Manifolds at the verge of a hyperbolicity breakdown
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We study numerically the disappearance of invariant objects in quasi-periodic systems and identify
a scenario for breakdown. In this scenario, the disappearance happens because the stable directions
of the normal dynamics become close to the unstable directions. We identify remarkable quantitative
regularities, namely that the distance between the stable and unstable directions and the Lyapunov
multipliers have power law dependence with the parameters. The exponents of the power laws are

universal.

PACS numbers: 05.45.-a 05.45.Df Fractals 47.52.+j

INTRODUCTION

The long term behavior of dynamical systems is orga-
nized by the invariant objects. Hence, it is important to
understand which invariant objects persist under modi-
fications of the system.

It has been known for a long time that the persistence
of an invariant object is related to the exponential rate
of growth of the perturbations. For example, [1, 2] show
that a manifold persists under perturbations if it is nor-
mally hyperbolic. That is, if all perturbations transversal
to the manifold grow exponentially fast (either in the fu-
ture or in the past) and if moreover, their rate of growth
is larger than the rate of growth of any perturbation tan-
gent. The fact that this condition is not only sufficient
for persistence but also necessary was proved in [3].

A problem that has received a great deal of attention
[4-6] is the study of the breakdown of these invariant
manifolds.

In this paper, we study a mechanism of destruction of
invariant manifolds in quasi-periodic systems and obtain
some universal asymptotic scalings. The scenarios we
study are based in the dynamics of the transversal per-
turbations of the object. In the transversal dynamics we
observe the generation of a strange non-chaotic attractor
[7, 8].

We have considered two scenarios. In the first one, an
attracting torus of a dissipative system has two invari-
ant transversal directions. The merging of the invariant
directions does not destroy the torus, although it is the
prelude of a further destruction when increasing the per-
turbation. In the second one, a hyperbolic torus of a
conservative system has stable and unstable transversal
directions. The merging of those leads to the destruction
of the torus itself.
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SET UP OF THE PROBLEM

We study (n + d)-dimensional dynamical systems as

;E:f(x,@),

0=0+w (1)

mod
where z € R”, § € T¢, and w € R? is fixed. This class
model physical systems subject to external quasi-periodic
perturbations, whose frequencies are given by the fre-
quency vector w. Often, we will consider f depending on
external parameters \, fy.

A natural way [9] to study invariant tori for (1) is to
find K : T — R™ in such a way that

fEK(9),0) = K(0 +w) . (2)

The equation (2) shows that a point K(0) = (K(6),0)
gets mapped into another point of the same form.

Once an invariant torus has been located, it is natural
to consider the linearization around it

v= MO

_ , 3
f=60+w mod 3)

where M (0) = D, f(K(0),0).

We can think of the vectors v as small perturbations
transversal to the torus, and (3) describes their growth
under the iteration. Notice also that small perturbations
tangent to the torus do not grow under iteration.

Since the dynamics of the tangent perturbations is
rather trivial, we consider the push forward operator act-
ing on transversal vector fields v : T¢ — R". The push
forward operator is the so called transfer operator M

(Mv)(0) = M(0 —w)v(f —w) . (4)

The normal hyperbolicity of the torus is characterized
by the spectral properties of M. It is shown in [10, 11],
that the spectrum of the operator M acting on C° vector
fields is a set of annuli. The spectral projections corre-
sponding to each of the annuli is associated to an invari-
ant direction characterized by a rate of contraction. That



is, a gap of the spectrum in the circle of radius p produces
an invariant splitting R” = E;r ® E, characterized by

(5)

v € Ef & |[M™](0)] <CATv m >0
veEE; & |M™]0)] <CX"v m<0

where C' > 0, 0 < Ay < p < A_. For instance, if p =1
the torus is normally hyperbolic and E* are the stable
and unstable subbundles. If the spectral radius is smaller
than one, and p < 1 separate the spectrum, then E* are
the fast and slow stable bundles of an attracting torus.
It is shown in [12] that in the case that the splittings
are one-dimensional, there are much more effective algo-
rithms. We will refer to this case as reducible.

An invariant manifold is persistent under perturba-
tions if and only if the spectrum of M does not contain
the unit circle or, equivalently, if at every point we can
find splittings as in (5) with Ay <1 < A_ [3, 10].

