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Abstract. We consider the d-dimensional nonlinear Schrödinger
equation under periodic boundary conditions:

−iu̇ = ∆u + V (x) ∗ u + ε
∂F

∂ū
(x, u, ū), u = u(t, x), x ∈ Td

where V (x) =
∑

V̂ (a)ei<a,x> is an analytic function with V̂ real
and F is a real analytic function in <u, =u and x. (This equation
is a popular model for the ‘real’ NLS equation, where instead of
the convolution term V ∗ u we have the potential term V u.) For
ε = 0 the equation is linear and has time–quasi-periodic solutions
u,

u(t, x) =
∑
s∈A

û0(a)ei(|a|2+V̂ (a))tei<a,x>, 0 < |û0(a)| ≤ 1,

where A is any finite subset of Zd. We shall treat ωa = |a|2 + V̂ (a),
a ∈ A, as free parameters in some domain U ⊂ RA.

This is a Hamiltonian system in infinite degrees of freedom, de-
generate but with external parameters, and we shall describe a
KAM-theory which, in particular, will have the following conse-
quence:

If |ε| is sufficiently small, then there is a large subset U ′ of U
such that for all ω ∈ U ′ the solution u persists as a time–quasi-
periodic solution which has all Lyapounov exponents equal to zero
and whose linearized equation is reducible to constant coefficients.
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1. Introduction

We consider the d-dimensional nonlinear Schrödinger equation

−iu̇ = ∆u + V (x) ∗ u + ε
∂F

∂ū
(x, u, ū), u = u(t, x) (∗)

under the periodic boundary condition x ∈ Td. The convolution po-
tential V : Td → C must have real Fourier coefficients V̂ (a), a ∈ Zd,
and we shall suppose it is analytic. F is an analytic function in <u,
=u and x.
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The non-linear Schrödinger as an ∞-dimensional Hamiltonian sys-
tem. If we write {

u(x) =
∑

a∈Zd uae
i<a,x>

u(x) =
∑

a∈Zd vae
i<a,x>,

and let

ζa =

(
ξa

ηa

)
=

(
1√
2
(ua + va)

−i√
2
(ua − va)

)
,

then, in the symplectic space

{(ξa, ηa) : a ∈ Zd} = CZd × CZd

,
∑
a∈Zd

dξa ∧ dηa,

the equation becomes a real Hamiltonian system with an integrable
part

1

2

∑
a∈Zd

(|a|2 + V̂ (a))(ξ2
a + η2

a)

plus a perturbation.
Let A be a finite subset of Zd and fix

0 < pa(0), a ∈ A
The (#A)-dimensional torus

1
2
(ξ2

a + η2
a) = pa(0) a ∈ A

ξa = ηa = 0 a ∈ L = Zd \ A,

is invariant for the Hamiltonian flow when ε = 0. In a neighborhood
of this torus we introduce action-angle variables (ϕa, ra)

ξa =
√

2(ra(0) + ra) cos(ϕa)

ηa =
√

2(ra(0) + ra) sin(ϕa).

The integrable Hamiltonian now becomes

h =
∑
a∈A

ωara +
1

2

∑
a∈L

Ωa(ξ
2
a + η2

a),

where
ωa = |a|2 + V̂ (a), a ∈ A,

are the basic frequencies, and

Ωa = |a|2 + V̂ (a), a ∈ L,

are the normal frequencies (of the invariant torus). The perturbation
εf(ϕ, r, ξ, η) will be a function of all variables.

This is a standard form for the perturbation theory of lower-dimensio-
nal (isotropic) tori with one exception: it is strongly degenerate. We
therefore need external parameters to control the basic frequencies and
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the simplest choice is to let the basic frequencies (i.e. the potential
itself) be our free parameters.

The parameters will belong to a set

U ⊂ {ω ∈ RA : |ω| ≤ C} .

The normal frequencies will be assumed to verify

|Ωa| ≥ C ′ ∀ a, b ∈ L ,
|Ωa + Ωb| ≥ C ′ ∀ a, b ∈ L ,
|Ωa − Ωb| ≥ C ′ ∀ a, b ∈ L, |a| 6= |b|.

We define the complex domain

Oγ(σ, ρ, µ) =


‖ζ‖γ =

√∑
a∈L(|ξa|2 + |ηa|2)〈a〉2m∗e2γ|a| < σ

|=ϕ| < ρ
|r| < µ,

〈a〉 = max(|a|, 1) and m∗ > d
2
. In this space the Hamitonian equations

have a well-defined local flow.

Theorem A. Under the above assumptions, for ε sufficiently small
there exist a subset U ′ ⊂ U , which is large in the sense that

Leb (U \ U ′) ≤ cte.εexp1 ,

and for each ω ∈ U ′, a real analytic symplectic diffeomorphism Φ

O0(
σ

2
,
ρ

2
,
µ

2
) → O0(

σ

2
+ ε1/2,

ρ

2
+ ε1/2,

µ

2
+ ε1/2)

and a vectro ω′ such that (hω′ + εf) ◦ Φ equals

c+ <ω, r> +
1

2
<ξ, Q1ξ> + <ξ, Q2η> +

1

2
<η, Q1η> +εf ′ ,

where
f ′ ∈ O(|r|2 , |r| ‖ζ‖0 , ‖ζ‖3

0)

and Q = Q1+iQ2 is a Hermitian and block-diagonal matrix with finite-
dimensional blocks.

The consequences of the theorem are well-known. The dynamics of
the Hamiltonian vector field of hω′ + εf on Φ({0} × Td × {0}) is the
same as that of

<ω, r> +
1

2
<ξ, Q1ξ> + <ξ, Q2η> +

1

2
<η, Q1η> .

The torus {ζ = r = 0} is invariant, since the Hamiltonian vector field
on it is  ζ̇ = 0

ϕ̇ = ω
ṙ = 0,
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and the flow on the torus is linear

t 7→ ϕ + tω.

Moreover, the linearized equation on this torus becomes
ζ̇ =

(
tQ2(ω) Q1(ω)
−Q1(ω) −Q2(ω)

)
ζ + a(ϕ + tω, ω)r

ϕ̇ =<a(ϕ + tω, ω), ζ> +c(ϕ + tω, ω)r
ṙ = 0,

where a = Jε∂r∂ζf
′ and b = ε∂2

rf
′. Since Q1 + iQ2 is Hermitian and

block diagonal the eigenvalues of the ζ-linear part are purely imaginary

±iΩ′
a, a ∈ L.

The linearized equation is reducible to constant coefficients if the
eigenvalues Ω′

a are non-resonant with respect to ω, something which
can be assumed of we restrict the set U ′ arbitrarily little. Then the
ζ-component (and of course also the r-component) will have only quasi-
periodic (in particular bounded) solutions. The ϕ-component may have
a linear growth in t, the growth factor (the “twist”) being linear in r.

Reducibility. Reducibility is not only an important outcome of KAM
but also an essential ingredient in the proof. It simplifies the iteration
since it makes possible to reduce all approximate linear equations to
constant coefficients. But it does not come for free. It requires a lower
bound on small divisors of the form

(∗∗) |<k, ω> +Ω′
a − Ω′

b| , k ∈ ZA, a, b ∈ L.

The basic frequencies ω will be keept fixed during the iteration – that’s
what the parameters are there for – but the normal frequencies will
vary. Indeed Ω′

a(ω) and Ω′
b(ω) are perturbations of Ωa and Ωb which are

not known a priori but are determined by the approximation process.
1

This is a lot of conditions for a few parameters ω. It is usually
possible to make a (scale dependent) restriction of (∗∗) to

|k| , |a− b| ≤ ∆ = ∆ε

which improves the situation a bit. Indeed, in one space-dimension (d =
1) it improves a lot, and (∗∗) reduces to only finitely many conditions.
Not so however when d ≥ 2, in which case the number of conditions in
(∗∗) remains infinite.

1A lower bound on (∗∗), often known as the second Melnikov condition, is strictly
speaking not necessary at all for reducibility. It is necessary, however, or reducibility
with a reducing transformation close to the identity.



6 L. H. ELIASSON AND S. B. KUKSIN

To cope with this problem we shall exploit the Töplitz-Lipschitz-
property which allows for a sort of compactification of the dimensions
and reduces the infinitely many conditions (∗∗) to finitely many. These
can then be controlled by an appropriate choice of ω.

The Töplitz-Lipschitz property. The Töplitz-Lipschitz property is
defined for infinite-dimensional matrices with exponential decay. We
say that a matrix

A : L × L → C
is Töplitz at ∞ if, for all a, b, c ∈ Zd the limit

lim
t→∞

Ab+tc
a+tc ∃ =: Ab

a(c).

The Töplitz-limit A(c) is a new matrix which is c-invariant

Ab+c
a+c(c) = Ab

a(c).

So it is a simpler object because it is “more constant”.
The approach to the Töplitz-limit in direction c is controlled by a

Lipschitz-condition. This control does not take place everywhere,but
on a certain subset

DΛ(c) ∈ L × L
– the Lipschitz domain. Λ is a parameter which, together with |c|,
determines the size of the domain.

The Töplitz-Lipschitz property permits us to verify certain bounds
of the matrix-coefficients or functions of these, like determinants of
sub-matrices, in the Töplitz-limit and then recover these bounds for
the matrix restricted to the Lipschitz domain.

The matrices we shall consider will not be scalar-valued but gl(2, C)-
valued

A : L × L → gl(2, C)

and we shall define a Töplitz-Lipschitz property for such matrices also.
These matrices constitute an algebra: one can multiply them and solve
linear differential equations. A function f is said to the have the
Töplitz-Lipschitz property if its Hessian (with respect to ζ) is Töplitz-
Lipschitz. If this is the case, as it is for the perturbation f of the
non-linear Schrödinger, then this is also true of the linear part of our
KAM–transformations and for the transformed Hamiltonian. This will
permit us to formulate an inductive statement which, as usual in KAM,
gives Theorem A.

Some references. For finite dimensional Hamiltonian systems the
first proof of persistence of stable (i.e. vanishing of all Lyapunov expo-
nents) lower dimensional invariant tori was obtained in [Eli85, Eli88]
and there are now many works on this subjects. There are also many
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works on reducibility (see for example [Kri99, Eli01]) and the situation
in finite dimension is now pretty well understood. Not so, however, in
infinite dimension.

If d = 1 and the space-variable x belongs to a finite segment supple-
mented by Dirichlet or Neumann boundary conditions, this result was
obtained in [Kuk88] (also see [Kuk93, Pös96]). The case of periodic
boundary conditions was treated in [Bou96], using another multi–scale
scheme, suggested by Fröhlich–Spencer in their work on the Anderson
localization [FS83]. This approach, often referred to as the Craig-
Wayne scheme, is different from KAM. It avoids the, sometimes, cum-
bersome condition (∗∗) but to a high cost: the approximate linear
equations are not of constant coefficients. Moreover, it gives persis-
tence of the invariant tori but no reducibility and no information on
the linear stability. A KAM-theorem for periodic boundary conditions
has recently been proved in [GY05] (with a perturbation F indepen-
dent of x) and the perturbation theory for quasi-periodic solutions of
one-dimensional Hamiltonian PDE is now sufficiently well developed
(see for example [Kuk93, Cra00, Kuk00]).

The study of the corresponding problems for d ≥ 2 is at its early
stage. Developing further the scheme, suggested by Fröhlich–Spencer,
Bourgain proved persistence for the case d = 2 [Bou98]. More recently,
the new techniques developped by him and collaborators in their work
on the linear problem has allowed him to prove persistence in any
dimension d[Bou04]. (In this work he also treats the wave equation.)

Description of the paper. The paper is divided into three parts. The
first part deals with linear algebra of Töplitz-Lipschitz matrices and the
analysis of functions with the Töplitz-Lipschitz property. In Section 2
we introduce Töplitz-Lipschitz matrices and prove a product formula.
This part is treated in greater generality in [EK05]. In Section 3 we
analyze functions with the Töplitz-Lipschitz property.

The second part deals with the small divisor condition (**) which
occurs in the solution of the homological equation. In Section 4 we
analyze the block decomposition of the lattice Zd and in Section 4
we study the small divisors. In Section 6 we solve the homological
equations. This part is independent of the first part except for basic
definitions and properties given in Sections 2.3 and 2.4.

The third part treats KAM-theory with Töplitz-Lipschitz property
and contains a general KAM-theorem, Theorem 7.1. This theorem is
applied to the non-linear Schrödinger to give Theorem 7.2 of which the
theorem above is a variant.
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Notations. <, > is the standard scalar product in Rd. ‖ ‖ is an
operator or l2-norm. | | will in general denote a supremum norm, with
a notable exception: for a lattice vector a ∈ Zd we use |a| for the
l2-norm.
L and A are subsets of Zd, A being finite. A matrix on L is just

a mapping A : L × L → C or gl(2, C). Its components will be
denoted Ab

a.
The dimension d will be fixed and m∗ will be a fixed constant > d

2
.

. means ≤ modulo a multiplicative constant that only, unless oth-
erwise specified, depends on d,m∗ and #A.

The points in the lattice Zd will be denoted a, b, c, . . .. Also d will
sometimes be used, without confusion we hope.

For a vector c ∈ Zd, c⊥ will denote the ⊥ complement of c in Zd or
in Rd, depending on the context. If c 6= 0, for any a ∈ Zd we let

ac ∈ (a + Rc) ∩ Zd

be the lattice point b on the line a + Rc with smallest norm, i.e. that
minimizes

|<b, c>|
– if there are two such b’s we choose the one with <b, c>≥ 0. It is
the“⊥ projection of a to c⊥”.

Greek letter α, β, . . . will mostly be used for bounds. Exceptions are
ϕ which will denote an element in the torus – an angle – and ω, Ω.

For two subsets X and Y of a metric space,

dist(X, Y ) = inf
x∈X,y∈Y

d(x, y).

(This is not a metric.) Xε is the ε-neighborhood of X, i.e.

{y : dist(y, X) < ε}.
Let Bε(x) be the ball {y : d(x, y) < ε}. Then Xε is the union, over
x ∈ X, of all Bε(x).

Acknowledgment. This work started a few years ago during the Con-
ference on Dynamical Systems in Oberwolfach as an attempt to try
to understand if a KAM–scheme could be applied to multidimensional
Hamiltonian PDE’s and in particular to the non-linear Schrödinger.
This has gone on at different place and we are grateful for support
form ETH, IAS, IHP and from the Fields Institute in Toronto, where
these ideas were presented for the first time in May 2004 at the work-
shop on Hamiltonian dynamical systems. The first author also want
to acknowledge the hospitality of the Chinese University of Hong-Kong
and the second author the support of EPSRC, grant S68712/01.
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PART I. THE TÖPLITZ-LIPSCHITZ PROPERTY

In this part we consider
L ⊂ Zd

and matrices A : L × L → gl(2, C). We define: the sup-norms | · |γ;
the notion of being Töplitz at ∞; the Lipschitz-domains D±

∆(c); the
Lipschitz- norm < · >Λ,γ and the notion of being Töplitz-Lipschitz.
(For a more general exposition see [EK05].) We define the Töplitz-
Lipschitz property for functions and the norms [ · ]Λ,γ,σ.

2. Töplitz-Lipschitz matrices

2.1. Spaces and matrices.
We denote by l2γ(L, C), γ ≥ 0, the following weighted l2-spaces:

l2γ(L, C) = {ζ = (ξ, η) ∈ CL × CL : ‖ζ‖γ < ∞},
where

‖ζ‖2
γ =

∑
a∈L

(|ξa|2 + |ηa|2)e2γ|a|〈a〉2m∗ , 〈a〉 = max(|a|, 1).

We provide l2γ(L, C) with the symplectic form∑
a∈L

dξa ∧ dηa.

Using the pairing

<ζ, ζ ′>=
∑
a∈L

(ξaξ
′
a + ηaη

′
a)

we can write the symplectic form as

<·, J ·>
where J : l2γ(L, C)γ → l2γ(L, C) is the standard involution.

We consider the space gl(2, C) of all complex 2×2-matrices provided
with the scalar product

Tr(tĀB).

Let

J =

(
0 1
−1 0

)
.

and consider the orthogonal projection π of gl(2, C) onto the subspace

M = CI + CJ.

It is easy to verify that{
M ×M, M⊥ ×M⊥ ⊂ M
M ×M⊥, M⊥ ×M ⊂ M⊥
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and {
π(AB) = πAπB + (I − π)A(I − π)B
(I − π)(AB) = (I − π)AπB + πA(I − π)B.

If A = (Aj
i )

2
i,j=1 B = (Bj

i )
2
i,j=1 we define

[A] = (|Aj
i |)2

i,j=1,

and
A ≤ B ⇐⇒ |Aj

i | ≤ Bj
i , ∀i, j.

Since any euclidean space E is naturally isomorphic to its dual E∗,
the canonical relations

E ⊗ E ' E∗ ⊗ E∗ ' Hom(E, E∗) ' Hom(E, E)

permits the identification of the tensor product ζ⊗ζ ′ with a 2×2-matrix

(ζ ⊗ ζ ′)j
i = ζiζ

′
j.

2.2. Matrices with exponential decay.
Consider now an infinite-dimensional gl(2, C)-valued matrix

A : L × L → gl(2, C), (a, b) 7→ Ab
a.

We define matrix multiplication through

(AB)b
a =

∑
d

Ad
aB

b
d,

and, for any subset D of L × L, the semi-norms

|A|D = sup
(a,b)∈D

∣∣Ab
a

∣∣ .
We define πA through

(πA)b
a = πAb

a, ∀a, b.

Clearly we have

(1)
π(A + B) = πA + πB
π(AB) = πAπB + (I − π)A(I − π)B
(I − π)(AB) = (I − π)AπB + πA(I − π)B.

We define
A ≤ B ⇐⇒ Ab

a ≤ Bb
a, ∀a, b,

and
(E±γ A)b

a = [Ab
a]e

γ|a∓b|, ∀a, b.

All operators E±γ commute and we have{
Ex

γ (A + B) ≤ Ex
γ A + Ex

γ B, x ∈ {+,−}
Exy

γ (AB) ≤ (Ex
γ A)(Ey

γ B), x, y ∈ {+,−}.
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2

We define the norm

|A|γ = max(|E+
γ πAb

a|L×L, |E−γ (1− π)Ab
a|L×L).

We have, by Young’s inequality (see [Fol76]), that

(2) ‖Aζ‖γ′ . (
1

γ − γ′
)d+m∗ |A|γ ‖ζ‖γ′ , ∀γ′ < γ.

It follows that if |A|γ < ∞, then A defines a bounded operator on any

l2γ′(L, C), γ′ < γ.
Truncations. Let

(T ±
∆ )Ab

a =

{
Ab

a if |a∓ b| ≤ ∆
0 if not,

and

T∆A = T +
∆ πA + T −

∆ (I − π)A.

