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Abstract

A coefficient inverse problem for the non-stationary single-speed transport equation for
t ∈ 0,T with the lateral boundary data and initial condition att = 0 is considered. Global
uniqueness result is obtained via the method of Carleman estimates.

Introduction
The transport equation is used to model a variety of processes of particle transport, such as

neutron diffusion, scattering of light in the atmosphere, propagation ofγ −rays in scattering media,
etc. (see, e.g., the book of Case and Zweifel [6]). Coefficient inverse problems (CIPs) for the
transport equation are the problems of determining of the absorption coefficient, angular density of
sources or scattering indicatrix. from an extra boundary data. They have a variety of applications in
optical tomography, theory of nuclear reactors, etc. (see, e.g., the book of Anikonov, Kovtanyuk and
Prokhorov [1] and references therein). This paper addresses the question of the globaluniqueness for
a CIP for the non-stationary single-speed transport equation with the extra lateral boundary data.
Stability, uniqueness and existence results and references to such resultsfor CIPs for the stationary
transport equation can be found, e. e.g., in [1] and in the book of Romanov [25]. Uniqueness and
existence results for CIPs for the non-stationary transport equation were obtained in the works of
Prilepko and Ivankov [22], [23] and [24]. The results of [22] and [23] were obtained for special
forms of the unknown coefficient using the overdetermination at a point. Also, uniquenessand
existence results were obtained for an inverse problem, where complete lateral boundary data is not
present but both initial and final conditions (att = T) are given; see [24]. For some recent
publications on overdetermined inverse problems for the transport equation see Tamasan [27] and
Stefanov [26]. A derivation of the transport equation for the non-stationary case can be found, for
example, in [6].

The proof of the main result of this paper is based on a Carleman estimate, obtained by Klibanov
and Pamyatnykh [17]. Traditionally, Carleman estimates have been used for proofs of stability and
uniqueness results for non-standard Cauchy problems for PDEs. They were first introduced by
Carleman in 1939 [5], also see, e.g., books of Hörmander [7], Klibanov and Timonov [19] and
Lavrent’ev, Romanov and Shishatskii [21]. Bukhgeim and Klibanov [4], [13] have introduced the
tool of Carleman estimates in the field of CIPs for proofs of global uniqueness andstability results
for CIPs, also, see Klibanov [14], [15], and Klibanov and Timonov [19], [20]. This methodworks for
CIPs with single measurement data for the time dependent Partial Differential Equations (PDEs), as
long as the initial condition is not vanishing and the Carleman estimate holds for the corresponding
differential operator. Recently, Klibanov and Timonov have extended the originalidea of [4] and
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[13] - [15] for constructing of a globally convergent numerical method for CIPs, including the case
when the initial condition is theδ-function; see [19] for details and more references. A variety of
works with uniqueness and stability results for coefficient inverse problems were published, which
are based on the idea of [4] and [13]-[15], see, for example, Bellassoued [2], [3],Imanuvilov and
Yamamoto [9], [10] and [11] for the case of hyperbolic equations. The Lipschitz stability result for
the CIP for the non-stationary single-speed transport equation fort ∈ −T,T with the complete
lateral boundary data and initial condition att = 0 followed by the corresponding uniqueness result
was recently obtained by the authors [18].

A natural question arises:Is it possible to consider the CIP for the non-stationary single-speed
transport equation t ∈ 0,T rather than for t ∈ −T,T and obtain at least a global uniqueness
result for this case, which would be similar to [18] ?

Since there are no other techniques so far, except of one of [4], [13]-[15], [19], which would
enable one to prove global uniqueness for the multi-dimensional CIPs with the single measurement
data, we have no choice but to use that method. However, this method doesn’t necessarily allow one
to consider the problem in0,T with the initial data att = 0. The obstacle is due to the presence
of an integral in the Carleman estimate, depending on the divergence termV, where the integration is
carried out overt = 0 (see Lemma 1). In the case of hyperbolic inverse problems this integral is
zero due to the Carleman estimate for the principal part of the hyperbolic operator, see Theorem
2.2.4 in [19]. This is basically due to the fact that the hyperbolic operator contains thederivative of
the even order (2) with respect tot. Thus, it is possible to consider hyperbolic inverse problems in0,T. However, in the Carleman estimates for parabolic and transport equations such integrals are
not zero. Thus, these Carleman estimates do not allow to consider the correspondinginverse
problems in0,T, at least directly.