Hence, the study of disappearance of invariant mani-
folds is related to the study of mechanisms that lead to
the disappearance of splittings satisfying (5). There are
several such mechanisms described in the mathematical
or numerical literature. For example, the Lyapunov mul-
tipliers may go to one, or there may be a saddle node
bifurcation for the torus [13].

The goal of this paper is to propose a new mechanism.
This mechanisms is based in the fact that the splitting
becomes zero in a complicated set. We will find, never-
theless, remarkable quantitative regularities.

THE BUNDLE MERGING SCENARIO FOR
DESTRUCTION OF INVARIANT MANIFOLDS

We consider a system (1) depending on a parameter .
The algorithms in [12] allow to continue with respect to
A the manifolds which are close to breakdown. Hence, it
is possible to identify a plausible scenario for breakdown
of hyperbolicity. In this situation, the invariant splittings
become less regular (in the transition point, they become
fractal), but there are several quantitative predictions.

We will be considering two invariant bundles which
start to become less regular in a critical value A\.. We
claim that for all systems in a small neighborhood.

Assertion 1. The distance A between the two invariant
bundles near the critical value \. satisfies

AN ~alr. — A° | (6)

where X\, is the critical point and o, 3 are parameters.
Moreover, 3 ~ 1.

Assertion 2. The mazimal Lyapunov multiplier A of the
cocycle near the critical value \. behaves as

AN =~ A+ AN — AP, (7)

where A,B (and A\.,A.) are parameters. Moreover, B ~
0.5.

One amusing consequence of this scenario is that the
spectrum of the operator M, is discontinuous at A =
Ae. In the models we have considered, with n = 2, the
spectrum before the collision is two circles whose radius
are the Lyapunov multipliers, and in the collision the
spectrum is the full annulus enclosed by the circles.

The effect of bundle collapses on the invariant man-
ifolds depends very strongly on whether the Lyapunov
multipliers straddle 1 or not. When the Lyapunov multi-
pliers straddle 1, the manifold ceases to be normally hy-
perbolic and, according to the theory, one expects that
the manifold does not persist under perturbations. When
the Lyapunov multipliers of the bundles do not straddle
1, the manifold loses reducibility — hence, computing it
becomes harder and the behavior of orbits near it changes
—but does not lose normal hyperbolicity and still persists.

Notice that for saddle-node bifurcations, 8 = 0.5,B =
0.5, A, = 1, and that, moreover, the bundles remain
smooth.

NUMERICAL EVIDENCE

Bundle merging causing loss of reducibility for an
attracting torus

Our first study is on the rotating Hénon map, a quasi-
periodic dissipative map given by

T=1+y—ba*+ \cos(27h)

y=cx (8)
0 mod

where b and c are the parameters of the Hénon map and
A is the strength of the quasi-periodic forcing. The vari-
able 6 is the phase of the external system rotating with
frequency w. We have taken w = 1(v/5 — 1).

In the following, the parameters are b = 0.68 and ¢ =
0.1. For A = 0, the curve (a 1D torus)

c—1+/(c—1)2+4b
2b

0— (vy = Y =cxy,0)

is normally hyperbolic with one stable direction and one
unstable. There is also an attracting periodic curve, of
period 2.

We have continued with respect to A the invariant
torus, and computed the distance A between the invari-
ant bundles of the linearized dynamics (3) and the max-
imal Lyapunov exponent A. The results are displayed in
Figure 1, where we observe several transitions, labelled
with the letters a,b,c,d,e.

As )\ changes, there is a period doubling bifurcation for
A =~ 0.254 (label a in Figure 1), and the torus becomes
attracting. In this bifurcation, the unstable bundle be-
comes a slow stable bundle (the corresponding Lyapunov
multiplier crosses the value 1).
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FIG. 1: Distance (A) between the invariant bundles and Lya-
punov multiplier (A) of an invariant torus, continued with
respect to A.

In b of Figure 1, with A ~ 0.463, the slow directions
merge with the fast directions causing a loss of reducibil-
ity. We have detected that the collapse of the bundles is
produced for A\, ~ 0.4632544711720. The critical value of
the Lyapunov multiplier is A, ~ 0.542306556. The torus
continues to be attractive.

