Dom (4;). RelationI';T; = 1 and Part (1) of Lemma 2.1 yield
6;(7'(A)) = 6;(Terg(A)LT)
= 0;(F)T 7 (A) + 7(3;(A)) + Terg (A)6; (I7),

and
L7 (A)8;(0F) = —7(A)6; (T)T;.

Hence,
5;((A)) = 7'(8;(4)) = [8;(T)T, ' (A)].

This identity and Lemma 2.4 yield
t
TS ) = 85() =1 [ (@), A)ds. (2.3
0
Sincen;Dom (§;) is dense irO, (2.34) implies that for all: € R,

—t

T OU}OTt

=0y, (2.35)

Finally, sincewx is a(ox, feq)-KMS state, (2.35) yields thaix o 7" is a(ox¢, feq)-KMS state.O
We now turn to the extension of the Step 2. Recall {&gt, = max |X;|

Proposition 2.6 Let A € O andt be fixed. Then there is a constarsuch that if

X |+ < 1/(401 Y 1951, (2.36)
J

then

t
wx (1'(4)) — wx (A) (1 - ZXJ‘/ WX(T_S(q)j))dS)
- 0
J
X. [t Beq . )
+) B—J/ ds/ duwX(Ao;g(T*S(@j)»‘ < C|X|2.
j eq J0 0
Proof. Proposition 2.5 and Araki's theory of perturbation of KM&tsts (Theorem 5.44 Part (3) in [BR2]) yield

that if || Px¢|| < 1/28.q, then

Bea _
wx (T'(A)) = wx (A) — /0 ds [wX(AU‘)?(PXt)) — wX(A)wX(PXt)} + R,

where the remainddk can be estimated as

IRII < > (26e)" | Pxel™ | Al (2.37)

n=2
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The obvious estimate "
1Pxell < == > 1111951
ﬂeq j
combined with (2.36) and (2.37) implies
IR < 8 A (2Beqlt] D 1195171 X13
J
and the statement follows!
As in the finite dimensional Part 3, the definition of a cendesbservable and Proposition 2.6 imply

Proposition 2.7 Let A € O be a centered observable and tdie given. Then

X. [t Bea ]
(7 () —wxo(rt () = 0 22 [ s [ dui(4opr (@) + 01XP),

asX — 0.

Propositions 2.3 and 2.7 yield Theorem 1.3.
Remark. The density matrix (2.26) or the corresponding infinite disienal expression (2.33) are the starting
point of Zubarev construction of NESS. In some sense, theyige a way to map thermodynamical perturbations
into mechanical ones.

3 Proof of Theorem 1.11

The proof of Theorem 1.11 is based on techniques and essroffdP1, JP3]. We recall the ingredients we need.
Throughout this section we assume that (A1)-(A3) hold. TINSGepresentation of the algebfhassociated to

the product state;&?) can be explicitly computed [AW]. We will describe it in theugld form of [JP3]. Denote by
e+ the eigenvectors aof, associated to the eigenvalues. SetHs = C? ® C? and define a unit vector ks by

1
Qs =—=(e-®e_+terRey).

V2

Letnrs : Os — B(Hs) be given by
ms(A) =A®I.

The triple(Hs, s, Qs) is the GNS representation 6fs associated tas. We set
Ls=Hs®I—-1R® Hs.

Let F; be the anti-symmetric Fock space ofier= L2(R, ds; $;) and(2; the vacuum vector itF;. We denote
by a;, a; the annihilation and creation operators andgythe number operator afi;. Let £; = dI'(s) be the

second quantization of the operator of multiplicationsbyn h;. To anyf; € b; we associatg; € b; by (1.13).
For X € RM we set

Fix(s) = (e 4 1)*1/2 Fi(s).

Finally, we define a map;x : O; — B(F;) by

mix (@i () = i (fix) = % (ﬁj(ij) + é}*(ij)) :
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The mapr; x uniquely extends to a representatior(®f on the Hilbert spacé;.
We set
Hr = ®§£1]:j7 TRX = ®§£17zj, Qr = ®jj\ile-

The triple(Hz, mrx, Q=) is the GNS representation of the algelita associated to the state; x. Let
H=Hs @ Hr, X = Ts @ TRX, 2=0Qs®0r.