Another method to try is to consider the forward problem in0,T, construct an extension of its
solution into−T,0 and consider the inverse problem simultaneously in0,T and−T,0. So that
the integrals overt = 0, arising from the divergent termV in both cases, would cancel out. In
order to use the same Carleman estimate for the problem in0,T and−T,0, the principal part of
the differential operator should not change in such an extension.

It’s quite easy to find such an extension for the hyperbolic inverse problem. For example,
considering the equation

utt = Δu + axu, ux,0 = fx, utx,0 = 0,

we see, that the extension, even with respect tot, leaves the form of the operator unchanged in−T,0. However, this is not the case for parabolic problems. Indeed, considering the simple
parabolic equation

ut = Δu + axu, ux,0 = fx,
and trying both even and odd extension of it’s solutionux, t into −T,0 we see that the operator
changes its form in−T,0 due to the presence of the first derivative with respect tot. Thus,
parabolic inverse problems are usually considered in−T,T instead of0,T [8], [13]-[15], [19].
Although there are some uniqueness results for parabolic inverse problems in0,T, but they are
obtained via reducing a parabolic inverse problem to a hyperbolic one, using an analog ofthe inverse
Laplace transform, see [14], [15] and subsection 3.3.1 in [19].

Our main idea is that it is possible to construct a proper extension for the non-stationary
transport equation due to the presence of the parameterv, that represents the vector of particle
velocity. To illustrate our idea consider the simplified form of the transportequation

ut
+x, t,v + v,∇u+x, t,v + ax,vu+x, t,v = 0,     (1.1)
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in Rn × −T,0 × Sn, Sn = v ∈ Rn : |v| = 1. Consider the following extension

u−x, t,v = u+x,−t,−v ∀x, t,v ∈ Rn × −T,0 × Sn.

The equation (1.1) becomes

ut
−x, t,v + v,∇u−x, t,v − ax,−vu−x, t,v = 0, in Rn × −T,0 × Sn.

Hence, the principal part of the differential operator stays the same.
When trying to obtain the Lipschitz stability for the Inverse Problem formulated below, the

authors have discovered that quite cumbersome conditions need to be imposed. Thus, they have
decided to limit the scope of this paper to the topic of uniqueness only. In section 2 themain result
(Theorem 1) is formulated, and it is proven in section 3.

Statement of the main result

Denote Ω = x ∈ Rn : |x| < R, Sn = v ∈ Rn : |v| = 1,

H = Ω × Sn × −T,T, Γ = ∂Ω × Sn × −T,T, Z = Ω × Sn,

H+ = Ω × Sn × 0,T, Γ+ = ∂Ω × Sn × 0,T,
H− = Ω × Sn × −T,0, Γ− = ∂Ω × Sn × −T,0,

so that

H = H+ ∪ H− and Γ = Γ+ ∪ Γ−.
Also, denote

C
kH = s ∈ CkH : Dx,t

α sx, t,v ∈ CH, |α| ≤ k
The transport equation in the domainH+ has the form [6]

ut + v,∇u + ax,vu +
Sn

∫ gx, t,v,μux, t,μdσμ = Fx, t,v,     (2.1)

wherev ∈ Sn is a unit vector of the particle velocity,ux, t,v ∈ C
2H+ is the density of particle

flow, ax,v is an absorption coefficient,Fx, t,v is the angular density of sources,gx, t,v,μ is a
scattering indicatrix., andv,∇u denotes the scalar product of two vectorsv and∇u.

Consider the following boundary condition

ux, t,v = px, t,v,     (2.2)

for x, t,v ∈ x, t,v : |x| = R, t ∈ 0,T, v ∈ Sn, nx,v < 0.
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Herenx,v is the scalar product of the outer unit normal vectornx to the surface∂Ω and the
direction of the velocityv. Hence, only incoming radiation is given at the boundary in this case.

