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Abstract. We review recent results of two of the authors concerning the

quantization of Hall currents, in particular a general quantization formula for
the difference of edge Hall conductances in semi-infinite samples with and

without a confining wall. We then study the case where the Fermi energy is

located in a region of localized states and discuss new regularizations. We also
sketch the proof of localization for 2D-models with constant magnetic field

with random potential located in a half-plane in two different situations: 1)

with a zero potential in the other half plane and for energies away from the
Landau levels and 2) with a confining potential in the other half plane and on

an interval of energies that covers an arbitrary number of Landau levels.

1. The edge conductance and general invariance principles

Quickly after the discovery of the integer quantum Hall effect (IQHE) by von
Klitzing et. al. [vK1], then Halperin [Ha] put the accent on the crucial role of
quantum currents flowing at the edges of the (finite) sample. Such edge cur-
rents, carried by edge states, should be quantized, and the quantization should
agree with the one of the transverse (Hall) conductance. While edge currents
have been widely studied in the physics literature since the early eighties, e.g.
[MDS, AS, FGK, ZMH, CFGP] (see also [PG, vK2] and references therein), it is
only recently that a mathematical understanding of the existence of such edge cur-
rents has been obtained [DBP, FGW, EJK1, EJK2, CHS1, FM, CHS2]. The study
of the quantization of the edge Hall conductance at a mathematical level is even
more recent [SBKR, KRSB, KSB, EG, CG, EGS].

We consider the simplest model for quantum devices exhibiting the IQHE. This
consists of an electron confined to the 2-dimensional plane considered as the union
of two complementary semi-infinite regions supporting potentials V1 and V2, re-
spectively, and under the influence of a constant magnetic field B orthogonal to the
sample. In the absence of potentials V1 and V2, the free electron is described by
the free Landau Hamiltonian HL = p2

x + (py −Bx)2. The spectrum of HL consists
of the well-known Landau levels BN = (2N − 1)B, N ≥ 1, with the convention
B0 = −∞. To introduce the half-plane potentials, we let 1− and 1+ be the char-
acteristic functions of, respectively, {x ≤ 0} and {x > 0}. Then, if V1, V2 are two
potentials bounded from below and in the Kato class [CFKS], the Hamiltonian of
the system is given, in suitable units and Landau gauge, by

H(V1, V2) := HL + V11− + V21+ , (1.1)

as a self-adjoint operator acting on L2(R2,dxdy), where HL = H(0, 0) in this
notation. For technical reasons it is convenient to assume that V1, respectively V2,
does not grow faster than polynomially as x→ −∞, respectively, as x→ +∞.
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We shall say that V1 is a left confining potential with respect to the interval
I = [a, b] ⊂ R if, in addition to the previous conditions, the following holds: There
exists R > 0, s.t.

∀x ≤ −R, ∀y ∈ R, V1(x, y) > b. (1.2)
The “hard wall” case, i.e. V1 = +∞ and H = HL + V2 acting on L2(R+×R,dxdy)
with Dirichlet boundary conditions, can be considered as well.

As typical examples for H(V1, V2) one may think of the right potential V2 as an
impurity potential and the left potential V1 as either a wall, confining the electron
to the right half-plane and generating an edge current near x = 0, or as the zero
potential. In this latter case, the issue is to determine whether or not V2 is strong
enough to create edge currents by itself. We will discuss this in Section 3.1. Another
example is the strip geometry, where both V1 and V2 are confining potentials outside
of a strip x ∈ [−R,R], where the electron is localized.

We define a “switch” function as a smooth real valued increasing function equal
to 1 (resp. 0) at the right (resp. left) of some bounded interval. Following [SBKR,
KRSB, EG, CG], we define the (Hall) edge conductance as follows.

Definition 1.1. Let X ∈ C∞(R2) be a x-translation invariant switch function with
suppX ′ ⊂ R × [− 1

4 ,
1
4 ], and let −g ∈ C∞(R) be switch a function with supp g′ ⊂

I = [a, b] a compact interval. The edge conductance of H(V1, V2) in the interval I
is defined as

σe(g, V1, V2) = −tr(g′(H(V1, V2))i[HL,X ]) (1.3)
whenever the trace is finite (we shall also use the notation σe(g,H) = σe(g, V1, V2)
if H = H(V1, V2)).