The triple(H, 7x, 2) is the GNS-representation of the algelftassociated to the staté?). Note thatH and{2
do not depend oLX .

The spectral theory of NESS is based on a particular noagdjeiht operator acting of, the adjoint of the
so-calledC-Liouvillean. This operator is defined as follows. L& = 3, £; and

Lo=Ls+ Lr.
Let
Vix =nx(Vj) = 02 ® I ® ¢;(d;x),
Wix =190, ® %(—I)NJ‘ (@ (e ax) - a;(dx) )
2
and

VX:Z‘/}X7 WX:ZWjX-
- ,

J

The adjoint of the”-Liouvillean associated to the trip(&, 7, w(o)) is
Lyx = Lo+ )\(VX + Wx).

This operator is closed ddom (L) and generates a quasi-bounded strongly continuous gitug on’H. The
operatorL, x is characterized by the following two properties:

(i) ForanyA € O and anyt € R, mx (7 (A)) = eltfrxmy (A)e™torx,

(1) L5x1=0.
Thus, forA, B € O we have

WO (7L (A)B) = (mx (A*)Q, e 3% 15 (B)Q), (3.38)

and hence the function

2 [ WwQF(A)B) = dt = i(mx (AN, (2 — Lax) '7x (B)),
0
is analytic in the upper half-plane. The basic strategy BB]Js to show that for appropriaté, B this function

has a meromorphic continuation to a larger half-plane aatlttie behavior of — wg? (t{(A)B) ast — x is
controlled by the poles of this continuation (the resonahe the inverse Laplace transform.

Letp; = id, be the generator of the group of translationsionP; = dI'(p;) its second quantization. Let
U;(0) = e~ 9P =T(e~1%s), § € R, be the second quantization of this group and

Vx(0) =Y Ui (0)VixUs(—0) = Y oo @ T @ (e dx),
i i

1 Nj (z%(a=i0pj5 . \ _ = (a—10D; (5(Xj—Beq)s 5, .
WX(H)sz:Ua‘(ijxUj(—@)sz:f®0w®7§(—1) (%(e Picx) — aj(e 1P (e P )OégX)))-
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Lemma 3.1 There exist > 0 and¢d’ > 0 such that the maps
(Xvo)'_)VX(G)v (X,@)’—)Wx(e),

extend to analytic operator-valued functions Ba x I(¢’) satisfying

sup — ([Vx (O[] + [[Wx (0)]]) < oo. (3.39)
XeD.,0eI(5")
In particular, one has .
sup He‘w*x H < 0. (3.40)
XeD,,|t|<1

Proof. The proof of the first part of this result is the same as the fwbbemma 4.1 and Proposition 4.4 (iii) in
[JP1]. The only additional fact needed is that for same 0 andu > 0 the function

R xR 3 (2,8) — w(z,s) = (e 4+ 1)" /2,
has an analytic continuation to the region= {z : |z — Beq| < €} x I(u) such that

sup |w(z,0)| < oo.
(2,0)€0

SinceL is self-adjoint, the bound (3.40) is a simple consequen¢8.8D).0
Let N = Zj N;. ForX € D.andf € I(¢') we set

Lo(0) = Lo+ ON,

Lix(0) = Lo(0) + A(Vx (0) + Wx (0)).

The family of operator€,x (), X € D.,0 € 1(¢'), is a complex deformation of the family of operatdtsx,

X € L. Note thatlox (0) = Lo(0) is a normal operator which does not depend®nThe spectrum of((6)
consists of two simple eigenvalu¢®, a doubly degenerate eigenvaluend a sequence of linds + inIm 6 |z €
R,n > 1}. The nextlemma is a consequence of Lemma 3.1 and regularipation theory and is deduced in the
same way as the corresponding results in [JP1, JP3].