Equation (2.1) with the boundary condition (2.2) and the initial condition att = 0

ux,0,v = fx,v, ∀x,v ∈ Z,     (2.3)

form the classical forward problem for the transport equation. Uniqueness, existence and stability
results for this problem are well known, see, e. g., Prilepko and Ivankov [22].

Suppose now that the absorption coefficientax,v is unknown, but the following additional
boundary condition is given:

ux, t,v = qx, t,v,
for x, t,v ∈ x, t,v : |x| = R, t ∈ 0,T, v ∈ Sn, nx,v ≥ 0.

The functionqx, t,v describes the outgoing radiation at the boundary.
Remark 1. When proving the uniqueness Theorem 1 for our inverse problem, we naturally

assume the existence of two solutionsa1x,ν anda2x,ν of this problem and then show that
a1x,ν = a2x,ν. Therefore, we also assume the existence of corresponding solutionsu1x, t,ν
andu2x, t,ν of the forward problem, which, in particular satisfy the natural compatibility
conditions between boundary and initial data.

Introduce the functionγx, t,vγx, t,v = px, t,v,
qx, t,v, if nx,v < 0,

if nx,v ≥ 0.

Hence,

u|Γ+ = γx, t,v, ∀x, t,v ∈ ∂Ω × 0,T × Sn.     (2.4)

Thus, we obtain the following coefficient inverse problem for the non-stationary transport equation.
Inverse Problem. Given the initial condition (2.3) and the lateral boundary data (2.4), determine

the coefficientax,v of the equation (2.1).
Theorem 1 is the main result of this paper.
Theorem 1. Suppose that derivative ∂tg exists in H+ × Sn and ||∂t

kg||CH+×Sn ≤ r1 for k = 0,1,
where r1 is a positive constant. Let |fx,v| > r2, wherer2 = const > 0. Assume that there exist two
pairs of functions a1,u1 and a2,u2 satisfying (2.1), (2.3), (2.4)and such that

a1,a2 ∈ CZ andui,uit,uitt,∇ui,∇uit ∈ CH+, i = 1,2.

Suppose also that aifx,ν2 = aifx,−ν2, i = 1,2.     (2.5)

Let ‖uit‖C H+ ≤ r3, where r3 = const > 0. Then there exists a number T0 = T0R,r2,r3 > R such

that if T > T0, then a1 = a2 in Z and u1 = u2 in H+. If the function u2x, t,v ≠ 0 in H+, then it is

sufficient to have T > R.
Remark 2. In particular, the condition (2.5) is satisfied if the functionsaix,v, i = 1,2 and
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fx,v satisfy one of the following pairs of relations:

aix,v = aix,−v and fx,v = fx,−v,
or

aix,v = aix,−v and fx,v = −fx,−v,
or

aix,v = −aix,−v and fx,v = fx,−v,
or

aix,v = −aix,−v and fx,v = −fx,−v.
Remark 3. The uniqueness for the Inverse Problem considered fort ∈ −T,T with initial

condition given att = 0, though obtained as a corollary of the Lipschitz stability in [18], was
obtained under stronger requirements for the differentiability of the coefficients of the transport
equation (2.1), initial and boundary data, then the requirements of the Theorem 1. Note, that the
proof of the Theorem 1 is valid for the case whent ∈ −T,T and the initial data is given att = 0,
thus the assumptions of the Theorem 1, being naturally extended to the case oft ∈ −T,T, are
sufficient for the global uniqueness of the Inverse Problem considered fort ∈ −T,T.

Let

L0u = ut + v,∇u = ut +
i=1

n∑ v iui,

whereui ≡ ∂u/∂x i. Introduce the functionψx, t = |x|2 − ηt2, η = const ∈ 0,1.
Let c = const > 0. Denote

Gc = x, t : |x|2 − ηt2 > c2 and |x| < R.