It is clear that

(3) |T∆A|γ ≤ |A|γ and |A− T∆A|γ′ ≤ e−∆(γ−γ′) |A|γ .

Tensor products. For any two elements ζ, ζ ′ ∈ l2γ(L, C), their tensor
product ζ ⊗ ζ ′ is a matrix on L × L, and it is easy to verify that

(4) |ζ ⊗ ζ ′|γ . ‖ζ‖γ ‖ζ
′‖γ .

Multiplication. We have

(5) |AB|γ′ + |BA|γ′ . (
1

γ − γ′
)d |A|γ |B|γ′ , ∀γ′ < γ.

Linear differential equation. Consider the linear system{
X ′ = A(t)X
X(0) = I.

It follows from (5) that the series

I +
∞∑

n=1

∫ t0

0

∫ t1

0

. . .

∫ tn−1

0

A(t1)A(t2) . . . A(tn)dtn . . . dt2dt1,

as well as its derivative with respect to t0, converges to a solution which
verifies, for γ′ < γ,

(6) |X(t)− I|γ′ . (γ − γ′)d(exp(cte.(
1

γ − γ′
)d|t|α(t))− 1),

2We use the sign convention that xy = + whenever x and y are equal and xy = −
whenever they are different.
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where
α(t) = sup

0≤|s|≤|t|
|A(s)|γ .

2.3. Töplitz-Lipschitz matrices (d = 2).
A matrix

A : L × L → gl(2, C)

is said to be Töplitz at ∞ if, for all a, b, c, the two limits

lim
t→+∞

Ab±tc
a+tc ∃ = Ab

a(±, c).

It is easy to verify that if |A|γ < ∞ and |B|γ < ∞, then

(πA)(−, c) = (I − π)A(+, c) = 0

and

(7)

π(AB)(+, c) =
πA(+, c)πB(+, c) + (I − π)A(−, c)(I − π)B(−,−c)
(I − π)(AB)(−, c) =
(I − π)A(−, c)πB(+,−c) + πA(+, c)(I − π)B(−, c).

We define

(McA)b
a = (max(

|a|
|c|

,
|b|
|c|

) + 1)[Ab
a], ∀a, b.

The operators Mc and E±γ all commute and

Mc(AB) ≤ (McA)(McB).

Lipschitz domains. For a non-negative constant Λ, let

D+
Λ (c) ⊂ L× L

be the set of all (a, b) such that there exist a′, b′ ∈ Zd and t ≥ 0 such
that {

|a = a′ + tc| ≥ Λ(|a′|+ |c|) |c|
|b = b′ + tc| ≥ Λ(|b′|+ |c|) |c|

and
|a|
|c|

,
|b|
|c|

≥ 2Λ2.

Lemma 2.1. Let t ≥ 0.

(i) For Λ ≥ 1,
t ≥ Λ |c| ≥ Λ

if |a = a′ + tc| ≥ Λ(|a′|+ |c|) |c|.
(ii) For Λ > 1,{

|a′| ≤ t
Λ−1

− |c| if |a = a′ + tc| ≥ Λ(|a′|+ |c|) |c|
|a′| ≥ t

Λ+1
− |c| if not.
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(iii) For Λ > 1,∣∣∣∣ |a||c| − t

∣∣∣∣ ≤ t

Λ− 1
and

∣∣∣∣<a, c>

|c|2
− t

∣∣∣∣ ≤ t

Λ− 1
,

if |a = a′ + tc| ≥ Λ(|a′|+ |c|) |c|.
(iv) For Ω ≥ (Λ + 1)(|a− b|+ 1),

|b| ≥ Λ(|a′ + b− a|+ |c|) |c|

if |a = a′ + tc| ≥ Ω(|a′|+ |c|) |c|.

Proof. This is a direct computation. �

Corollary 2.2. Let Λ ≥ 3.

(i)

(a, b) ∈ D+
Λ (c) =⇒ |a|

|c|
≈ |b|
|c|
≈ <a, c>

|c|2
≈ <b, c>

|c|2
& Λ |c| .

(ii)

(a, b) ∈ D+
Λ (c) =⇒ (a + tc, b + tc) ∈ D+

Λ (c) ∀t ≥ 0.

(iii)

(a, b) ∈ D+
Λ (c) =⇒ (ã, b̃) ∈ D+

Ω(c),

where

Ω = Λ−max(|ã− a|, |b̃− b|)− 2.

(iv)

(a, b) ∈ D+
Λ+3(c), (a, d) /∈ D+

Λ (c) =⇒ |a− d| , |b− d| & 1

Λ2

|a|
|c|

.

Proof. (i) follows from Lemma 2.1 (i)+(iii) if we just observe that

t ≈ t +
t

Λ− 1
≈ t− t

Λ− 1
.

In order to see (ii) we write a = a′ + sc, s ≥ 0, with |a| ≥ Λ(|a′| +
|c|) |c|. Then

|a + tc|2 = |a|2 + t2|c|2 + 2t <a, c>= |a|2 + t2|c|2 + 2ts|c|2 + 2t <a′, c> .

By Lemma 2.1(ii)

2ts|c|2 + 2t <a′, c>≥ 2ts(1− 1

Λ− 1
)|c|2 ≥ 0.

Hence

|a + tc|2 = |a|2 + t2|c|2 ≥ |a|2 ≥ Λ(|a′|+ |c|) |c| .
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Moreover, for all t ≥ 0

|a + tc|
|c|

≥ |a|
|c|

≤ 2Λ2.

The same argument applies to b.
To see (iii), let ∆ = max(|ã − a|, |b̃ − b|) + 2 and write a = a′ + tc

with |a| ≥ Λ(|a′|+ |c|)|c|. Then ã = a′ + ã− a + tc, and if

|ã| < Ω(|a′ + ã− a|+ |c|)|c|
then by Lemma 2.1(ii)

|ã− a| ≥ t∆

(Ω + 1)(Λ− 1)
.

This implies that t ≤ (Ω + 1)(Λ− 1) and, hence,

|a|
|c|

< 2Λ2

which is impossible. Therefore

|ã| ≥ Ω(|a′ + ã− a|+ |c|)|c|.
Moreover

|ã|
|c|

≥ |a|
|c|
− ∆

|c|
≥ 2Λ2 −∆ ≥ 2Ω2.

The same argument applies to b.

To see (iv), assume that |d|
|c| < 2Λ2. As |b|

|c| ≥ 2(Λ + 3)2 it follows that

|b− d|
|c|

≥ 12Λ

and we are done unless

|b|
|c|
≈ |a|
|c|

& Λ3|c|.

In this case we must have

|d|
|c|

.
1

Λ|c|
|b|
|c|

which implies that

|b− d|
|c|

≥ (1− cte.
1

Λ|c|
)
|b|
|c|
≥ 1

Λ2|c|2
|a|
|c|

and we are done again.

Therefore we can assume that |d|
|c| ≥ 2Λ2. Now the assumption that

(a, d) /∈ D+
Λ (c) leads to the conclusion by Lemma 2.1 (i)+(ii). �
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Lipschitz constants and norms. Define the Lipschitz-constants

Lipx
Λ,γA = sup

c
|Ex

γMc(A− A(x, c))|Dx
Λ(c), x ∈ {+,−},

(see the notations of Section 2.2) and the Lipschitz-norm

<A>Λ,γ= max(Lip+
Λ,γπA, Lip−Λ,γ(1− π)A) + |A|γ .

Here we have used

(a, b) ∈ D−
Λ (c) ⇐⇒ (a,−b) ∈ D+

Λ (c).

The matrix A is Töplitz-Lipschitz if it is Töplitz at∞ and <A>Λ,γ< ∞
for some Λ, γ.

Truncations. It is easy to see that

(8)
<T∆A>Λ,γ ≤ <A>Λ,γ

<A− T∆A>Λ,γ′ ≤ e−∆(γ−γ′) <A>Λ,γ .

Tensor products. It is easy to verify that

(9) <ζ ⊗ ζ ′>Λ,γ. ‖ζ‖γ ‖ζ
′‖γ .

Multiplications and differential equations are more delicate and we
shall need the following proposition.

Proposition 2.3. For all x, y ∈ {+,−} and all γ′ < γ

(i) ∣∣Exy
γ′ Mc(AB)

∣∣
Dxy

Λ+3

. ( 1
γ−γ′

)d
∣∣Ex

γ1
Mc(A)

∣∣
Dx

Λ

∣∣Ey
γ2

B
∣∣
L×L +

Λ2( 1
γ−γ′

)d+1
∣∣Ex

γ1
A
∣∣
L×L

∣∣Ey
γ2

B
∣∣
L×L ,

where one of γ1, γ2 is = γ and the other one is = γ′. The same
bound holds for BA.

(ii)∣∣Exyz
γ′ Mc(ABC)

∣∣
Dxyz

Λ+6

. ( 1
γ−γ′

)2d
∣∣Ex

γ1
A
∣∣
L×L

∣∣Ey
γ2
Mc(B)

∣∣
Dy

Λ

∣∣Ez
γ3

C
∣∣
L×L +

Λ2( 1
γ−γ′

)2d+1
∣∣Ex

γ1
A
∣∣
L×L

∣∣Ey
γ2

B
∣∣
L×L

∣∣Ez
γ3

C
∣∣
L×L ,

where two of γ1, γ2, γ3 are = γ and the third one is = γ′.

Proof. To prove (i), let first x = y = +. We shall only prove the
estimate for AB – the estimate for BA being the same. Notice that
for (a, b) ∈ D+

Λ+3(c) we have, by Corollary 2.2(i), that

Mc(a, b) = max(
|a|
|c|

,
|b|
|c|

) + 1 ≈ |a|
|c|

+ 1.

Now

(E+
γ′Mc(AB))b

a ≤
∑

d Mc(a, b)[Ad
a][B

b
d]e

γ′|a−b| =∑
(a,d)∈D+

Λ (c) . . . +
∑

(a,d)/∈D+
Λ (c) . . . = (I) + (II).
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In the domain of (I) we have, by Corollary 2.2(i), that

Mc(a, b) ≈ |a|
|c|

+ 1 ≈ Mc(d, b),

so

(I) .
∣∣E+

γ1
McA

∣∣
D+

Λ (c)

∣∣E+
γ2

B
∣∣
L×L

∑
d

e−(γ1−γ′)|a−d|−(γ2−γ′)|d−b|.

Since one of γ1 − γ′ and γ2 − γ′ is γ − γ′ the sum is

. (
1

γ − γ′
)d.

In the domain of (II) we have, by Corollary 2.2(iv), that

|a− d|, |b− d| & 1

Λ2

|a|
|c|

,

so (II) is

.
∣∣E+

γ1
A
∣∣
L×L

∣∣E+
γ2

B
∣∣
L×L×∑

|a−d|,|d−b|& 1
Λ2

|a|
|c|

( |a||c| + 1)e−(γ1−γ′)|a−d|−(γ2−γ′)|d−b|.

Since one of γ1 − γ′ and γ2 − γ′ is γ − γ′ the sum is

. Λ2(
1

γ − γ′
)d+1.

The three other cases of (i) are treated in the same way.
To prove (ii), let first x = y = z = +. Notice that for (a, b) ∈ D+

Λ+6(c)
we have, by Corollary 2.2(i), that

Mc(a, b) = max(
|a|
|c|

,
|b|
|c|

) + 1 ≈ |a|
|c|

+ 1.

Now

(E+
γ′Mc(ABC))b

a ≤
∑

d,e Mc(a, b)[Ad
a][B

e
d][C

b
e ]e

γ′|a−b| ≤∑
|d|≥|e| . . . +

∑
|e|≥|d| . . . .

We shall only consider the first of these sums – the second one being
analogous. We decompose this sum as∑
(a,d)∈D+

Λ+3(c)

(d,e)∈D+
Λ (c)

. . . +
∑

(a,d)∈D+
Λ+3(c)

(d,e)/∈D+
Λ (c)

. . . +
∑

(a,d)/∈D+
Λ+3(c)

. . . = (I) + (II) + (III).

In the domain of (I) we have, by Corollary 2.2(i), that

Mc(d, e) ≈ Mc(a, b),
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so (I) is

.
∣∣E+

γ1
A
∣∣
L×L

∣∣E+
γ2
McB

∣∣
D+

Λ (c)

∣∣E+
γ3

C
∣∣
L×L×∑

d e−(γ1−γ′)|a−d|−(γ2−γ′)|d−e|−(γ3−γ′)|e−b|.

Since two of γ1 − γ′, γ2 − γ′ and γ3 − γ′ are γ − γ′ the sum is

. (
1

γ − γ′
)2d.

By Corollary 2.2(iv) we have, in the domain of (II),

|a− d|, |d− e| & 1

Λ2

|a|
|c|

.

and, in the domain of (III),

|a− d|, |d− b| & 1

Λ2

|a|
|c|

.

Hence in both these domains we have

s(d, e) = max(|a− d|, |d− e|, |e− b|) &
1

Λ2

|a|
|c|

,

so (II) + (III) is

.
∣∣E+

γ1
A
∣∣
L×L

∣∣E+
γ2

B
∣∣
L×L

∣∣E+
γ3

C
∣∣
L×L×∑

s(d,e)& 1
Λ2

|a|
|c|

( |a||c| + 1)e−(γ1−γ′)|a−d|−(γ2−γ′)|d−e|−(γ3−γ′)|e−b|.

Since two of γ1 − γ′, γ2 − γ′ and γ3 − γ′ are γ − γ′ the sum is

. Λ2(
1

γ − γ′
)2d+1.

The seven other cases of (ii) are treated in the same way. �

We give a more compact and slightly weaker formulation of this
result.

Corollary 2.4. For all x, y ∈ {+,−} and all γ′ < γ

(i) ∣∣Exy
γ′ Mc(AB)

∣∣
Dxy

Λ+3

. Λ2( 1
γ−γ′

)d+1[
∣∣Ex

γ1
A
∣∣
L×L +∣∣Ex

γ1
Mc(A)

∣∣
Dx

Λ

]
∣∣Ey

γ2
B
∣∣
L×L ,

where one of γ1, γ2 is = γ and the other one is = γ′. The same
bound holds for BA.
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(ii)∣∣Exyz
γ′ Mc(ABC)

∣∣
Dxyz

Λ+6

. Λ2( 1
γ−γ′

)2d+1
∣∣Ex

γ1
A
∣∣
L×L [

∣∣Ey
γ2
Mc(B)

∣∣
Dy

Λ

+∣∣Ey
γ2

B
∣∣
L×L]

∣∣Ez
γ3

C
∣∣
L×L ,

where two of γ1, γ2, γ3 are = γ and the third one is = γ′.

Multiplication. Using the relation (1) and (7) we obtain immediately
from Proposition 2.3(i) that a product of two Töplitz-Lipschitz matrices
is again Töplitz-Lipschitz and for all γ′ < γ

(10)
<AB>Λ+3,γ′.

Λ2( 1
γ−γ′

)d+1[<A>Λ,γ1 |B|γ2
+ |A|γ1

<B>Λ,γ2 ],

where one of γ1, γ2 is = γ and the other one is = γ′.
This formula cannot be iterated without consecutive loss of the Lip-

schitz domain. However Proposition 2.3(ii) together with (5) gives for
all γ′ < γ

(11)
<A1 · · ·An >Λ+6,γ′≤

(cte.)nΛ2( 1
γ−γ′

)(n−1)d+1[
∑

1≤k≤n

∏
1≤j≤n

j 6=k
|Aj|γj

<Ak >Λ,γk
],

where all γ1, . . . , γn are = γ except one which is = γ′.
Linear differential equation. Consider the linear system{

d
dt

X = A(t)X
X(0) = I.

where A(t) is Töplitz-Lipschitz with exponential decay. The solution
verifies

X(t0) = I +
∞∑

n=1

∫ t0

0

∫ t1

0

. . .

∫ tn−1

0

A(t1)A(t2) . . . A(tn)dtn . . . dt2dt1.

Using (11) we get for γ′ < γ

(12)
<X(t)− I >Λ+6,γ′.

Λ2( 1
γ−γ′

)|t| exp(cte.( 1
γ−γ′

)d|t|α(t)) sup|s|≤|t| <A(s)>Λ,γ,

where
α(t) = sup

0≤|s|≤|t|
|A(s)|γ .

2.4. Töplitz-Lipschitz matrices (d ≥ 2).
Let

A : L × L → gl(2, C)

be a matrix. We say that A is 1-Töplitz if all Töplitz-limits A(±, c)
exist, and we define, inductively, that A is n-Töplitz if all Töplitz-limits
A(±, c) are (n-1)-Töplitz. We say that A is Töplitz if it is (d-1)-Töplitz.
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In Section 2.3 we have defined <A>Λ,γ which we shall now denote
by

1<A>Λ,γ .

We define, inductively,

n<A>Λ,γ= sup
c

(n−1<A(+, c)>Λ,γ,
n−1<A(−, c)>Λ,γ)

and we denote

<A>Λ,γ=
d−1<A>Λ,γ .

The matrix A is Töplitz-Lipschitz if it is Töplitz at∞ and <A>Λ,γ< ∞
for some Λ, γ.

Proposition 2.3, Corollary 2.4 and (9-12) remain valid with this norm
in any dimension d.

3. Functions with Töplitz-Lipschitz property

3.1. Töplitz-Lipschitz property.
Let Oγ(σ) be the set of vectors in the complex space l2γ(L, C) of norm
less than σ, i.e.

Oγ(σ) = {ζ ∈ CL × CL : ‖ζ‖γ < σ}.

Our functions f : O0(σ) → C will be defined and real analytic on the
domain O0(σ). 3

Its first differential

l20(L, C) 3 ζ̂ 7→<ζ̂, ∂ζf(ζ)>

defines a unique vector ∂ζf(ζ) in l20(L, C), and its second differential

l20(L, C) 3 ζ̂ 7→<ζ̂, ∂2
ζ f(ζ)ζ̂>

defines a unique symmetric matrix ∂2
ζ f(ζ) L×L → gl(2, C). A matrix

A : L × L → gl(2, C) is symmetric if

tAb
a = Aa

b .

We say that f is Töplitz at ∞ if the matrix ∂2
ζ f(ζ) is Töplitz at ∞

for all ζ ∈ O0(σ). We define the norm

[f ]Λ,γ,σ

3The space l2γ(L, C) is the complexification of the space l2γ(L, R) of real sequences.
“real analytic” means that it is a holomorphic function which is real on O0(σ) ∩
l2γ(L, R).
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to be the smallest C such that
|f(ζ)| ≤ C ∀ζ ∈ O0(σ)
‖∂ζf(ζ)‖γ′ ≤

1
σ
C ∀ζ ∈ Oγ′(σ), ∀γ′ ≤ γ,

<∂2
ζ f(ζ)>Λ,γ′≤ 1

σ2 C ∀ζ ∈ Oγ′(σ), ∀γ′ ≤ γ.