Proposition 3.2 There existA > 0, ¢ > 0 and0 < p < ¢’ such that for]\] < A, —p < Imé < —3u/4 and
X € D, the spectrum of , x () is contained in the set

{z|Imz > —p/8} U{z|Imz < —p/2}.

The spectrum inside the half-plafie| Im z > —p/8} is discrete and, foh # 0, consists of four simple eigenval-
uesE; x which do not depend ahand are bounded analytic functions©@f X) € {A ||| < A} x D.. Moreover,
Eoxx =0andImE;yx < 0forj =1,2,3, X € D, and0 < |A| < A. The corresponding eigenprojections
P;»x (6) are bounded analytic functions of the variab(@s X, 6).

With regard to the results of [JP1, JP3], the only part of Bsiton 3.2 that requires a comment are the relations
FEoxx =0andlm Ej,x < 0forj = 1,2, 3, whichhold forX € D.and0 < |A| < A. Regular perturbation theory
and an explicit Fermi Golden Rule computation yield thatelgenvaluedZ;, x, j = 2, 3, which are respectively
near+2, satisfy

% 16 (s)l3
EQ)\X2+?Z< 17THOZJ( HYJ 7PV/ j 55]d +>\4R2(>\ X),

J

» 16(5) 15,
Em:u?z(—maj( M5, PV [ TR | + X R X),

J
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wherePV stands for Cauchy’s principal value and the functid)$\, X ), j = 2, 3, are bounded and analytic for
X € D, and|\| < A. Clearly, by choosings small enough, we have thh E;,x < 0forj = 2,3, X € D,
and0 < |A\| < A. The eigenvalue&;»x, j = 0, 1, which are neaf, are the eigenvalues of2ax 2-matrix X x
which has the form

Yax = M2Eo(X) + MR\, X),

where the matrix-valued functioR()\, X) is analytic and bounded fo¥ € D, and|\| < A and

1 eﬁj —e BJ
= 717rz v (2 Hﬁj 3 coshi 3, [eg] 0B } Bj = Beq — Xj. (3.41)

The eigenvalues df»(X) are0 and—ir 3, ||aj(2)||%j, and we conclude that far small enough the eigenvalues
Eg)x and E1,x are analytic functions, thatyyx # Eiax for A # 0, and thatim F1,x < 0 for X € D,
0 < |A| < A. By construction of the”-Liouvillean, Eyyx = 0 for X real. Hence, by analyticityy,x = 0 for
X € D.and|\| < A.
The next technical result we need is:

Proposition 3.3 There existA > 0, ¢ > 0, andx > 0 such that for all|A| < A, all 8 in the strip—p < Im6 <
—3u/4 and all ¥ € H, the functions defined by

Fi(z) = sup [[(z = Lax(0) "¢, F_(z) = sup [[(Z— Lax(0)")7" 2],

XeD. XeD.
satisfy
N 167 9
|Fi (e £ i) Pde < — |2, (3.42)
R 12
and
‘ 1‘1m Fyi(x+1in) =0. (3.43)

forall || < /4.
Proof. We only deal withF', (z), the other case is similar. We start with e, andy as in Proposition 3.2 and set
Qu = (R+in/4)U(R —in/4)U{z € C||Rez| > 2+ /4, [Imz| < p/4}.
SinceLy(0) is normal and digt),,, o(Lo(0))) > p/4 forIm 6 < —3p/4, the spectral theorem yields that
4

sup Iz = Lo(@) ™M < —. (3.44)
2€Q,,Im < —3u/4 w
The estimate )
[ e iua = o) wan < UL (3.45)
R
holds for all¥ € H, and the dominated convergence theorem yields
lim Il(z — Lo(0))"1¥| = 0. (3.46)

|Z|_’007Z6Qu

We further impose that andy satisfy

sup [V (8) + Wx(0)] < 25

XeD.,—u<Im6<0
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The resolvent identity yields
(z— Lax(0)™' = G(z,\, X,0)(z — Lo(0))7,

where )
G =G(2,\ X,0) = (I = Mz = Lo(0) ™ (Vi (6) + Wx ()~

The estimate (3.44) yields
sup |G| < 2,

where the supremum is taken ovee Q,,, |\ < A, X € D, andd in the strip—u < Im 6 < —3u/4. Hence, for

