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Abstract

A coefficient inverse problem for the non-stationary single-speed transpotti@u e
t € (0,T) with the lateral boundary data and initial conditiort at O is considered. Global
uniqueness result is obtained via the method of Carleman estimates.

Introduction

The transport equation is used to model a variety of processes of particledrarssich as
neutron diffusion, scattering of light in the atmosphere, propagatign-o&ys in scattering media,
etc. (see, e.g., the book of Case and Zweifel [6]). Coefficient inverse pnst€IPs) for the
transport equation are the problems of determining of the absorption coefficientaadgnsity of
sources or scattering indicatrix. from an extra boundary data. They have &y wdr@gplications in
optical tomography, theory of nuclear reactors, etc. (see, e.g., the book of Anikooaeiguk and
Prokhorov [1] and references therein). This paper addresses the question of theigigbahess for
a CIP for the non-stationary single-speed transport equation with the exdral labundary data.
Stability, uniqueness and existence results and references to suchf@s0If8s for the stationary
transport equation can be found, e. e.g., in [1] and in the book of Romanov [25]. Uniqueness and
existence results for CIPs for the non-stationary transport equation were abitathe works of
Prilepko and Ivankov [22], [23] and [24]. The results of [22] and [23] were obtained foiapec
forms of the unknown coefficient using the overdetermination at a point. Also, uniquaneéss
existence results were obtained for an inverse problem, where comples betendary data is not
present but both initial and final conditions (at T) are given; see [24]. For some recent
publications on overdetermined inverse problems for the transport equation sasarej27] and
Stefanov [26]. A derivation of the transport equation for the non-stationary casgedaund, for
example, in [6].

The proof of the main result of this paper is based on a Carleman estimateeubitgi Klibanov
and Pamyatnykh [17]. Traditionally, Carleman estimates have beenasprbdfs of stability and
unigueness results for non-standard Cauchy problems for PDEs. They were foduaed by
Carleman in 1939 [5], also see, e.g., books of Hormander [7], Klibanov and Timonov [19] and
Lavrent’ev, Romanov and Shishatskii [21]. Bukhgeim and Klibanov [4], [13] have intexditiee
tool of Carleman estimates in the field of CIPs for proofs of global uniquenesstahility results
for CIPs, also, see Klibanov [14], [15], and Klibanov and Timonov [19], [20]. This metiards for
CIPs with single measurement data for the time dependent Partial DifierEquations (PDES), as
long as the initial condition is not vanishing and the Carleman estimate holdsfoptresponding
differential operator. Recently, Klibanov and Timonov have extended the origealof [4] and



[13] - [15] for constructing of a globally convergent numerical method for CIPsudinb the case
when the initial condition is thé-function; see [19] for details and more references. A variety of
works with uniqueness and stability results for coefficient inverse problesns published, which
are based on the idea of [4] and [13]-[15], see, for example, Bellassoued [2imEBjuvilov and
Yamamoto [9], [10] and [11] for the case of hyperbolic equations. The Lipschitz isyadeisult for

the CIP for the non-stationary single-speed transport equatidnfT, T) with the complete
lateral boundary data and initial conditiontat O followed by the corresponding uniqueness result
was recently obtained by the authors [18].

A natural question arise$sit possible to consider the CIP for the non-stationary single-speed
transport equationt € (0,T) rather thanfor t € (T, T) and obtain at least a global uniqueness
result for this case, which would be similar to [18] ?

Since there are no other techniques so far, except of one of [4], [13]-[15], [19], wiualdw
enable one to prove global uniqueness for the multi-dimensional CIPs with the siegiirement
data, we have no choice but to use that method. However, this method doesn’t ngcaésarone
to consider the problem i0, T) with the initial data a§t = 0}. The obstacle is due to the presence
of an integral in the Carleman estimate, depending on the divergenc&/tevhrere the integration is
carried out ovekt = O} (see Lemma 1). In the case of hyperbolic inverse problems this integral is
zero due to the Carleman estimate for the principal part of the hyperbolic opese¢ Theorem
2.2.4in[19]. This is basically due to the fact that the hyperbolic operator containethative of
the even order (2) with respecttorhus, it is possible to consider hyperbolic inverse problems in
(0,T). However, in the Carleman estimates for parabolic and transport equaticmgsegrals are
not zero. Thus, these Carleman estimates do not allow to consider the correspoweliag
problems in(0,T), at least directly.

