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Abstract. We use topological methods to investigate some recently proposed

mechanisms of instability (Arnol’d diffusion) in Hamiltonian systems.

In these mechanisms, chains of heteroclinic connections between whiskered

tori are constructed, based on the existence of a normally hyperbolic manifold

Λ, so that: (a) the manifold Λ is covered rather densely by transitive tori (pos-

sibly of different topology), (b) the manifolds W
s

Λ
, W

u

Λ
intersect transversally,

(c) the systems satisfies some explicit non-degeneracy assumptions, which hold
generically.

In this paper we use the method of correctly aligned windows to show that,
under the assumptions (a), (b) (c), there are orbits that move a significant
amount.

As a matter of fact, the method presented here does not require that the
tori are exactly invariant, only that they are approximately invariant. Hence,
compared with the previous papers, we do not need to use KAM theory. This
lowers the assumptions on differentiability.

Also, the method presented here allows to produce concrete estimates on

the time to move, which were not considered in the previous papers.

1. Introduction

The paper [Arn64] described a mechanism of global instability in Hamiltonian
systems which are arbitrarily closed to integrable. The paper showed that in the
remarkable two parameter family

Hε,µ(A1, A2, ϕ1, ϕ2, t) = H0 + εHε + µHµ

=
1

2
A2

1 +
1

2
A2

2 + ε(cos ϕ1 − 1)

+ µ(cos ϕ1 − 1) (sin ϕ2 + cos t)

(1.1)

for all 0 < |µ| ¿ |ε| ¿ 1, the system (1.1) admits orbits for which the action A2

changes by 1 over time.
The mechanism of [Arn64] is based on the existence of whiskered tori. The

perturbation is chosen in such a way that it does not affect the tori but causes the
stable and unstable manifolds to intersect. Therefore, there is a chain of whiskered
tori with heteroclinc intersections. The change of action moving along the chain is
independent of µ, ε. By an obstruction argument, there is one orbit that follows
the chain and provides with the desired unstable orbit.
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2 Topological methods in the instability problem of Hamiltonian systems

An important ingredient in the remarkable example in [Arn64] is that the the
perturbation is chosen carefully so that it vanishes on a smooth manifold. Since
this feature does not seem realistic in systems appearing in practice, there has been
a great deal of interest in finding more robust mechanisms that hold for systems
in which the perturbation is similar to those one encounters in real systems. It
is to be remarked that, numerical experiments [Chi79, Ten82, LT83] suggest that
generic perturbations that indeed destroy the foliation of whiskered tori, indeed
generate more diffusion. We recall that it is expected that a perturbation of size
ε will create gaps of size ε1/2 in the foliation of whiskered tori, but will move the
invariant manifolds only an amount ε. This is the so-called large gap problems.

In the last five years, there have appeared a number of papers developing the
mathematical theory of these problems, and a variety of methods have been sug-
gested. (See [DdlLS03a, DdlLS04] for a discussion of the recent literature). Of par-
ticular interest for the present paper are [DdlLS00, DdlLS03b, DdlLS03a, DdlLS04].
The above papers developed an argument to establish diffusion in dynamical sys-
tems and verify it in several models, including models presenting the large gap
problem. The argument in the above papers is based on identifying a normally
hyperbolic manifold Λ with transverse homoclinic intersections, and then studying
the interplay between the dynamics restricted to Λ and the dynamics given by the
homoclinic excursions.

In this paper, we extend and simplify some of the proofs of the existence of
diffusing orbits in Hamiltonian systems the above mentioned papers by incorporat-
ing the use of the topological method of “correctly aligned windows” introduced in
[Eas81, Eas75, Eas78] and extended in [ZG04, GZ04, GR03, GR04]. In particular,
we obtain estimates for the time required for the orbits to diffuse and we lower the
requirements of differentiability in the models considered.

The strategy of [DdlLS00, DdlLS03b, DdlLS03a] was to use the theory of persis-
tence of normally hyperbolic manifolds to study the manifold Λ and its homoclinic
intersections, then apply averaging methods and the KAM theorem to establish the
existence of invariant tori in Λ. These invariant tori in Λ are whiskered tori in the
full system. A more detailed study of the intersections of the stable and unstable
manifolds of Λ – obtained through the use of the scattering map – shows that,
under appropriate nondegeneracy conditions on the potential, there are transition
chains of whiskered tori. Then, an obstruction argument similar to that sketched
in [Arn64, AA67], but incorporating technical refinements, establishes that there
are orbits of the system which follow the transition chain. The main difference
between the models in [DdlLS00] and the models in [DdlLS03a] is that the tran-
sition chains in [DdlLS03a] incorporate, besides the regular KAM tori, secondary
tori or lower dimensional tori. These extra tori fit the gaps and overcome the large
gap problem. Another technical difference is that in the model in [DdlLS03a], the
stable and unstable manifolds of Λ did not intersect for ε = 0. Hence, the existence
of intersections of the stable and unstable manifolds has to be established using
perturbations and a non-degeneracy assumption. The paper [DdlLS04] generalizes
[DdlLS00] to higher dimensions and to quasi-periodic perturbations.

In Section 2, we will review the main steps of the constructions in the above
papers. As mentioned in the papers above, the argument is a sequence of well
defined steps and milestones so that different arguments could be used for different
steps.



M. Gidea, R. de la Llave 3

The goal of this paper to accomplish several of the steps in the above strat-
egy through topological methods. More specifically, in the scheme of [DdlLS03b],
the topological argument presented here takes over once we have implemented the
persistence of the normally hyperbolic manifold, transversality of the stable and
unstable manifolds, and averaging in the normally hyperbolic manifold. Then, the
argument presented in this paper takes the place of the KAM and the obstruction
argument in the papers above.

In Section 3 we present a set up that, as shown in the corresponding papers,
applies to the models described in Section 2 and state our main result, Theorem 3.1.
This result shows that, under the assumptions of the set up, there are orbits whose
action experiences changes of order 1.

The main tool in our approach is the method of correctly aligned windows.
We discuss in detail the method in Section 4 but we anticipate that the windowing
method is a refinement of index theory techniques. The windowing argument shows
that, if there exist sequences of windows such that the image of each window “goes
through” the next window in the sequence, then there is an orbit that shadows
the windows. In our problem, we will construct the sequence of correctly aligned
windows using some of the geometric structures identified in [DdlLS00] and in
[DdlLS03b].

One advantage of the method presented here is that, since the correct alignment
of windows is very robust and the argument is topological, it requires significantly
less detail than the more analytic arguments used in [DdlLS03b]. We do not need
to use invariant objects but only approximately invariant ones. In particular, we
do not need to invoke the KAM theorem as it was done in the previous papers.
The application of the averaging theory provides us with approximately invariant
objects which is all that the windowing method requires. The elimination of the
KAM theorem from the proof lowers the number of derivatives that one needs
to assume in the problem. We also note that, since the constructions are more
explicit, we can produce estimates – albeit not optimal – of the diffusion time in
the mechanism.

We think the introduction of the widowing mechanism opens new possibilities
for the extension of the methods of the above papers. Two such possibilities that
appear rather immediate are: 1) eliminating the KAM step in [DdlLS04] — this
would not only lower the number of derivatives required but it would also eliminate
assumption that the external perturbation has a Diophantine frequency, 2) the
existence of correctly aligned windows can be verified numerically by finite precision
calculations even in systems far from integrable. We hope to come to these problems
in future work.

Notation. We will denote by R, Z and N, the sets of all reals, integers, and
positive integers, respectively. We will say that a quantity is of order εp, where
ε > 0 and p ∈ N, if it is between C1ε

p and C2ε
p, for some 0 < C1 < C2 independent

of ε. To simplify notation, we will often omit the constant C when we will refer to
quantities of the type Cεp.

2. Description of the mechanisms in [DdlLS00, DdlLS03b, DdlLS03a]

In this section, we describe informally the problems considered in [DdlLS00,
DdlLS03b, DdlLS03a]. This will serve as motivation for the set up described pre-
cisely in the subsequent Section 3. The present section is only motivational and
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it is not used in subsequent sections, which only use the more formal set up in
Section 3.

2.1. Orbits of unbounded energy in periodic perturbations of geodesic

flows. The paper [DdlLS00] considers geodesic flows in T
2 perturbed by a periodic

potential. This is generalized in [DdlLS04] to geodesic flows in a any manifold
perturbed by a quasi-periodic potential. We will follow the presentation of the
later paper since it is more general. We refer to Section 1.1 of [DdlLS04] for more
details on the model.

Let M be a d-dimensional manifold with a generic metric (Riemannian, Finsler,
or Lorentz). We can describe the geodesic flow as a Hamiltonian flow on the (2d)-

dimensional exact symplectic manifold T ∗M . The Hamiltonian is just H =
1

2
|p|2,

where the norm | · | refers to the metric. The (2d − 1)-dimensional energy surfaces
ΣE = {x ∈ T ∗M |H(x) = E} are invariant under the geodesic flow.

The two assumptions of [DdlLS03a] about the geodesic flow (later there will be
another assumption about the potential) are:

A1: There exists a periodic orbit Λ̂ which is hyperbolic (in the sense of dy-
namical systems) for the geodesic flow on the unit energy surface Σ1.

A2: There exists an orbit

Γ̂ = {γ(t) | t ∈ R} ⊂ Σ1,

which is a transverse homoclinic orbit to Λ̂.
If we denote by W u

Λ̂
, W s

Λ̂
the usual stable and unstable manifolds in the

sense of dynamical systems, this condition means that

Tγ(t)W
s
Λ̂

+ Tγ(t)W
u
Λ̂

= Tγ(t)Σ1, t ∈ R,

Tγ(t)W
s
Λ̂
∩ Tγ(t)W

u
Λ̂

= Tγ(t)Γ̂, t ∈ R.
(2.1)

Note that the transversality conditions above imply that Γ̂ is a locally unique
intersection between the stable and unstable manifolds of Λ̂.

The geodesic flow satisfies some scaling properties, so that the flow in different
energy surfaces is just a rescaling (of the time and the momenta) of the flow on the
unit energy surface. In particular, in any energy surface ΣE with E > 0 we can
find periodic orbits Λ̂E and homoclinic orbits Γ̂E which are rescalings of the orbits
in the unit energy surface.

We fix E0 large enough and consider

Λ =
⋃

E≥E0

Λ̂E ,

Γ =
⋃

E≥E0

Γ̂E .
(2.2)

Both Λ and Γ are invariant under the geodesic flow.
Furthermore, we have that Λ is normally hyperbolic in the sense of [Fen72,

HPS77]. (There are a few technicalities that arise because Λ is not compact and
because the flow is not bounded on it. They are dealt with in Appendix A of
[DdlLS04].) We can associate to Λ its stable and unstable manifolds. Moreover, Λ
and Γ satisfy relationships analogous to (2.1).

Since we consider periodic perturbations of the system, it is convenient to in-
troduce an extra angle variable t, which moves at a constant rate of 1, and so we
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extend the phase space to T ∗M × T
1. We denote by Λ̃ = Λ × T

1 and Γ̃ = Γ × T
1

the corresponding objects in the extended phase space, on which we define the
Hamiltonian function

(2.3) H(p, q, t) =
1

2
|p|2 + V (q, t),

where V : M × T
1 → R is a potential function satisfying V (q, t + 1) = V (q, t).