Proposition 3.1. (i)

[fg]Λ,γ,σ . [f ]Λ,γ,σ[g]Λ,γ,σ.

(ii) If g(ζ) =<c, ∂ζf(ζ)>, then

[g]Λ,γ,σ′ .
1

σ − σ′
‖c‖γ [f ]Λ,γ,σ

for σ′ < σ.
(iii) If g(ζ) =<Cζ, ∂ζf(ζ)>, then

[g]Λ+3,γ′,σ′ . ((1 + σ′

σ−σ′
)( 1

γ−γ′
)d+m∗ |C|γ

+Λ2( 1
γ−γ′

)d+1 <C >Λ,γ)[f ]Λ,γ,σ

for σ′ < σ and γ′ < γ.

Proof. We have

fg(ζ) = f(ζ)g(ζ)
∂ζfg(ζ) = f(ζ)∂ζg(ζ) + ∂ζf(ζ)g(ζ)
∂2

ζ fg(ζ) = f(ζ)∂2
ζ g(ζ) + ∂2

ζ f(ζ)g(ζ) + 2(∂ζf(ζ)⊗ ∂ζg(ζ)).

(i) now follows from (9).
For ζ ∈ O0(σ′) we have

|g(ζ)| ≤ ‖c‖0 ‖∂ζf(ζ)‖0 ≤ ‖c‖0

1

σ
α,

where α = [f ]Λ,γ,σ.
Let ζ ∈ Oγ′(σ′) and h(z) = ∂ζf(ζ + zc). h is a holomorphic function

(with values in the Hilbert-space l2γ′(L, C)) in the disk |z| < σ−σ′

‖c‖γ′
and

‖h(z)‖γ′ ≤
1

σ
α.

Since ∂ζg(ζ) = ∂zh(0), we get by a Cauchy estimate that

‖∂ζg(ζ)‖γ′ ≤
1

σ′
(
σ′

σ

1

σ − σ′
‖c‖γ′ α).

Let ζ ∈ Oγ′(σ′) and k(z) = ∂2
ζ f(ζ + zc). k is a holomorphic function

(with values in the Banach-space of matrices with the norm < ·>γ′,Λ)

in the disk |z| < σ−σ′

‖c‖γ′
and

<k(z)>Λ,γ′≤
1

σ2
α.
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Since ∂2
ζ g(ζ) = ∂ζk(0), we get by a Cauchy estimate that

<∂ζg(ζ)>Λ,γ′≤ (
1

σ′
)2((

σ′

σ
)2 1

σ − σ′
‖c‖γ′ α).

This proves (ii).
To see (iii) we replace c by Cζ and notice that

∂ζg(ζ) = ∂zh(0) + tC∂ζf(ζ)

and
∂2

ζ g(ζ) = ∂zk(0) + tC∂2
ζ f(ζ) + t∂2

ζ f(ζ)C.

∂zh(0) and ∂zk(0) are estimated as above and ‖Cζ‖γ′ with Young’s

inequality (2). The matrix products are estimated by (10). �

3.2. Truncations.
Let Tf be the Taylor polynomial of order 2 of f at ζ = 0.

Proposition 3.2. (i)

[Tf ]Λ,γ,σ . [f ]Λ,γ,σ.

(ii)

[f − Tf ]Λ,γ,σ′ . (
σ′

σ
)3 σ

σ − σ′
[f ]Λ,γ,σ.

Proof. Let ζ ∈ O0(σ′) and let g(z) = f(zζ). Then g is a real holo-
morphic function in the disk of radius σ

σ′
and bounded by α = [f ]Λ,γ,σ.

Since Tf(zζ) = g(0) + g′(0)z + 1
2
g′′(0)z2 we get by a Cauchy estimate

that

|(f − Tf)′ζ)| ≤ (
σ′

σ
)3 σ

σ − σ′
α.

Let ζ ∈ Oγ′(σ′) and let h(z) = ∂ζf(zζ). Then h is a holomorphic
function in the disk of radius σ

σ′
and bounded by α

σ
. Since ∂ζTf(ζ) =

h(0) + h′(0)z we get by a Cauchy estimate that

‖∂ζ(f − Tf)(ζ)‖γ′ ≤ (
σ′

σ
)2 σ

σ − σ′
α

σ
.

Let ζ ∈ Oγ′(σ′) and let k(z) = ∂2
ζ f(zζ). Then k is a holomorphic

function in the disk of radius σ
σ′

and bounded by α
σ2 . Since ∂2

ζ Tf(ζ) =
k(0) we get by a Cauchy estimate that

<∂2
ζ (f − Tf)(ζ)>Λ,γ′≤ (

σ′

σ
)

σ

σ − σ′
α

σ2
.

This gives (ii).
The first statement is obtained by taking σ′ = 1

2
σ. Since f is a

quadratic polynomial it satisfies the same (modulo a constant) estimate
on σ as on 1

2
σ. �
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3.3. Poisson brackets.
The Poisson bracket of two functions f and g is defined by

{f, g}(ζ) =<∂ζf(ζ), J∂ζg(ζ)> .

Proposition 3.3. (i) If g is a quadratic polynomial, then

[{f, g}]Λ+3,γ′,σ′ . [
1

σ1σ2

+ Λ2(
1

γ − γ′
)d+1(

σ′

σ1σ2

)2][f ]Λ,γ,σ1 [g]Λ,γ,σ2 ,

for 0 < σ1 − σ ≈ σ1, 0 < σ2 − σ ≈ σ2 and γ′ < γ.
(ii) If g is a quadratic polynomial and f(ζ) =<ζ, Aζ>, then

[{f, g}]Λ+3,γ′,σ′ . [(
1

γ − γ′
)d+m∗

1

σ2
1

+ Λ2(
1

γ − γ′
)d+1 1

σ2
1

)][f ]Λ,γ,σ1 [g]Λ,γ,σ2 ,

for 0 < σ1 − σ ≈ σ1, 0 < σ2 − σ ≈ σ2 and γ′ < γ.

Proof. We have

∂ζ{f, g}(ζ) = ∂2
ζ f(ζ)J∂ζg(ζ) + ∂2

ζ g(ζ)J∂ζf(ζ)

and
∂2

ζ{f, g}(ζ) = ∂3
ζ f(ζ)J∂ζg(ζ) + ∂3

ζ g(ζ)J∂ζf(ζ)+
∂2

ζ f(ζ)J∂2
ζ g(ζ) + t∂2

ζ f(ζ)J∂2
ζ g(ζ).

For ζ ∈ O0(σ′) we get, by Cauchy-Schwartz, that

|{f, g}(ζ)| ≤ ‖∂ζf(ζ)‖0 ‖∂ζg(ζ)‖0 ≤ (
αβ

σ1σ2

),

where α = [f ]Λ,γ,σ1 and β = [g]Λ,γ,σ2 .

For ζ ∈ Oγ′(σ′), let h(z) = ∂ζf(ζ + zJ∂ζg(ζ)). For |z| < σ1−σ′

‖∂ζg(ζ)‖
γ′

we have

‖h(z)‖γ′ ≤
α

σ1

.

Since ∂zh(0) = ∂2
ζ f(ζ)J∂ζg(ζ), we get by a Cauchy estimate that∥∥∂2

ζ f(ζ)J∂ζg(ζ)
∥∥

γ′
≤ 1

σ2
1σ2

αβ.

The same estimate holds with f and g interchanged.
For ζ ∈ Oγ′(σ′), let k(z) = ∂2

ζ f(ζ+zJ∂ζg(ζ)). By a Cauchy-estimate
we get as above that

<∂3
ζ f(ζ)J∂ζg(ζ)>Λ,γ′≤

1

σ3
1σ2

αβ.

The same estimate holds with f and g interchanged.
Finally, for ζ ∈ Oγ′(σ′) we get by (10) that

<∂2
ζ f(ζ)J∂2

ζ g(ζ)>Λ+3,γ′. Λ2(γ − γ′)−d−1 <∂2
ζ f(ζ)>Λ,γ′<∂2

ζ g(ζ)>Λ,γ .
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By hypothesis we have

<∂2
ζ g(ζ)>Λ,γ≤

β

σ2
2

for ζ only in Oγ(σ′). But since g is quadratic, ∂2
ζ g(ζ) is independent of

ζ and, hence, this also holds in the larger domain ζ ∈ Oγ′(σ′).
The second part follows directly from Proposition 3.1(iii). �

3.4. The flow map.
Consider the linear system

ζ̇ = J∂ζft(ζ)

where ft(ζ) =<ζ, at> + <ζ, Atζ>, and let

α(t) = sup
|s|≤|t|

|As|γ and β(t) = sup
|s|≤|t|

‖as‖γ′ .

Consider the non-linear system

ż = g(ζ, z)

where g(ζ, z) is real analytic in O0(σ)×D(µ). D(µ) is the disk of radius
µ in C.

Proposition 3.4. (i) The flow map of the linear system has the
form

ζt : ζ 7→ ζ + bt + Btζ,

and for γ′ < γ

‖ζt(ζ)− ζ‖γ′ .

( 1
γ−γ′

)m∗ [e
cte.( 1

γ−γ′ )
d|t|α(t)|t|β(t) + [e

cte.( 1
γ−γ′ )

d|t|α(t) − 1] ‖ζ‖γ′ ]

and

<Bt >Λ+6,γ′.

Λ2( 1
γ−γ′

)|t|ecte.( 1
γ−γ′ )

d|t|α(t)
sup|s|≤|t| <As >Λ,γ .

(ii) For |z| < µ′, the flow of the non-linear system is defined for

|t| ≤ µ−µ′

2ε
and

[zt(·, z)− z]Λ,γ,σ .

(1 + µ−µ′

ε
(e

cte.|t| 1
µ−µ′ ε − 1))2ε,

where

ε = sup
z∈D(µ)

[g(·, z)]Λ,γ,σ.
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Proof. (i) We have

bt =
∞∑

n=1

∫ t

0

. . .

∫ tn−1

0

JAt1 . . . JAtn−1Jatndtndtn−1 . . . dt1

and

Bt =
∞∑

n=1

∫ t

0

. . .

∫ tn−1

0

JAt1 . . . JAtndtn . . . dt1.

By (5) we have

|Bt|γ′ . (γ − γ′)d(δ(t)− 1), δ(t) = exp(cte.(γ − γ′)−d|t|α(t))

and by (2) we have

‖Btζ‖γ′ . (
1

γ − γ′
)m∗(δ(t)− 1) ‖ζ‖γ′ .

By (2+5) we have

‖bt‖γ′ . (
1

γ − γ′
)m∗δ(t)|t|β(t).

By (12) we have

<Bt >Λ+6,γ′. Λ2(γ − γ′)−1δ(t) sup
|s|≤|t|

<As >Λ,γ .

The proof of (ii) easier. We have

∂ζ żt = ∂ζg(. . .) + ∂zg(. . .)∂ζzt

which implies that

∂ζzt =

∫ t

0

e
R t

s ∂zg(ζ,zr)dr∂ζg(ζ, zs)ds

This is easy to estimate.
We also have

∂2
ζ żt = ∂2

ζ g(. . .) + ∂z∂ζg(. . .)⊗ ∂ζzt + ∂zg(. . .)∂2
ζ zt

which is treated in the same way. �

Remark. The same result holds for z = (z1, . . . , zn) ∈ D(µ)n and g =
(g1, . . . , gn).

Remark. If |t| ≤ 1 and

sup
|s|≤|t|

|As|γ . (γ − γ′)d,

then

‖ζt(ζ)− ζ‖γ′ . (
1

γ − γ′
)m∗ sup

|s|≤|t|
‖as‖γ′ + (

1

γ − γ′
)m∗+d sup

|s|≤|t|
|As|γ ‖ζ‖γ′
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and

<Bt >Λ+6,γ′. Λ2(
1

γ − γ′
) sup
|s|≤|t|

<As >Λ,γ .

If |t| ≤ 1 and

ε = sup
z∈D(µ)

[g(·, z)]Λ,γ,σ . µ− µ′,

then

[zt(·, z)− z]Λ,γ,σ . ε.

3.5. Compositions.
Let f(ζ, z) be a real analytic function on O0(σ)× D(µ) and

sup
z∈D(µ)

[f(·, z)]Λ,γ,σ < ∞.

Let

Φ(ζ, z) = b(z) + ζ + B(z)ζ

with

‖b(z) + B(z)ζ‖γ′ < σ − σ′, ∀(ζ, z) ∈ Oγ′(σ′)× D(µ′)

for all γ′ ≤ γ. This implies that

Φ : Oγ′(σ′) → Oγ′(σ), ∀ γ′ ≤ γ, ∀z ∈ D(µ′).

Let g(ζ, z) be a real holomorphic function on O0(σ′)×D(µ′) such that

|g| ≤ 1

2
(µ− µ′).

Proposition 3.5. For all z ∈ D(µ′) and γ′ < γ

[f(Φ(·), z + g(·))]Λ+6,γ′,σ′ .
max(1, α, Λ2( 1

γ−γ′
)α2) supz∈D(µ)[f(·, z)]Λ,γ,σ

where

α =
1

µ− µ′
[g]Λ,γ,σ′ + (

1

γ − γ′
)d+m∗ <B>Λ,γ .

Proof. Let ε = supz∈D(µ)[f(·, z)]Λ,γ,σ and β = supz∈D(µ′)[g(·, z)]Λ,γ,σ′ .
Let h(ζ, z) = f(Φ(ζ, z), z + g(ζ, z)). Then

∂ζh = ∂zf(. . .)∂ζg + tB∂ζf(. . .)

and
∂2

ζ h = ∂2
zf(. . .)(∂ζg ⊗ ∂ζg) + ∂zf(. . .)∂2

ζ g+
tB(∂ζ∂zf(. . .)⊗ ∂ζg) + tB∂2

ζ f(. . .)B.

For (ζ, z) ∈ O0(σ′)× D(µ′) we get: |h(ζ)| ≤ ε.
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For (ζ, z) ∈ Oγ′(σ′)× D(µ′) we get:

‖∂zf(. . .)∂ζg‖γ′ = |∂zf(. . .)| ‖∂ζg‖γ′ . (
1

µ− µ′
)ε

β

σ′
;∥∥tB∂ζf(. . .)

∥∥
γ′

. (
1

γ − γ′
)d+m∗ |B|γ

ε

σ
by Young’s inequality (2).

For (ζ, z) ∈ Oγ′(σ′)× D(µ′) we get:

<∂2
zf(. . .)∂ζg ⊗ ∂ζg>Λ,γ′. (

1

µ− µ′
)2ε(

β

σ′
)2

by (9);

<∂zf(. . .)∂2
ζ g>Λ,γ′. (

1

µ− µ′
)ε(

β

(σ′)2
);

< tB(∂ζ∂zf(. . .)⊗ ∂ζg)>Λ+3,γ′. Λ2(
1

γ − γ′
)d+1 <B>Λ,γ (

1

µ− µ′
)ε

β

σσ′

by (9-10);

< tB∂2
ζ f(. . .)B>Λ+6,γ′. Λ2(

1

γ − γ′
)2d+1 <B>2

Λ,γ

ε

σ2

by (11). �

Remark. The same result holds for z = (z1, . . . , zn) ∈ D(µ)n and g =
(g1, . . . , gn).

Remark. If, for z ∈ D(µ′),

[g(·), z]Λ,γ,σ′ . (µ− µ′) min(1,
√

γ − γ′)Λ2

and
<B(z)>Λ,γ. (γ − γ′)d+m∗Λ2,

then
[f(Φ(·, z), z + g(·, z)]Λ+6,γ′,σ′ . Λ6ε.

PART II. THE HOMOLOGICAL EQUATIONS

In this part we consider scalar-valued matrices Q : L × L → C
which we consider as a sub-class of gl(2, C)-valued matrices through
the identification

Qb
a = Qb

aI.

We will only consider the Lipschitz domains D+
Λ (c) which we denote

by DΛ(c).
We define the block decomposition E∆ together with the blocks [ · ]∆

and the bound d∆ of the block diameter.
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We consider parameters U ⊂ RA, A = Zd \ L, and define the norms
| · |{γ

U} and < · >n
Λ,γ
U

o.

4. Decomposition of L

In this section d ≥ 2. For a non-negative integer ∆ we define an
equivalence relation on L generated by the pre-equivalence relation

a ∼ b ⇐⇒
{
|a|2 = |b|2
|a− b| ≤ ∆.

Let [a]∆ denote the equivalence class (block) of a, and let E∆ be the
set of equivalence classes. It is trivial that each block [a] is finite with
cardinality

. |a|d−1

that depends on a. But there is also a uniform ∆-dependent bound.
Indeed, let d∆ be the supremum of all block diameters. We will see
(Proposition 4.1)

d∆ . ∆
(d+1)!

2 .

∆ will be fixed in this section and we will write [ · ] for [ · ]∆.

4.1. Blocks.
For any X ⊂ Zd we define its rank to be the dimension of the smallest
affine subspace in Rd containing X.

Proposition 4.1. Let c ∈ Zd and rank[c] = k, k = 1, . . . , d. Then the
diameter of [c] is

. ∆
(k+1)!

2 .

Proof. Let ∆j, j ≥ 1 be an increasing sequence of numbers.
Assume that for any 1 ≤ l ≤ k

(∗)l rank(B∆l
(c) ∩ [c]) ≥ l ∀c ∈ [c],

where Br(c) is the ball of radius r centered at c. This means that for
any c ∈ [c], there exist linearly independent vectors a1, . . . , al in Zd

such that

c + aj ∈ [c] and |aj| ≤ ∆l, 1 ≤ j ≤ l.

(∗)l implies that the ⊥ projection c̃ of c onto
∑

Raj verifies

(∗∗) |c̃| .
{

∆l l = 1
∆l+1

l l ≥ 2.
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Proof. In order to see this we observe that, since |c + aj|2 = |c|2 for
each j, the (row) vector c verifies

cM = −1

2
(|a1|2 . . . |al|2),

where M is the d × l-matrix whose columns are ta1, . . .
tal. Now there

exists an orthogonal matrix Q such that

QM =

(
B
0

)
,

where B is an invertible l × l-matrix. We have

(det B)2 = det(tBB) = det(tMM) ≥ 1,

and (the absolute values of) the entires of B are bounded by . ∆l.
Define now x by{

(x1 . . . xl) = 1
2
(|a1|2 . . . |al|2)B−1

xl+1 = · · · = xd = 0,

and y = xQ. Then c− y ⊥
∑

Raj, so |c̃| ≤ |y|. An easy computation
gives

|y| = |x| . ∆l+1
l and . ∆1 (if l = 1).