Another method to try is to consider the forward problenddT), construct an extension of its
solution into(—T, 0) and consider the inverse problem simultaneouslii) and(-T, 0). So that
the integrals oveft = O}, arising from the divergent terv in both cases, would cancel out. In
order to use the same Carleman estimate for the problétT and(-T, 0), the principal part of
the differential operator should not change in such an extension.

It's quite easy to find such an extension for the hyperbolic inverse problem xaore,
considering the equation

Ug = Au+a(X)u, u(x,0) = f(x), ui(x,0) =0,

we see, that the extension, even with respett leaves the form of the operator unchanged in
(-T,0). However, this is not the case for parabolic problems. Indeed, considering the simpl
parabolic equation

U = Au+a(x)u, u(x,0) = f(x),

and trying both even and odd extension of it's solutigr t) into (- T, 0) we see that the operator
changes its form it—T, 0) due to the presence of the first derivative with respett Tdus,
parabolic inverse problems are usually considergdinT) instead of(0,T) [8], [13]-[15], [19].
Although there are some unigueness results for parabolic inverse probléd$)nbut they are
obtained via reducing a parabolic inverse problem to a hyperbolic one, using an antilegraferse
Laplace transform, see [14], [15] and subsection 3.3.1 in [19].

Our main idea is that it is possible to construct a proper extension for the noorsigti
transport equation due to the presence of the parameteat represents the vector of particle
velocity. To illustrate our idea consider the simplified form of the transequation

uf(xt,v) + (v, Vut(x,t,v)) +a(x,vyut(xt,v) = 0, (1.2)



iNR"x (-T,0) xS, S§"={ve R": |v| =1}. Consider the following extension
u (X t,v) = ut(x,—t,-v) V(xt,v) € R"x (-T,0) x S".
The equation (1.1) becomes
ur(x,t,v) + (v, Vu (x,t,v)) —ax,-v)u (x,t,v) =0, inR" x (-T,0) x S".

Hence, the principal part of the differential operator stays the same.

When trying to obtain the Lipschitz stability for the Inverse Problem fortealdoelow, the
authors have discovered that quite cumbersome conditions need to be imposed. Thusghey ha
decided to limit the scope of this paper to the topic of uniqueness only. In sectiomfatheesult
(Theorem 1) is formulated, and it is proven in section 3.

Statement of the main result

Denote
Q=XeR": X <R, S =<{veR":|=1},
H=QxS"x(-T,T), '=0QxS" x(-T,T), Z=Qx 9",
Hf =Qx S x(0,T), T"=0Qx8S" x(0,T),
H =Qx S x (-T,0), ' =0Qx S x (-T,0),
so that
H=H*UH and I'=T*ul".

Also, denote

Nk —

C (H) = {se CXH) : Dgs(xt,v) € C(H), |o| <k}
The transport equation in the domairi has the form [6]

u + (v, Vu) + a(x,v)u +f gt v, u(x, t, w)do, = F(x,t,v), (2.1)

Sn

wherev € S"is a unit vector of the particle velocity(x,t,v) € EZ(W) is the density of particle
flow, a(x,Vv) is an absorption coefficienE(x,t,Vv) is the angular density of sourcegx,t,v, i) is a
scattering indicatrix., an¢v, Vu) denotes the scalar product of two vecteandVu.

Consider the following boundary condition

u(x, t,v) = p(xt,v), (2.2)

for (x,t,v) € {(x,t,v) : X =R, te (0,T), ve S, (n(x),v) < 0}.



Here(n(x),V) is the scalar product of the outer unit normal vectod) to the surfacé&Q and the
direction of the velocity. Hence, only incoming radiation is given at the boundary in this case.
Equation (2.1) with the boundary condition (2.2) and the initial conditian-a0

ux,0,v) = f(x,v), V(x,v) € Z, (2.3)

form the classical forward problem for the transport equation. Uniqueness,redsiad stability
results for this problem are well known, see, e. g., Prilepko and Ivankov [22].

Suppose now that the absorption coefficiaty, v) is unknown, but the following additional
boundary condition is given:

u(x,t,v) = gq(xt,v),

for (x,t,v) € {(x,t,v) : X =R, te (0,T), ve S, (n(x),v) > 0}.