Introduce the Carleman Weight Function (CWF) as

Cx, t = expλψx, t.
Lemma 1. Choose the number η such that η ∈ 0,1 and T > R/ η . Also, choose the constant

c > 0 such that Gc ⊂ Ω × −T,T. Then there exist positive constants λ0 = λ0Gc and
M = MGc, depending only on the domain Gc, such that the following pointwise Carleman
estimate holds in Gc × Sn for all functions ux, t,v ∈ C1Gc × CSn and for all λ ≥ λ0GcL0u2C2 ≥ 2λ1 − ηu2C2 + ∇ ⋅ U + V t,

where the vector function U,V satisfies the estimate
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|U,V| ≤ Mλu2C2,     (2.6)

and

Vx, t,v = 2ληt − v,xu2C2.     (2.7)

The proof of this lemma can be found in [17]. The following lemma provides an estimate from

the above for an integral containing the CWF.
Lemma 2. For all functions s ∈ CGc and for all λ ≥ 1, the following estimate holds

Gc

∫ t

0

∫ sx,τdτ 2

C2x, tdxdt ≤ 1λη ⋅
Gc

∫ s2C2x, tdxdt.

See Section 3.1 in [19] for the proof.

Lemma 3. Let T > R. Then for any c ∈ 0,R there exists a η0 = η0R,T,c ∈ 0,1 such that

Gc ⊂ Ω × −T,T for all η ∈ η0R,T,c,1.
Proof. By the definition of the setGc

Gc ⊂ Ω × −T,T ⇔ ∂Ωmax ψx,T ≤ c2.,

i.e. when

R2 − ηT2 ≤ c2,

which leads to the following inequality η ≥ η0 := R2 − c2

T2 .

Sincec ∈ 0,R andR < T thenη0 ∈ 0,1.□
Proof of Theorem 1

Suppose that there exist two solutions of the Inverse Problem,a1,u1 anda2,u2. Denotea = a1 − a2 and u = u1 − u2.     (3.1)

From relations (2.1), (2.3), (2.4) and (3.1), noticing thata1u1 − a2u2 = a1
u + au2, we obtainu t + v,∇u + a1x,vu +

Sn

∫ gx, t,v,μux, t,μdσμ = −au2,     (3.2)ux,0,v = 0, ∀x,v ∈ Z,     (3.3)
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u|Γ+ = 0.     (3.4)

Denote u+x, t,v = ux, t,v, in H+,
Hence, (3.2)-(3.4) becomeu t

+ + v,∇u+ + a1x,vu+ +
Sn

∫ gx, t,v,μu+x, t,μdσμ = −au2,     (3.5)u+x,0,v = 0, ∀x,v ∈ Z,     (3.6)u+|Γ+ = 0.

To apply the Carleman estimate of Lemma 1, we need to construct such an extensionu−x, t,v
of the functionu+x, t,v into the domainH−, that the principal part of the differential operator of the
equation for the functionu−x, t,v in H− would be the same as the one foru+x, t,v.

Set u−x, t,v := u+x,−t,−v ∀x, t,v ∈ H−.     (3.7a)

Hence, u t
−x, t,v = −u t

+x,−t,−v ∀x, t,v ∈ H−.     (3.7b)

Also, denote

u2
+x, t,v := u2x, t,v ∀x, t,v ∈ H+

and

u2
−x, t,v := u2x,−t,−v ∀x, t,v ∈ H−.

In the integral term in (3.2) change variablesμ → −μ and rewrite (3.2) in the formu t
+x, t,v + ν,∇u+x, t,v + a1x,νu+x, t,v +

Sn

∫ gx, t,v,−μu+x, t,−μdσμ= −ax,νu2x, t,v.
Next, replace in this equationν with −ν. We obtainu t

+x, t,−v − ν,∇u+x, t,−v + a1x,−νu+x, t,−v +
Sn

∫ gx, t,−v,−μu+x, t,−μdσμ= −ax,−νu2x, t,−v.
Now substitute−t for t assuming thatt < 0,
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u t
+x,−t,−v − ν,∇u+x,−t,−v + a1x,−νu+x,−t,−v +