This is ≤ ∆l. �

We shall now determine ∆l so that (∗)l holds. This will be done by
induction on l. For l = 1 ∆1 = ∆ works, so let us assume that (∗)l

holds for some 1 ≤ l < k. If (∗)l+1 does not hold, it is violated for some
c. Let us fix this c ∈ [c], and let X be the real subspace generated by
(B∆l+1

(c)) ∩ [c])− c. X has rank = l.
For any b ∈ [c] with |b− c| ≤ ∆l+1 −∆l we have

B∆l
(b) ∩ [c] ⊂ B∆l+1

(c) ∩ [c].

By the induction assumption the ⊥ projection b̃ of b onto X verifies
(∗∗).

Take now b ∈ [c] such that ∆l+1 − ∆l − ∆ ≤ |b− c| ≤ (∆l+1 − ∆l)
— such a b exists since rank of [c] is ≥ l + 1. Since b− c is parallel to
X we have

∆l+1 −∆l −∆ ≤ |b− c| = |b̃− c̃| .
{

∆l l = 1
∆l+1

l l ≥ 2.

So if we take ∆l+1 ≈ the RHS, then the assumption that (∗)l+1 does
not hold leads to a contradiction. Hence with this choice (∗)l hold for
all l ≤ k.

To conclude we observe now that [c] ⊂ c + X where X is a subspace
of dimension k. Clearly the diameter of [c] is the same as the diameter



KAM FOR NLS 29

of its ⊥ projection onto X, and, by (∗∗), the diameter of the projection
is ≤ ∆k. �

We say that [a] and [b] have the same block-type if there are a′ ∈ [a]
and b′ ∈ [b] such that

[a]− a′ = [b]− b′.

It follows from the proposition that there are only finitely many block-
types. We say that the block-type of [a] is orthogonal to c if

[a]− a ⊥ c.

Description of blocks when d = 2, 3. For d = 2, we have outside
{|a| :≤ d∆ ≈ ∆3}

? rank[a]=1 if, and only if, a ∈ b
2

+ b⊥ for some 0 < |b| ≤ ∆ –
then [a] = {a, a− b} ;

? rank[a]=0 – then [a] = {a}.
For d = 3, we have outside {|a| :≤ d∆ ≈ ∆12}

? rank[a]=2 if, and only if, a ∈ b
2

+ b⊥ ∩ c
2

+ c⊥ for some 0 <
|b| , |c| ≤ ∆2 linearly independent – then [a] ⊃ {a, a− b, a− c};

? rank[a]=1 if, and only if, a ∈ b
2
+b⊥ for a unique(!) 0 < |b| ,≤ ∆

– then [a] = {a, a− b};
? rank[a]=0 – then [a] = {a}.

4.2. Neighborhood at ∞.

Proposition 4.2. For any |a| & Λ2d−1, there exist c ∈ Zd,

|c| . Λd−1,

such that

|a| ≥ Λ(|ac|+ |c|) |c| , <a, c>≥ 0.

(ac is the lattice element on a + Rc closest to the origin.)

Proof. For all K > 0 there is a c ∈ Zd ∩ {|x| ≤ K} such that

δ = dist(c, Ra) ≤ C1(
1

K
)

1
d−1

where C1 only depends on d.
To see this we consider the segment Γ = [0, K

|a|a] in Rd and a tubular

neighborhood Γε of radius ε:

vol(Γε) ≈ Kεd−1.

The projection of Rd onto Td is locally injective and locally volume-

preserving. If ε & ( 1
K

)
1

d−1 , then the projection of Γε cannot be injective
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(for volume reasons), so there are two different points x, x′ ∈ Γε such
that

x− x′ = c ∈ Zd \ 0.

Then

|ac| ≤
|a|
|c|

δ.

Now

Λ(|ac|+ |c|) |c| ≤ 2ΛK2 + C1
Λ

K
1

d−1

|a| .

If we choose K = (2C1Λ)d−1, then this is ≤ |a|. �

Corollary 4.3. For any N , the subset

{|a|+ |b| & Λ2d−1} ∩ {|a− b| ≤ N} ⊂ Zd × Zd

is contained in ⋃
|c|.Λd−1

DΩ(c)

for any

Ω ≤ Λ

N + 1
− 1.

Proof. Let |a| & Λ2d−1. Then there exists |c| . Λd−1 such that |a| ≥
Λ(|ac|+ |c|) |c|. Clearly (because d ≥ 2)

|a|
|c|

≥ 2Λ2 ≥ 2Ω2.

If we write a = ac + tc then b = ac + b− a+ tc. According to Lemma
2.1(iv)

|b| ≥ Ω(|ac + b− a|+−c|)|c|,
and moreover

|b|
|c|
≥ |a|
|c|
−N ≥ Λ2 −N ≥ 2Ω2.

�

Remark. This corollary is essential. It says that any neighborhood

{(a, b) : |a− b| ≤ N} ⊂ Zd × Zd

of the diagonal, outside some finite set, is covered by finitely many
Lipschitz domains.
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4.3. Lines (a + Rc) ∩ Zd.

Proposition 4.4. (i) If [a + tc] = [b + tc] for all t >> 1, then
[a + tc] = [b + tc] for all t.

(ii) [a + tc]− (a + tc) is constant and ⊥ to c for all t such that

|a + tc| ≥ d2
∆(|ac|+ |c|) |c| .

Proof. To prove (i) we observe that

|a + tc| = |b + tc| ∀t >> 1,

which clearly implies that

|a + tc| = |b + tc| ∀t.
If |a− b| ≤ ∆ then this implies that [a+tc] = [b+tc] for all t. Otherwise,
for all t >> 1 there is a dt /∈ {a, b} such that

[dt + tc] = [a + tc].

Since the diameter of each block is ≤ d∆, it follows that |dt − a| ≤ d∆.
Since there are infinitely many t:s and only finitely many dt:s, there is
some d such that d = dt for at least three different t:s. Then

|d + tc| = |a + tc| ∀t.
If now |a− d| ≤ ∆ and |d− b| ≤ ∆, then [a + tc] = [b + tc] for all t.

Otherwise, for all t >> 1 there is a et /∈ {a, b, d} such that

[et + tc] = [a + tc],

and the statement follows by a finite induction.
To prove (ii) it is enough to consider a = ac. Let b ∈ [a + tc] −

(a + tc) for some t = t0, such that |a + tc| ≥ d2
∆(|ac| + |c|) |c|. Then

|a + tc + b|2 = |a + tc|2, i.e.

2t <b, c> +2 <b, a> + |b|2 = 0.

If <b, c>6= 0, then

|a + tc| ≤ |a|+ |t <b, c>| |c| ≤ |a|+ (|<b, a>|+ 1

2
|b|2) |c|

which, in view of Proposition 4.1 is less than

((d∆ + 1) |a|+ 1

2
d2

∆) |c| .

But this is impossible under the assumption on a + tc. Therefore <
b, c>= 0, i.e. [a + tc]− (a + tc) ⊥ to c.

Moreover it follows that |a + tc + b| = |a + tc| for all t. If |b| ≤ ∆ it
follows that [a+ b+ tc] = [a+ tc] for all t. If not, there is a sequence of
points 0 = b1, b2, . . . , bk = b in [a+tc]−(a+tc) such that |bj+1 − bj| ≤ ∆
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for all j. By a finite induction it follows that [a + b + tc] = [a + tc] for
all t. Hence

[a + tc] = (t− t0)c + [a + t0c]

for all t ≥ t0. �

More on Töplitz-Lipschitz matrices. For a matrix Q : L×L → C we
denote by Q(tc) the matrix whose elements are

Qb
a(tc) =: Q(tc)b

a = Qb+tc
a+tc.

4 Clearly for any subset I, J of L
QJ

I (tc) =: Q(tc)J
I = QJ+tc

I+tc

in an obvious sense.

Corollary 4.5. Let Λ ≥ d2
∆. If (a, b) ∈ DΛ(c), then

Q
[b]∆
[a]∆

(tc) = Q
[b+tc]∆
[a+tc]∆

for all t ≥ 0. In particular, if Q is Töplitz at ∞, then

lim
t→∞

∥∥∥Q[b]∆
[a]∆

(tc)−Q
[b]∆
[a]∆

(∞c)
∥∥∥ = 0.

Proof. This follows immediately from Proposition 4.4(ii). �

5. Small Divisor Estimates

Let ω ∈ U ⊂ RA be a set in

(13) {|ω| ≤ C1}.
If A : L × L → gl(2, C) depends on the parameters ω ∈ U we define

|A|{γ
U} = sup

ω∈U
(|A(ω)|γ , |∂ωA(ω)|γ),

where the derivative should be understood in the sense of Whitney. 5

If the matrices A(ω) and ∂ωA(ω) are Töplitz at ∞ for all ω ∈ U , then
we can define

<A>n
Λ,γ
U

o= sup
ω∈U

(<A(ω)>Λ,γ, <∂ωA(ω)>Λ,γ).

It is clear that if < A >n
Λ,γ
U

o is finite, then the convergence to the

Töplitz-limits takes place in the C1-norm in ω.

4Notice the abuse of notation. In order to avoid confusion we shall in this section
denote the Töplitz-limit in the direction c by Q(∞c).

5This implies that < A >n
Λ,γ
U

o bounds a C1-extension of A(ω) to the full ball

{|ω| ≤ C1}.
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5.1. Normal form matrices.
A matrix A : L×L → gl(2, C) is on normal form – denoted NF∆ – if

(i) A is real valued;
(ii) A is symmetric, i.e. Aa

b = t(Ab
a);

(iii) πA = A;
(iv) A is block-diagonal over E∆, i.e. Ab

a = 0 for all [a]∆ 6= [b]∆.

For a normal form matrix A the quadratic form 1
2
<ζ, Aζ> takes the

form
1

2
<ξ, A1ξ> + <ξ, A2η> +

1

2
<η, A1η>

where A1 + iA2 is a Hermitian (scalar-valued) matrix.
Let

w =

(
ua

va

)
= C−1

(
ξa

ηa

)
C =

(
1√
2

1√
2

−i√
2

i√
2

)
and define tCAC : L × L → gl(2, C) through

(tCAC)b
a = tCAb

aC.

Then A is on normal form if, and only if,

1

2
<w, tCACw>=

1

2
<u, Qv>,

where

(i) Q is Hermitian;
(ii) Q is block-diagonal over over E∆.

We denote for any subset I of L

QI = QI
I = Q|I×I .

We say that a scalar-valued matrix with this propetries Q is on
normal form, denoted NF∆. Notice that scalar valued normal form
matrix Q will in general not become a gl(2, R)-valued normal form
matrix through the identification Qb

a = Qb
aI.

5.2. Small divisor estimates. Let Ω = Ω(ω) : L × L → R be a real
scalar valued diagonal matrix with diagonal elements

Ωa(ω).

Assume that for all a ∈ L and all ω ∈ U

(14)
∣∣∂ν

ω(Ωa(ω)− |a|2)
∣∣ ≤ C2e

−C3|a|, C3 > 0, ν = 0, 1,
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and for all k ∈ Zn \ 0

(15)

 |∂ω(<k, ω> +Ωa(ω))| ≥ C4

|∂ω(<k, ω> +Ωa(ω) + Ωb(ω))| ≥ C4

|∂ω(<k, ω> +Ωa(ω)− Ωb(ω))| ≥ C4 |a| 6= |b| .

Let H = H(ω) : L × L → C be NF∆ for ω ∈ U and assume that

(16) ‖∂ωH(ω)‖ ≤ C4

4
, ω ∈ U.

Here ‖ · ‖ is the operator norm.
Let us first formulate and prove the easy case.

Proposition 5.1. Let ∆′ > 0 and κ > 0. Assume that U verifies
(13), that Ω(ω) is real diagonal and verifies (14)+(15) and that H(ω)
is NF∆ and verify (16) for all ω ∈ U .

Then there exists a closed set U ′ ⊂ U ,

Leb(U \ U ′) ≤ cte.(max(∆′, d2
∆))d+#A−1κC2d−1

1

such that for all ω ∈ U ′, all 0 < |k| ≤ ∆′ and for all

(17) [a]∆, [b]∆

we have

(18) |<k, ω>| ≥ κ,

(19) |<k, ω> +α(ω)| ≥ κ, ∀ α(ω) ∈ σ((Ω + H(ω))[a]∆)

and

(20) |<k, ω> +α(ω) + β(ω)| ≥ κ ∀
{

α(ω) ∈ σ((Ω + H)(ω)[a]∆)
β(ω) ∈ σ((Ω + H)(ω)[b]∆).

Moreover the κ-neighborhood of U ′ ⊂ U satisfies the same estimate.
The constant cte. depends on the dimensions d and #A and on C4.

Proof. It is enough to prove the statement for ∆′ ≥ d2
∆. Let us prove

the estimate (20), the other two being the same, but easier.
Since |k| ≤ ∆′, |<k, ω>| . C1∆

′. 6 If the block I intersects {|c| &√
C1∆′}, then any eigenvalue α of (Ω + H)I(ω) verifies

|α| & C1∆
′.

Hence

|< k, ω > +α + β| & 1.

6In this proof . depends on d, #A and on C4.
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So it suffices to consider pair of eigenvalues α ∈ σ((Ω + H)I(ω)) and
β ∈ σ((Ω + H)J(ω)) with blocks

I, J ⊂ {|c| .
√

C1∆′}.
(Here we used that ∆′ ≥ d2

∆.) These are at most

. (C1∆
′)d

many possibilities.
Now, (<k, ω> +α + β) is an eigenvalue of the Hermitian operator

<k, ω> +H(ω),

H(ω) : X 7→ (Ω + H)I(ω)X + (Ω + H)J(ω)X

which extends C1 to {|ω| < C1}. Assumption (16) shows that

‖∂ωH(ω)‖ ≤ C4

4

and (15), via Proposition 9.3 (Appendix), now implies that the inverse
of H(ω) is bounded from above by 1

κ
– this gives a lower bound for its

eigenvalues – outside a set of Lebesgue measure

.
κ

|k|
Cd−1

1 .

Summing now over all these blocks I, J and all |k| ≤ ∆′ gives the
result. �

We now turn to the main problem.

Proposition 5.2. Let ∆′ > 0 and κ > 0. Assume that U verifies (13),
that Ω(ω) is real diagonal and verifies (14)+(15) and that H(ω) and
∂H(ω) are Töplitz at ∞ and NF∆ and verify (16) for all ω ∈ U .

Then there exists a subset U ′ ⊂ U ,

Leb(U \ U ′) ≤
cte. max(∆′, d2

∆, Λ)exp+#A−1(1+ <H >{Λ
U})

dκ
1
d Cd−1

1 ,

such that, for all ω ∈ U ′, 0 < |k| ≤ ∆′ and all

(21) dist([a]∆, [b]∆) ≤ ∆′

we have

(22) |<k, ω> +α(ω)− β(ω)| ≥ κ ∀
{

α(ω) ∈ σ((Ω + H)(ω)[a]∆)
β(ω) ∈ σ((Ω + H)(ω)[b]∆).

Moreover the κ-neighborhood of U \ U ′ satisfies the same estimate.
The exponent exp depends only on d. The constant cte. depends on

the dimensions d and #A and on C2, C3, C4.
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Proof. The proof goes in the following way: first we prove an estimate
in a large finite part of L (this requires parameter restriction); then we
assume an estimate “at ∞” of L and we prove, using the Lipschitz-
property, that this estimate propagate from “∞” down to the finite
part (this requires no parameter restriction); in a third step we have
to prove the assumption at ∞. This will be done by reducing it to an
estimate in dimension d − 1. In order to carry out the induction we
must carry out the argument for a full rank lattice in Zd and not only
for Zd itself.

So L is a lattice in Zd, minus a finite part.
Let us notice that it is enough to prove the statement for ∆′ ≥

max(Λ, d2
∆). We let [ ] denote [ ]∆. Let Ω ≈ (∆′)3.

1. Finite part. For the finite part, let us suppose a belongs to

(23) {a ∈ L : |a| . (1 +
1

κ′
dd

∆ <H >{Λ
U})Ω

2d−1},

7 where κ′ = κ
d−1

d . These are finitely many possibilities and (22)κ is
fulfilled, for all [a] satisfying (23), all [b] with |a− b| . ∆′ and all
|k| ≤ ∆′, outside a set of Lebesgue measure

(24) . (1 + dd
∆ <H >{Λ

U})
dΩ2(2d−1)(∆′)d+n−1 κ

κ′
Cd−1

1 .

(This is the same argument as in Proposition 5.1.)

Let us now get rid of the diagonal terms V̂ (a, ω) = Ωa(ω) − |a|2
which, by (14), are

. C2e
−|a|C3 .

We include them into H. Since they are diagonal, H will remain on
normal form. Due to the exponential decay, H and ∂ωH will remain
Töplitz at ∞. The estimate of the Lipschitz norm gets worse but this
is innocent in view of the estimates. Also the estimate of the Lipschitz
norm gets worse, but if a is outside (23) then condition (16) remains
true with a slightly worse bound, say

‖∂ωH(ω)‖ ≤ 3C4

8
, ω ∈ U.

So from now on, a is outside (23) and

Ωa = |a|2.

2. Condition at ∞. For each vector c ∈ Zd such that |c| ≤ Ωd−1, we
suppose that the Töplitz limit H(c, ω) verifies (22)κ′ for (21) and for

(25) ([a][∆] − [b][∆]) ⊥ c.

7In this proof . depends on d, #A and on C2, C3, C4.
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It will become clear in the next part why we only need (22)κ′ + (21)
under the supplementary restriction (25).

3. Propagation of the condition at ∞. We must now prove that for
|b− a| . ∆′ and an a ∈ L outside (23), (22)κ is always fulfilled.

By the Corollary 4.3 we get

[a]× [a] and [b]× [b] ⊂
⋃

|c|.Ωd−1

DΩ′(c), Ω′ ≈ Ω

∆′ ,

and by Proposition 4.4 – notice that Ω′ ≥ d2
∆ –

[a + tc] = [a] + tc and [b + tc] = [b] + tc

for t ≥ 0 and

[a]− a, [b]− b ⊥ c.

It follows that

lim
t→∞

H[a+tc](ω) = H[a](c, ω) and lim
t→∞

H[b+tc](ω) = H[b](c, ω).

The matrices Ω[a+tc] and Ω[b+tc] do not have limits as t →∞. How-
ever, for any (#[a]×#[b])-matrix X,

Ω[a+tc]X −XΩ[b+tc] = Ω[a]X −XΩ[b] + 2t <a− b, c> X

for t ≥ 0, and we must discuss two different cases according to if
< c, b− a >= 0 or not.