Z G Q 1
ﬂ sup (= — Lax (6)) 0] < 21|(= — £o(6) 1]
XeD.

and (3.45), (3.46) yield (3.42), (3.43).
Assumption (A2) ensures that theresis- 0 such that the operators

M
VXu)=> 0, ®I®

j=1

d*(e—u(l—xj/ﬁeq)sdjx) + dj(eu(l—Xj/ﬁeq)sde)) ,

1
7 @

acting onH are well-defined continuous functions(©f, ) € I x [0, B.q] satisfying

sup |V (2, u)|| < oc.
(X,u)€le x[0,8eq]
If we set
Gax =1+ Z(*ﬂeq)"/ AV (X, Beqtn) + mx (Hs)) - - AV (X, Begt1) + mx (Hs))dty - - - dt,,
n>1 0<t, <<t <1

then the Araki perturbation theory [Ar, BR2, DJP] yieldstttiee reference state, x can be written as

(2, 7x(A)Gx )
(Q,6,x0Q)

Wirx (A) = (347)
Consider the unitary group .
U(G) — e—10 > Pj,

onH.

Proposition 3.4 There exist > 0 andx > 0 such that:
(1) The function
I. xR> (X,@) — U(@)gAxQ c H,

extends to a bounded analyft¢-valued function in the regio®. x I(u) for all A € R. We denote this analytic
extension by, xg.
(2) For all A € O the function

I. xR>(X,0) —» U@)rx(A)Q € H,

extend to bounded analyti-valued functions in the regioP. x I(x). We denote this analytic extensions by
U axg-
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Proof. We sketch the proof of (1). The proof of (2) is similar and sienp
For (X, u,0) € I, x [0, Beq] x R we set

Vo(X,u) = U(O)V (X, u)U(0)*

M

1 . .

= Z 0, I ® % (d;f (e~10Ps e*u(lij/ﬁcq)sdjx) + d]-(ef‘epje“(lij/ﬁcq)sdjx)) i
j=1

SinceU (0)Q2 = Q, we can write/ (0) G x Q2 = Gaxo2 WheregG, xy is obtained by replacing (X, u) by Vp(X,

in the definition ofG, x . It is easy to see for any> 0, u > 0 andp > 0 the entire analytic functiop(u, z, s)

ew(1-2/Bea)s gatisfies

u)

g(u)z)s)

Stp cosh(ls)

|l <(14p)Beq;|z| <6 [Im s|<p
wherel = (1 + p)(€ + Beq)- Letr > [eq be as in Assumption (A2). Choogeande such that < x. Since by
(A2) one has:osh(ks)a;x € H?(9), it follows thatVy (X, u) has a bounded analytic extension to the set

)

{(X,u,0)| X € De,u € C,|u] < (1+ p)Beq, |Imb| < u}.

This yields the statement

Proof of Theorem 1.11. We chooseA > 0, ¢ > 0, andp > 0 sufficiently small so that the statements in
Propositions 3.2, 3.3 and 3.4 hold. Combining (3.38) andifBwe can write

(mx (A%)Q, e tErx Gy Q)
(2,G:x9)

wax (T3(4)) = (3.48)

Since forX € I,
(2,6,xQ) = He*ﬁcq(zj(1*Xj/ﬁcq)£j+7fx(/\V+H5))/2QH2 >0,

by Proposition 3.4 (and by possibly takingmaller), the functiodX — (£, G, x 2) extends to an analytic function
in the regionD, such that
inf |(Q,gAxQ)| > 0.
XeD.