Sn

∫ gx,−t,−v,−μu+x,−t,−μdσμ= −ax,−νu2x,−t,−v.
By (3.7a,b) we obtain inH−u t

−x, t,v + v,∇u−x, t,v − a1x,−vu−x, t,v −     (3.8)−
Sn

∫ gx,−t,−v,−μu−x, t,μdσμ = ax,−vu2x,−t,−v.
Although the non-principal part of the operator for the functionu− is different from the one for

the functionu+, but this doesn’t affect the method of Carleman estimates. This is because the
Carleman estimate depends only on the principal part of the differential operator. Also, by (3.6),u−x,0,v = u+x,0,−v = 0 ∀x,v ∈ Ω × Sn.     (3.9)

Thus, we have constructed a continuous functionux, t,v = u+x, t,vu−x, t,v in H+,
in H−.

Also, note that ux,0,v = 0 and u|Γ = 0.

Since 0< r2 ≤ |fx,v| in Z, there exists a small number ∈ 0,R, such that

u2x, t,v ≠ 0, ∀x, t,v ∈ H+,
whereH+ = Ω × 0, × Sn.

Thus, we can rewrite (3.5) as− a = u2
−1 u t

+ + v,∇u+ + a1x,vu+ +
Sn

∫ gx, t,v,μu+x, t,μdσμ ,     (3.10)

in H+. Since the functionax,v is independent ont, we can eliminatea from the equation (3.10) by
differentiating this equation with respect tot. Thus, denoting

k+x, t,v = u2t
+

u2
+ x, t,v,     (3.11)

we obtain
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u tt
+ + v,∇u t

+ + a1x,vu t
+ +

Sn

∫ gt
u+ + gt

u t
+dσμ =

k+x, t,v u t
+ + v,∇u+ + a1x,vu+ +

Sn

∫ gx, t,v,μu+x, t,μdσμ .     3.12

Denote

w+x, t,v = u t
+ − k+u+, in H+.     (3.13)

Hence (3.12) becomes

wt
+ + v,∇w+ = −k t

+u+ − v,∇k+u+ − a1x,vw+ −     (3.14)−
Sn

∫ gw+dσμ + k+
Sn

∫ gu+dσμ −
Sn

∫ gt
u+dσμ +

Sn

∫ gu+dσμ.

Since u+x, t,v = t

0

∫ Nx, t,τ,vw+x,τ,vdτ,     (3.15)

where

N+x, t,τ,v = u2
+x, t,v

u2
+x,τ,v .

Turning equation (3.14) into inequality, we obtain

|wt
+ + v,∇w+| ≤     (3.16)≤ K |w+| + t

0

∫ |w+x,τ,v|dτ +
Sn

∫ |w+|dσμ +
Sn

∫ t

0

∫ |w+x,τ,v|dτdσμ .

Let

c2 = R2 − η2,     (3.17)

consider the setGc
+, where

Gc
+ := Gc ∩ t > 0 = |x|2 − ηt2 > R2 − η2 ∩ x, t : |x| < R, t > 0,

(see Fig. 1.).
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Fig. 1. 1-D schematic representation of the domainsGc
+ andGc

−.
Also. denotePc

+ = Gc
+ × Sn. Clearly,

Pc
+ ⊂ H+.

Multiplying both parts of the inequality (3.16) by the CWF, squaring both sides and integrating over
Pc
+, we obtain

Pc
+∫ |wt

+ + v,∇w+|2C2dh ≤
≤ K

Pc
+∫ |w+| + t

0

∫ |w+x,τ,v|dτ +
Sn

∫ |w+|dσμ +
Sn

∫ t

0

∫ |w+x,τ,v|dτdσμ 2

C2dh,

wheredh = dxdσvdt. Here and below in this proofK denotes different positive constants depending
on numbersr1,r2,r3, and norms‖a1‖C Z ,‖u2t‖C H+ ,‖∇u2‖C H+ .