(The extended phase space is not symplectic — it has odd dimension — and so the
energy function defined above is not a Hamiltonian function. In order to be able
to use the Hamiltonian formalism, one considers the symplectic extended phase
space T ∗M × R × T

1, where a is a real variable symplectically conjugate to t, and

defines the Hamiltonian H(p, q, a, t) = a +
1

2
|p|2 + V (q, t). The new variable a

has no dynamical role, and the restriction of the Hamiltonian flow to each of the

manifolds a = const. is identical to the flow of
1

2
|p|2 +V (q, t) in the extended phase

space.)
The paper [DdlLS04] considers the more general case that the potential V de-

pends quasi-periodically on time. In this paper, we will only consider periodic
perturbations. We postpone the application of the windowing method to quasi-
periodic perturbations to future work. Of course, arguments of [DdlLS04] apply
also to the case of periodic perturbation and, incorporate several technical improve-
ments. So, we will often refer to [DdlLS04] with preference to [DdlLS00].

Applying a scaling transformation that transforms high energy into energies of
order 1 (see [DdlLS04, Sec. 4.2]), we can write the problem for high energies as

(2.4) Hε(p, q, t) =
1

2
|p|2 + ε2V (q, εt),

which makes it clear that, for high energies, the problem with an external potential
is a small and slow perturbation of the geodesic flow.

If we consider Fε, the time 1/ε map for the flow corresponding to (2.4), the theory

of normally hyperbolic manifolds shows that the manifold Λ̃ persists for ε sufficiently
small; that is, there exists Λ̃ε normally hyperbolic for Fε, for all ε sufficiently small.
Also, the stable and unstable manifolds persist and the manifold Γ̃ defined as the
locally unique intersection also persists; that is, there exists a transverse homoclinic
orbit Γ̃ε to Λ̃ε for Fε, for all ε sufficiently small. (See Appendix A of [DdlLS04] for a
very detailed proof that takes into account technicalities such as that the manifold
Λ̃ is not compact.)

The map fε = Fε|Λ̃ε
is an exact symplectic map which satisfies a twist condition.

The map f0 is just a standard twist map. Using the fact that the perturbation is
slow, in [DdlLS00] it is shown that one can use an averaging method and establish
that, in some coordinates, the system can be reduced to a standard twist plus an
error of order ε3. Applying the KAM theorem to this averaged system, [DdlLS03a,
DdlLS00] show that there are KAM tori with gaps of order not larger than ε3/2.
These KAM tori are very close to level sets of the averaged energy. (One of the
goals of this paper is to eliminate the KAM step).

Remark 2.1. Note that, in this model, the external perturbation is slow and, there-
fore, there are no small divisors in the averaging method. The averaging method
could be repeated to any order needed. So that, in this model the gaps are very
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small. Hence, it is very similar to the model in [Arn64] and does not present the
large gap model.

To the intersection Γ̃ε we can associate a scattering map Sε from Λ̃ε to Λ̃ε defined
by

(2.5) Sε(x−) = x+ ⇐⇒ ∃z ∈ Γ, dist(Fn
ε (x±), Fn

ε (z)) ≤ Cλn as n → ±∞.

That is, Sε(x−) = x+ ⇐⇒ W s
x+

∩ Wu
x−

∩ Γε 6= ∅.

The scattering map can be computed perturbatively. In [DdlLS00, Sec. 4.4] the
perturbation theory of the scattering map is compared with the averaged energy.
The conclusion of the calculations there is that, under explicit conditions on V —
which hold for generic potentials V — and given a level set of the averaged energy
Lh, with h sufficiently large, we have

Sε(Lh)tΛ̃ε
Lh′

for all h′ ∈ [h − Aε, h + Aε] with A > 0.
The conclusion drawn in [DdlLS04, Sec. 4.4] is that there is an abundance of

KAM tori Ti — close to the energy surfaces with good rotation numbers — such
that Sε(Ti)tΛ̃ε

LTi+1
. From this, in [DdlLS04, Sec. 4.5], it is shown that there are

transition chains and orbits following them. Actually, the results of [DdlLS04, Sec.
4.5] are formulated in terms of transition paths, which is a somewhat more precise
description of the orbits that the customary transition chains. The difference is
that the transition paths specify the tori visited and the connecting orbits followed,
whereas the usual transition chains just specify the orbits visited.

In this paper, for periodic perturbations, we eliminate the use of the KAM the-
orem and the study in [DdlLS04, Sec. 4.4, 4.5]. The description of the constructed
orbits includes also a specification of the transition path. Some of the arguments
in [DdlLS04, Sec. 4.5] were non-constructive point set topology arguments and this
caused that there were no estimates on the time of the orbits. In this paper we
produce some explicit estimates of the diffusion time for the orbits we construct.

2.2. Overcoming the large gap problem. One of the problems in the pertur-
bative verification of the Arnol’d instability is that the main ingredient in the proof
is the existence of a chain of whiskered tori. In the example in [Arn64], all the
whiskered tori persist because the perturbation is cleverly chosen. In a generic per-
turbation, one expects that there are gaps of size O(ε1/2) between the whiskered
tori. On the other hand, the oscillation of the manifolds that can be controlled
by perturbative methods is only O(ε). A very lucid discussion of these problems
appears in [Moe96].

The large gap problem has been overcome in [DdlLS03b] by geometric methods
and in [CY02] by variational methods for convex systems (we think that the dif-
fusing orbits of these two papers are presumably related). We also note that in
the models considered in those papers, there are other mechanisms of instability
[dlL04, Tre04].

The methods here are designed to take the place of some of the arguments in
[DdlLS03b, DdlLS03a] and to produce estimates of the time used for the orbits pro-
duced. The diffusion time is presumably very different from the orbits constructed
using other mechanisms.

For a more detailed overview of the mechanism we discuss here, we refer to
[DdlLS03b],[DdlLS03a, Chapter 2].
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The model can be considered as an approximation on the behavior near a simple
resonance. It was already considered in [HM82] – which however did not consider
the problem of crossing the gaps of size O(ε1/2) in the foliation of tori – is:

Hε(p, q, I, ϕ, t) = H0(p, q, I) + εh(p, q, I, ϕ, t; ε)

= P±(p, q) +
1

2
I2 + εh(p, q, I, ϕ, t; ε)

(2.6)

where

(2.7) P±(p, q) = ±(
1

2
p2 + V (q))

and V (q) is a 2π-periodic function. We will refer to P±(p, q) as the pendulum.
We make the following assumptions:

B1: The potential V has a non-degenerate maximum, which we will set, for
convenience, at 0. That is, we will assume that V ′(0) = 0, V ′′(0) < 0. We
denote by (p0(t), q0(t)) an orbit of the pendulum ±( 1

2p2 +V (q)) homoclinic
to (0, 0).

B2: The perturbation h is a trigonometric polynomial in the angle variables
q, ϕ, t. This ensures that there exists a finite number of resonances.

This assumption was made in [DdlLS03b, DdlLS03a] for convenience,
however this is not essential and can be substituted by an assumption that
the function h is differentiable enough [Hug].

B3: The Melnikov potential associated to h satisfies certain non-degeneracy
conditions.

These conditions imply that the stable and unstable manifolds of the set
p = 0, q = 0, have a transverse intersection for 0 < |ε| < ε∗ ¿ 1 and that
the transverse intersection is a smooth family for |ε| < ε∗ (see [DdlLS03b]).

More precisely, we consider the Poincaré function, also called Melnikov
potential, associated to h (and to the homoclinic orbit (p0, q0) mentioned
in B1):

L(I, φ, s) = −

∫ +∞

−∞

(
h (p0(σ), q0(σ), I, φ + Iσ, s + σ; 0)

−h(0, 0, I, φ + Iσ, s + σ; 0)
)

dσ.

The non-degeneracy assumption is that Assume that for all (I, φ, s) in some
open set, the map

τ ∈ R 7→ L(I, φ − Iτ, s − τ)

has a non-degenerate critical point τ which is locally given, by the implicit
function theorem, in the form τ = τ∗(I, φ, s) with τ∗ a smooth function.
Assume moreover that the function

∂L

∂φ
(I, φ − Iτ∗, a − τ∗)

is non-constant and negative (respectively, positive).
Note that the non-degeneracy conditions assumed here are true for generic

perturbations h.

Remark 2.2. We note that the intersections corresponding to critical sets of the
Poicaré function are the only intersections that can be continued smoothly across
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ε = 0. It is, however known [BW95] that there are other intersections for 0 < |ε| ¿
1. These “secondary intersections” could well be used to construct diffusing orbits
(see [GR03]), provided that we can verify the rest of the assumptions. Even if a
verification in concrete models seems difficult, it is very plausible that they hold for
generic systems. As mentioned before, the only reason we concentrate in the orbits
which extend smoothly across ε = 0 is to obtain estimates on the diffusion time.

B4: The perturbation terms h and ∂h/∂ε satisfy some non-degeneracy con-
ditions (see [DdlLS03b, DdlLS03a]).

These assumptions amount to the fact that the behavior of the averaged
system at resonances indeed has hyperbolic orbits. These assumptions are
also true for generic systems of the form (2.6).

We note that for ε = 0 the system is just the product of a pendulum and a
rotator. The energy of the pendulum and the action of the rotator are conserved.

The goal is to show that for 0 < |ε| ¿ 1 there are orbits for which I changes by
a quantity which is independent of ε. For simplicity, we will just take Fε to be the
time-one map of the periodic Hamiltonian (2.6).

The geometric mechanism is based on the observation that for ε = 0, the manifold

Λ0 = {x̃ ∈ (R × T)2 | p = q = 0, I ∈ [I−, I+]}(2.8)

is a 2-dimensional invariant manifold which is normally hyperbolic for F0. The
stable and unstable directions correspond to the stable and unstable directions of
the fixed point of the pendulum. The stable and unstable manifolds of Λ0 agree.

For |ε| ¿ 1, because of normal hyperbolicity, the manifold Λ0 persists, giving
rise to another manifold Λε. Moreover, a first order calculation shows that, under
non-degeneracy conditions for the perturbation h, when 0 < |ε| ¿ 1 the stable and
unstable manifolds of Λε intersect along a manifold Γε that satisfies analogues of
(2.1). (As a matter of fact, the calculation produces several of those manifolds, but
we choose just one). This allows us to locally define the scattering map associated
to Γε, which is also computed in first order perturbation theory. See [DdlLS03b, Ch.
9]. It is interesting to note that, due to the symplectic structure, both the generation
of intersections and the scattering map can be expressed as partial derivatives of
the same Melnikov potential. This justifies the hypothesis B3 and B4 from above.

The motion on the invariant manifold Λε is rather different than in the case
considered in the previous subsection. Averaging theory shows that the system
restricted to Λε can be transformed up to small errors into a time independent
system. There are resonances present in this system. Far away from the reso-
nances, standard KAM theorem shows that there are closely spaced KAM tori.
Near the resonances, the system can be accurately described by systems similar to
a pendulum. Switching to singular action-angle variables near the resonances show
that, under appropriate non-degeneracy conditions, there exist primary KAM tori
and secondary KAM tori, close to the separatrices of the pendulum. These tori
are closer than O(ε3/2), and they possess stable and unstable manifolds. The hy-
pothesis B3 ensures that the scattering map associated to Γε maps pieces of these
tori transversally in Λε to other tori at a distance O(ε). The transversality of the
scattering map on these tori reflects the transversally of the stable and unstable
manifolds of the corresponding tori.
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Therefore, all these objects form a transition chain, which shows the existence of
diffusing pseudo-orbits. Then an obstruction argument show that there are orbits
that shadow the diffusing pseudo-orbits.

3. Set up and main result

Let M be a Ck-smooth (2n + 2)-dimensional manifold, and Λ0 be an embedded
copy of R × T in M , where T denotes the 1-dimensional torus. We describe the
points in Λ0 through a system of ‘action-angle’ coordinates (I, φ) ∈ R × T.