Thus, it suffices to consider the numerator in (3.48).koe > 0 we set

Dx(z) = i(ﬁx(A*)Q, (Z - ﬁAx)_lgAxQ).
For|A\| <A, X e, and—p < Im6 < —3u/4 one has

DX(Z) = i(\I]A*X§7 (z — [:Ax(e))_lQAX‘g),

which, by Proposition 3.2, has a meromorphic extensionédif-plane{lm z > —u/2}. Fora > 0 denote by
T, the boundary of the rectangle with vertices + ix/4. For large enough one has

dz

3
Dx(t) = 7€ eiitZDX(Z)% = 1) (W4 x5 Piax (0)2xxp)e 2%
a =0

Denote byS,, the part of the above contour integral corresponding to weetertical sides of’',,. It follows
from the dominated convergence theorem and Propositiothdt8m,, .., S, = 0. Since by Proposition 3.3 the
functionz — Dy (x +iu/4) isin L?(R, dx) it follows from the Plancherel theorem that there existsqusace
«,, such that

On . . d .
lim e HEH/N D (2 + m/4)§ = (rx (A")Q, e X G\ Q),

n
—a
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for Lebesgue almost all> 0. Integration by parts and (3.43) yield that for- 0

an i dz o . dz
: —it(x—ip/4) s _ —it(z—ip/4) P s
hrrln . e Dx(x 1u/4)—2ﬂ_ [m e D (x 1u/4)—2mt,

whereD’, (z) denotes the derivative dPx (z) with respect toz. Combining these facts we obtain the identity

3
(7x (@), ¢ "X GAx Q) =Y (W 1. 45, Piax (0)Qxp)e HFinx
7=0

(3.49)

emht/4 oo . -2
_ / e (W 4o xgs (7 — ip/4 = Lax (0)) " Qaxg)dz,

2t J_

which holds for Lebesgue for almost alt> 0. By Proposition 3.3 the integrand on the right hand side ofqB
isin LY(R, dz). Hence, both side of this identity are continuous functiohsand (3.49) holds for all > 0. By
Propositions 3.2 and 3.4 both terms on the right hand sidg.49] have analytic extensionsi € D, which are
bounded uniformly inX and¢ > 1. The bound (3.40) and Proposition 3.4 yield that

sup ’(\I/A*XOz e itEAx Q/\XO)‘ < 00,
XeDe,tel0,1]

and the result follows

4 Proof of Theorem 1.13

In Part (1) of Theorem 1.12 we have established that for givemd A € O, the functionX — wyx(A) is
analytic near zero. In fact, a stronger result holds.

Theorem 4.1 Assume that (A1)-(A3) hold and léte O. Then there is\ > 0 ande > 0 such that the maps
(A, X) = wix+(4),
extend to analytic functions o\ | |A| < A} x D..
Proof. By the construction of the NESS, x 4,
wax+(A) = (€, Poxx (O)U(0)7x (A)9),

where—p < Im 6 < —3p/4 and Poyx (0) andy are as in Proposition 3.2. The analyticity Bfyx (¢) and Part
(2) of Proposition 3.4 yield the statement.

Theorem 4.1 yields that the function— L; is analytic near zero. To compute the leading term in its powe
expansion we argue as follows.
By the relation (1.25) established in [JP3, JP4],
wrx+(Pr) = Nwsx+(Prx) + O(N?),

where the remainder is uniform iki. Hence, (1.17) holds and

Ll(fj) = Ox; wsx+@kX)‘X:o'
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Let D C Os be the set of observables which are diagonal in the eigempasje_} of Hs. The generator& x
andK x, preserveD. The vector spacP is naturally identified withiC2. After this identification K x = i¥2(X)*,
whereX,(X) is given by (3.41), and

Kx, =

@I, [ o e
k 2 cosh 3y,

e B

These relations between the generatirg, Kx, and the Fermi Golden Rule for the resonances of Ghe
Liouvillean are quite general—for the proofs and additionformation we refer the reader to [DJ1]. Hence,

el [ o,

= 1
(I)kX - KXk |:1:| - COShﬂk 7efﬁ)€

The density matrix describings x + (which we denote by the same letter) is also diagonal in te&sba, , e} and
the vector inC? associated to its diagonal elements is the eigenvecttir6K') corresponding to the eigenvalue