Consider for t ≥ 0 a pair of eigenvalues{
αt ∈ σ((Ω + H(ω))[a+tc])
βt ∈ σ((Ω + H(ω))[b+tc])

Case I: <c, b− a>= 0. Here

(Ω + H(ω))[a+tc]X −X(Ω + H(ω))[b+tc]

equals

(|a|2 + H(ω))[a+tc]X −X(|b|2 + H(ω))[b+tc]

– the linear and quadratic terms in t cancel!
By continuity of eigenvalues,

lim
t→∞

(αt − βt) = (α∞ − β∞),

where {
α∞ ∈ σ((|a|2 + H(c, ω))[a])

β∞ ∈ σ((|b|2 + H(c, ω))[b])

Since [a] and [b] verify (25), our assumption on H(c, ω) implies that
(α∞ − β∞) verifies (22)κ′ .
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For any two a, a′ ∈ [a] we have, since a violates (23) and |a−a′| ≤ d∆,

|a′|
|c|

≈ |a|
|c|

.

Hence ∥∥H[a](ω)−H[a](c, ω)
∥∥ |a|
|c|

. dd
∆ <H >{Λ

U},

and the same for [b]. Recalling that a and, hence, b violates (23) this
implies ∥∥H[d](ω)−H[d](c, ω)

∥∥ ≤ κ′

4
, d = a, b.

By Lipschitz-dependence of eigenvalues (of Hermitian operators) on
parameters, this implies that

|(α0 − β0)− (α∞ − β∞)| ≤ κ′

2
and we are done.

Case II: <c, b− a> 6= 0. We write a = ac + τc. Since

|a| ≥ Ω′(|ac|+ |c|) |c| ,
it follows that

|ac| .
1

Ω′
|a|
|c|

.

Now, α0 − β0 is close to |a|2 − |b|2 and

|a|2 − |b|2 = −2τ <c, b− a> −2 <ac, b− a> − |b− a|2 .

Since | <c, b− a> | ≥ 1 it follows that

τ . |α0 − β0|+ |ac|∆′ + (∆′)2.

If now |α0 − β0| . ∆′ then

|a| ≤ |ac|+ |τ c| . |ac|∆′ |c|+ (∆′)2 |c| . (∆′)2|c|.
Since Ω′ & (∆′)2 this is impossible.

Therefore |α0 − β0| & ∆′ and (22)κ holds.

4. Condition at ∞ – Reduction of dimension. We consider the
Töplitz limit H(c). This matrix is, by the assumption on H, Töplitz
at ∞ and, by construction, Töplitz in the direction c, i.e.

Hb+tc
a+tc(c) = Hb

a(c), ∀a, b, a + tc, b + tc ∈ L.

Moreover, it is Hermitian and, by Proposition 4.4(ii), block diagonal
over E∆. The same is true for its first order ω-derivatives.

We want to prove that for each c ∈ L, |c| ≤ Ωd−1, H(c, ω) verifies
(22)κ′ for (21) and (25) with ω ∈ U \ U ′. This last condition implies
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that both [a] − a and [b] − b are ⊥ c and therefore [a] and [b] belongs
to one and the same affine sub-lattice

f + Lc, Lc ⊥ c and f ∈ L.

It is clear that it suffices to consider only primitive vectors c.

4.1 Special case. Let us first consider the case when c is one of the
standard basis vectors, for example

c = ed =: (0, . . . , 0, 1).

In this case Lc ⊂ Zd−1 and we can chose f to be parallell to c, i.e.
orthogonal to Lc.

For a matrix Q on L × L we define a matrix Qf on Lc × Lc by

(Qf )b′

a′ = Q
(b′,0)+f
(a′,0)+f .

If Ωf + Hf (c) verifies (21) + (22)κ′ for all f , then Ω + H(c) verifies
(21) + (22)κ′ + (25).

Ωf is diagonal with diagonal elements

Ωf
a′ = |a′|2 + |f |2,

and Hf (c) is independent of f since H(c) is Töplitz in the direction c.
Therefore (21) + (22)κ′ holds for all f if and only if it holds for one f .
Let us take f = 0.

The diagonal elements of Ωf (ω) verify (14)+(15) for all ω ∈ U . The
matrices Hf (c, ω) and ∂ωHf (c, ω) are NF∆ for all ω ∈ U because

[a′]∆ = [b′]∆ =⇒ [(a′, 0) + f ]∆ = [(b′, 0) + f ]∆.

They are Töplitz at ∞, (16) remains true and

<Hf (c)>{Λ
U} ≤ <H(c)>{Λ

U} .

So we can, by induction, apply the Proposition to Ωf +Hf (c) which
implies that, outside a set of Lebesgue measure

(26) . (∆′)exp+#A−1(1+ <H(c)>{Λ
U})

d−1(κ′)
1

d−1 Cd−1
1

(21) + (22)κ′ + (25) holds.

4.2 General Case. Let c1, c2, . . . , cd. be an orthogonal set of vectors
in Zd such that cd is parallel to c and all cj have the same length

Γ . |c|expd . (∆′)exp′d .

Let
C =

(
c1 . . . cd

)
,

i.e. C ∈ GL(Zd) is an orthogonal matrix multiplied by the positive
integer Γ.
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Now we make the linear transformation

x̃ = tCx ⇐⇒ x =
1

Γ2
Cx̃.

It takes the lattice L ⊂ Zd to a lattice L̃ ⊂ Zd. (Notice that L̃ is only a
lattice in Zd even if L = Zd.) The transformation takes c to c̃ = |c|Γed

and, hence, Lc to L̃c̃ ⊂ Zd−1 × {0}. The quadratic form | · |2d on Zd

will verify

|a|2d =
1

Γ2
|ã|2d ,

and when restricted to the affine sub-lattice f̃ + L̃c̃ it becomes

1

Γ2
(|ã′|2d−1 + |f̃d|2), ã = (ã′, f̃d).

The equivalence classes E∆ ∩ L are mapped to the equivalence classes
E∆̃ ∩ L̃, ∆̃ = Γ∆, which have diameter ≤ d̃∆ = Γd∆. The Lipschitz

domain DΛ(c) is mapped to the Lipschitz domain DΛ̃(c̃), Λ̃ = ΓΛ.
For a matrix Q(ω), ω ∈ U , on L × L we define

Q̃b̃
ã(ω̃) =

1

Γ2
Qb

a(ω)

where
ω̃ = Γ2ω ⊂ Ũ ⊂ {|ω̃| ≤ C̃1 = Γ2C1}.

Since
Ω̃ã = Ωã

it follows that

σ((Ω + H̃(c, ω̃))[ã]∆̃
= Γ2σ(Ω + H(c, ω))[a]∆ .

Therefore H(c, ω) verifies

(21)∆,∆′ + (22)∆,κ′ + (25)∆,c

if H̃(c̃, ω̃) verifies

(21)∆̃,∆̃′ + (22)∆̃,κ̃′ + (25)∆̃,c̃,

where ∆̃′ = Γ∆′, κ̃′ = Γ2κ′.
H̃(c, ω̃) and ∂ω̃H̃(c, ω̃) are Töplitz at ∞ and NF∆ and verifies∥∥∥∂ω̃H̃(c, ω̃)

∥∥∥ = |∂ωH(c, ω)|

for all ω̃ ∈ Ũ . Moreover H̃(c) is Töplitz in direction c̃. We are therefore
back in in previous case. Hence, outside a set of ω̃ of Lebesgue measure

. (∆̃′)exp+#A−1(1+ <H̃(c)>∆̃n
Λ̃
Ũ

o)d−1(κ̃′)
2

d−1 C̃d−1
1 ,
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the matrix H̃(c̃, ω̃) verifies (21)∆̃,∆̃′ + (22)∆̃,κ̃′ + (25)∆̃,c̃. To conclude
we just observe that

<H̃(c)>n
Λ̃
Ũ

o ≤ Γ2 <H(c)>{Λ
U} .

This finishes the induction step, and to conclude we must only verify
the first step d = 1.

5. Case d = 1. Consider

α ∈ σ((Ω + H)[a]) and β ∈ σ((Ω + H)[b])

with |a− b| . ∆′. α− β differs from

|a|2 − |b|2 = (a− b)(a + b)

by at most 2 |H|. If
∣∣|a|2 − |b|2∣∣ is & ∆′ we are done (here we use that

|<k, ω>| ≤ C1∆
′), so therefore we only need to consider

|(a− b)(a + b)| . ∆′.

If [b] = [a] = {a}, then α = β and condition (22) reduces to

|<k, ω>| > κ,

i.e. only one possibility (for each k). If not, there will always be a pair
a ∈ [a] and b ∈ [b] such that a− b 6= 0 and (|a− b| . ∆′) hence

|a| . ∆′.

This gives finitely many possibilities so (22) will hold outside at set of
measure

. (∆′)d(∆′)d+#A−1κ.

�

6. The homological equations

6.1. A first equation.
For k ∈ Zn consider the equation

(27) i <k, ω> S + i(Ω(ω) + H(ω))S = F (ω),

where F (ω) : L × L → C and ∂ωF (ω) are elements in l2γ(L, C) = {ξ =
(ξa)a∈L : ‖ξ‖γ : ‖ξ‖γ < ∞}, where

‖ξ‖γ =

√∑
a∈L

|ξa|2 e2γ|a|〈a〉2m∗

(〈a〉 = max(1, |a|)). Denote

‖F‖{γ
U} = sup

ω∈U
(‖F (ω)‖γ , ‖∂ωF (ω)‖γ).
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Let U ′ ⊂ U be a set such that for all ω ∈ U the small divisor
condition (19) holds, i.e. for all a

|<k, ω> +α(ω)| ≥ κ, ∀ α(ω) ∈ σ((Ω + H)(ω)[a]∆).

Proposition 6.1. Assume that Ω(ω) is real diagonal and verifies (14)
and that H(ω) and ∂ωH(ω) are NF∆ for all ω ∈ U . Then the equation
(27) has for all ω ∈ U ′ a unique solution S(ω) such that

‖S‖{γ
U ′} ≤ cte.d2d

∆ (1 + |k|+ |H|U)
1

κ2
‖F‖{γ

U ′} .

The constant cte. only depends on d, #A and C2, C3.

Proof. This is a standard results. There exists a κ′ ≈ κ 8 such that
(27)κ

2
holds on U ′

κ′ . Let χ be a cut off function which is 1 on U ′ and
0 outside (U ′)κ′ . We now first solve the equation on (U ′)κ′ to get a
solution S̃ and then we define S = χS̃. �

6.2. Truncations.
For a matrix Q : L × L → C consider three truncations (defined in
terms of the block-decomposition E∆)

T ∆
∆′Q = Q restricted to {(a, b) : dist([a]∆, [b]∆) ≤ ∆′}
P∆

c Q = Q restricted to {(a, b) : ([a]∆ − [b]∆) ⊥ c}
D∆

∆′Q = Q restricted to {(a, b) : dist([a]∆, [b]∆) ≤ ∆′ and |a| = |b|}.
These truncations all commute. Moreover,

Lemma 6.2. (i){ ∣∣T ∆
∆′Q

∣∣
{γ

U}
≤ |Q|{γ

U}
<T ∆

∆′Q>n
Λ,γ
U

o ≤ <Q>n
Λ,γ
U

o,

for any Λ ≥ d2
∆. Moreover

(T ∆
∆′Q)(c) = T ∆

∆′(Q(c))

for all c.
(ii) The same result holds for P∆

c .
(iii) 

∣∣D∆
∆′Q

∣∣
{γ

U}
≤ |Q|{γ

U}
<D∆′Q>∆n

Λ,γ
U

o ≤ <Q>n
Λ,γ
U

o,

for any Λ ≥ (d∆′)2. Moreover

(D∆
∆′Q)(c) = D∆

∆′(Q(c))

for all c.

8. depends in this proof on d,#A and C2, C3.
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Proof. By Proposition 4.4(ii)

[a + tc]∆ = [a]∆ + tc and [b + tc]∆ = [b]∆ + tc

for all t ≥ 0 if (a, b) ∈ DΛ(c) ⊂ Dd2
∆
(c). Therefore either

(T ∆
∆′Q)

[b+tc]∆
[a+tc]∆

= Q
[b+tc]∆
[a+tc]∆

∀t ≥ 0,

or

(T ∆
∆′Q)

[b+tc]∆
[a+tc]∆

= 0 ∀t ≥ 0.

(ii) follows by exactly the same argument and (iii) is similar. Indeed,
for (a, b) such that dist([a]∆, [b]∆) ≤ ∆′ we have

|a| = |b| ⇐⇒ [a]∆′ = [b]∆′ .

�

6.3. A second equation, k 6= 0.
For k ∈ Zn \ {0} consider the equation

(28) i <k, ω> S + i[(Ω(ω) + H(ω)), S] = T ∆
∆′F (ω)

where F (ω) : L × L → C and ∂ωF (ω) are Töplitz at ∞.
Let U ′ ⊂ U be a set such that for all ω ∈ U the small divisor

condition (21) + (22) holds, i.e.

|<k, ω> +α(ω)− β(ω)| ≥ κ ∀
{

α(ω) ∈ σ((Ω + H)(ω)[a]∆)
β(ω) ∈ σ((Ω + H)(ω)[b]∆)

for

dist([a]∆, [b]∆) ≤ ∆′.

These conditions depend on κ and ∆′, and in order to simplify the
estimate a little we shall assume that κ < 1.

Proposition 6.3. Assume that U verifies (13), that Ω(ω) is real diag-
onal and verifies (14) and that H(ω) and ∂H(ω) are Töplitz at ∞ and
NF∆ for all ω ∈ U . Then the equation

(28) and S = T ∆
∆′S

has for all ω ∈ U ′ a unique solution S(ω) verifying

(i)

|S|{γ
U ′} ≤ cte.

1

κ2
d2d

∆ e2γd∆(1 + |k|+ |H|U) |F |{γ
U ′} ;

(ii) S(ω) and ∂ωS(ω) are Töplitz at ∞ and the Töplitz-limits verify{
i <k, ω> S + i[(Ω(ω) + H(c, ω)), S] = T ∆

∆′P∆
c F (c, ω)

S = T ∆
∆′S;
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(iii)

<S >∆n
Λ′+d∆+2,γ
U ′

o ≤ cte.

1

κ3
d2d

∆ e2γd∆(1 + |k|+ <H >{Λ
U ′}) <F >n

Λ′,γ
U ′

o
for any

Λ′ & max(Λ, d2
∆, ∆′, sup

U
‖H(ω)‖).

The constant cte. only depends on the dimensions d and #A and on
C1, C2, C3, C4.

Proof. Let us first get rid of the diagonal terms V̂ (a, ω) = Ωa(ω)− |a|2
which by (14) are

. C2e
−|a|C3 .

9 We include them into H – in view of the estimates of the proposition
this is innocent. Let us also notice that it is enough to prove the
statement for Λ ≥ d2

∆. We first assume that F = T ∆
∆′F .

So from now on we assume Ωa = |a|2 and Λ ≥ d2
∆. We shall denote

the blocks [ ]∆ by [ ].

Block decompose the operator H(ω) : S 7→ [(Ω(ω) + H(ω)), S] over
E∆:

(H(ω)S)
[b]
[a] = (Ω + H)(ω)[a]S

[b]
[a] − S

[b]
[a](Ω + H)(ω)[b].

Then the equation becomes

(29)

{
i <k, ω> S

[b]
[a] + iH(ω)S

[b]
[a] = F

[b]
[a] if dist([a], [b]) ≤ ∆′

S
[b]
[a] = 0 if not.

Since Ω + H is Hermitian, under condition (21) + (22) equation (29)
has a unique solution which is C1 in ω and verifies∥∥∥S[b]

[a]

∥∥∥ ≤ 1

κ

∥∥∥F [b]
[a]

∥∥∥ ,

hence

(30) |S|γ ≤
1

κ
dd

∆e2γd∆ |F |γ .

1. Töplitz at ∞. Let Q be a matrix on L and denote by Q(tc) the
matrix whose elements are

Qb
a(tc) = Qb+tc

a+tc.

9In this proof . depends on d, #A and on C2, C3, C4.



KAM FOR NLS 45

10

By Proposition 4.4, for (a, b) ∈ DΛ′(c) – notice that Λ′ ≥ d2
∆ –

[a + tc] = [a] + tc and [b + tc] = [b] + tc

for t ≥ 0 and
[a]− a, [b]− b ⊥ c.

It follows that

(31)
i <k, ω> S

[b]
[a](tc) + i(Ω + H)[a](tc)S

[b]
[a](tc)−

S
[b]
[a](tc)(Ω + H)[b](tc)) = F

[b]
[a](tc)

for all t ≥ 0.
Moreover H[a](tc), H[b](tc) and F

[b]
[a](tc) have limits as t →∞. Ω[a](tc)

and Ω[b](tc) do not have limits, and we must analyze two different cases
according to if <c, a− b>= 0 or not.

Case I: <c, a− b>= 0. We have that Ω[a](tc)X −XΩ[b](tc) (for any
(#[a]×#[b])-matrix X) equals

|a|2 X −X |b|2

– the linear and quadratic terms in t cancel! Therefore equation (31)
has a limit as t →∞:

i <k, ω> X + i(Ωa + H[a](∞c))X −X(Ωb + H[b](∞c)) = F
[b]
[a](∞c).

Since eigenvalues are continuous in parameters we have

|<k, ω> +α− β| ≥ κ ∀
{

α ∈ σ(|a|2 + H[a](∞c))

β ∈ σ(|b|2 + H[b](∞c)).

Therefore the limit equation has a unique solution X which is C1 in ω
and verifies

‖X‖ ≤ 1

κ

∥∥∥F [b]
[a](∞c)

∥∥∥ .

Since S
[b]
[a](tc) is bounded, it follows from uniqueness that

S
[b]
[a](tc) → S

[b]
[a](∞c) = X

as t →∞.
Case II: <c, a− b>6= 0. We have that Ω[a](tc)X −XΩ[b](tc) equals

(2t <a, c> + |a|2)X −X(2t <b, c> |b|2)
– only the quadratic terms in t cancel! Dividing (31) by t and letting
t →∞, the limit equation becomes

2 <c, a− b> X = 0.

10In order to avoid confusion we shall denote the Töplitz-limit in the direction c
by Q(∞c).
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It has the unique solution X = 0. For the same reason as in the
previous case we have that

S
[b]
[a](tc) → S

[b]
[a](∞c) = 0

as t →∞.
We have thus shown that the solution S is Töplitz at ∞, and that

its Töplitz limits S(∞c) verify
(i <k, ω> S(∞c) + iH(c, ω)S(∞c))

[b]
[a]

= F
[b]
[a](∞c) if dist([a], [b]) ≤ ∆′, and

[a]− [b] ⊥ c

S(∞c)
[b]
[a] = 0 if not

and

|S(c)|γ ≤
1

κ
dd

∆e2γd∆ |F (c)|γ .

2. Estimate of Lipschitz norm. Consider the ”derivative” ∂c:

∂cQ
[b]
[a](tc) = (Q

[b]
[a](tc)−Q

[b]
[a](∞c)) max

d=a,b

|d|
|c|

.