On M we consider a family of Ck-diffeomorphisms Fε : M → M , for ε ∈
(−a0, a0), for some a0 > 0. We will think of Fε as a perturbation of the dif-
feomorphism F0 : M → M . The unperturbed mapping F0 is assumed to preserve
some ‘energy’ functional. More precisely, there exists a Ck-differentiable func-
tion H0 : M → R such that H0 |Λ0

depends only on the action variable I, and
H0(F0 |Λ0

) = H0. This implies that the restriction of F0 to Λ0 preserves the action
coordinate I. The problem of diffusion is to show that, for all sufficiently small
ε > 0, there exist orbits for which the the changes of energy are of order 1. We
assume that Λ0 is a normally hyperbolic manifold in M relative to F0. This means
that Λ0 is F0-invariant, the tangent space to M at each point x ∈ Λ0 splits into

TxM = TxΛ0 ⊕ Es
x(0) ⊕ Eu

x (0),

with Es
x(0) and Eu

x (0) n-dimensional vector subspaces of TxM , and there exist

0 < λ− < λ+ < λ1 < 1 < µ1 < µ− < µ+

such that the following growth rate conditions are satisfied

λ− <‖DF0|Es
x
(0)‖ < λ+,

µ− <‖DF0|Eu
x
(0)‖ < µ+,

λ1 <‖DF0|Ec
x
‖ < µ1.

(3.1)

The (strong) stable and unstable manifolds W s
x(0) and W u

x (0), respectively, are
defined at every point x ∈ Λ0 and they are Ck-smooth. In general, the stable
and unstable spaces Es

x(0), Eu
x (0), and the stable and unstable manifolds W s

x(0)
and W u

x (0) vary only Hölder continuously with respect to x ∈ Λ0. The stable and
unstable manifolds vary Cl-smoothly with x provided the contraction in the stable
direction is stronger than the contraction within the center. More precisely, if there
exist α, β > 1 such that ‖DF−1

0 |Eu(0)⊕Ec(0)‖ < α, ‖DF0|Es(0)⊕Ec(0)‖ < β, and

λ+αl < 1, µ−1
− βl < 1, then the stable and unstable manifolds vary Cl-smoothly

with x.
Note that the conditions in (3.1) depend on the metric chosen, but that the

conclusions of regularity do not. Also, one can consider iterates of the map and
the hypothesis in (3.1) can be significantly better. In our situation, since the
restriction of F to Λ0 preserves the action coordinate I, one can chose a metric
(See e.g. [FdlL92] for explicit formulas) in the invariant manifold Λ in such a way
that

‖DFε|TΛε
‖ < 1 + O(ε1/2).

Therefore, the stable and unstable manifolds are as smooth as desired, provided
that ε is sufficiently small.

The standard theory of normally hyperbolic systems guarantees that there exist
a normally hyperbolic manifold Λε in M relative to Fε, for all ε sufficiently small.
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We describe each point of Λε by a pair of coordinates (Iε, φε) ∈ R×T. We assume
that a0 is small enough such that Λε is normally hyperbolic for all ε ∈ (−a0, a0).
It means that for each ε, the set Λε is Fε-invariant, and

TxM = TxΛε ⊕ Es
x(ε) ⊕ Eu

x (ε),

at each x ∈ Λε, for some n-dimensional vector subspaces Es
x(ε) and Eu

x (ε) of TM .
We assume that a0 is small enough such that, for all ε ∈ (−a0, a0), we have λ− <
‖DFε|Es

x
(ε)‖ < λ+, µ− < ‖DFε|Eu

x
‖ < µ+, and λ1 < ‖DFε|Ec

x
‖ < µ1. A standard

reference for normal hyperbolicity theory is [HPS77].
For all ε ∈ (−a0, a0), there exist stable and unstable manifolds of Λε

W s
Λε

=
⋃

x∈Λε

W s
x(ε), W u

Λε
=

⋃

x∈Λε

W u
x (ε).

These manifolds are of dimension n+2 and they are Cl-differentiable, for some l ≥ 1.
As it is standard in nornal hyperbolicity theory, the points in W s

x characterized by
the fact that their orbits approach the orbit of x at an exponential rate with the
rate bounded from below. Similarly for the other manifolds.

We assume that W s
Λε

and W u
Λε

have a transverse intersection along a 2-dimensional
manifold Γε, for all ε > 0 in (−a0, a0). For each z ∈ Γε, we have

TzΓε = Tz(W
s
Λε

) ∩ Tz(W
u
Λε

), and(3.2)

TzM = TzΓε ⊕ Tz(W
s
x(ε)) ⊕ Tz(W

u
y (ε)),(3.3)

for some x = x(z) ∈ Λε and some y = y(z) ∈ Λε, where x and y are locally uniquely
defined.

Under the assumption above of existence of a transversal intersection, there are
two naturally defined dynamics on Λε: an inner dynamics, defined by the restriction
of Fε to Λε — and which we will denote by fε — and an outer dynamics, defined
by the homoclinic excursions to Λε. We will refer to fε as the inner map. The
dynamics of the homoclinic excursions is described by a scattering map (outer map)
Sε associated to the family of homoclinic orbits Γε, and defined as follows:

• Let z be the locally unique intersection of W u
x (ε) with Γε;

• There exists a unique point y(x) ∈ Λε such that z ∈ W s
ε (Λε);

• Set Sε(x) = y.

That is, we say that Sε(x−) = x+ when Wu
x−

tW s
x+

and the – locally unique
– intersection ranges over Γε. The fact that the scattering map is locally well
defined is a consequence of the implicit function theorem and the smoothness of
the foliation. Note that, of course, the intersections are not unique, so that it is
quite important that the local uniqueness is taken into account. Since the scattering
map is defined only through local considerations, it is important to remark that
there is some global uniqueness. By the properties of the foliation W s

Λε
(ε) by stable

submanifolds W s
y(ε) with y ∈ Λε, we have z ∈ W s

y(ε)∩W s
y′(ε) implies y = y′, hence

Sε is unique. On the other hand, we note that, as pointed out in [DdlLS00], the
point z, even if locally unique, it may present some nontrivial monodromy. This
happens e.g. in the Geodesic Flow Model.

Notice that, since the scattering map is defined through the implicit function the-
orem, if the homoclinic intersection depends differentiably on parameters, the scat-
tering map will depend differentiably on parameters too. A particularly interesting
case – which appears in the Large Gap Model considered in [DdlLS03b, DdlLS03a]
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Hε

R

Figure 1. Foliation with regular and singular leaves.

– is when the intersection depends smoothly on the parameter ε and is transversal
for 0 < |ε|, but it is not transversal for ε = 0. In such a case, the scattering map
has a well defined limit as ε → 0 and can be extended to a smooth family of maps.

Alternatively, we can describe the scattering map as a composition of two ho-
moclinic maps. Consider the maps Φu

ε from a neighborhood of x in Λε to a neigh-
borhood of z in Γε along the unstable manifold, and Φu

ε from a neighborhood of x
in Λε to z in Γε along the stable manifold. Then,

Sε = (Φs
ε)

−1 ◦ Φu
ε .

The scattering map was introduced in [DdlLS00] and [Gar00].
In the sequel, we will make a series of assumptions on the inner and the outer

dynamics.
Notice that some of the assumptions involve just the behavior for a fixed ε and

some assumptions involve the behavior of a family of intersections. To establish
the existence of diffusing orbits for a fixed ε, we will only use the assumptions for
a fixed ε. The assumptions on the behavior of the family enter only when we want
to obtain bounds for the diffusion time as a function of ε in Section 8.

C1: We will assume that there is a homoclinic intersection for Λε depending
differentiably on the parameter for |ε| < ε∗. The homoclinic intersection is
transversal for 0 < |ε| < ε∗.

When the homoclinic intersection is transverse, we can define a scattering
map, depending differentiably on ε for |ε| < ε∗.

We assume that the scattering map Sε : Uε → Λε is defined on some
open set Uε ⊆ Λε.

If we take a parameterization FεΛ0 = Λε as in Appendix A of [DdlLS00],
we obtain that Uε = Fε(U0). In particular, the size of the domain of Sε is
bounded from below.
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In order to estimate the times of diffusion, we will need to make some
quantitative assumptions on the values of the angle of the intersections.
C1a ( For the “Geodesic Flow Model”, Section 2.1 ) As ε goes to zero, the

angle between Tpε
W s

Λε
and Tpε

Wu
Λε

remains bounded from below.
C1b ( For the “Large Gap Model”, Section 2.2 )

Denoting by C(ε) the angle between Tpε
W s

Λε
and Tpε

Wu
Λε

we have:

K−1ε < C(ε) < Kε

for some K > 0.
C2: We assume that each fε satisfies a uniform twist condition on Λε, that is,

there exists T > 0 such that

(3.4)
∂(Πφfε)

∂Iε
> T

for all ε > 0 in (−a0, a0), where Πφ : Λε → R represents the projection into
the φ-coordinate.

Later on, we will make another twist assumption. (See C5.)
C3: We assume that for each ε > 0 in (−a0, a0), there exists a Ck-differentiable

Morse function Hε : M → R such that

||Hε |Λε
(fε) − Hε |Λε

||Ck ≤ Cε2.

In the sequel, with an abuse of notation, we will denote Hε |Λε
also by

Hε. Each function Fε determines a foliation of Λε by leaves of the form
Lh

ε = H−1
ε (h).

We will make some extra hypothesis on the behavior of this Morse func-
tion which capture the behavior of the models.

C3a: (For the “Geodesic Flow Model”, Section 2.1 )

We assume that Hε(Iε, φε) = 1
2I2 + εĤ(Iε, φε) where Ĥ(Iε, φε) is a

uniformly bounded function. Hence, the leaves are homeomorphic to
circles which are small perturbations of the circles I = constant.

C3b: (For the “Large Gap Model”. See Section 2.2.)
We assume that Hε has a finite number of critical points that are
degenerate of the first order and a finite number of critical points that
are degenerate of the second order (a critical point cε of Hε is said to
be of order j if D2Hε(cε) has one eigenvalue of order 1 and another
eigenvalue which is of order εj). The regular values h of Hε correspond
to regular leaves Λh

ε in Λε, while the critical values h of Hε correspond
to regular leaves Λh

ε in Λε. See Figure 1. Moreover, we will assume
that the leaves that contain critical points of an order do not contain
critical points of another order. A leaf may contain several critical
points.

C4: We assume that the scattering map is transverse to leaves along leaves, that
is, there is an interval [h−, h+] with Lh

ε ∩ Uε 6= ∅, and there is a constant
c > 0 such that, for each ε > 0, and for each regular value h of Hε in
[h−, h+], there exists an interval [k−, k+] depending on ε and h, with

(3.5) c−1ε < k− < k+ < cε,
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L ε
h

L ε
h+k

Sε(L ε
h    Uε)

Λε

UUε

U

Figure 2. The effect of the scattering map on the leaves of the foliation.

such that, for each k ∈ [k−, k+] we have that h + k is a regular value for
Hε, and

(3.6) Sε(L
h
ε ∩ Uε) ∩ Lh+k

ε 6= ∅ and Sε(L
h
ε ∩ Uε) t Lh+k

ε .

Condition C4 says that the scattering map makes jumps of order ε in
the action direction, and it maps leaves transversally across leaves. See
Figure 2.

C5: The approximately conserved quantity obtained in C3 admits level sets
which are circles. Some of them are homotopically non-trivial and some of
them – in the “Large Gap Model” – are homotopically trivial.

In the neighborhood of these circles, we can introduce action angle co-
ordinates in such a way that these circles correspond to constant action.