We obtain
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Pc
+∫ |wt

+ + v,∇w+|2C2dh ≤     (3.18)

≤ K

Pc
+∫ |w+|2 + t

0

∫ |w+x,τ,v|dτ 2

C2dh +
+ K

Pc
+∫ Sn

∫ |w+|2dσμ +
Sn

∫ t

0

∫ |w+x,τ,v|dτ 2

dσμ C2dh.

Noticing that for any functionsx, t,v ∈ CH+
Pc
+∫ Sn

∫ s2dσμ C2dh = A ⋅
Pc
+∫ s2C2dh,

whereA is the area of the unit sphereSn, we remove the inner integrals overSn in (3.18). Hence,
(3.18) becomes

Pc
+∫ |wt

+ + v,∇w+|2C2dh ≤ K

Pc
+∫ |w+|2 + t

0

∫ |w+x,τ,v|dτ 2

C2dh.

Applying the Carleman estimate of Lemma 1, we obtain

2λ1 − η
Pc
+∫ |w+|2C2dh +

Pc
+∫ ∇ ⋅ U1 + V1tdh ≤

≤ K

Pc
+∫ |w+|2C2dh + K

Pc
+∫ t

0

∫ |w+x,τ,v|dτ 2

C2dh.

where functionsU1 andV1 are functionsU andV from the Carleman estimate of Lemma 1, applied
to the operator

wt
+ + v,∇w+.

Using the Gauss’ formula, we obtain

2λ1 − η
Pc
+∫ |w+|2C2dh +∂Pc

+∫ U1,V1,nx, tdS ≤
11



≤ K

Pc
+∫ |w+|2C2dh + K

Pc
+∫ t

0

∫ |w+x,τ,v|dτ 2

C2dh,

whereU1,V1,nx is the scalar product of vector functionU1,V1 and the unit outer normal
nx, t to the boundary∂Pc

+. Hence, using Lemma 2, we obtain forλ > 1

2λ1 − η
Pc
+∫ |w+|2C2dh +∂Pc

+∫ U1,V1,nx, tdS ≤≤ K

Pc
+∫ |w+|2C2dh.     (3.19)

Chooseλ0 such thatK/2λ01 − η < 1/2. Then for allλ > maxλ0,1 we have from (3.19)λ1 − η
Pc
+∫ |w+|2C2dh +∂Pc

+∫ U1,V1,nx, tdS ≤ 0.     (3.20)

Consider the boundary∂Gc
+ of the setGc

+. Denote∂Gc
1+ = x, t : |x| = R ∩ Gc

+,∂Gc
2+ = x, t : |x|2 − ηt2 = c2 ∩ Gc

+,∂Gc
3+ = x, t : t = 0 ∩ Gc

+.     (3.21)

Hence, ∂Gc
+ = ∂Gc

1+ ∪ ∂Gc
2+ ∪ ∂Gc

3+.
Also, denote ∂Pc

i+ = ∂Gc
i+ × Sn, i = 1,2,3.

Thus, we obtain from (3.4) and (3.20)λ1 − η
Pc
+∫ |w+|2C2dh +∂Pc

2+∫ U1,V1,nx, tdS −∂Pc
3+∫ V1x,0,vdxdσv ≤ 0.     (3.22)

Denote

H− = Ω × −,0 × Sn, Gc
− := Gc ∩ t < 0, Pc

− = Gc
− × Sn.

For c satisfying (3.17)

Pc
− ⊂ H−.

Also, let
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∂Gc
1− = x, t : |x| = R ∩ Gc

−,∂Gc
2− = x, t : |x|2 − ηt2 = c2 ∩ Gc

−,∂Gc
3− = x, t : t = 0 ∩ Gc

−.     (3.23)

Hence, ∂Gc
− = ∂Gc

1− ∪ ∂Gc
2− ∪ ∂Gc

3−.
Let ∂Pc

i− = ∂Gc
i− × Sn, i = 1,2,3.

Denote

k−x, t,v = u2t
−

u2
− x, t,v,

Then u−x, t,v = t

0

∫ N−x, t,τ,vw−x,τ,vdτ,
where

N−x, t,τ,v = u2
−x, t,v

u2
−x,τ,v .