The functionq(x,t,v) describes the outgoing radiation at the boundary.

Remark 1. When proving the uniqueness Theorem 1 for our inverse problem, we naturally
assume the existence of two soluti@gx, v) andax(x,v) of this problem and then show that
ai(x,v) = ax(x,v). Therefore, we also assume the existence of corresponding soluticnsv)
anduz(x,t,v) of the forward problem, which, in particular satisfy the natural compatybilit
conditions between boundary and initial data.

Introduce the functionr(x,t,v)

y(Xt,V) = { PX.LV), i.f (n(x),v) < 0,
axtv), if (n(x),v) = 0.

Hence,
ulrs = y(xtv),  Y(xtVv) € 6Qx (0,T) x S, (2.4)

Thus, we obtain the following coefficient inverse problem for the non-stationamgport equation.
Inver se Problem. Given the initial condition (2.3) and the lateral boundary data (2.4), determine
the coefficienta(x, v) of the equation (2.1).
Theorem 1 is the main result of this paper.
Theorem 1. Suppose that derivative d:g existsin H* x S" and |5g]|c s <r1fork = 0,1,
wherer; isa positive constant. Let [f(x,V)| > r2, wherer, = const > 0. Assume that there exist two
pairs of functions (ai, u1) and (az, uy) satisfying (2.1), (2.3), (2.4)and such that

ai1,a2 € C(Z) andui, Ui, Ui, Vui, Vuir € C(HT),i = 1,2.
Suppose also that
[@f)(xV)]? = [@f)(x-v)]2i = 1,2. (2.5)

Let [[uitll ey < ra, wherers = const > 0. Then there existsa number To = To(R,r2,rs) > Rsuch
that if T > To, thena; = azinZand u; = uz in H*. If the function ux(x,t,v) # 0in H¥, thenitis

sufficient to have T > R.
Remark 2. In particular, the condition (2.5) is satisfied if the functiaaéx,v), (i = 1,2) and



f(x,v) satisfy one of the following pairs of relations:

ai(x,v) = ai(x,—v) and f(x,v) = f(x,—v),

or
ai(x,v) = ai(x,—v) and f(x,v) = —f(x,—v),
or
ai(x,v) = —ai(x,—v) and f(x,v) = f(x,—-v),
or

ai(x,v) = —ai(x,—v) and f(x,v) = —f(x,—v).

Remark 3. The uniqueness for the Inverse Problem consideretido¢—T, T) with initial
condition given at = 0, though obtained as a corollary of the Lipschitz stability in [18], was
obtained under stronger requirements for the differentiability of the coefteief the transport
equation (2.1), initial and boundary data, then the requirements of the Theorem 1.Hdotaet
proof of the Theorem 1 is valid for the case when (T, T) and the initial data is given at= 0,
thus the assumptions of the Theorem 1, being naturally extended to the t¢asé€-6f, T), are
sufficient for the global uniqueness of the Inverse Problem considered=f¢+T,T).

Let
n
Lou = u; + (V,VU) = U; +Z Viui,

i=1

whereu; = ou/ox;. Introduce the function
w(xt) = X?-nt?, n=conste (0,1).
Letc = const > 0. Denote
Ge = {(x,t) : X?—nt?2 >c? and |x| < R}.
Introduce the Carleman Weight Function (CWF) as
C(x,t) = exgdAy(x1)].

Lemma 1. Choose the number 1 suchthat n € (0,1) and T > R/ /. Also, choose the constant

¢ > Osuchthat G < Q x (—T,T). Then there exist positive constants 1o = 10(G¢) and
M = M(Gg), depending only on the domain G¢, such that the following pointwise Carleman
estimate holdsin G, x " for all functionsu(x,t,v) € CY(G¢) x C(S") andfor all 1 > A0(Gc)

(Lou)2C2 > 2A(1 - nU2C2 +V « U + V;,

where the vector function (U, V) satisfies the estimate



(U, V)| < MAU2C?, (2.6)

and
V(x,t,v) = 2A(nt — (v,X)))u?C2. (2.7)
The proof of this lemma can be found in [17]. The following lemma provides an estifrah

the above for an integral containing the CWF.
Lemma 2. For all functionss € C(G.) and for all A > 1, the following estimate holds

t 2
j [ j s(x,r)d1:| C2(x, t)dxdt < in . j (s2C2)(x, t)dxdlt.