We will denote these coordinates around the level sets of the conserved
quantity as r – for radius – or a – for angle. Note that there are two types of
non-critical level sets. Some of them are contractible to points and others
are not.

The non-contractible level sets correspond to the KAM tori while the
contractible ones correspond to the secondary KAM tori.

We will assume that except for the critical sets, it is possible to choose
these coordinates in such a way that it satisfies a twist condition similar to
C2.

We note that in the “Geodesic Flow Model”, the twist condition follows
because the conserved quantity is the averaged energy. Hence, r, a are very
similar to the action angle variables. In the “Large Gap Model”, we see that
the twist condition for the circles non-homotopic to a point can be verified
in the action-angle variables. For the circles that are homotopic to identity,
the twist condition is actually very large. The explicit computations are
done in detail in [DdlLS03a, Chapter 8.5].

The main result of this paper is the following:

Theorem 3.1. In the conditions C1-C5 above.
Let ε ∈ (−a0, a0) for some a0 > 0 sufficiently small. Let

h0 = h−, h1, . . . , hn = h+

be a finite sequence of regular values of Hε, such that

Lhi ∩ Uε 6= ∅, for all i = 0, . . . , n.
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For each η > 0, there exists an orbit z0, z1, . . . , zn of the system, with

zi+1 = Fni

ε (zi),

for some ni > 0, and

d(zi,L
hi

ε ) < η,

as i ∈ {0, 1, . . . , n}.
Moreover, for every loop h0, h1, . . . , hn of regular values of Hε in [h−, h+], with

hn = h0, there exists a closed orbit z0, z1, . . . , zn of the system, with

zN = z0 and zi+1 = Fni

ε (zi)

for some ni > 0, and

d(zi,L
hi

ε ) < η,

as i ∈ {0, 1, . . . , n}.

This result applies straightforwardly to the models discussed in Subsection 2.1
and Subsection 2.2. We will provide an estimate for the diffusion time and discuss
the assumptions on differentiability for these models in Section 8.

Remark 3.2. Using the same argument as in the proof of Theorem 1.2 in [GR03,
GR04], we can prove the existence of symbolic dynamics over finitely many symbols
in a small neighborhood of any finite collection of leaves. However, providing sym-
bolic dynamics over infinitely many symbols in a small neighborhood of an infinite
collection of leaves (as it is done in [DdlLS00, DdlLS03b]) appears to be challenging
for our approach.

Remark 3.3. Note that the set up included here does not use at all that the stable
and unstable manifolds of Λε are one-dimensional.

The paper [DdlLS04] considers the geodesic flow model in any number of dimen-
sions. The paper [DdlLS03a] uses the 1-dimensionality of the stable manifolds only
in some of the most explicit calculations of the Melnikov function.

On the other hand, the fact that the manifold Λε is 2-dimensional is used in
several places. Since diffusion is easier to achieve the larger the dimension is, it
seems that this restriction does not belong and should be removed.

4. The windowing method

The method of correctly aligned windows, as presented in [ZG04, GZ04, GR03,
GR04], is an extension of the method introduced in [Eas81].

In this section, we collect some definitions and prove the results we will need.

4.1. Correctly aligned windows. A window is a homeomorphic copy of a multi-
dimensional rectangle, with a distinguished C0-coordinate system.

Definition 4.1. An (n1, n2)-window in an n-dimensional manifold M is a com-
pact subset W of M together with a parametrization given by a homeomorphism
χW : [0, 1]n1 × [0, 1]n2 → W , where n1+n2 = n. The set W− = χW (∂[0, 1]u × [0, 1]s)
is called the ‘exit set’ and the set W+ = χW ([0, 1]u × ∂[0, 1]s) is called the ‘entry
set’ of W .

Here ∂ denotes the topological boundary of a set. Since χW is merely a homeo-
morphism, in the above definition one can always replace the rectangle [0, 1]n1 × [0, 1]n2
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by a a homeomorphic copy of it. In the sequel, we shall adopt the following notation
convention:

Wχ = (χW )−1(W ),

(W−)χ = (χW )−1(W−),

(W+)χ = (χW )−1(W+).

Two windows are correctly aligned under some map, provided that the image of
the first window under the map can be stretched out and flattened down to a disk
crossing the second window all the way through its exist set, so that the induced
map on that disk has non-zero degree.

Definition 4.2. Let W1, W2 be two (n1, n2)-windows in M , and f be a continuous
map on M with f(im(χW1)) ⊆ im(hW2). Denote fχ = (χW2)−1 ◦ f ◦ χW1 . We say
that W1 is correctly aligned with W2 under f provided that the following conditions
are satisfied:

(i)

fχ((W−
1 )χ) ∩ (W2)χ = ∅,

fχ((W1)χ) ∩ ((W2)
+
χ = ∅.

(ii) there exists a point y0 ∈ [0, 1]n2 such that
(ii.a) fχ([0, 1]n1 × {y0}) ⊆ int ([0, 1]n1 × [0, 1]n2 ∪ (Rn1 \ (0, 1)n1) × R

n2),
(ii.b) If n1 = 0, then fχ((W1)χ) ⊆ int((W2)χ). If n1 > 0, then the map

Ay0
: R

n1 → R
n1 defined by Ay0

(x) = πn1
(fχ(x, y0)) satisfies

Ay0
(∂[0, 1]n1) ⊆ R

n1 \ [0, 1]n1 ,

deg(Ay0
, 0) 6= 0.

Here πx denotes the projection (x, y) ∈ R
n1 × R

n2 → x ∈ R
n1 . Note that this

definition is equivalent to the definition for correctly aligned windows provided in
[ZG04, GZ04]. See Figure 3. Here deg(A, 0) denotes the Brouwer degree of the
mapping A at the point 0. The number deg(A, 0) will be referred as the ‘degree
of alignment’. The definition and properties of the Brouwer degree can be found
in [Hir94]. Below we state a property of the Brouwer degree which will be needed
later.

Proposition 4.3. Let Ui ⊂ R
ki be open sets, and fi : Ui → R

ki be continuous
mappings, for i = 1, 2. Let zi ∈ R

ki , for i = 1, 2. The map (f1, f2) : R
k1 × R

k2 →
R

k1 × R
k2 is given by (f1, f2)(x1, x2) = (f1(x1), f2(x2)). We have

(4.1) deg((f1, f2), U1 × U2, (z1, z2)) = deg(f1, U1, z1) · deg(f2, U2, z2),

whenever the right hand side is defined.

Proposition 4.4, Theorem 4.5, Theorem 4.6, and Corollary 4.7, stated below, are
proved in [ZG04, GZ04].

The following result is a simple criterion for correct alignment of windows.

Proposition 4.4. Let W1 and W2 be (n1, n2)-windows, and f be a continuous
map on M with f(im(χW1)) ⊆ im(χW2). Assume that the following conditions are
satisfied:
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W1 W2

f(W1)

f

W1
− W2

−W1
+ W2

+

Figure 3. A pair of correctly aligned windows in the plane.

(i) There exists a continuous homotopy h : [0, 1]×Wχ → R
n1 ×R

n2 , such that
the following conditions hold true

h0 = fχ,

h([0, 1], (W−
1 )χ) ∩ (W2)χ = ∅,

h([0, 1], (W1)χ) ∩ (W+
2 )χ = ∅,

(ii) there exists a linear map A : R
n1 → R

n1 , such that
(ii.a) h1(x, y) = (Ax, 0) for x ∈ [0, 1]n1 and y ∈ [0, 1]n2 ,
(ii.b) A(∂[0, 1]u) ⊂ R

n1 \ [0, 1]n1 .

Then W1 is correctly aligned with W2 under f .

In the sequel, if W1 and W2 are as in the above proposition, we will say that W1

is linearly correctly aligned with W2 under f .
The following results says that correct alignment of windows is robust.

Theorem 4.5. Suppose that the (n1, n2)-window W1 correctly aligns with the (n1, n2)-
window W2 under a continuous map f on M . There exists ε > 0 such that for
continuous map g on M for which gχ is ε-close to fχ in the compact-open topology,
W1 correctly aligns with W2 under g.

The following result is sometimes referred in the mathematical folklore as: ‘one
can see through a sequence of correctly aligned windows’.

Theorem 4.6. Let Wi be a collection of (n1, n2)-windows in M , where i ∈ Z or i ∈
{0, . . . , d−1}, with d > 0 (in the latter case, for convenience, we let Wi = W(i mod d)

for all i ∈ Z). Let fi be a collection of continuous maps on M . If Ni is correctly
aligned with Wi+1, for all i, then there exists a point p ∈ N0 such that

fi ◦ . . . ◦ f0(p) ∈ Wi+1,

Moreover, if Wi+k = Wi for some k > 0 and all i, then the point p can be chosen
so that

fk−1 ◦ . . . ◦ f0(p) = p.

Corollary 4.7. Let W0, . . . ,Wd−1 be a collection of mutually disjoint (n1, n2)-
windows and f a continuous map on M . Assume that for every i, j ∈ {0, . . . , d−1},
the window Wi is correctly aligned with the window Wj under f . There exist a
maximal f-invariant set S in

⋃
i=0,...,d−1 int(Wi), and a continuous surjective map

ρ : S → Σd such that ρ ◦ f = σ ◦ ρ, and the inverse image of every periodic orbit of
σ contains a periodic orbit of f .
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The difficulty of the application of this technique is to explicitly construct win-
dows satisfying correct alignment relations in concrete problems.

Remark 4.8. We now describe a situation in which it is very natural to construct
correctly aligned windows. Consider a pair of submanifolds with boundary, of
complementary dimensions, such that one submanifold is mapped across the other
in some non-trivial way. One can carefully fatten up these submanifolds to full-
dimensional windows in the phase space. A sufficient condition that ensures the
non-trivial crossing of the windows is that the submanifolds of complementary
dimensions are transverse or topologically crossing. Two immersed curves W 1 and
W 2 in R

2 have a topological crossing provided that there exist an open set U ⊆ R
2,

two embedded submanifolds with boundary V 1 ⊆ W 1 and V 2 ⊆ W 2 such that
bd(V 1) ∩ V 2 = bd(V 2) ∩ V 1 = ∅, and V 1 ∩ V 2 ⊆ U , and a coordinate system
(x, y) on U such that int(V 1) = {y = 0} and V 2 contains a pair of points (x1, y1)
and (x2, y2) such that y1y2 < 0. For a definition of topological crossing in higher
dimensions, see [BW95]. For an application of the correctly aligned window method
in the context of topologically crossing invariant manifolds, see [GR04].

4.2. Products of windows. In order to construct correctly aligned windows one
can use ‘products’ of correctly aligned windows in lower dimensions. The product
of windows is not simply the Cartesian product of the images of the underlying
homeomorphisms, but is the product of the multi-rectangles corresponding through
the local coordinates.

Suppose that n1, n2,m1,m2 ≥ 0 and n1 + n2 + m1 + m2 = k. Let n1 + m1 = k1

and n2 + m2 = k2. We describe points in R
k by their coordinates (x1, x2, y1, y2)

where x1 ∈ R
n1 , x2 ∈ R

n2 , y1 ∈ R
m1 , and y2 ∈ R

m2 . We denote by π(x1,x2), and
π(y1,y2), the projection mapping into the (x1, x2), and (y1, y2)-coordinate subspaces,
respectively.