Considering the equation (3.8) in the setH− and using the same reasoning as above, we obtain

2λ1 − η
Pc
−∫ |w−|2C2dh +∂Pc

2−∫ U2,V2,nx, tdS +∂Pc
3−∫ V2x,0,vdxdσv ≤ 0,     (3.24)

where

w−x, t,v = u t
− − k−u−, in H−.     (3.25)

Hence u−x, t,v = t

0

∫ N−x, t,τ,vw−x,τ,vdτ,     (3.26)

and functionsU2 andV2 are the functionsU andV from the Carleman estimate of Lemma 1, applied
to the operator

wt
− + v,∇w−.

Consider the setPc = Pc
− ∪ Pc

+. By (3.21) and (3.23)
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∂Pc
3− = ∂Pc

3+ = x : c < |x| < R × Sn := ∂Pc
3.

Hence, summing up the inequalities (3.22) and (3.24), we obtainλ1 − η
Pc

∫ |w|2C2dh +∂Pc
2+∫ U1,V1,nx, tdS +∂Pc

2−∫ U2,V2,nx, tdS ++∂Pc
3

∫ V2x,0,v − V1x,0,vdxdσv ≤ 0.     (3.27)

Here the functionw is defined as

wx, t,v = w+x, t,v
w−x, t,v in H+,

in H−.
We first need to cancel out the possibly non-zero integral∂Pc

3

∫ V2x,0,v − V1x,0,vdxdσv.     (3.28)

Actually, this is the central point of the proof compared with the case of considering −T,T instead
of 0,T (see Introduction). By (2.7)

V1x,0,v = −2λν,xw+x,0,v2C2,

and

V2x,0,v = −2λν,xw−x,0,v2C2.

Hence, if w+x,0,v2 = w−x,0,v2,     (3.29)

then

V2x,0,v − V1x,0,v = 0 in ∂Pc
3.

By (3.9), (3.13) and (3.25)

w+x,0,v = u t
+x,0,v and w−x,0,v = u t

−x,0,v,
and by (2.3), (3.5) and (3.8)

w+x,0,v = −ax,vu2x,0,v = −ax,vfx,v,
and
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w−x,0,v = ax,−vu2x,0,−v = ax,−vfx,−v
for all x,v ∈ Pc

3. Thus (3.29) is equivalent toax,vfx,v2 = ax,−vfx,−v2, ∀x,v ∈ Pc
3.     (3.30)

Because of (3.30), the integral (3.28) equals zero and the inequality (3.27) becomesλ1 − η
Pc

∫ |w|2C2dh +∂Pc
2+∫ U1,V1,nx, tdS ++∂Pc

2−∫ U2,V2,nx, tdS ≤ 0.     (3.31)

The inequality (3.31) leads to

2λ1 − η
Pc

∫ |w|2C2dh ≤∂Pc
2+∫ |U1,V1|dS ++∂Pc

2−∫ |U2,V2|dS.     (3.32)

Denote∂Pc
2 = ∂Pc

2− ∪ ∂Pc
2+. Hence, using the estimate (2.6), we obtain from (3.32)

2λ1 − η
Pc

∫ |w|2C2dh ≤ Kλ ∂Pc
2

∫ |w|2C2dS.     (3.33)

Let δ ∈ 0, be an arbitrary number. Denote

Gcδ = |x|2 − ηt2 > R2 − ηδ2 ∩ |x| < R,

andPcδ = Gcδ × Sn (see Fig. 2).
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Fig. 2. Schematic representation of the setsGc andGcδ in the 1-D case.

By (3.17)Pcδ ⊂ Pc. Hence,

Pcδ∫ |w|2C2dh ≤
Pc

∫ |w|2C2dh.     (3.34)

Since

C2x, t > exp2λR2 − ηδ2 in Pcδ,
and

C2x, t = exp2λR2 − η2 on ∂Pc
2,

we obtain from (3.33) and (3.34)

exp2λR2 − ηδ2
Pcδ∫ |w|2dh ≤ Kexp2λR2 − η2 ∂Pc

2

∫ |w|2dS.