G¢ 0 Ge

See Section 3.1 in [19] for the proof.

Lemma3.Let T > R Thenfor any c € (O,R) thereexistsano = no(R, T,c) € (0, 1) such that

Ge € Qx (-T,T) for all n € (no(R,T,C),1).
Proof. By the definition of the seG.

Ge € {Qx (-T,T)} emaxy(xT) < c?,
oQ
i.e. when
R? - nT? < ¢?,

which leads to the following inequality

Sincec € (0,R) andR < Tthenno € (0,1).[]

Proof of Theorem 1

Suppose that there exist two solutions of the Inverse Prol{@iy:) and(az, uz). Denote
d=a—-a and TU=u;— Uy (3.1)
From relations (2.1), (2.3), (2.4) and (3.1), noticing thai: — a;u; = a;U + auy, we obtain
Te+ (v VD) + a6V + [ gOGt v, m)T(x, & p)dor, = —3s, (3.2)

SFI

UX0Vv) =0, V(XV)eZ (3.3)



TUlr+ = 0. (3.4)
Denote
U (xt,v) = U(xt,v), inH*,
Hence, (3.2)-(3.4) become

TF + (v, VIF) + an(x, V)T + j g(X,t,v, )T (X, t, p)do, = —aAuy, (3.5)
n
TH(x,0V) =0, V(XV) € Z (3.6)
| = 0.

To apply the Carleman estimate of Lemma 1, we need to construct such asiert® (x,t,V)
of the functiont*(x,t, v) into the domairH-, that the principal part of the differential operator of the
equation for the functiof~(x,t,v) in H~ would be the same as the one to1(x,t, V).

Set

o (xtVv) =ut(x,-t,-v) V(xtv)eH. (3.7a)
Hence,
T (X t,Vv) = -Uf (x,-t,-v)  V(x,tv) e H. (3.7b)
Also, denote
us(x,t,v) = ua(x,t,v) V(xt,v) e H
and

uz(x,t,v) = ux(x,~t,-v) V(xtv) e H.
In the integral term in (3.2) change variabjes> —u and rewrite (3.2) in the form
(X EV) + (v, VI (X, L)) + a1 (X TG L V) + [ gLV, —) T (x, 1)l
Sn
= —aX,v)ua(xt,v).

Next, replace in this equationwith —v. We obtain

TF(X,t, V) — (v, VI (X, t, V) + a1 (X, —v)T* (X, t, V) + j g(X,t, v, — )T (X, t, —u)do,
Sn

= —aA(X,—v)u2(X,t,-V).

Now substitute-t for t assuming thatt < O,



(X, —t, V) — (v, VT (%, —t,—V)) + a1(X, —v)T* (X, L, V) +j 90X, —t,~V, — )T (X, ~t,~p)do

SFI

= —a(X,—v)Uz(X,—t,-V).
By (3.7a,b) we obtain i~
Ty (X t,v) + (v, VO (X,1,v)) —ai(X,—-V)TU (Xx,t,v) — (3.8)

—I g(x,—t,—v,—p)u™ (X, t, u)do, = A(X,—V)uz(X,—t,-V).
Sn

Although the non-principal part of the operator for the functions different from the one for
the functiont”, but this doesn’t affect the method of Carleman estimates. This is bedsuse t
Carleman estimate depends only on the principal part of the differential opekégor by (3.6),

U (x,0,v) =U"(x,0,-v) =0 V(x,v) e QxS (3.9)
Thus, we have constructed a continuous function

a(x,t,v) = o' (xtv) in H,
Ul wty) i HY

Also, note that

a(x,0,v) =0 and 0lr = 0.