Let W1 and W2 be two (k1, k2)-windows in M and χW1 , χW2 be their correspond-

ing parametrizations. For each (y0
1 , y0

2) ∈ [0, 1]m1 × [0, 1]m2 , the mapping χ
W n

1

(y0
1 ,y0

2)

defined by

(x1, x2) ∈ [0, 1]n1 × [0, 1]n2 → χ
W n

1

(y0
1 ,y0

2)
(x1, x2) := χW1(x1, x2, y

0
1 , y0

2)

is a homeomorphism, defining a (n1, n2)-window which we denote (Wn
1 )(y0

1 ,y0
2). The

exit set of this window is defined as

(Wn
1 )−

(y0
1 ,y0

2)
= χ

W n

1

(y0
1 ,y0

2)
(∂[0, 1]n1 × [0, 1]n2).

Similarly, for each (x0
1, x

0
2) ∈ [0, 1]n1 × [0, 1]n2 , the mapping χ

W m

1

(x0
1,x0

2)
defined by

(y1, y2) ∈ [0, 1]m1 × [0, 1]m2 → χ
W m

1

(x0
1,x0

2)
(y1, y2) := χW1(x0

1, x
0
2, y1, y2)

is a homeomorphism, defining a (m1,m2)-window which we denote (Wm
1 )(x0

1,x0
2)

.
The exit set of this window is defined as

(Wm
1 )−

(x0
1,x0

2)
= χ

W m

1

(x0
1,x0

2)
(∂[0, 1]m1 × [0, 1]m2).
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When we write these windows in local coordinates, we obtain

((Wn
1 )(y0

1 ,y0
2))χ : = (χ

W n

1

(y0
1 ,y0

2)
)−1((Wn

1 )(y0
1 ,y0

2)) = [0, 1]n1 × [0, 1]n2 ,

((Wn
1 )−

(y0
1 ,y0

2)
)χ : = (χ

W n

1

(y0
1 ,y0

2)
)−1((Wn

1 )−
(y0

1 ,y0
2)

) = ∂[0, 1]n1 × [0, 1]n2 ,

((Wm
1 )(x0

1,x0
2)

)χ : = (χ
W m

1

(x0
1,x0

2)
)−1((Wm

1 )(x0
1,x0

2)
) = [0, 1]m1 × [0, 1]m2 ,

((Wm
1 )−

(x0
1,x0

2)
)χ : = (χ

W m

1

(x0
1,x0

2)
)−1((Wm

1 )−
(x0

1,x0
2)

) = ∂[0, 1]m1 × [0, 1]m2 .

Thus, we can write

(W1)χ = ((Wn
1 )(y0

1 ,y0
2))χ × ((Wm

1 )(x0
1,x0

2)
)χ,(4.2)

(W−
1 )χ =

[
((Wn

1 )−
(y0

1 ,y0
2)

)χ × ((Wm
1 )(x0

1,x0
2)

)χ

]
(4.3)

∪
[
((Wn

1 )(y0
1 ,y0

2))χ × ((Wm
1 )−

(x0
1,x0

2)
)χ

]
,

(W+
1 )χ =

[
((Wn

1 )+
(y0

1 ,y0
2)

)χ × ((Wm
1 )(x0

1,x0
2)

)χ

]
(4.4)

∪
[
((Wn

1 )(y0
1 ,y0

2))χ × ((Wm
1 )+

(x0
1,x0

2)
)χ

]
,

for any (y0
1 , y0

2) ∈ [0, 1]m1 × [0, 1]m2 and (x0
1, x

0
2) ∈ [0, 1]n1 × [0, 1]n2 .

From this point of view, we can say that the window W1 is, in local coordinates,
the product of its components (Wn

1 )(y0
1 ,y0

2) and (Wm
1 )(x0

1,x0
2)

. Note that the exit set

of W1 is not, in local coordinates, the product of the exit sets of (Wn
1 )(y0

1 ,y0
2) and

(Wm
1 )(x0

1,x0
2)

.

Below, we will consider the (n1, n2)-window (Wn
2 )(0,0), corresponding to the

choice (y0
1 , y0

2) = (0, 0), and the (m1,m2)-window (Wm
2 )(0,0), corresponding to the

choice (x0
1, x

0
2) = (0, 0).

We now describe a situation in which the correct alignment of the windows
(Wn

1 )(y0
1 ,y0

2) and (Wn
2 )(0,0), and of the windows (Wm

1 )(x0
1,x0

2)
and (Wm

2 )(0,0), implies
the correct alignment of the windows W1 and W2.

Proposition 4.9. Let W1 and W2 be (k1, k2)-windows as above. Assume

(i) For each (y0
1 , y0

2) ∈ [0, 1]m1 × [0, 1]m2 , the (n1, n2)-window ((Wn
1 )(y0

1 ,y0
2))χ

is linearly correctly aligned with the (n1, n2)-window ((Wn
2 )(0,0))χ under

π(x1,x2) ◦ fχ,

(ii) For each (x0
1, x

0
2) ∈ [0, 1]n1 × [0, 1]n2 , the (m1,m2)-window ((Wm

1 )(x0
1,x0

2)
)χ

is linearly correctly aligned with the (m1,m2)-window ((Wm
2 )(0,0))c under

π(y1,y2) ◦ fχ.

Then W1 is correctly aligned with W2 under f .

See Figure 4.

Proof. We want to verify the conditions from Definition 4.2. We only consider the
general case n1,m1 > 0, the other possibilities are left as an exercise to the reader.
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(W1))χ (W2))χ

fχ((W1)χ)

(W2)χ

(W1
n)χ (W2

n)χ π(x1,x2)fχ((W1
n)χ)

(W2
n)χ

(W1
m)χ (W2

m)χ (W2
m)χ

π(y1,y2)fχ((W1
m)χ

Figure 4. Products of correctly aligned windows. The exit set of
each window is shown in darker color.

First, note that by (4.3) we have

(W−
1 )χ =


 ⋃

(y0
1 ,y0

2)∈[0,1]m2×[0,1]m2

((Wn
1 )−

(y0
1 ,y0

2)
)χ




⋃

 ⋃

(x0
1,x0

2)∈[0,1]n1×[0,1]n2

((Wm
1 )−

(x0
1,x0

2)
)χ


 .

The correct alignment of ((Wn
1 )(y0

1 ,y0
2))χ with ((Wn

2 )(0,0))χ under π(x1,x2) ◦ fχ, and

the correct alignment of ((Wm
1 )(x0

1,x0
2)

)χ with ((Wm
2 )(0,0))c under π(y1,y2)◦fχ, ensure

that fχ((W−
1 )χ)∩(W2)χ = ∅. A similar argument shows that fχ((W1)χ)∩(W+

2 )χ =
∅. ¤

Remark 4.10. The situation described in the above proposition is quite special. It
is however easier to verify provided that fχ preserves, for example, the ‘vertical
fibers’, that is, for any (y0

1 , y0
2) ∈ [0, 1]m1 × [0, 1]m2 ,

fχ(Rn1 × R
n2 × {y0

1} × {y0
2}) = R

n1 × R
n2 × {ŷ0

1} × {ŷ0
2}

for some (ŷ0
1 , ŷ0

2) ∈ [0, 1]m1 × [0, 1]m2 . In Section 6 we will apply Proposition 4.9 for
a mapping that satisfies this extra condition.

5. Behavior in a neighborhood of a normally hyperbolic manifold

In this section, we introduce a system of coordinates which allows us to analyze
comfortably the behavior of a system in a neighborhood of a normally hyperbolic
invariant manifold Λε. The ε-subscript will be omitted to simplify the notation.
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We will find a C1 system of coordinates in which the motion is a skew product
of the center directions and the hyperbolic directions. Such a system will simplify
significantly the construction of correctly aligned windows. Indeed, the original
construction of windows in [Eas81] was done for product systems. We will also show
how this system can be extended by propagating it by the map. Given a homoclinic
point, since the forward orbit and the backward orbit arrive to a neighborhood of
Λ, there are two ways of propagating the system of coordinates and we will need
to compare them.

Systems of coordinates linearizing the behavior around a normally hyperbolic
manifold have been considered in [Rob71, PS70, KP90].

5.1. Preliminaries and notation. Let Λ be a normally hyperbolic invariant man-
ifold for a map F . We will not assume it is compact, we will rather assume that
several functions that appear in the proof are uniformly continuous and that the
derivatives are uniformly bounded and uniformly continuous. We will say that such
maps are uniformly C1 or in C1

u. Indeed, in many standard presentations of the
theory of normally hyperbolic manifolds, given one compact manifold, one considers
extensions to the whole space enjoying the above uniformity properties.

By the implicit function theorem, we can identify a neighborhood of Λ with a
neighborhood of the zero section of the bundle (Es ⊕ Eu)Λ. For example, we can
write all points x in a neighborhood of Λ as x = expc(v) where c ∈ Λ, v ∈ Es

c ⊕Eu
c .

For typographical simplicity, we write the coordinates as (c, s, u) where s, u ∈ Es,u
c ,

and denote (s, u) by v.
We also write As(c) = DF (c)|Es

c
, Au(c) = DF (c)|Eu

c
and denote f = F |Λ.

We will use the notation c to denote a coordinate that takes values on Λ. This
coordinate c will be part of the description of a neighborhood of Λ. Even if the use
of the coordinate c ranging over a manifold Λ is natural, it will happen that we have
to use action or angle coordinates to, in turn, describe Λ. For example, we have
formulated assumption C2 in terms of the original action-angle coordinates and
assumption C5 in terms of some other action-angle variables. Some statements (e.g.
those related to the homoclinic excursions) are easier to state in the coordinates c
but others are easier to state in the action-angle coordinates.

In these coordinates, recalling the invariance of the stable and unstable sub-
spaces, the map F can be written as

(5.1) F (c, s, u) = (f(c) + Nc(c, s, u), As(c)s + Ns(c, s, u), Au(c)u + Nu(c, s, u)),

where Nσ(c, 0, 0) = 0, DsNσ(c, 0, 0) = 0, DuNσ(c, 0, 0) = 0 for σ = c, s, u.
Note that F is really a map on a neighborhood U of the zero section of the

Es ⊕ Eu bundle.
The next step is quite standard in Hartman-Grobman theorem. It is the obser-

vation that, since we are interested only on a neighborhood of the zero section, we
can assume that the map is defined in the whole bundle and that N is globally
uniformly C1 and the C1 norm is small. We just choose a bump function Ψ (a C∞

function identically 1 on [−1, 1] and identically 0 on R \ (−2, 2)) and we denote
Ψa(t) = Ψ(at).
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Given a map F as in (5.1), for large enough a we consider the function given in
coordinates by

F̃ (c, s, u) =
(
f(c) + Nc(c, s, u)Ψa(s2 + u2),

As(c)s + Ns(c, s, u)Ψa(s2 + u2),

Au(c)u + Nu(c, s, u)Ψa(s2 + u2)
)
.

(5.2)

The map F̃ in (5.2) is, strictly speaking, only defined in the domain of the map
N . On the other hand, since it is clear that N(c, s, u)Ψa(s2 + u2) = 0 for all s, u
outside of a ball, there is no problem in extending the map N by 0 outside of its
domain. In the sequel, we will suppress the ˜ from F̃ and use only F .

It is standard to show that, by choosing a large enough, we arrange that

sup
c,s,u

|N(c, s, u)Ψa(s2 + u2)|, sup
c,s,u

|DN(c, s, u)Ψa(s2 + u2)|

are as small as we wish.
For this extension, we can apply the unstable foliation theorem [Fen74, HPS77,

Pes04] and obtain that there there is a manifold Wu
Λ =

⋃
c∈Λ Wu

c , where Wu
Λ consists

the of points y such that dist(F−n(y),Λ) ≤ Cµ−n
− for n > 0. The manifolds Wu

c

consist of the points y such that dist(F−n(y), F−n(c)) ≤ Cµ−n
− for n > 0. Notice

that, in the theory of normally hyperbolic systems, it is customary to denote by
W s

c not just the points whose orbits approach the orbit of c but only those which
approach faster than an exponential rate.