The collapse of the bundles is depicted in Figure 2.
Since the transversal direction is a plane, to indicate a
one dimensional space, it suffices to select one angle «
between 0,7. The figure indicates this angle of the di-
rection as a function of 6. Notice the dramatic difference
caused by a change of 1079 in the parameter \. The fig-
ure suggests that at breakdown the invariant directions
become very complicated. Notice the visual similarity
with the phenomena mentioned in [14-16].

In order to study the power laws of the assertions, we
have computed the values of A and A for A = 0.4632520
to A = 0.4632544, with a step h = 0.0000001.

We fit parameters in (6) and (7) to obtain estimates of
a, B, A, B, A., A.. See Figure 3. To asses the reliability
we have used several different ways of fitting taking into
account that some data are more reliable than others.
We have found very useful the capabilities of gnuplot.

Our conclusions are:

£~0.999995+5-10"7 , B ~0.500949+3-107° .

The error estimates correspond to the fits. Note that
B ~1and B ~0.5.

In the transition c, the torus gains again reducibility,
that is lost again in d. We have checked the assertions

for both transitions. The results are

£ ~0.999961+1-107° , B~ 0.506147+2-10"*
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FIG. 2: Slow directions (red) and fast directions (blue) be-
fore and after the transition of lack of reducibility, and mag-
nification of a very small region. The distance between the
attractor and the repellor for A = 0.463254 is A ~ 1.86-1076.
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FIG. 3: Fits of A and A to the formulas (6) and (7).

for the transition ¢ and
£>~0.999984+1-10"° , B~0.492370+1-10~*

for the transition d.

The transition e is quite different. The torus is not re-
ducible before the transition and when the maximal Lya-
punov multiplier crosses 1 it ceases to be normally hyper-
bolic, and the torus is destroyed. The remaining object
is a strange attractor. In summary, the formation of a
strange non chaotic attractor for the linearized dynamics
of an attracting torus is the prelude of the destruction of
the torus and the formation of a strange chaotic attractor
for the non linear dynamics.

We have also studied models like (8), either changing
the parameters or replacing the second equation by § =
¢(1 — esin(470))z, where e is a small parameter, say e =
0.1. The results give again numerical evidence of the
assertions.

0.463255



Bundle merging associated to breakdown

Our second study is on the rotating standard map, a
quasi-periodic conservative map given by
1
T=x+y— Py sin(27rx)(K + Acos(276))  mod
™

9)

Y
0=0+w

1

v sin(2mx) (K + A cos(270))
v

mod

where K is the parameter of the standard map and A
leads to a quasi-periodic forcing. We have taken w =
7 — 1, where 7 is the largest root of p(t) = t> — 2 —t — 1.

We have continued with respect to A an elliptic periodic
orbit of period 3 of the standard map, with K = 0.2. The
torus is hyperbolic beyond A ~ 0.173.

The continuation reaches A\ = 0.377950, where the
discretization of the torus using Fourier series has 1200
terms, and the invariance equation (2) is solved up to
an error ~ 107%. The torus looks rather irregular and
about to break. See Figure 4. Moreover, the stable and
unstable directions are extremely close. See Figure 5.
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FIG. 4: 0 — x projection of a 3-periodic torus.
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FIG. 5: Unstable (red) and stable (blue) directions of a torus.

The merging of the stable and unstable directions im-
plies the breakdown of hyperbolicity and, hence, the dis-
appearance of the torus. (It is, of course, possible that
the torus persists as a Cantorus or as a topological man-
ifold. We plan to come back to that problem.)

We have checked the scaling laws by fitting all the pa-
rameters. See Figure 6. The results are

Ao =~ 0.379696 + 21077 , B~ 0.969009+9 105 ,
Ae~1.19566+8-107% , B ~0.911422+2-1073 .

In particular, we produce an estimate of the critical value
in which the torus is destroyed: A, =~ 0.379696.

Notice that, while 3 is relatively close to 1, B is rather
far from 0.5. Notice that at the critical value not only
the torus is destroyed, but also the linearized dynamics.
So, the critical phenomena is rather different to that in
the example of the previous section.
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FIG. 6: Fits of A and A to the formulas (6) and (7).
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