Since 0< ra < [f(x,v)] in Z, there exists a small numbere (0,R], such that

ux(x,t,v) = 0, V(xt,v) € H,

whereH; = Q x (0,g) x S".
Thus, we can rewrite (3.5) as

-a= uzl[ut + (v, VU") + a1 (x,v)T" +j g(x, t,v, )Tt (X, t, u)do :| (3.10)
s

in HE. Since the functiofd(x,Vv) is independent oty we can eliminat& from the equation (3.10) by
differentiating this equation with respectttar hus, denoting

+

Kt (x,t,v) = (%
2

)(x,t,V), (3.11)

we obtain



U+ (v, VTY) + ai (X, v)TUy +J (90" + 0T )do, =

SFI

k+(x,t,v)|:tlt+ + (v, VU") + a1 (x,v)T" +_[ g%, t, v, 1)U (x,t, w)do :|
S

Denote
w(x,t,v) = T — k0", in H{.
Hence (3.12) becomes

W + (v, Vwt) = —k{iT™ — (v, VK" T* — ap(x, v)w* —

~[ gwdo, +k* | gudo, -[ gitrdo, + [ gu*do,.

s - ] !
Since
t
U (% t,v) ZI N(X,t, 7, V)W (X, 7,V)dr,
0
where
N*(x,t,7,v) = %

Turning equation (3.14) into inequality, we obtain

Wi + (v, Vw?)| <

t t
< K|:|w+|+J W (x,7,v)ldz + | wldo +” |W+(x,r,v)|drdGH:|.

0 Si s'0

Let
c2 = R? - pe?,
consider the sdB¢, where
Gt =GcN{t>0F = {X?>-nt?> > RZ—ne?r N {(x,t) : X < R t> 0},

(see Fig. 1.).

3.12

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Fig. 1. 1-D schematic representation of the dom&pandG..

Also. denoteP! = G¢ x S. Clearly,
P¢ < HI.
Multiplying both parts of the inequality (3.16) by the CWF, squaring both sides and atilegover

P¢, we obtain

[ Wi+ (v, yw)Pc2an <

Pe

2
<K j |:|w+|+j W*(x,7,V)[dz + j W*|do , + j j |w+(x,1,v)|drdoH:| C2dh,

Pt 0 5 Sl)

wheredh = dxdodt. Here and below in this prod€ denotes different positive constants depending
on numbersy,ra,ra,e and norms

laallc(zy: vzl cemmy VU2l ¢ () -

We obtain
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j Wi + (v, Yw*)[2C2dh < (3.18)

Pe

2
t
<K [ | wp+ (j |vv+(x,r,v)|dr) C2dh +

P& 0

2
+K [ | [ wePdoy +| 0 |W+(x,r,v)|dr) do, |C2dh.
P

S S 0

Noticing that for any functiors(x,t,v) € C(HT)

[ (j deou)czdh - A« sCah,

P: \§ P

whereA is the area of the unit sphe&, we remove the inner integrals ov@tin (3.18). Hence,
(3.18) becomes

2
t
j Wi + (v, Yw*)[2C2dh < K j W2 + (j |w+(x,r,v)|dr) C2dh.

P& P& 0

Applying the Carleman estimate of Lemma 1, we obtain

20(1- 1) j w*[2C2dh +j [V e Uz + Vy]dh <

Pe Pe

2
t
<K | wPcih+K | (j |W+(x,r,v)|dr) C2dh.

P¢ P& 0

where functiondJ; andV; are functiondJ andV from the Carleman estimate of Lemma 1, applied
to the operator

wi + (v, Vw).
Using the Gauss’ formula, we obtain

2(1-1) | wPCZdh+ [ (U1, Va),n(x,1)dS <

P& oPE

11



2
t
<K | wPcih+K | (j |W+(x,r,v)|dr) C2dh,

P¢ P& 0

where((U1,V1),n(x)) is the scalar product of vector functi¢b1, V1) and the unit outer normal
n(x,t) to the boundarygP¢. Hence, using Lemma 2, we obtain for> 1

2(1-1) [ wPCZdh+ [ (U1, Va),n(x,1)dS <

P& oPE

<K j w*[2C2dh. (3.19)
P¢
Chooselp such thaK/(240(1—n)) < 1/2. Then for allk > max{Ao, 1} we have from (3.19)
A(L-1n) j w*2C2dh + j ((U1,V1),n(x,1))dS < 0. (3.20)
P¢ oP¢
Consider the boundagG;¢ of the setGt. Denote

oGE = {(x,t) : X = R- N G¢,
0GZ" = {(x,t) : X* - nt? = c%} N G,

oG = {(x,t) : t =0y NGL. (3.21)
Hence,
0GE = 6GY U 0G2 U 0GE.
Also, denote
oPF =0GEF xS, i=1,23.
Thus, we obtain from (3.4) and (3.20)
A(L-1) j w*[2C2dh + j ((U1,V1),n(x,1))dS— j Vi(x,0,v)dxdoy < 0.  (3.22)
Pe oPZ* op¥
Denote
Hy = Qx (-0 xS, G;:=G.NA{t<0;, P;=0G:xS.
For c satisfying (3.17)
P: c H,.
Also, let