The manifolds Wu
c are as smooth as the map F . The manifold Wu, however,

may be less differentiable, depending on the rates in (3.1). However, the conditions
of normal hyperbolicity imply that it is C1 and, in our case, because the map
restricted to the stable manifold is close to integrable, the manifold will be in any
Cn, n ∈ N, for sufficiently small ε.

Furthermore, we note that the manifolds Wu
c constitute a normally hyperbolic

lamination in the sense of [HPS77]. Therefore, we can associate stable manifolds to
them. We have that W s

W u

Λ
is the whole space. If we consider the leaves Wc ≡ W s

W u
c

it

constitutes a uniformly C1 foliation. Note that we have F (Wc) = Wf(c). Moreover,

Wc are uniformly C1-close to Es
c ⊕ Eu

c .
We can take coordinates s, u on each of the manifolds Wc, and we obtain a C1

u

system of coordinates – which we denote by c, s̃, ũ – in which

F (c, s̃, ũ) = (f(c), As(c)s̃ + Ns(c, s̃, ũ), Au(c)ũ + Nu(c, s̃, ũ))

with Ns, Nu also globally small.
Using the exponential mapping, we can consider c, s̃, ũ as a coordinate system

from a neighborhood of Λ to a neighborhood of the zero section. In this coordinate
system, the map has the same expression as above.

Note that even if the stable and unstable manifolds are unique once we consider
the extension to the whole bundle, the construction of the extension involves several
choices – including notably the cutoff function. In general, the constructed foliations
depend on the cutoffs considered. Examples when the manifold Λ is a fixed point
are well known. See, for example [dlLW95]. Hence, the system of coordinates thus
constructed is non-unique.
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5.2. Extending the decoupling coordinate system across a homoclinic in-

tersection. If we have a coordinate system that decouples the center behavior in
a neighborhood U of Λ, it is possible to extend it to a neighborhood of Wu

Λ and to
a neighborhood of W s

Λ, by propagating the system of coordinates either forward in
time or backwards in time.

When p ∈ Wu
Λ ∩W s

Λ, in a neighborhood of p there are several possible extensions.
These extensions may not agree since the propagation of the system of coordinates
in U is done through different paths. For the purpose of constructing correctly
aligned windows, it will be crucial for us to obtain estimates on the change of
variables between the two extensions considered.

We will see that, when the intersection of Wu
Λ and W s

Λ is transverse at p, the two
systems of coordinates are related by a C1 change of variables. The C1 properties
of this change of variables will depend only on a few parameters related to the
geometry of the intersection. For the purposes of controlling our constructions as
ε tends to zero, we note that the C1 properties of the change of variables depend
on the angle of the intersection. In particular, in the geodesic flow model, they will
remain bounded as ε tends to zero. In the Large gap model, the angle of intersection
between TpW

s
Λ and TpW

u
Λ tends to zero linearly with ε.

We now make precise the construction. Given p ∈ Wu
Λ ∩W s

Λ we can find numbers
N+, N− ∈ N such that

(5.3) FN+(p) ∈ U, F−N−(p) ∈ U.

We will assume that N± are chosen once and for all. We will assume without loss
of generality that they are the smallest numbers satisfying (5.3). Notice that, by
assumption C1, the numbers N± are constant for a range of ε.

If the intersection is transverse at p, the intersection is a locally unique manifold.
There is a neighborhood V of p in Wu

Λ∩W s
Λ for which FN+(V ) ⊂ U , F−N−(V ) ⊂ U .

We have p ∈ Wu
c− ∩ W s

c+
for some unique c−, c+. Indeed, given any other point

q ∈ V , we can find unique points c−(q), c+(q). The mapping that assigns to the
point c−(q) the point c+(q) is called the scattering map associated to V .

We only need to construct our system of coordinates in U and in neighborhoods
of {F i(q)|i = −N−, . . . N+, q ∈ V } that are sufficiently small in the stable and
unstable directions. All the orbits that we will consider lie there and the windows
will be constructed in these neighborhoods. We will construct the coordinates and
make sure that several of the quantities that measure the change of coordinates are
uniform in N±.

We consider a neighborhood VN−
of F−N−(p) which is sufficiently small in the

stable and unstable directions, such that V −i
N−

≡ F i(VN−
) are mutually disjoint for

i = 0, . . . , N− (later on, we will impose some other conditions).
We can define a system of coordinates on V −i

N−
by setting P−

i = Mi ◦ P ◦ F−i

where Mi(c, s, u) = (c, λi
∗s, µ

i
∗u), and λ∗ = (λ+ · λ−)1/2 and µ∗ = (µ+ · µ−)1/2.

Clearly, in these coordinates, we see that the contraction rate along the s direc-
tions is λ∗ which satisfies the bounds λ− ≤ λ∗ ≤ λ+. Similarly the expansion rate
in the u variables is just µ∗ which satisfies µ− ≤ µ∗ ≤ µ+. We also note that in
this system of coordinates, the action of F is just Mi. That is, P−

i+1 ◦F ◦P−
i = Mi.

We therefore obtain a system of coordinates P−
N−

defined on a neighborhood V0

of the homoclinic intersection.
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Proceeding similarly, we can produce another coordinate system P+
i defined on

neighborhoods of F i(p), i = 0, . . . , N+.
The only place where these two systems of coordinates are defined simultaneously

is a neighborhood of p.
We need to compare these two systems of coordinates and study the properties

of the change of variables between them. We use the notation c±, s±, u± to denote
the coordinates in the systems P± obtained as before.

We first observe that, since the c coordinates are propagated without change
through the steps, the c coordinates in P− and the c coordinates in P+ are such
that the scattering map expressed in these new coordinates P+ ◦S ◦(P−)−1 is close
to the identity. The distance to the identity is small if the neighborhood U is small.

We also observe that in a sufficiently small neighborhood of p, the sets that
correspond to keeping the c, s coordinates fixed in the P− coordinate systems and
letting the u coordinates vary are C1-close to a segment of Wu

c−. Similarly, the sets
that correspond to keeping the c, u constant are C1-close to a segment of W s

c+
.

The transversality of the intersection around p tells us that in a neighborhood of
p, we can use as coordinates c+, s+, u− or c−, s+, u− besides, of course, using the
coordinate systems c+, u+, s+ and c−, u−, s−.

For the purpose of estimating later the time of diffusion, we note that in the
“Large Gap Model” – see Section 2.2 – the angle between TpW

s
Λ and TpW

u
Λ is O(ε)

(condition C1b). On the other hand in the “Geodesic Flow Model”, this angle
remains bounded independently of ε (condition C1a). In both the “Large Gap
Model” and in the “Geodesic Flow Model” the properties of the coordinate systems
c+, u+, s+ and c−, u−, s− remain uniform as ε approaches zero. Note that in both
cases, the properties of these coordinate systems depend only on the properties of
the change of variables in U – which has a limit as ε tends to zero – and on the
finite number of iterates N±.

Similarly, we note that the changes of variables in the c directions remain
bounded since the scattering maps have a limit as ε goes to zero in both cases.
In the “Geodesic Flow Model” the scattering map tends to a twist map. In the
“Large Gap Model” the scattering map tends to the identity.

As we will see in Section 5, the fact that we have to change coordinates systems
will lead to the need of introducing some factors when comparing the lengths of the
coordinate intervals used to construct correctly aligned windows. In the case of the
“Large Gap Model” these factors will become important since they will blow up as
ε tends to zero. In the “Geodesic Flow Model” these factors will remain bounded.

We also note that in some of the constructions, we will not use the coordinates
c ranging over the manifold Λ but we will need in turn to describe Λ using action
and angle coordinates. So that in this case, the expression of coordinate system
will involve the composition with the coordinate maps that give us the manifold
Λ in terms of the action-angle variables. In our applications we have two types of
action-angle variables. One is the standard type of action-angle variables, and the
other is the action angle variables that appear in the secondary tori in the large
gap model. We note that, outside the singularities of the average energy – which
only happen at the resonances – the two variables differ by O(ε). Hence, we can
find intervals of size O(1) in the angle variables where the secondary coordinates
are close to the original ones.
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6. Construction of windows along a transition chain

In this section, ε > 0 is fixed. Most of the ε-subscripts will be omitted to simplify
the notation.

We describe a construction of correctly aligned windows near the normal hyper-
bolic manifold, by following a chain of heteroclinic connections to almost invariant
leaves forward in time. (A similar construction of correctly aligned windows can be
done by following a chain of of heteroclinic connections to almost invariant leaves
backwards in time; the details of such a construction will be omitted.)

We first describe a procedure for construction of correctly aligned windows along
a short chain consisting of three almost invariant leaves and their stable and unsta-
ble manifolds, for which the first two leaves are linked by a heteroclinic connection
and the last two leaves are linked by a different heteroclinic connection. Then we
describe how the windows constructed along two adjacent short chains as above can
be put together into a longer sequence of correctly aligned windows. The conclusion
of these two procedures will be that, using this algorithm repeatedly, a sequence of
correctly aligned windows associated to any given chain of heteroclinic connections
to almost invariant leaves can be produced.

We give the outline this construction. Assume that Lhi−1 , Lhi , and Lhi+1 are al-
most invariant leaves in Λ, and Wu(Lhi−1) t W s(Lhi) and Wu(Lhi) t W s(Lhi+1).
Let qi ∈ Γ be an intersection point of Wu(Lhi−1) with W s(Lhi). There exist
p−i−1 ∈ Lhi−1 and p+

i ∈ Lhi such that qi ∈ Wu(p−i−1) ∩ W s(p+
i ). Suppose that we

want to obtain a pair of windows W ′
i−1 and Wi near qi, such that W ′

i−1 is correctly
aligned with Wi under the identity mapping. There exist stable, unstable, angle,
and radius local coordinates near Lhi−1 that can be propagated along W u(Lhi−1).
There also exist stable, unstable, angle, and action local coordinates near Lhi that
can be propagated along W s(Lhi). The unstable manifold W u(Lhi−1) corresponds
to keeping the stable and radius coordinates fixed, while varying the unstable and
angle coordinates. The stable manifold W s(Lhi) corresponds to keeping the corre-
sponding unstable and radius coordinates fixed, while varying the stable and angle
coordinates. The transversality of the intersection of W u(Lhi−1) with W s(Lhi)
at qi means that the unstable and angle direction corresponding to W u(Lhi−1)
are transverse to the stable and angle directions corresponding to W s(Lhi). We
will construct W ′

i−1 by fattening up W u(Lhi−1) near qi, and Wi by fattening up

W s(Lhi). The exit sets are naturally defined by the dynamics: the exit set W ′
i−1

is in the unstable and angle direction corresponding to W u(Lhi−1), while the exit
set Wi is in the stable and radius direction corresponding to W u(Lhi−1). Since the
two local coordinate systems may not agree, we will need to make this construction
more carefully, as it will be detailed in Subsection 6.2. See Figure 5. Then we will
push Wi forward in time along W s(Lhi) and align its image with a window W̃i

constructed about Lhi . The exit set of W̃i will still be in the unstable and radius
directions. In order to get in a place from where it can escape along W s(Lhi), we

need to move W̃i along Lhi . Due to the twist condition on the inner dynamics, W̃i

will shear in the angle direction. We construct a new window Ŵi about Lhi , such
that the image of W̃i stretches across Ŵi. Therefore, we need to choose the exit
set of Ŵi in the unstable and angle directions. Then we will push Ŵi forward in
time along W u(Lhi), and construct a new window W ′

i near qi+1, such that Ŵi is
correctly aligned with W ′

i . The exit set of W ′
i in the unstable and angle directions.
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Figure 5. The transversality-torsion phenomenon.