(Notice that the definition does not depend on the choice of represen-
tatives a and b in [a] and [b] respectively.) We shall “differentiate”
equation (31) and estimate the solution of the “differentiated” equa-
tion over [a] × [b] ⊂ DΛ′(c) ⊂ DΛ(c). By Corollary 2.2(iii) this will
provide us with an estimate of the Lipschitz constant LipΛ′+d∆+2,γ.

Since S is 0 at distances & ∆′ + d∆ from the diagonal we only need
to treat |a− b| . ∆′ + d∆. Again we must consider two cases.

Case I: <c, a − b>= 0. Subtracting the equation for S
[b]
[a](∞c) from

the equation for S
[b]
[a] and multiplying by max( |a||c| ,

|b|
|c|) gives

i <k, ω> ∂cS
[b]
[a] + i(Ω + H)[a]∂cS

[b]
[a] − ∂cS

[b]
[a](Ω + H)[b]

= ∂cF
[b]
[a] − ∂cH[a]S

[b]
[a] + S

[b]
[a]∂cH[b],

where the argument in all matrices is tc with t = 0. Now we get as for
equation (31) that∥∥∥∂cS

[b]
[a]

∥∥∥ .
1

κ
(
∥∥∥∂cF

[b]
[a]

∥∥∥+ (
∥∥∂cH[a]

∥∥+
∥∥∂cH[b]

∥∥)∥∥∥S[b]
[a]

∥∥∥ .

Since

[a]× [b] ⊂ DΛ′(c)

and Λ′ & Λ + d∆ it follows by Corollary 2.2 (iii) that

[a]× [a], [b]× [b] ⊂ DΛ(c)
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and therefore ∥∥∂cH[a]

∥∥+
∥∥∂cH[b]

∥∥ ≤ dd
∆ <H >Λ

and ∥∥∥∂cS
[b]
[a]

∥∥∥ eγdist([a],[b]) .
1

κ
<F >Λ′,γ +dd

∆ <H >Λ |S|γ .

Case II: <c, a− b>6= 0. Then

| |a|2 − |b|2 | ≈ |a|
|c|
| <c, a− b> | ≈ |b|

|c|
| <c, a− b> | & Λ′.

Indeed |a|2 − |b|2 | can be written

|a′ + τc|2 − |b′ + τc|2 = |a′|2 − |b′|2 + 2τ <c, a− b>,

and (recalling Lemma 2.1(ii))∣∣∣|a′|2 − |b′|2∣∣∣ ≤ |a− b| (|a′|+ |b′|) ≤ cte.(∆′ + d∆)
τ

Λ′

and this is ≤ 1
2
τ , since Λ′ ≥ 2cte.(∆′ + d∆). Moreover

|a|
|c|

≈ |b|
|c|
≈ τ ≥ Λ′.

Since Λ′ & ‖H‖, assuring that ‖H‖ is small compared with |a|2 −
|b|2 |, we have

|α− β| ≈ 2 |<a− b, c>| ≥ 2 ∀
{

α ∈ σ( 1
τ
(Ω + H)[a])

β ∈ σ( 1
τ
(Ω + H)[b]).

Since S
[b]
[a](∞c) = 0, equation (31) can be written

i
τ

<k, ω> ∂cS
[b]
[a] +

i
τ
(Ω + H)[a]∂cS

[b]
[a] − ∂cS

[b]
[a]

1
t
(Ω + H)[b]

= F
[b]
[a]

1
τ

maxd∈[a]∪[b]
|d|
|c| ≈ F

[b]
[a] ,

where the argument in all matrices is tc, t = 0 Since Λ′ & ∆′, then
the absolute value of the eigenvalues of the LHS-operator is & 2 and it
follows as in (31) that ∥∥∥∂cS

[b]
[a]

∥∥∥ .
1

κ

∥∥∥F [b]
[a]

∥∥∥ .

Adding the estimate (30) and taking the supremum over all c, we
get in both cases

(32) <S >Λ′+d∆+2,γ. d2d
∆ e2d∆(

1

κ
<F >Λ′,γ +

1

κ2
<H >Λ |F |γ).
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3. Estimate of ω-derivatives. In order to estimate the derivatives in
ω we just differentiate (31) with respect to ω:

(i <k, ω> +i(Ω + H(ω))[a])∂ωS
[b]
[a] − i∂ωS

[b]
[a](Ω + H(ω))[b] =

= ∂ωF
[b]
[a] − i(k + ∂ωH(ω)[a]S

[b]
[a] − S

[b]
[a]∂ωH(ω)[b])

where the argument in all matrices is tc with t = 0.

Let G
[b]
[a] be the matrix on RHS. Then

(33)

∥∥∥G[b]
[a]

∥∥∥ ≤
∥∥∥∂ωF

[b]
[a]

∥∥∥+

(|k|+
∥∥∂ωH[a]

∥∥+
∥∥∂ωH[b]

∥∥)∥∥∥∂ωS
[b]
[a]

∥∥∥
and
(34)∥∥∥∂cG

[b]
[a]

∥∥∥ ≤
∥∥∥∂c∂ωF

[b]
[a]

∥∥∥+ (|k|+
∥∥∂ωH[a]

∥∥+
∥∥∂ωH[b]

∥∥)∥∥∥∂c∂ωS
[b]
[a]

∥∥∥
+(
∥∥∂c∂ωH[a]

∥∥+
∥∥∂c∂ωH[b]

∥∥)∥∥∥∂ωS
[b]
[a]

∥∥∥ .

∂ωS
[b]
[a] is now estimated like S

[b]
[a] and ∂c∂ωS

[b]
[a] is now estimated like

∂cS
[b]
[a] but with G instead of F . Combining these estimates now gives

the result in d = 2 when F = T ∆
∆′F . By Lemma 6.2(i) we get the result

for d = 2.
By (ii) the Töplitz limits of S verifies the same equation as S, with F

replaced by P∆
c F , and we get the result for d ≥ 3 by Lemma 6.2(i)+(ii).

�

6.4. A second equation, k = 0.
Consider the equation

(35) i[(Ω(ω) + H(ω)), S] = (T ∆
∆′ −D∆

∆′)F (ω)

where F (ω) : L × L → C and ∂ωF (ω) are Töplitz at ∞.
Let U ′ ⊂ U be a set such that for all ω ∈ U the small divisor

condition

(36)

 |α(ω)− β(ω)| ≥ κ ∀
{

α(ω) ∈ σ((Ω + H)(ω)[a]∆)
β(ω) ∈ σ((Ω + H)(ω)[b]∆)

dist([a]∆, [b]∆) ≤ ∆′ and |a| 6= |b|.
holds. As before we shall assume that κ < 1.

Proposition 6.4. Assume that U verifies (13), that Ω(ω) is real diag-
onal and verifies (14) and that H(ω) and ∂H(ω) are Töplitz at ∞ and
NF∆ for all ω ∈ U . Then the equation

(35) and S − T ∆
∆′S = D∆

∆′S = 0
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has for all ω ∈ U ′ a unique solution S(ω) verifying

(i)

|S|{γ
U ′} ≤ cte.

1

κ2
d2d

∆ e2γ∆(1 + |H|U) |F |{γ
U ′} ;

(ii) S(ω) and ∂ωS(ω) are Töplitz at ∞ and the Töplitz-limits verify{
i <k, ω> S + i[(Ω(ω) + H(c, ω)), S] = (T ∆

∆′ −D∆
∆′)P∆

c F (c, ω)
S − T ∆

∆′S = D∆
∆′S = 0;

(iii)

<S >n
Λ′+d∆+2,γ
U ′

o ≤ cte.
1

κ3
d2d

∆ e2γ∆(1+ <H >{Λ
U ′}) <F >n

Λ′,γ
U ′

o
for any

Λ′ & max(Λ, d2
∆, (d∆′)2, sup

U
‖H(ω)‖).

The constant cte. only depends on the dimensions d and #A and on
C1, C2, C3, C4.

Proof. We first assume that F = (T ∆
∆′ − D∆

∆′)F (ω). The proof is the
same as in Proposition 6.3, with k = 0, and gives a

Λ′ & max(Λ, d2
∆, ∆′, ‖H‖).

In order to get the result we need to estimate (T ∆
∆′−D∆

∆′)F (ω) in terms
of F . This is done by Lemma 6.2(iii) and requires a larger Λ′. �

6.5. A third equation.
Consider the equation

(37) i <k, ω> S + i(Ω(ω) + H(ω))S + iSI(Ω(ω) + tH(ω)) = F (ω)

where F (ω) : L × L → C and ∂ωF (ω) are Töplitz at ∞ and IQ is
defined by

(IQ)b
a = Q−b

−a.

(This equation will be motivated in the proof of Proposition 6.7.)
Let U ′ ⊂ U be a set such that for all ω ∈ U the small divisor

condition (20) holds, i.e. for all a, b

|<k, ω> +α(ω) + β(ω)| ≥ κ ∀
{

α(ω) ∈ σ((Ω + H)(ω)[a]∆)
β(ω) ∈ σ((Ω + H)(ω)[b]∆).

As before we shall assume that κ < 1.

Proposition 6.5. Assume that U verifies (13), that Ω(ω) is real di-
agonal and verifies (14) and that H(ω) and ∂H(ω) are Töplitz at ∞
and NF∆ for all ω ∈ U . Then the equation (37) has for all ω ∈ U ′ a
unique solution S(ω) verifying



50 L. H. ELIASSON AND S. B. KUKSIN

(i)

|S|{γ
U ′} ≤ cte.

1

κ2
d2d

∆ e2γ∆(1 + |k|+ |H|U) |F |{γ
U ′} ;

(ii) S(ω) and ∂ωS(ω) are Töplitz at∞ and all Töplitz-limits S(c, ω), c 6=
0, are = 0;

(iii)

<S >n
Λ′+d∆+2,γ
U ′

o ≤ cte.
1

κ3
d2d

∆ e2γ∆(1 + |k|+ <H >{Λ
U ′}) <F >n

Λ′,γ
U ′

o
for any

Λ′ & max(Λ, d2
∆, ∆′, sup

U
‖H(ω)‖).

The constant cte. only depends on the dimensions d and #A and on
C1, C2, C3, C4.

Proof. As before we reduce to Ωa = |a|2 and we block decompose the
equation over E∆:

i <k, ω> S
[b]
[a] + i(Ω + H)[a]S

[b]
[a] + iS

[b]
[a](Ω + tH)−[b] = F

[b]
[a] .

We then repeat the proof as for Proposition 6.3. There is a difference
in the computation of the Töplitz limits. The equation (31) becomes

i <k, ω> +i((Ω+H)[a](tc)S
[b]
[a](tc)+S

[b]
[a](tc)(Ω+ tH)[−b](−tc)) = F

[b]
[a](tc)

and now

Ω[a](tc)X + XΩ[−b](−tc)

equals

(t2 |c|2 + 2t <a, c> + |a|2)X + X(t2 |c|2 − 2t <b, c> + |b|2)
– the quadratic terms in t do not cancel! Dividing the equation by t2

and letting t →∞, the limit equation becomes

2 |c|2 X = 0,

which has the unique solution X = 0. Therefore

S
[b]
[a](tc) → S

[b]
[a](∞c) = 0

as t →∞, i.e. the Töplitz limits are always 0.
In order to estimate the Lipschitz-norm we only need to consider

the analogue of Case II (even when <c, a − b>= 0). We have for
(a, b) ∈ DΛ′(c)

|a|2 + |b|2 & (
|a|
|c|

)2 ≈ (
|b|
|c|

)2 & (Λ′)2.
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To avoid any problems with <k, ω> and H it is sufficient that (Λ′)2 is
& ∆′ and & ‖H‖. �

6.6. The homological equations.
Let Ω(ω) : L × L → gl(2, C) be a real diagonal matrix, i.e.

Ωb
a(ω) =

{
Ωa(ω)I a = b
0 a 6= b

Assume that for all a ∈ L and all ω ∈ U (14)+(15) holds and

(38)

 |Ωa(ω)| ≥ C4

|Ωa(ω) + Ωb(ω)| ≥ C4

|Ωa(ω)− Ωb(ω)| ≥ C4 |a| 6= |b|

Assume H(ω) and ∂ωH(ω) are Töplitz at ∞ and NF∆ for all ω ∈ U
and

(39)


‖H(ω)‖ ≤ C4

4

‖∂ωH(ω)‖ ≤ C5

4
<H >{Λ

U}. 1

(Here ‖ ‖ is the operator norm.)

Proposition 6.6. Let ∆′ > 0 and κ > 0. Assume that U verifies (13),
that Ω(ω) is real diagonal and verifies (14)+ (15)+ (38) and H(ω) and
∂ωH(ω) are NF∆ and verify (39) for all ω ∈ U .

Then there is a subset U ′ ⊂ U ,

Leb(U \ U ′) ≤ cte.(∆′)
d
2
+#A−1κ,

such that for all ω ∈ U ′ the following hold:

(i) for any |k| ≤ ∆′

|<k, ω>| ≥ κ.

(ii) for any |k| ≤ ∆′ and for any vector F (ω) ∈ l2γ(L, C2) there

exists a unique vector S(ω) ∈ l2γ(L, C2) such that

i <k, ω> S + J(Ω + H)S = F

and satisfying

‖S‖{γ
U ′} ≤ cte.d2d

∆ e2γd∆
1

κ2
∆′ ‖F‖{γ

U ′} .

The constants cte. only depend on d, #A, m∗ and on C1, . . . , C5.

Proof. Let

C =

(
1√
2

1√
2

−i√
2

i√
2

)
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and define tCAC : L × L → gl(2, C) through

(tCAC)b
a = tCAb

aC.

To see (ii) we change to complex coordinates S̃ = C−1S and F̃ =
C−1F. Then the equation becomes

i <k, ω> S̃ + iJ(Ω̃ + H̃)S̃ = F̃

with

(Ω̃ + H̃) =

(
0 Ω + Q

Ω + tQ 0

)
,

where Q and tQ are (scalar-valued) normal form matrices.
This equation decouples into two equations for (scalar-valued) ma-

trices of the type

i <k, ω> R± i(Ω + Q)R = G.

We get the results from Proposition 5.1, the first part of condition (38)
and Proposition (6.1). �

Proposition 6.7. Let ∆′ > 0 and κ > 0. Assume that U verifies (13),
that Ω(ω) is real diagonal and verifies (14)+ (15)+ (27) and H(ω) and
∂ωH(ω) are Töplitz at ∞ and NF∆ and verify (28) for all ω ∈ U .

Then there is a subset U ′ ⊂ U ,

Leb(U − U ′) ≤ cte. max(Λ, ∆, ∆′)exp(1+ <H >{Λ
U ′})κ

1
d ,

such that for all ω ∈ U ′ the following hold:
for any |k| ≤ ∆′ and for any symmetric gl(2, C)-matrix F (ω),

(πF )
[b]∆
[a]∆

= 0 when dist([a]∆, [b]∆) > ∆′,

there exist symmetric matrices S(ω) and H ′(ω) such that

i <k, ω> S + (Ω + H)JS − SJ(Ω + H) = F −H ′

and satisfying – for any

Λ′ ≥ cte. max(Λ, d2
∆, (d∆′)2) −

(i)

<S >∆n
Λ′+d∆+2,γ
U ′

o ≤ cte.
1

κ3
∆′d2d

∆ e2γd∆ <F >n
Λ′,γ
U ′

o,

(ii) for k 6= 0 H ′ = 0 and for k = 0 H ′ and ∂ωH ′ are NF∆′ and

<H ′>∆n
Λ′+d∆+2
U ′

o ≤ cte.d2d
∆ <F >n

Λ′
U ′

o .

The exponent exp only depends on d, #A and the constants cte. also
depend on C1, . . . , C5.
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Proof. Consider first k 6= 0. We change to complex coordinates S̃ =
C−1SC and F̃ = C−1FC. Then the equation becomes

i <k, ω> S̃ + i(Ω̃ + H̃)JS̃ − iS̃J(Ω̃ + H̃) = F̃

with

(Ω̃ + H̃) =

(
0 Ω + Q

Ω + tQ 0

)
,

where Q and tQ are (scalar-valued) normal form matrices.
This equation decouples into four (scalar-valued) matrices of the

types
i <k, ω> R± i((Ω + Q)R−R(Ω + Q)) = G

and
i <k, ω> R± i((Ω + Q)R + R(Ω + tQ)) = G.

By the assumption on F we have T ∆
∆′G = G and the first type follows

from Propositions 5.2 and 6.3.
To treat the second type let us consider the operators

(RQ)b
a = Q−b

a and (IQ)b
a = Q−b

−a.

With T = RR the equation takes the form

i <k, ω> T ± i((Ω + Q)T + TI(Ω + tQ)) = RG.

Then the result follows from Propositions 5.1 and 6.5.
It is clear that the solution S is unique if we impose that

(πS)
[b]∆
[a]∆

= 0 when dist([a]∆, [b]∆) > ∆′.

The symmetry follows from this.
For k = 0 the argument is similar, using the second and third part

of condition (27) and Proposition 6.4. �

PART III. KAM

7. A KAM theorem

7.1. Statement of the theorem.
Let

Oγ(σ, ρ, µ) = Oγ(σ)× TAρ × D(µ)A

be the set of all ζ, ϕ, r such that

ζ = (ξ, η) ∈ Oγ(σ), |=ϕa| < ρ, |ra| < µ ∀a ∈ A.

Let

hω(z, r) = h(ζ, r, ω) =<ω, r> +
1

2
<ζ, (Ω(ω) + H(ω))ζ>
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where Ω(ω) is a real diagonal matrix with diagonal elements Ωa(ω)I
and H(ω) and ∂ωH(ω) are Töplitz at ∞ and NF∆ for all ω ∈ U . We
recall (section 5.1) that a matrix H : LtimesL → gl(2, C) is NF∆ if it
is real, symmetric and can be written

H =

(
Q1 Q2
tQ2 Q1

)
with Q = Q1 + iQ2 Hermitian and block-diagonal over the decomposi-
tion E∆ of L.

We assume (13-15)+(38), i.e.

U is an open subset of {|ω| < C1} ⊂ R#A,

∣∣∂ν
ω(Ωa(ω)− |a|2)

∣∣ ≤ C2e
−C3|a|, C3 > 0, ν = 0, 1, |Ωa(ω)| ≥ C4

|Ωa(ω) + Ωb(ω)| ≥ C4

|Ωa(ω)− Ωb(ω)| ≥ C4 |a| 6= |b| ,
and, for all k ∈ Zn \ 0, |∂ω(<k, ω> +Ωa(ω))| ≥ C5

|∂ω(<k, ω> +Ωa(ω) + Ωb(ω))| ≥ C5

|∂ω(<k, ω> +Ωa(ω)− Ωb(ω))| ≥ C5 |a| 6= |b| .