12



0Gs = {(xt : K =RNG,

0GE = {(xt) : K?-nt*> = c?} NG,

0GY = {(x,t) :t=0yNG.. (3.23)
Hence,
0G; = 0GY U 0GE U oGY .
Let
oPL =0GE xS, i=1,2,3.
Denote
k- (x,t,v) = (%)(x,t,v),
Then
t
T (xt,v) =_[ N-(xt,7,Vv)W (X, 7,V)dr,
0
where
N~(x,t,7,V) = —352(()):;\\//)) :

Considering the equation (3.8) in the $&tand using the same reasoning as above, we obtain

24(1- 1) j w~[2C2dh + j ((Uz,V2),n(x,1))dS + j Va(x,0,v)dxdoy < 0, (3.24)

Pe 8PE P
where
w(x,t,v) =T; -k T, in H;. (3.25)
Hence
t
T (xt,v) =j N-(x,t,7,v)W (X, 7,Vv)dr, (3.26)

0

and functiongJ, andV; are the function&) andV from the Carleman estimate of Lemma 1, applied
to the operator

w; + (v, Vw).

Consider the se®; = P; U P¢. By (3.21) and (3.23)

13



oPF = 0P ={x:c< X <Ry xS = 0P3.
Hence, summing up the inequalities (3.22) and (3.24), we obtain

AL—7) j |/W|2C2dh+_[ ((U1,V1),n(x,t))dS+I ((Uz,V2),n(x,))dS+

Pe opZ opP32

+ j [V2(x,0,v) — V1i(x, 0,v)]dxdoy < O. (3.27)
oP3
Here the functiorw is defined as

W(x,t,w:{wﬁ(x,t,v) _—

w(x,t,v) in H-.

We first need to cancel out the possibly non-zero integral
j [Va(X, 0,v) — V1(x, 0,v)]dxdov. (3.28)
aPg

Actually, this is the central point of the proof compared with the case of consglesT, T) instead
of (0,T) (see Introduction). By (2.7)

Vi(x,0,v) = —21(v,X)(W*(x,0,v))?C?,

and
Va(x,0,v) = —24(v,X)(W(X,0,v))?C?.
Hence, if
[(W"(x,0,v)]? = [W(X,0,V)]?, (3.29)
then

V2(x,0,v) — V1(x,0,v) = 0 in oP2.
By (3.9), (3.13) and (3.25)
w*(x,0,v) = T;{(x,0,v) and w (x,0,v) = T;(x,0,v),
and by (2.3), (3.5) and (3.8)
wt(x,0,v) = —a(x,v)ua(x,0,v) = =a(x,v)f(x,v),

and

14



W (X,0,v) = A(X,~V)Uz(X, 0,-V) = &A(X,~V)f(x,~V)
for all (x,v) € PE. Thus (3.29) is equivalent to

[a(x, vV)f(x,v)]? = [ax,-V)f(x,—v)]?, V(xV) € P3.

(3.30)

Because of (3.30), the integral (3.28) equals zero and the inequality (3.27) becomes

A(L-1) j |vAv|2c:2dh+j ((U1,V1),n(x,1))dS +

Pc oPg

+ [ (W22 nxt)ds <.
oP2
The inequality (3.31) leads to
22(1-n) [ WPC?dh < [ (UL, VoIS +

Pc oPZ

+[ U2 Vo)lds
oPZ

DenotecPZ = 6PZ U 0P2*. Hence, using the estimate (2.6), we obtain from (3.32)

22(1— 1) j [R2C2dh < KA j [A2C2ds

Pc oP%
Lets € (0,e) be an arbitrary number. Denote

Ges = {IXI* - nt* > R* = 6%} N {X| < R},

andPq = Gg x S (see Fig. 2).
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Fig. 2. Schematic representation of the €ef&andGg; in the 1-D case.