0. Hence, 5
i(2)||F e
L[5 los@le
B o112 - 2 cosh 3;
WsSx+ = ;Haz( ) ) ||ai(2)||%ieﬁi )
2 cosh 3;
and we get
— [l (2)]2 sinh(83; — Bk)
Drx) = (2))12 L 13, ——— 4.
wsx+(Prx) W<;|az( )|m> cosh 3 Z” cosh 3, (4.50)
It follows that forj # k,
2 2
o _ o @13, @13,
L7 = 0x;wsx+(Prx)|y_g = —
ki S R YoM LS SN
Since)", wsx+(®rx) = 0 we can conclude thdtﬁ) == ks L,(fj).
Finally, we remark that the formula (4.50) yields that
-1
low 2115, oy ()15,
Q; - . — ;) sinh (B — 55). 4.51
<Z| |m> kZ conh By cosn g, (O = By) sinh(Be — ) (4.51)

Clearly,Ep > 0 whenever;’s are not all equal.

5 Proofs of Theorems 1.14 and 1.15.

In this section we use the notational conventions of Sulseé&t5.

Proof of Theorem 1.14 The only part that requires a proof is (3). We only sketchahgument. Letﬁo =
(B0, - - - Baro) be a given pointand, = {3 € CM | |5 — 3| < €}. Arguing as in the proof of Lemma 3.1 one
shows that there exists> 0 andd’ > 0 such that such that the maps

(5,0) = V5(0),  (B,0) — W5(0),

extend to analytic operator-valued functions@nx I(¢") satisfying

s (VGO + IW50)]) < oo

Be0.,0€1(5)
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This implies that Proposition 3.2 holds with. replaced withO. (of course, the indeX is also replaced by
ﬁ). Note thatA depends on the. Complementing the construction in [JP3] with argumenegus the proof of
Proposition 3.4 one easily shows that there exists a nomsegealgebral, of O such that:
(a) Oy does not depend on the choiceﬁ@f
(b) ; € Op;
(c) forall A € Oy the functions .

(8,0) — U(G)wg(A)Q eH,

extend to bounded analyti¢-valued functions in the regio@. x I(u). The representation

w34 (A) = (2 By 5(O)U(0)75(A)),

where—pu < Im6 < —3u/4 and POM;(G) andp are as in the analog of Proposition 3.2, yields the following
statement: For any givefy, € L, ., there exists\ ande such that the function

-,

()‘a ﬁ) = Whgt (A)7

extends to an analytic functions ¢t | |A\| < A} x O, forall A € Oy. This fact and the compactnessiof ,,
yield the statementd

Proof of Theorem 1.15 By Remark 1 after Theorem 1.15, it suffices to establish@arBy Remark 2, it suffices
to show that there exists> 0 andA > 0 such that fo < [A\| < A

Ep(w,5,) > 0,

for 5 € I,,., satisfyingd < 2o 1B = Byl <6
Let ﬁo = (Bo, - - -, Bo) be a given point on the diagonal bf, ,,,. We set

O ={BeCM| Y 18— Bol <6},
i

andl; = Os; N RM. One can choosa andé such that(\, ) — Ep(w
A} x O5. We set

A\d4+) s an analytic function of|A| <

Y= (82— P1,...,0mu — B1).
Setting41 = Beq ONe deduces from the formula (4.51) and the Taylor serieEﬁnﬁwmjL) (use thatEp(wAE+)

anddg, Ep(w, 5, ) vanish when alB; are equal) that there existd/ — 1) x (M — 1)-matrix valued functionst ()

-,

andB(), ) such that:

(a)A(E) is analytic ford € O and strictly positive fof real;

(b) B(), §) is analytic and bounded ofjA| < A} x O;

(c) - -

By choosingA small enough we can ensure that for@ke 15 and|\| < A,

-, -,

(Yz, A(B)Y5) > [A(Yz, B(A, 8))Y5)]-

This yields thatip(w, 7, ) > 0for0 < [A| <A andf e I; satisfyingY; # 0. This local result combined with an
obvious compactness argument yields the statement.
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