Remark. These conditions are quite generic. Indeed for any family
{Ωa : a ∈ L} of analytic functions on U verifying (14) the following
hold. For any δ > 0 there is a set Uδ ⊂ U , Leb(U \ Uδ) < δ, and
constants C3 = C3(δ), C4 = C4(δ), such that (15)+(38) hold for each
a unless Ωa(ω) ± Ωb(ω)− < k, ω > is a constant function (on some
connected component of U) for some b and k.

We also assume (39), i.e.
‖H(ω)‖ ≤ C4

4

‖∂ωH(ω)‖ ≤ C5

4
<H >{Λ

U}. 1

for some Λ. Here ‖·‖ is the operator norm.

Remark. For simplicity we shall assume that γ, σ, ρ, σ are < 1 and that
∆, Λ are ≥ 3.

Let

f : Oγ(σ, ρ, µ)× U → C
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be real analytic in ζ, ϕ, r and C1 in ω ∈ U and let

[f ]nΛ,γ,σ
U,ρ,µ

o = sup
ϕ∈TAρ

r∈D(µ)A

[f(·, ϕ, r, ·)]nΛ,γ,σ
U

o.

Theorem 7.1. Assume that U verifies (13), that Ω(ω) is real diagonal
and verifies (14)+ (15)+ (38) and H(ω) and ∂ωH(ω) are Töplitz at ∞
and NF∆ and verify (39) for all ω ∈ U .

Then there is a constant C (only depending on d, #A, m∗, C1, . . . , C5)
and an exponent exp (only depending on d, #A, m∗) such that, if

[f ]nΛ,γ,σ
U,ρ,µ

o = ε ≤ Cmin(γ, ρ,
1

Λ
,

1

∆
)exp min(σ2, µ)2

then there is a U ′ ⊂ U with

Leb(U \ U ′) ≤ cte.εexp′

such that for all ω ∈ U ′ the following hold: there is an analytic sym-
plectic diffeomorphism

Φ : O0(
σ

2
,
ρ

2
,
µ

2
) → O0(σ, ρ, µ)

and a vector ω′ such that (hω′ + f) ◦ Φ equals

c+ <ω′, r> +
1

2
<ζ, (Ω + H ′)(ω)ζ> +f ′(ζ, ϕ, r, ω)

where
∂ζf

′ = ∂rf
′ = ∂2

ζ f
′ = 0 for ζ = r = 0

and

H ′ =

(
Q′

1 Q′
2

tQ′
2 Q′

1

)
with Q′ = Q′

1 + iQ′
2 Hermitian and block diagonal matrix (with finite-

dimensional blocks).
Moreover

Φ : O0(
σ

2
,
ρ

2
,
µ

2
) → O0(

σ

2
+ ε

1
2 ,

ρ

2
+ ε

1
2 ,

µ

2
+ ε

1
2 ).

The exponent exp′ only depend on d, #A, m∗ while the constant cte.
also depends on all C1, . . . , C5.

Remark. If (Ω′)b
a 6= 0 then |a| = |b|. This gives a trivial bound on the

block-dimension which is not uniform – they may be of arbitrarily large
dimension. Due to this lack of uniformity we loose, in our estimates,
all exponential decay in the space modes. However, if there were a
uniform bound – as happens in some cases [GY06] – we would retain
some exponential decay.
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The consequences of the theorem are well-known and discussed in
the introduction.

7.2. Application to the Schrödinger equation.
Consider a non-linear Schrödinger equation

−iu̇ = ∆u + V (x) ∗ u + ε
∂F

∂ū
(x, u, ū), u = u(t, x), x ∈ Td, (∗)

where V (x) =
∑

V̂ (a)ei<a,x> is an analytic function with V̂ real and
where F is real analytic in <u,=u and in x ∈ Td.

Consider a function

ũ(ϕ, x) =
∑
a∈A

pae
iϕaei<a,x>, pa > 0,

where A ∈ Zd is a finite set. Let L be the complement of A and let

ω = {ωa = |a|2 + V̂ (a) : a ∈ A}
Ω = {ωa = |a|2 + V̂ (a) : a ∈ L}

Then

u(t, x) = ũ(ϕ + tω, x)

is a solution of (∗) for ε = 0.
Let V depend C1 on a parameter w ∈ W ⊂ R#A and assume that it

satisfies conditions analogous to (13- 15 )+(38), i.e.

W is an open subset of {|w| < C1} ⊂ R#A,

∣∣∂ν
w(Ωa(w)− |a|2)

∣∣ ≤ C2e
−C3|a|, C3 > 0, ν = 0, 1, |Ωa(w)| ≥ C4

|Ωa(w) + Ωb(w)| ≥ C4

|Ωa(w)− Ωb(w)| ≥ C4 |a| 6= |b| ,
and, for all k ∈ Zn \ 0, |∂w(<k, ω(w)> +Ωa(w))| ≥ C5

|∂w(<k, ω(w)> +Ωa(w) + Ωb(w))| ≥ C5

|∂w(<k, ω(w)> +Ωa(w)− Ωb(w))| ≥ C5 |a| 6= |b| .
We also assume that the mapping

W 3 w 7→ ω(w) = {ωa = |a|2 + V̂ (a, w); a ∈ A} ∈ U

is a diffeomorphism whose inverse is bounded in the C1-norm, i.e.

(40)
∣∣ω−1

∣∣
C1 ≤ C6.
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Let f(u, ū) =
∫

Td F (x, u(x)ū(x))dx. Then one verifies easily that
there exists γ, σ, ρ, µ such that f is real analytic on Oγ(σ, ρ, µ) and
that f has the Töplitz-Lipschitz-property:

(41) [f ]nΛ,γ,σ
U,ρ,µ

o ≤ C7

for some constant C7.

Theorem 7.2. For ε sufficiently small, there is a subset W ′ ⊂ W ,

Leb(W \W ′) ≤ cte.εexp,

such that on W ′ there is an ũ′(ϕ, x), analytic in ϕ ∈ Td
ρ
2

and Cm∗−d in

x ∈ Td, with

sup
|=ϕ|< ρ

2

‖ũ′(ϕ, ·)− ũ(ϕ, ·)‖0 ≤ ε
1
2 ,

and there is a ω′ : W ′ → U ,

|ω′ − ω| ≤ ε
1
2 ,

such that
u′(t, x) = ũ′(ϕ + tω′(w), x)

is a solution of (∗) for any w ∈ W ′.
Moreover, the linearized equation

−iv̇ = ∆v + V (x) ∗ v + ε∂2F
∂ū2 (x, u′(t, x), ū′(t, x))v̄+

ε ∂2F
∂u∂ū

(x, u′(t, x), ū′(t, x))v

is reducible to constant coefficients and has only time-quasi-periodic
solutions – except for a (#A)-dimensional subspace where solutions
may increase at most linearly in t.

Proof. We write {
u(x) =

∑
a∈Zd uae

i<a,x>

u(x) =
∑

a∈Zd vae
i<a,x>,

and let

ζa =

(
ξa

ηa

)
=

(
1√
2
(ua + va)

−i√
2
(ua − va)

)
.

In the symplectic space

{(ξa, ηa) : a ∈ Zd} = RZd × RZd

,
∑
a∈Zd

dξa ∧ dηa,

the equation becomes a Hamiltonian equation in infinite degrees of
freedom. The Hamiltonian function has an integrable part

1

2

∑
a∈Zd

(|a|2 + V̂ (a))(ξ2
a + η2

a)
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plus a perturbation.
In a neighborhood of the unperturbed solution

1

2
(ξ2

a + η2
a) = pa, a ∈ A,

we introduce the action angle variables (ϕa, ra) (notice that each pa > 0
by assumption), defined through the relations

ξa =
√

2(ra − pa) cos(ϕa)

ηa =
√

2(ra − pa) sin(ϕa).

The integrable part of the Hamiltonian becomes

h(ζ, r, ω) =<ω, r> +
1

2

∑
a∈L

Ωa(ω)(ξ2
a + η2

a),

while the perturbation εf will be a function of ζ, ϕ, r.
The assumptions of Theorem 7.1 are now fulfilled and gives the re-

sult. �

8. Proof of theorem

8.1. Preliminaries.
Let

f : Oγ(σ, ρ, µ)× U → C
11 be real analytic in ζ, ϕ, r and C1 in ω ∈ U and consider

[f ]nΛ,γ,σ
U,ρ,µ

o.

Notation. We let

α =

(
γ σ
ρ µ

)
,

and we write this norm as
[f ]{Λ

U
α}.

Cauchy estimates. It follows by Cauchy estimates that

(42)
[∂ϕf ]{Λ

U
α′} . 1

ρ−ρ′
[f ]{Λ

U
α}

[∂rf ]{Λ
U

α′} . 1
µ−µ′

[f ]{Λ
U

α}.

Truncation. We obtain T∆f from f by: 1) truncating the Taylor
expansion in ζ at order 2; 2) truncating the Taylor expansion in r at
order 0 for the first and the second order term in ζ and at order 1 for
the zero’th order term in ζ; 3) truncating the Fourier modes at order

11We shall assume that all γ, σ, ρ, µ are < 1, and that 0 < σ − σ′ ≈ σ, 0 <
µ− µ′ ≈ µ.
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∆; 4) truncating the space modes of the second order term in ζ at order
∆. Formally T∆f is∑

|k|≤∆[f̂(0, k, 0, ω) + ∂rf̂(0, k, 0, ω)r+ <∂ζ f̂(0, k, 0, ω), ζ>

+1
2
<ζ, T∆∂2

ζ f̂(0, k, 0, ω)ζ>]ei<k,ϕ>.

We have

(43) [T∆f ]{Λ
U

α} . ∆#A[f ]{Λ
U

α}
and

(44) [f − T∆f ]{Λ
U

α′} . A(α, α′, ∆)[f ]{Λ
U

α},

where A(α, α′, ∆) is

(
σ′

σ
)3 + (

σ′

σ
+

µ′

µ
)
µ′

µ
+ (

1

ρ− ρ′
)#Ae−∆(ρ−ρ′) + e−∆(γ−γ′).

This follows from Proposition 3.2, from Cauchy estimates in r and
ϕ, and from formula (8).

Poisson brackets. The Poisson bracket is defined by

{f, g} =<∂ζf, J∂ζg> +∂ϕf∂rg − ∂rf∂ϕg.

If g is a quadratic polynomial in ζ, then

(45) [{f, g}]{Λ+3
U

α′} . B(γ − γ′, σ, ρ− ρ′, µ, Λ)[f ]{Λ
U

α}[g]{Λ
U

α},

where

B = Λ2 1

σ2
(

1

γ − γ′
)d+m∗ +

1

ρ− ρ′
1

µ
.

If also f is a quadratic polynomial in ζ and, moreover, independent
of ϕ and of the form

<a, r> +
1

2
<ζ, Aζ>,

then

(46) [{f, g}]{Λ+3
U

α′} . B(γ̄ − γ′, σ1, ρ̄− ρ′, µ1, Λ)[f ]{Λ
U

α1}[g]{Λ
U

α2},

αi =

(
γ σi

ρ µi

)
, i = 1, 2.

and γ̄ = min(γ1, γ2), ρ̄ = min(ρ1, ρ2).
12

In both cases, the first term to the right is estimated by Proposition
3.3 and the other two terms by Cauchy estimates.

12In the expression for B we have assumed that 0 < σj−σ′ ≈ σ, 0 < µj−µ′ ≈ µj ,
j = 1, 2.
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We shall use both these estimates. Notice that (46) is much better
than (45) when σ2, µ2 are much smaller than σ1, µ1.

Flow maps. Let

s = T∆s = S0(ϕ, r, ω)+ <ζ, S1(ϕ, ω)> +
1

2
<ζ, S2(ϕ, ω)ζ>

and notice that S0 is first order in r. Consider the vector field

d

dt

 ζ
ϕ
r

 =

 J∂ζs
∂rs
−∂ϕs

 =

 JS1(ϕ, ω) + JS2(ϕ, ω)ζ
∂rS0(ϕ, 0, ω)
−∂ϕs(ζ, ϕ, r, ω)


and let

Φt =

 ζt

ϕt

rt

 =

(
ζ + bt(z, ω) + Bt(z, ω)ζ

z + gt(ζ, z, ω)

)
be the flow. Here we have denoted ϕ and r by z.

Assume that

(47) [s]{Λ
U

α} = ε . min((ρ− ρ′)µ, (γ − γ′)d+m∗σ2).

Then for |t| ≤ 1 we have:

Φt : Oγ′′(σ′, ρ′, µ′) → Oγ′′(σ, ρ, µ), ∀γ′′ ≤ γ′;

(48) [gt]Λ,γ′,σ′

U,ρ′,µ′

ff .
ε

µ
or

ε

ρ− ρ′

depending on if g is an ϕ-component or a r-component;

(49) ‖bt + Btζ‖
γ′

U,ρ′

ff . ((
1

γ − γ′
)m∗ + (

1

γ − γ′
)d+m∗

1

σ
‖ζ‖γ′)

ε

σ
;

(50) <Bt >
Λ+6,γ′

U,ρ′

ff. Λ2(
1

γ − γ′
)

ε

σ2
;

and Φt has an extension, for 1 ≥ σ̄ ≥ σ′ and 1 ≥ µ̄ ≥ µ′, to

(51)
Oγ′′(σ̄, ρ′, µ̄) →

Oγ′′(σ̄ + cte.( 1
γ−γ′

)d+m∗ ε
σ
( σ̄

σ
+ 1), ρ, µ + cte.( 1

ρ−ρ′
)ε( µ̄

µ
+ 1))

for all γ′′ ≤ γ′.

Proof. We have ϕt = ϕ + at(ϕ, ω) and since

|∂rS0(ϕ, 0, ω)| . ε

µ
, ∀ϕ ∈ TAρ ,
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ϕt remains in TAρ for |t| ≤ 1 if ε
µ

. (ρ− ρ′). The ω-derivative verifies

d

dt
(∂ωϕt) = ∂ω∂rS0(ϕ, 0, ω) + ∂ϕ∂rS0(ϕ, 0, ω)(∂ωϕt)

and can be solved explicitly by an integral formula. This gives (48) for
z = ϕ and the ϕ-part of (51).

For a fixed ω (49) follows from the first part of Proposition 3.4(i) if
|JS2|γ . (γ − γ′)d, i.e. if ε . (γ − γ′)dσ2. This also gives the ζ-part
of (51). In order to get ‖ζt − ζ‖γ′ ≤ σ − σ′ ≈ σ for ‖ζ‖γ′ ≤ σ we need

ε . (γ − γ′)d+m∗σ2. (50) follows from the second part of Proposition
3.4(ii). The ω-derivative of ζt satisfies

d

dt
(∂ωζt) = ∂ωJS1(ϕ, 0, ω) + ∂ωJS2(ϕ, 0, ω)ζt + JS2(ϕ, 0, ω)(∂ωζt)

which is solved in the same way.
rt = r + ct(ζ, ϕ, ω) + dt(ζ, ϕ, ω)r and for a fixed ω (48) follows from

Proposition 3.4(ii) if ε . (ρ−ρ′)(µ−µ′) ≈. (ρ−ρ′)µ. The ω-derivative
satisfies a similar equation which is solved in the same way. The r-part
of (51) follows from these estimates and since rt is linear in r. �

Composition. Consider now the composition f(Φt, ω). If

(52) ε . min((ρ− ρ′)µ, (γ − γ′)d+m∗+1σ2)
√

γ − γ′

then

(53) [f(Φt, ·)]{Λ+18
U

α′} . Λ14[f ]{Λ
U

α}.

Proof. Consider first a fixed ω. We have

‖ζt(ζ, z)− ζ‖γ′ < σ − σ′ ∀(ζ, z) ∈ Oγ′(σ′)× TAρ′ × D(µ′)A

by (49)+(52) and we have

|gt(ζ, z)| < 1

2
(µ− µ′) or

1

2
(ρ− ρ′) ∀(ζ, z) ∈ O0(σ′)× TAρ′ × D(µ′)A,

depending on if g is an r-component or a ϕ-component, by (48)+(52).
By Proposition 3.5 we get

[f(Φt(·, ω), ω)]Λ+12,γ′′,σ′

ρ′,µ′
. A [f(·, ω)]Λ+6,γ′,σ

ρ,µ
,

where

A = max(1, α, Λ2 1

γ′ − γ′′
α2)
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and
α = 1

µ−µ′
[ϕt]Λ+6,γ′,σ′

ρ′,µ′

ff + 1
ρ−ρ′

[rt]Λ+6,γ′,σ′

ρ′,µ′

ff
+( 1

γ′−γ′′
)d+m∗ <Bt >

Λ+6,γ′

ρ′

ff .

If we choose γ′− γ′′ = γ− γ′, then (48)+(50) and the bound (52) gives
A . Λ6.

Consider now the dependence on ω. We have

∂ω(f(Φt)) = ∂ωf(Φt)+ <∂zf(Φt), ∂ωgt> + <∂ζf(Φt), ∂ωζt> .

The first term is a composition and we get the same estimate as
above but with f replaced by ∂ωf .

The second term is a finite sum of products, each of which is esti-
mated by Proposition 3.1(i), i.e.

[<∂zf(Φt, ω), ∂ωgt>]Λ+12,γ′′,σ′

ρ′′,µ′′
. [∂zf(Φt, ω)]Λ+12,γ′′,σ′

ρ′′,µ′′
[∂ωgt]Λ+12,γ′′,σ′

ρ′′,µ′′
.

The first factor is a composition which is estimated as above: if we
take ρ′ − ρ′′ = ρ− ρ′ and µ′ − µ′′ = µ− µ′, then we get

. Λ6[∂ζf(·, ω)]Λ+6,γ′,σ
ρ′,µ′

[∂ωgt]Λ+12,γ′′,σ′

ρ′,µ′
.

Using Cauchy estimates for the first factor and (48)+(50) for the second
factor gives

. Λ6[f(·, ω)]Λ+6,γ′,σ
ρ,µ

.

The third term is a composition of the function

f̃ =<∂ζf, (∂ωΦt) ◦ Φ−t>

with Φt. Evaluating f̃ we find that it has the form <∂ζf, b̃t + B̃tζ>
where

b̃t = ∂ωbt(ϕ−t) + ∂ωBt(ϕ−t)b−t

B̃t = ∂ωBt(ϕ−t) + ∂ωBt(ϕ−t)B−t.

For ϕ ∈ TAρ′′ we get by (48)+(52) that

|ϕ−t − ϕ| ≤ ρ′ − ρ′′ = ρ− ρ′,

so b̃t and B̃t are defined on TAρ′′ . By (49)+(52)∥∥∥b̃t

∥∥∥
γ′
≤ σ − σ′,

and by (50)+(52) and the product formula (10)

<B̃t >Λ+9,γ′

ρ′′
. Λ6(

1

γ − γ′
)

ε

σ2
,



KAM FOR NLS 63

so by Proposition 3.1(ii-iii) and (52) we obtain

[f̃ ]Λ+9,γ′,σ′

ρ′′,µ′
. Λ8[f ]Λ+6,γ,σ

ρ′′,µ′
.