By (3.17)Pes < Pc. Hence,
| Wipc?dn <[ @RC?dn.
Pos Pe
Since
C2(x,t) > exp[2A(R% — n6?)] in Pg,
and
C2(x,t) = exp[2A(R? — ne?)] on 6PZ,
we obtain from (3.33) and (3.34)
exp[2(R2 — 1162)] j WPdh < Kexp[2A(R? - n=2)] | AiPds
Pes oPZ
Dividing this inequality byexp[24(R? — n62)] and lettingl — o, we obtain
| @reah <o,
Pos

and thus
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MN(x,t,v) =0 in Pg.
Sinces € (0,¢) is arbitrary number, then
WN(x,t,v) =0 in P.. (3.35)
Thus, by (3.15) and (3.26) we have
u(x,t,v) =0 in Pe. (3.36)
Sincen € (0,1) is an arbitrary number, then (3.10), (3.35) and (3.36) imply that
Axv) =0 in {J/R2—¢2 < x| < R} x S". (3.37)
Letto € (—T,T) be a number which we will choose later. Denote
Ge(to) = {(X.1) : X]* - n(t —t0)® > R — ne?,|X| < R}.
We need to hav&,(to) < {t : |t| < T} x Q. Since
to—& <t < to+ein Gg(to),

we chooség € (-T +¢,T—¢). Also, denoteP.(to) = Ge(to) x S" (see Fig. 3).

t
T
Vet e Gt
S : v
-R| /" 0 \JR x
-£
T

Fig. 3. Schematic representation of the $8tandGc(to) in 1-D case.

By (3.37), the equations (3.5) and (3.8) in the donfaito) become respectively
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T + (v, V') + ar(x, V)T* + j g%, t,v, )T (X, t, p)do, = O,
Sn

fort > 0, and

T (% t,v) + (v, VO (X,t,v)) —ai(X,-V)TU (Xt,Vv) —

—j 9(%, ~t,~V,—w) U (X, t, w)do, = O,
Sﬂ

fort < 0. Since these are the homogeneous equations, we do not need to divigd® hy) (see
(3.11)) to prove that the conditions (3.6) and (3.7) imply that their solutions are zerokein ot
words, using the above method but without the introduction of the functioradw-, we establish
that

U (x,t,v) =0 in Pc(to) N <t > 0}
and
U (xt,v) =0 in Pc(to) N<{t < O}.
Therefore,
AXtLV) =0 in {xt): JR2—e2 <X <R te (-T+eT—g)} x9S
This means that now we can consider equations (3.5) and (3.8) in the domains
{xt) X < JR2—€2,te (0,T-g)} xS,
and
{xt) ;X< JRE—€2,te (-T+50)} xS,
respectively, (see Fig. 4), and the bound&myf the domairH should be replaced with

{X| = VvR?-¢?,te (0,T-¢)} xS

18



\
R -(R-€) |0 ®RHN\JR X

-T+e
-T

Fig. 4. Schematic representation of the new domains for 1-D case.

Repeating the above proof in this new domain, we conclude that

aA(x,v) =0 in {yR?-2¢2 < x| < R} x ",

Without the loss of generality we can assume &t me?, wheremis an integer. Repeating the

above processitimes, we obtain
ax,v) =0inZ (3.38)

However, to make sure that we indeed can repeat this protgs®es, we need to have the
observation interval0,T) to be sufficiently large. We now establish an estimate from below for the
numberT. We need to hava,(x,t,v) = 0 in H{. We have
t
Ua(xt,v) = fO6v) + [ ua(x,z,v)de.
0

Hence |ux(X,t,v)| > ro —trzin H*. In order to have, — tr; > 0, we need to take> r,/r3. Hence,
we choose

O<e< min(r—z,R).
2r3
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To repeat that processtimes, we should have

T>m-R > R __ (3.39)

min(4 R)

which gives us an estimate for the numbBdrom the below. In particular, if

mln(2 s R) =R,

then we can choose= R and the estimate (3.39) yields> R.
Finally, to prove thati*(x,t,v) = 0 in H*, we observe that because of (3.38) the equation (3.5)
becomes

uf + (v, V") + a1(x,v)u* +j g(x t,v, )Tt (x,t,u)do, = 0.
s

Using the standard method of energy estimates with the initial condition (3d6ha zero
boundary conditiou* |+ = 0, we obtain

u*(x,t,v) =0 in H*.
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