Dividing this inequality byexp2λR2 − ηδ2 and lettingλ → ∞,we obtain

Pcδ∫ |w|2dh ≤ 0,

and thus
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wx, t,v = 0 in Pcδ.
Sinceδ ∈ 0, is arbitrary number, then

wx, t,v = 0 in Pc.     (3.35)

Thus, by (3.15) and (3.26) we have ux, t,v = 0 in Pc.     (3.36)

Sinceη ∈ 0,1 is an arbitrary number, then (3.10), (3.35) and (3.36) imply thatax,v = 0 in { R2 − 2 < |x| < R} × Sn.     (3.37)

Let t0 ∈ −T,T be a number which we will choose later. Denote

Gt0 := x, t : |x|2 − ηt − t02 > R2 − η2, |x| < R.

We need to haveGt0 ⊂ t : |t| < T × Ω. Since

t0 −  < t < t0 +  in Gt0,
we chooset0 ∈ −T + ,T − . Also, denotePct0 := Gct0 × Sn (see Fig. 3).

Fig. 3. Schematic representation of the setsGc andGct0 in 1-D case.

By (3.37), the equations (3.5) and (3.8) in the domainPct0 become respectively
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u t
+ + v,∇u+ + a1x,vu+ +

Sn

∫ gx, t,v,μu+x, t,μdσμ = 0,

for t > 0, and u t
−x, t,v + v,∇u−x, t,v − a1x,−vu−x, t,v −−

Sn

∫ gx,−t,−v,−μu−x, t,μdσμ = 0,

for t < 0. Since these are the homogeneous equations, we do not need to divide byu2x, t,v (see
(3.11)) to prove that the conditions (3.6) and (3.7) imply that their solutions are zeros. In other
words, using the above method but without the introduction of the functionsw+ andw−, we establish
that u+x, t,v = 0 in Pct0 ∩ t > 0
and u−x, t,v = 0 in Pct0 ∩ t < 0.

Therefore,ux, t,v = 0 in x, t : R2 − 2 < |x| < R, t ∈ −T + ,T −  × Sn.

This means that now we can consider equations (3.5) and (3.8) in the domainsx, t : |x| < R2 − 2 , t ∈ 0,T −  × Sn,

and x, t : |x| < R2 − 2 , t ∈ −T + ,0 × Sn,

respectively, (see Fig. 4), and the boundaryΓ of the domainH should be replaced with|x| = R2 − 2 , t ∈ 0,T −  × Sn.
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Fig. 4. Schematic representation of the new domains for 1-D case.

Repeating the above proof in this new domain, we conclude thatax,v = 0 in  R2 − 22 < |x| < R × Sn.

Without the loss of generality we can assume thatR2 = m2, wherem is an integer. Repeating the

above processm times, we obtain ax,ν = 0 in Z.     (3.38)

However, to make sure that we indeed can repeat this processm times, we need to have the
observation interval0,T to be sufficiently large. We now establish an estimate from below for the
numberT. We need to haveu2x, t,ν ≠ 0 in H+. We have

u2x, t,ν = fx,ν + ∫
0

t

u2tx,τ,νdτ.
Hence,|u2x, t,ν| ≥ r2 − tr3 in H+. In order to haver2 − tr3 > 0, we need to taket > r2/r3. Hence,
we choose

0 <  < min r2

2r3
,R .
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To repeat that processm times, we should have

T > m = R2 > R2

min r2

2r3
,R

,     (3.39)

which gives us an estimate for the numberT from the below. In particular, if

min r2

2r3
,R = R,

then we can choose = R and the estimate (3.39) yieldsT > R.
Finally, to prove thatu+x, t,v = 0 in H+, we observe that because of (3.38) the equation (3.5)

becomes u t
+ + v,∇u+ + a1x,vu+ +

Sn

∫ gx, t,v,μu+x, t,μdσμ = 0.

Using the standard method of energy estimates with the initial condition (3.6) and the zero
boundary conditionu+ ∣Γ+ = 0, we obtainu+x, t,v = 0 in H+.□
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