The details of this construction are given in Subsection 6.1. Note that the directions
of the exit set of W ′

i agree with those of W ′
i−1. Therefore, we will be able to repeat

this construction and extend the sequence of correctly aligned windows along any
finite transition chain.

Remark 6.1. In the above construction, the reversal of roles of the radius and angle
directions in terms of which one acts as an exit direction and which one acts as
an entry direction is a topological version of the transversality-torsion phenomenon
(compare with [Cre03]).

Consider a local coordinate system (s, u, a, r) near a leaf Lhi . When we propagate
this local coordinate along the unstable manifold and stable manifolds of Lhi , we
obtain the local coordinate systems (s−, u−, a−, r−) (s+, u+, a+, r+), respectively.
The windows involved in the construction outlined above are defined in terms in
terms of these local coordinates. We introduce some notation conventions. Assume
that we want to construct a window relative to the (s, u, a, r) coordinate system.
The window will be regarded as a product of two windows, one corresponding to the
hyperbolic directions, and the other corresponding to the center directions. Each
of these two windows will be a product of two rectangles. Formally, each window
will be described as a product of the form

W = [S × U ] × [A × R],

with S = [l1, r1]
n being an n-dimensional rectangle in the s-coordinate, U = [l2, r2]

n

being an n-dimensional rectangle in the u-coordinate, A = [l3, r3] being a segment in
the a-coordinate, and R = [l4, r4] being a segment in the r-coordinates. In general,
by the ‘size’ of a rectangle component [li, ri]

pi , where i = 1, ..., 4 and pi ∈ {n, 1},
we will mean the length of the segment [li, ri]. By the ‘center’ of a window W we
will mean the point of (s, u, a, r)-coordinates equal to

(
(l1 + r1)

2
, . . . ,

(l1 + r1)

2
,
(l2 + r2)

2
, . . . ,

(l2 + r2)

2
,
(l3 + r3)

2
,
(l4 + r4)

2

)
.
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Since Eu and Es are invariant under F , and since the coordinate system was
chosen so that s and u are mutually orthogonal and also orthogonal to the a and
r-coordinates, in order to verify correctly alignment of windows, we only need to
verify the correct alignment of the components and apply Proposition 4.9 (and also
Remark 4.10). We will do so without further explicit mention.

Similar conventions will hold in the case of the (s±, u±, a±, r±) local coordinates,
or even in the case when we will mix coordinate systems, such as in Subsection 6.2.

6.1. Construction of correctly aligned windows along a short chain. We
construct correctly aligned windows

• Wi about qi,

• W̃i about Lhi ,

• Ŵi about Lhi ,
• W ′

i about qi+1,

such that

• Wi is correctly aligned with W̃i under FNi ,

• W̃i is correctly aligned with Ŵi under FKi ,

• Ŵi is correctly aligned with W ′
i under FMi .

Step 1. Consider a coordinate system (s, u, a, r) near Lhi . Consider the coordi-
nate system (s−, u−, a−, r−) near qi, obtained by propagating (s, u, a, r) along the
stable manifold of Lhi . Consider the coordinate system (s+, u+, a+, r+) near qi+1,
obtained by propagating (s, u, a, r) along the unstable manifold of Lhi .

We define a window Wi near qi in terms of (a−, r−, s−, u−), by

Wi = [Si × Ui] × [Ai × Ri] ,

where Si, Ui, Ai, Ri denote closed rectangles in coordinates s−, u−, a−, r−, respec-
tively. We choose the exit set of the hyperbolic rectangle [Si × Ui] in the unstable
direction, and the exit set of the rectangle [Ai × Ri] parallel to the center in the
radius direction. In other words, we let

[Ai × Ri]
−

= Ai × ∂Ri,

[Si × Ui]
−

= Si × ∂Ui.

The exit set of Wi is given by the definition of the product of windows, as defined
in Section 4. Assume that the sizes of the rectangles Si, Ui, Ai, Ri are αi, βi, γi

and δi respectively. There are no extra conditions on Wi provided that this is the
first window in the long sequence of correctly aligned windows that we construct.
If this is not the first window, in other words if qi is the arrival point of a short
chain consisting of three invariant leaves and their heteroclinic connections, then
on Wi we impose conditions analogue to those specified in Subsection 6.2.

Let ai be the distance between the homoclinic point qi and p+
i measured along

the stable manifold of Lhi .
We take a forward iterate FNi(Wi) of Wi. Note that the coordinate system

(s−, u−, a−, r−) are transformed by FNi into the coordinate system (s, u, a, r) near
Li. The distance between the center FNi(qi) of FNi(Wi) and fNi(p+

i ), measured

along the stable manifold, is in between aiλ
Ni

− and aiλ
Ni

+ . The size of the component

of FNi(Wi) in the s-direction is in between αiλ
Ni

− and αiλ
Ni

+ . The size of the

component of FNi(Wi) in the u-direction is in between βiµ
Ni

− and βiµ
Ni

+ . Under this
iteration, the twist condition C2 determines a shearing in the positive a-direction of
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Figure 6. Step 1.

order TδiNi. Condition C3 says that the leaves of the foliation are almost invariant
under F within a margin of order ε2. This implies that the sizes of the components
of FNi(Wi) in the a and r-directions are of order γi ± ε2Ni and TδiNi ± ε2Ni,
respectively.

We define a window W̃i centered at fNi(p+
i ) relative to the coordinates (s, u, a, r)

near Li also as a product of four rectangles, the first two corresponding to the
hyperbolic directions, and the others corresponding to the center directions:

W̃i =
[
S̃i × Ũi

]
×

[
Ãi × R̃i

]
.

The exit sets of the component rectangles are defined by
[
S̃i × Ũi

]−
= S̃i × ∂Ũi,

[
Ãi × R̃i

]−
= Ãi × ∂R̃i,

while the exit set of W̃i is given by the definition of the product of windows from

Section 4. We choose the rectangles such that Wi is correctly aligned with W̃i under

FNi . Assume that the sizes of the rectangles S̃i, Ũi, Ãi, R̃i are α̃i, β̃i, γ̃i and δ̃i,
respectively. To satisfy the correct alignment condition, we require the following
conditions:

α̃i > aiλ
Ni

+ + αiλ
Ni

+ ,(6.1)

β̃i < βiµ
Ni

− ,(6.2)

γ̃i > γi + ε2Ni + TδiNi,(6.3)

δ̃i < δi − ε2Ni.(6.4)

See Figure 6.

The outcome of Step 1 is the pair of windows Wi near qi and W̃i near fNi(p+
i ),

such that Wi is correctly aligned with W̃i under FNi .

Step 2. We take a forward iterate FKi(W̃i) of W̃i. The center fNi(p+
i ) of the

window W̃i is displaced to fNi+Ki(p+
i ). The component of FKi(W̃i) in the s-

direction is of a size in between α̃iλ
Ki

− and α̃iλ
Ki

+ . The component of FKi(W̃i) in

the u-direction is of a size in between β̃iµ
Ki

− and β̃iµ
Ki

+ . During this iteration, the
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Figure 7. Step 2.

twist condition C2 determines a shearing in the positive a-direction of order T δ̃Ki.
In addition to the shearing, due to condition C3, the a and r coordinates of point
at each iteration change by an amount between −ε2 and ε2. Thus, the components

of FKi(W̃i) in the a and r-directions are of sizes of order γ̃i + TδiKi ± ε2Ki and

δ̃i ± ε2Ki, and , respectively.

We construct a window Ŵi centered at fNi+Ki(p+
i ), such that W̃i is correctly

aligned with Ŵi under fKi . The window Ŵi is defined in terms of the coordinate
system (s, u, a, r) near Li as a product of two windows, one corresponding to the
hyperbolic directions, and the other corresponding to the center directions:

Ŵi =
[
Ŝi × Ûi

]
×

[
Âi × R̂i

]
,

with
[
Ŝi × Ûi

]−
= Ŝi × ∂Ûi,

[
Âi × R̂i

]−
= ∂Âi × R̂i,

and Ŵ−
i resulting from the definition of the product of windows. Note that the

exit set of the center part of Ŵi is in the angle direction, due to the shearing of

FKi(W̃i) across Ŵi. The sizes of the rectangles Ŝi, Ûi, Âi and R̂i are α̂i, β̂i, γ̂i and

δ̂i, respectively. In order to ensure correct alignment, we choose these numbers so
that they satisfy the following inequalities:

α̂i > α̃iλ
Ki

+ ,(6.5)

β̂i < β̃iµ
Ki

− ,(6.6)

γ̂i < T δ̃iKi − γ̃i − ε2Ki(6.7)

δ̂i > δ̃i + ε2Ki.(6.8)

See Figure 7.
Step 3. Let qi+1 ∈ Γ be an intersection point of Wu(Lhi) with W s(Lhi+1),

p−i ∈ Lhi and p+
i+1 ∈ Lhi such that qi+1 ∈ Wu(p−i ) ∩ W s(p+

i+1), and let a′
i be the

distance between qi+1 and p−i measured along the unstable manifold. We define a
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windows W ′
i near qi+1, relative to the coordinate system (s+, u+, a+, r+) by

W ′
i = [S′

i × U ′
i ] × [A′

i × R′
i] ,

[S′
i × U ′

i ]
−

= S′
i × ∂U ′

i ,

[A′
i × R′

i]
−

= ∂A′
i × R′

i,

and the sizes of the rectangles S′
i, U ′

i , A′
i, R′

i are α′
i, β′

i, γ′
i and δ′i, respectively.

We take a negative iterate F−Mi(W ′
i ) of W ′

i . Note that the coordinate system
(s+, u+, a+, r+) are transformed by F−Mi into the coordinate system (s, u, a, r)
near Li. The distance between the center F−Mi(qi+1) of F−Mi(W ′

i ) and f−Mi(p−i ),

measured along the unstable manifold, is in between a′
iµ

−Mi

+ and a′
iµ

−Mi

− . The size

of the component of F−Mi(W ′
i ) in the s-direction is of size in between α′

iλ
Mi

+ and

α′
iλ

−Mi

− . The size of the component of F−Mi(W ′
i ) in the u-direction is of size in

between β′
iµ

−Mi

+ and β′
iµ

−Mi

− . The size of the components of F−Mi(W ′
i ) in the a and

r-directions are of order γ′
i±ε2Mi and δ′i±ε2Mi, respectively. During this iteration,

the twist condition C2 determines a shearing in the negative a-direction of order
Tδ′iMi. In addition to the shearing, due to condition C3, the a and r coordinates
of point change by an amount between −ε2Mi and ε2Mi. Thus, the components

of FKi(W̃i) in the a and r-directions are of sizes of order γ′
i + Tδ′iMi ± ε2Mi and

δ′i ± ε2Mi, respectively. We would like to ensure the correct alignment of Ŵi with
W ′

i under the identity mapping. Hence we require

α′
iλ

−Mi

+ > α̂i,(6.9)

a′
iµ

−Mi

− + β′
iµ

−Mi

− < β̂i,(6.10)

Tδ′iMi + γ′
i + ε2Mi < γ̂i,(6.11)

δ′i − ε2Mi > δ̂i.(6.12)

See Figure 8.
This ends the description of the three-step procedure.