Finally by the same argument as above we get

[f̃(Φt(·, ω), ω)]Λ+15,γ′′,σ′′

ρ′′′,µ′′
. Λ6[f̃(·, ω)]Λ+9,γ′,σ′

ρ′′,µ′
,

if we choose ρ′′ − ρ′′′ = ρ′ − ρ′′, σ′ − σ′′ = σ − σ′ and µ′ − µ′′ = µ− µ′.
This completes the proof. �

8.2. A finite induction.
Let

h(ζ, r, ω) =<ω, r> +
1

2
<ζ, (Ω(ω) + H(ω))ζ>

satisfy (13-15)+(38-39) and let H(ω) and ∂ωH(ω) be NF∆. Let

[f ]{Λ
U

α} = ε, α =

(
γ σ
ρ µ

)
.

Besides the assumption that all constants γ, σ, ρ, µ are < 1 and that
∆, Λ are ≥ 3 and we shall also assume that

µ = σ2 and d∆γ ≤ 1.

The first assumption is just for convenience, but the second is forced
upon us by the occurrence of a factor ed∆γ in the estimates which we
must control.

Fix ρ′ < ρ and γ′ < γ and let

∆′ = (log(
1

ε
))2 1

min(γ − γ′, ρ− ρ′)
, n = [log(

1

ε
)].

Define for 1 ≤ j ≤ n

εj+1 = ( ε
σ2κ3 )εj ε1 = ε,

Λj+1 = Λj + d∆ + 23, Λ1 = cte. max(Λ, d2
∆, (d∆′)2)

γj = γ − (j − 1)γ−γ′

n
, ρj = ρ− (j − 1)ρ−ρ′

n

σj+1 = ( ε
σ2κ3 )

1
3 σj σ1 = σ

µj+1 = ( ε
σ2κ3 )

2
3 µj µ1 = µ.

13

We have the following proposition.

13The constant in the definition of Λ1 is the one in Proposition 6.7.
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Proposition 8.1. Under the above assumptions there exist a constant
C and an exponent exp1 such that if

ε ≤ κ3Cmin(γ − γ′, ρ− ρ′,
1

∆
,
1

Λ
,

1

log(1
ε
)
)exp1 min(σ2, µ),

then there is a subset U ′ ⊂ U ,

Leb(U \ U ′) ≤ cte.εexp2 ,

such that for all ω ∈ U ′ the following holds for 1 ≤ j ≤ n: there is an
analytic symplectic diffeomorphism

Φj : Oγ′′(σj+1, ρj+1, µj+1) → Oγ′′(σj, ρj, µj), ∀γ′′ ≤ γj+1,

such that

(h + h1 + . . . + hj−1 + fj) ◦ Φj = h + h1 + . . . + hj + fj+1

(f1 = f) with

(i)

hj = c+ <χj(ω), r> +
1

2
<ζ, Hj(ω)ζ>

with Hj(ω) and ∂ωHj(ω) in NF∆′ and

[hj]nΛj

U ′ αj

o ≤ βj−1εj

(ii)

[fj+1]nΛj+1

U ′ αj+1

o ≤ βjεj+1,

where

β . cte. max(
1

γ − γ′
,

1

ρ− ρ′
, Λ, ∆, log(

1

ε
))exp3 .

Moreover, Φj extends to an analytic symplectic diffeomorphism

Oγ′′(σ̄, ρj+1, µ̄) → Oγ′′(σ̄ + βj εj

σ2
j

σ̄, ρj, µ̄ + βj εj

µj

µ̄)

for all γ′′ ≤ γj+1.
The exponents exp1, exp2, exp3 only depend on d, #A, m∗ while the

constants C and cte. also depend on all C1, . . . , C5.

Proof. We start by solving inductively

{h, sj} = −T∆′fj + hj

using Propositions 6.6 and 6.7. To see how this works, write

sj = S0+ <ζ, S1> +1
2
<ζ, S2ζ>

T∆′fj = F0+ <ζ, F1> +1
2
<ζ, F2ζ>

hj = c+ <χj(ω), r> +1
2

<ζ, H2ζ> .
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The equation written in Fourier modes becomes

−i <k, ω> Ŝ0(k) = −F̂0(k) + δk
0(c+ <χj(ω), r>)

−i <k, ω> Ŝ1(k) + J(Ω(ω) + H(ω))Ŝ1(k) = −F̂1(k)

−i <k, ω> Ŝ2(k) + (Ω(ω) + H(ω))JŜ2(k)− Ŝ2(k)J(Ω(ω) + H(ω))

= −F̂2(k) + δk
0H2.

Using Propositions 6.6 and 6.7 and (43) these equations can be solved
for ω in a set Uj with

Leb(Uj−1 \ Uj) ≤ cte.εexp (U0 = U).

This gives, after summing up the (finite) Fourier series,

[sj]Λj+d∆+2
Uj

αj

ff ≤ cte.(∆′∆)exp 1
κ3 β

j−1εj = ε̃j

[hj]Λj+d∆+2
Uj

αj

ff ≤ cte.(∆′∆)expβj−1εj

If the solutions sj and hj were non-real (they are not because the
construction gives really real functions) then their real parts would
give real solutions.

In a second step, for 0 ≤ t ≤ 1 we estimate

fj − hj + {h + h1 + . . . + hj−1 + (1− t)hj + tfj, sj}

which is equal

(fj−T∆′fj)+ t{fj, sj}+{h1 + . . .+hj−1 +(1− t)hj, sj} =: g1 + g2 + g3.

According to (44) we have

[g1]Λj+d∆+2
Uj

α̃j+1

ff . A(αj, α̃j+1, ∆
′)βj−1εj,

where

α̃j+1 =

(
γj − γj−γj+1

2
2σj+1

ρj − ρj−ρj+1

2
2µj+1.

)
By our choice of constants and the assumption on ε we have

A . (
1

σ2κ3
+ (

1

ρ− ρ′
)#A)ε .

1

Λ14
j

β
ε

σ2κ3
.

According to (45) we have

[g2]Λj+d∆+5
Uj

α̃j+1

ff . Bj(∆
′∆)exp 1

κ3
β2j−2ε2

j ,

where

Bj = B(γj − γj+1, σj, ρj − ρj+1, µj, Λj).
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β takes care of this when j = 1 and when j ≥ 2 we have the factor
εj

ε1

that controls everything, and we get the bound

.
1

Λ14
j

βj ε

σ2κ3
εj.

According to (46) we have

[g3]Λj+d∆+5
Uj

α̃j+1

ff .
∑

1≤i≤n

Bi(∆
′∆)expβi−1εicte.(∆

′∆)exp 1

κ3
βj−1εj,

where

Bi = B(γj − γj+1, σi, ρj − ρj+1, µi, Λj).

The same argument applies again: β takes care of this when i = 1 and
when i ≥ 2 we have the factor εi

ε1
that controls everything. We get as

before the bound

.
1

Λ14
j

βj ε

σ2κ3
εj.

In a third step we construct the time-t-map, |t| ≤ 1, Φt for the vector
field J∂s. Condition (47),

ε̃j . min((ρ̃j+1 − ρj+1)µ̃j+1, (γ̃j+1 − γj+1)
d+m∗σ̃2

j+1),

is fulfilled for all j by assumption on ε, so

Φt : Oγ′′(σj+1, ρj+1, µj+1) → Oγ′′(σ̃j+1, ρ̃j+1, µ̃j+1)

for all γ′′ < γj+1, and it will verify conditions (48-51) with α, α′, Λ
replaced by α̃j+1, αj+1, Λj + d∆ + 2.

Finally we define

fj+1 =

∫ 1

0

(g1 + g2 + g3) ◦ Φtdt.

Then the time-1-map Φt will be our Φj and do what we want – this is
a well-known relation. It only remains to verify the estimate for fj+1.
Condition (52),

ε̃j . min((ρ̃j+1 − ρj+1)µ̃j+1, (γ̃j+1 − γj+1)
d+m∗+1σ̃2

j+1)
√

γ̃j+1 − γj+1,

is fulfilled for all j by assumption on ε, so we get by (53)

[fj+1]Λj+1

Uj
αj+1

ff . Λ14
j [g]Λj+d∆+5

Uj
α̃j+1

ff,

and we are done. �
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Corollary 8.2. There exist a constant C and an exponent exp such
that, if

ε ≤ Cmin(γ − γ′, ρ− ρ′,
1

∆
,
1

Λ
)exp min(σ2, µ)

1
1−3τ , τ =

1

33
,

14 then there is a subset U ′ ⊂ U ,

Leb(U \ U ′) ≤ cte.εexp1 ,

such that for all ω ∈ U ′ the following hold: there is an analytic sym-
plectic diffeomorphism

Φ : Oγ′′(σ′, ρ′, µ′) → Oγ′′(σ, ρ, µ), ∀γ′′ ≤ γ′,

and a vector ω′ such that

(hω′ + f) ◦ Φ = h′ + f ′

with

(i)

h′ =<ω, r> +
1

2
<ζ, (Ω(ω) + H ′(ω))ζ>

with H ′(ω) and ∂ωH ′(ω) in NF∆′ and

[h′ − h]nΛ′
U ′ α

′
o ≤ cte.ε

and
|ω′ − ω| ≤ cte.

ε

µ
,

(ii)

[f ′]nΛ′
U ′ α′

o ≤ ε′ ≤ e−τ(log( 1
ε
))2

where
∆′ = (log(1

ε
))2 1

min(γ−γ′,ρ−ρ′)
,

Λ′ = cte. max(Λ, d2
∆, (d∆′)2) + log(1

ε
)(d∆ + 23)

σ′ = (ε′)
1
3
+τ

µ′ = (ε′)
2
3
+2τ .

Moreover, Φ extends to an analytic symplectic diffeomorphism

Oγ′′(σ̄, ρ′, µ̄) → Oγ′′(σ̄ + β
ε

σ2
σ̄, ρ, µ̄ + β

ε

µ
µ̄).

for all γ′′ ≤ γ′, where

β . cte. max(
1

γ − γ′
,

1

ρ− ρ′
, Λ, ∆, log(

1

ε
))exp2 .

14The bound on ε in Proposition 8.1 is implicit due to κ and log(1
ε )). Here we

have an explicit bound, but the price for taking κ equal to a fractional power of ε
is that the bound must depend on max(σ2, µ) to a power larger than 1.
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The exponents exp, exp1, exp2 only depend on d, #A, m∗ while the
constants C and cte. also depend on all C1, . . . , C5.

Proof. Take κ3 = ετ . Then

εn+1 = ε′, σn+1 ≥ (ε′)
1
3
+τ , µn+1 ≥ (ε′)

2
3
+2τ ,

and

ε′ ≤ e−τ(log( 1
ε
))2

if

ε1−2τ .
1

β
σ.

The result is an immediate consequence of Proposition 8.1 if we take
ω′ = ω and

h′ =<ω + χ(ω), r> +
1

2
<ζ, (Ω(ω) + H ′(ω))ζ> .

By the bound on the derivative of χ, which is part of (ii), the image
of U ′ under the mapping ω → ω + χ(ω) covers a subset U ′′ of U of the
same complementary Lebesgue measure, and we can replace ω + χ(ω)
by ω if we take ω′ = (Id + χ)−1(ω).

Since |χ(ω)| ≤ cte. ε
µ

we get the estimate for |ω′ − ω|. �

8.3. The infinite induction.
Let

f : Oγ(σ, ρ, µ)× U → C
be real analytic in ζ, ϕ, r and C1 in ω ∈ U and consider

[f ]{Λ
U

α} = ε, α =

(
γ σ
ρ µ

)
.

Choice of constants. We define

εj+1 = e
−τ(log( 1

εj
))2

(τ = 1
33

), ε1 = ε
γj = (d∆j

)−1, γ1 = min(d∆, γ)

σj = ε
1
3
+τ

j j ≥ 2 σ1 = σ

µj = ε
2
3
+2τ

j j ≥ 2 µ1 = µ
ρj = (1

2
+ 1

2j )ρ
∆j+1 = (log( 1

εj
))2 1

min(γj ,ρj−ρj+1)
, ∆1 = ∆

Λj = cte.(d∆j
)2).

15

With this choice of constants we prove

15The constant in the definition of Λj is the one in Proposition 6.7.
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Lemma 8.3. There exist a constant C ′ and an exponent exp′ such that
if

ε ≤ C′ min(γ, ρ,
1

∆
,
1

Λ
)exp′ min(σ2, µ)

1
1−3τ ,

then for all j ≥ 1

εj ≤ Cmin(γj − γj+1, ρj − ρj+1,
1

∆j

,
1

Λj

)exp min(σ2
j , µj)

1
1−3τ

and ∑
1≤i≤j

(d∆i
)2εi ≤

1

4
min(C4, C5),

where C, exp are those of Corollary 8.2.
The exponents exp′ only depend on d, #A, m∗ while the constant C ′

also depend on all C1, . . . , C5.

Remark. Notice that ∆j increases much faster than quadratically at

each step — ∆j+1 ≥ ∆
(d+1)!

2
j due to its coupling with γj. This is the

reason why we cannot grant the convergence by a quadratic iteration
but need a much faster iteration scheme, as the one provided by Propo-
sition 8.1 and Corollary 8.2.

The proof is an exercise on the theme “superexponential growth
beats (almost) everything”.

Proposition 8.4. There exist a constant C and an exponent exp such
that if

ε ≤ Cmin(γ − γ′, ρ− ρ′,
1

∆
,
1

Λ
)exp min(σ2, µ)

1
1−3τ ,

then there is a subset U ′ ⊂ U ,

Leb(U \ U ′) ≤ cte.εexp1 ,

such that for all ω ∈ U ′ the following hold: for all 1 ≤ j there is an
analytic symplectic diffeomorphism

Φj : Oγ′′(σj+1, ρj+1, µj+1) → Oγ′′(σj, ρj, µj), ∀γ′′ ≤ γj+1,

and a vector ωj such that

(hj−1 + fj) ◦ Φj = hj + fj+1 (h0 = hωj
, f1 = f)

and satisfying:

(i)

hj = c+ <ω, r> +
1

2
<ζ, (Ω(ω) + Hj(ω))ζ>



70 L. H. ELIASSON AND S. B. KUKSIN

with Hj(ω) and ∂ωHj(ω) in NF∆j+1
and

[hj+1 − hj]nΛj

U ′ αj+1

o ≤ cte.εj

and

|ωj+1 − ωj| ≤ cte.
εj

µj

,

(ii)

[fj+1]nΛj+1

U ′ αj+1

o ≤ εj+1.

Moreover, Φ1 ◦ · · · ◦ Φj converges to an analytic symplectic diffeo-
morphism Φ

O0(
σ

2
,
ρ

2
,
µ

2
) → O0(

σ

2
+ ε

1
2 ,

ρ

2
+ ε

1
2 ,

µ

2
+ ε

1
2 ).

The exponents exp, exp1 only depend on d, #A, m∗ while the con-
stants C and cte. also depend on all C1, . . . , C5.

Proof. The proof is an immediate consequence of Corollary 8.2 and
Lemma 8.3. The first part of the lemma implies that the smallness
assumption in the proposition is fulfilled for every j ≥ 1, and the second
part implies that assumption (39) for every j ≥ 1. The remaining
assumptions are only on Ω. �

Theorem 7.1 now follows from this proposition. Indeed,

ωj → ω′

and we have

(hω′ + f) ◦ Φ = lim
t→∞

(hωj
+ f) ◦ Φ1 ◦ · · · ◦ Φj = lim

t→∞
(hj + fj+1),

and since the sequence hj clearly converges on O0(σ
2
, ρ

2
, µ

2
), also fj con-

verges on this set – to a function f ′.
Moreover, for ζ = r = 0 and |=ϕ| < ρ

2
we have, as j →∞,

|fj| , |∂rfj| , ‖∂ζfj‖0 → 0

and, by Young’s inequality,∥∥∥∂2
ζ fj ζ̂

∥∥∥
0

. (
1

γj

)d
∣∣∂2

ζ fj

∣∣
0

∥∥∥ζ̂∥∥∥
0
→ 0.

Therefore

∂ζf
′ = ∂rf

′ = ∂2
ζ f

′ = 0 for ζ = r = 0.
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9. Appendix A - Some estimates

Lemma 9.1. Let f : I =]− 1, 1[→ R be of class Cn and∣∣f (n)(t)
∣∣ ≥ 1, ∀t ∈ I.

Then, ∀ε > 0, the Lebesgue measure of {t ∈ I : |f(t)| < ε} is

≤ cte.ε
1
n ,

where the constant only depends on n.

Proof. We have
∣∣f (n)(t)

∣∣ ≥ ε
0
n for all t ∈ I. Since

f (n−1)(t)− f (n−1)(t0) =

∫ t

t0

f (n)(s)ds,

we get that
∣∣f (n−1)(t)

∣∣ ≥ ε
1
n for all t outside an interval of length ≤ 2e

1
n .

By induction we get that
∣∣f (n−j)(t)

∣∣ ≥ ε
j
n for all t outside 2j−1 intervals

of length ≤ 2ε
1
n . j = n gives the result. �

Remark. The same is true if

max
0≤j≤n

∣∣f (j)(t)
∣∣ ≥ 1, ∀t ∈ I

and f ∈ Cn+1. In this case the constant will depend on |f |Cn+1 .

Let B(t) be a Hermitian N × N -matrix of class C1 in I =] − 1, 1[
with

‖B′(t)‖ ≤ 1

2
, ∀t ∈ I.

Lemma 9.2. The Lebesgue measure of the set

{t ∈ I : min
λ(t)∈σ(B(t))

|t + λ(t)| < ε}

is

≤ cte.Nε,

where the constant is independent of N .

Proof. Assume first that B(t) is analytic in t. Then the eigenvalue
λj(t), j = 1, . . . , N , are analytic in t with

|λj(t)| ≤ ‖B(t)‖∣∣λ′j(t)∣∣ ≤ ‖B′(t)‖ .

Lemma 9.1 applied to each f(t) = t + λj(t) gives the result.
If B is non-analytic we get the same result by analytic approxima-

tion. �
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Proposition 9.3. ∥∥(tI + B(t))−1
∥∥ ≤ 1

ε
outside a set of t ∈ I of Lebesgue measure

≤ cte.Nε.

Proof. The exists an orthogonal matrix U(t) such that

U(t)∗(tI + B(t))U(t) =

 t + λ1(t) . . . 0
...

. . .
...

0 . . . t + λN(t)


Now ∥∥(tI + B(t))−1

∥∥ = max
0≤j≤N

∣∣∣∣ 1

t + λj(t)

∣∣∣∣ .
�
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