6.2. Gluing short sequences of correctly aligned windows near the ho-

moclinic points. Suppose that we have constructed a short sequence of correctly

aligned windows Wi, W̃i, Ŵi, and W ′
i as in the previous subsection. The last win-

dow W ′
i is centered about the homoclinic point qi+1 ∈ W u(Lhi+1)∩W s(Lhi+2). We

know how to continue this short sequence of correctly aligned windows by another

sequence Wi+1, W̃i+1, Ŵi+1, and W ′
i+1 provided that we correctly align W ′

i to Wi+1.
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Figure 9. Construction of the window W̄i.

The problem we have is that the local coordinate system (s+, u+, a+, r+), obtained
by propagating the local coordinates (s, u, a, r) near Lhi forward in time along
W u(Lhi), may not agree near qi+1 with the coordinate system (s−, u−, a−, r−),
obtained by propagating the local coordinates (s, u, a, r) near Lhi+1 backwards in
time along W s(Lhi+1). Also note that the local coordinates near Lhi and the local
coordinates near Lhi+1 may be different (although we have used the same notation
for them).

We define a ‘mixed coordinate system’ (s−, u+, a+, a−) near qi+1. In these co-
ordinates W u(Lhi) is given by keeping s− and a− equal to 0, and varying u+ and
a+, and W s(Lhi+1) is given by keeping u+ and a+ equal to 0, and varying s− and
a−. As described in Section 5, the variables a+ and a− differ by O(ε).

We define a new window W̄i near qi+1 such that Wi is correctly aligned with
W̄i under the identity mapping, and W̄i is correctly aligned with W ′

i+1 under the

identity mapping. The window W̄i is defined as a product of four rectangles. We
let

W̄i =
[
S̄i × Ūi

]
×

[
Āi × Ā′

i

]
,

where S̄i, Ūi, Āi, Ā′
i denote closed rectangles in coordinates s−, u+, a+, a−, re-

spectively. We let
[
S̄i × Ūi

]−
= S̄i × ∂Ūi,

[
Āi × Ā′

i

]−
= ∂Āi × Ā′

i.

The exit set of W̄i is given by the definition of the product of windows, as defined
in Section 4. Assume that the sizes of the rectangles S̄i, Ūi, Āi, Ā′

i are ᾱi, β̄i, γ̄i and
δ̄i respectively. To ensure correct alignment, we need to compare windows that are
defined in different coordinate systems. As indicated in Subsection 5.2, the lengths
of the coordinate intervals used in the construction of the windows change by some
factor C(ε) when we change the coordinates one way, and by some factor of C(ε)−1

when we change the coordinates the other way.
Therefore, we require

ᾱi > α′
i,(6.13)

β̄i < C(ε)β′
i,(6.14)

γ̄i < C(ε)γ′
i,(6.15)

δ̄i > δ′i.(6.16)



M. Gidea, R. de la Llave 31

See Figure 9.
We define a new window Wi+1 near qi+1, relative to the (s−, u−, a−, r−)-coordinates,

such that W̄i is correctly aligned with Wi+1 under the identity mapping. We let

Wi+1 = [Si+1 × Ui+1] × [Ai+1 × Ri+1] ,

[Si+1 × Ui+1]
−

= Si+1 × ∂Ui+1,

[Ai+1 × Ri+1]
−

= Ai+1 × ∂Ri+1.

The exit set of Wi+1 is given by the definition of the product of windows, as defined
in Section 4. Assume that the sizes of the rectangles Si+1, Ui+1, Ai+1, Ri+1 are
αi+1, βi+1, γi+1 and δi+1 respectively. As before, the windows W̄i and Wi+1 are
defined in different coordinate systems. Therefore, we require

αi+1 > C(ε)−1ᾱi,(6.17)

βi+1 < β̄i,(6.18)

γi+1 > C(ε)−1δ̄i,(6.19)

δi+1 < γ̄i.(6.20)

See Figure 9.
This construction ensures the correct alignment of W ′

i with W̄i under the identity
mapping, and of W̄i with Wi+1 under the identity mapping. Combining (6.17),
(6.14), (6.15), (6.16) with (6.13), (6.18), (6.19), (6.20) we obtain the conditions

αi+1 > C(ε)−1α′
i,(6.21)

βi+1 < C(ε)β′
i,(6.22)

γi+1 > C(ε)−1δ′i,(6.23)

δi+1 < C(ε)γ′
i.(6.24)

In this way, we can continue the short sequence of correctly aligned windows

Wi, W̃i, Ŵi,W
′
i with the short sequence of correctly aligned windows

Wi+1, W̃i+1, Ŵi+1,W
′
i+1, via the intermediary sequence of correctly aligned win-

dows W ′
i , W̄i,Wi+1.

6.3. Construction of long sequences of correctly aligned windows. Now
we will impose more conditions on the sizes of the windows and discuss the aspect

ratio of the windows. We choose α̃i, α̂i, α′
i, β̃i, β̂i, β′

i of order 1 (independent of
ε). Let η > 0 be as in Theorem 3.1. Since we want to produce trajectories that
visit η-neighborhoods of leaves in some prescribed fashion, we choose α̃i, α̂i < η

and β̃i, β̂i < η. By (6.21) and (6.22), αi is of order 1/ε and βi is of order ε.

We choose γi, γ̃i, γ̂i, γ′
i of order 1, and δi, δ̃i, δ̂i, δ′i of order ε. Due to (6.23)

and (6.24), γi can be chosen of order 1 provided δ′i−1 is of order ε, and δi can be
chosen of order ε provided that γ′

i−1 is of order 1. We also require δi, δi+1 < η.
The condition on δi, δi+1 to be of order ε is imposed since we want the radius

components of the windows W̃i and Ŵi to be of size of order ε, in order to ensure

that W̃i ∩ Lhi±1 = ∅ and Ŵi ∩ Lhi±1 = ∅ (recall also (3.5)).
We want to show that these choices can be made consistently provided Ni,Ki

and Mi are chosen sufficiently large.
By (6.1) and (6.2), we should require that Ni is sufficiently large, of order ln(1/ε),

so that (ai + αi)λ
Ni

+ and βiµ
Ni

− are of order 1. Due to (6.4) and (6.3), γ̃i can be
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chosen of order 1, provided γi is of order 1, and δ̃i can be chosen of order ε, provided
δi is of order ε.

Since γ̃i and γ̂i are of order 1, the ergodization time necessary to obtain the center

of the window W̃i sufficiently close to the center of the window Ŵi is negligible.
Note that in order to satisfy (6.7), in order to be able to choose both γ̃i and γ̂i of
order 1, we need to choose Ki sufficiently large and of order 1/ε. Then, by (6.8)

we can choose δ̃i and δ̂i of order ε. Here note that the exponent 2 of ε in (6.8)
(and so in condition C3) is optimal, in the sense that any lower exponent will make

impossible to choose δ̂i of order ε. By (6.5) and (6.6), α̂i and α̂i can be chosen of
order 1.

By (6.9) and (6.10), we should require that Mi is sufficiently large, but of order

1, so that (a′
i + β′

i)µ
−Mi

− and α′
iµ

−Mi

− are of order 1. Note that the inequalities
(6.11), and (6.12) allow us to choose γ′

i of order 1 provided γ̂i is of order 1, and δ′i
of order ε provided δ̂i is of order ε.

In conclusion, Ni = O(ln(1/ε)), Ki = O(1/ε) and Mi = O(1). Thus, in order
to travel the distance of order ε in the action direction between Lhi and Lhi+1 , an
orbit shadowing the above windows would spend a time Ni + Ki + Mi = O(1/ε).

7. Conclusion of the proof of Theorem 3.1

Proof of Theorem 3.1. Fix ε ∈ (−ε∗, ε∗) with ε 6= 0, and

h0 = h−, h1, . . . , hn−1, hn = h+.

By (3.5), for each hi there exist k−
i , k+

i > 0 satisfying (3.6). One can assume that
hi+k−

i < hi+1 < hi+k+
i for all i = 0, . . . , n−1. Otherwise, one can always partition

all intervals [hi, hi+1] into subintervals of length at least c−1ε, whose endpoints are
regular values, and apply Theorem 3.1 for the resulting sequence of regular values.

We start with the short heteroclinic chain consisting of W u(Lh0) t W s(Lh1)
and W u(Lh1) t W s(Lh2). Using the algorithm described above, we construct the

windows Ŵ0 about Lh0 , W ′
0, W̄0 and W1 about q1 in W u(Lh0) t W s(Lh1), W̃1

about Lh1 , Ŵ 1 about Lh1 , W ′
1, W̄1 and W2 about q2 in W u(Lh2) t W s(Lhi), such

that such that Ŵ0 is correctly aligned with W ′
0 under Fm0 , W ′

0 is correctly aligned
with W̄0 under the identity mapping, W̄0 is correctly aligned with W1 under the

identity map, W1 is correctly aligned with W̃1 under FN1 , W̃1 is correctly aligned

with Ŵ1 under FK1 , Ŵ1 is correctly aligned with W ′
1 under FM1 , W ′

1 is correctly
aligned with W̄1 under the identity mapping, and W̄1 is correctly aligned with W2

under the identity mapping. We continue this construction until we reach the leaf
Lhn .

By Theorem 4.6, there exists an orbit zi, i = 0, . . . , n with zi ∈ Ŵi, such that
Fni(zi) = zi+1 for all i = 0, . . . , n− 1, where ni = Mi + Ni+1 + Ki+1. By choosing

the sizes α̂i, β̂i, γ̂i and δ̂i sufficiently small, we can ensure that the diameter of Ŵi

is less than the prescribed η > 0. Hence d(zi,L
hi) < η for all i. The same theorem

says that there exist closed orbits that visit η-neighborhoods of the prescribed
sequence of almost invariant leaves. ¤
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8. Remarks on differentiability conditions and on diffusion time

The windowing argument requires only C0-differentiability. The normal hyper-
bolicity conditions require the diffeomorphisms Fε to be C1-smooth. We also need
the foliation given by the level sets of Hε to be C1-smooth.

For the model discussed in Subsection 2.1, it is sufficient that the metric and the
potential to be Cr smooth with r ≥ 9. This order of differentiability is assumed in
order to perform averaging theory in order to reduce the perturbation (see Theorem
4.6 and Lemma 4.8 in [DdlLS00]). By comparison, the geometric perturbation
theory argument used in [DdlLS00] to prove the existence of orbits whose energy
grow unbounded, which makes use of the KAM theorem, requires the metric and
the potential V to be differentiable of class Cr, with r ≥ 15.

For the model discussed in Subsection 2.2, in order to prove the existence of
diffusing orbits through the above windowing method, it is sufficient that the po-
tential V and the perturbation h are differentiable of class Cr, with r ≥ 6 (see
Proposition 28 and Theorem 35 in [DdlLS03b]). This order of differentiability is
assumed in order to be able to produce almost invariant tori through the averaging
method (see Theorem in [DdlLS03b]). By comparison, the obstruction argument
used in [DdlLS03b] to prove the existence of diffusion orbits, which makes use of the
KAM theorem, requires the potential V and the perturbation h to be differentiable
of class Cr, with r ≥ 44.

Now we would like to estimate the diffusion time. As noted in Section 6, the time
required for an orbit to travel from a η-neighborhood of Lhi to a η-neighborhood
of Lhi+1 , is of the order 1/ε. Since Lhi and Lhi+1 are order ε apart in the action
direction, it results that the time required for an orbit to travel a distance of
order 1 in the action direction, is of order 1/ε2. This estimate may not be sharp.
There are several non-optimal choices we made in the construction of the correctly
aligned windows, in to avoid dealing with estimates on the ergodization time. The
optimization of the diffusion time will make the subject of future investigations.
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