Note that in the situations of interest σe(g, V1, V2) will turn out to be independent
of the particular shape of the switch function X and also of the switch function g,
provided supp g′ does not contain any Landau level.

We turn to the description of the results of [CG].
Let us assume that I lies in between two successive Landau levels, say the N th

and the (N+1)th. While clearly σe(g, 0, 0) = 0, for any g as above since g′(HL) = 0,
a straightforward computation shows that σe(g, V1, 0) = N , provided V1(x1, x2) =
V1(x1) is such that limx1→−∞ V1(x1) > b (see, for example, [CG, Proposition 1]).
The first result tells us that the edge conductance is stable under a perturbation
by a potential W located in a strip [L1, L2]× R of finite width.

Theorem 1.2. ([CG, Theorem 1]) Let H = H(V1, V2) be as in (1.1), and let W be
a bounded potential supported in a strip [L1, L2]× R, with −∞ < L1 < L2 < +∞.
Then the operator (g′(H +W )− g′(H))i[HL,X ] is trace class, and

tr((g′(H +W )− g′(H))i[HL,X ]) = 0. (1.4)

As a consequence:
(i) σe(g,HL +W ) = 0.
(ii) Assume V1 is a y-invariant potential, i.e. V1(x, y) = V1(x), that is left confining
with respect to I ⊃ supp g′. If I ⊂]BN , BN+1[, for some N ≥ 0, then

σe(g,HL + V1 +W ) = N. (1.5)

We note that Theorem 1.2 extends perturbations W that decay polynomially
fast in the x-direction. In particular, it allows for more general confining potentials
than y-invariant ones. But, it is easy to see that Theorem 1.2 does not hold for
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all perturbations in the x direction. For example, if supp g′ ⊂]BN , BN+1[, then
σe(g, 0, 0) = 0, so for if W`(x, y) = ν01[0,`], with ν0 > BN+1 and 0 < ` < ∞, then
σe(g, 0,W`) = 0. On the other hand, a simple calculation shows (e.g. [CG]) that
for W∞ = ν01[0,∞[, we have σe(g, 0,W∞) = −N . However, one has the following
invariance principle, which is a consequence of a more general sum rule given in
[CG, Theorem 2].

Theorem 1.3. ([CG, Corollary 3] Let g be s.t. supp g′ ⊂]BN , BN+1[, for some
N ≥ 0. Let V1 be a y-invariant left confining potential with respect to suppg′. Then
the operator {g′(H(V1, V2))− g′(H(0, V2))}i[HL,X ] is trace class and

−tr({g′(H(V1, V2))− g′(H(0, V2))}i[HL,X ]) = N. (1.6)

In particular, if either σe(g, V1, V2) or σe(g, 0, V2) is finite, then both are finite, and

σe(g, V1, V2)− σe(g, 0, V2) = N. (1.7)

An immediate, but important, consequence of Theorem 1.3, if ‖V2‖∞ < B, then
σe(g, V1, V2) = N , whenever I ⊂]BN + ‖V2‖∞, BN+1 − ‖V2‖∞[, recovering a recent
result of Kellendonk and Schulz-Baldes [KSB].

In general, neither term in (1.6) is separately trace class but a meaning can be
given to each term through an appropriate regularization. Various regularizations
of the edge conductance were discussed in [CG], and two others are presented in
Section 2. It is proved in [CG] that the regularized edge conductance σreg

e (g, V0, V )
satisfies a sum rule similar to (1.7):

σreg
e (g, V0, V ) = N + σreg

e (g, 0, V ). (1.8)

With reference to this, note that σreg
e (g, 0, V ) 6= 0 would imply the existence of

current carrying states solely due to the impurity potential. Since (1.8) would yield
σe(g, V1, V2) 6= N , we see that such “edge currents without edges” are responsible
for the deviation of the Hall conductance from its ideal value N . Typically this is
expected to happen in a regime of strong disorder (with respect to the magnetic
strength B). As an example of this phenomenon, a model studied by S. Naka-
mura and J. Bellissard [NB] is reviseted in [CG] and it is shown that in this case
σe(g, V0, V2) = 0 and thus σe(g, 0, V2) = −N . In Section 3.2, we present another
example for which localization in the strong disorder regime implies that σreg

e (0, V )
is quantized so that there are edge currents without edges. As a counterpart, in the
weak disorder regime (i.e. weak impurities in the region x1 ≥ 0 and no electric po-
tential in the left half-plane), one expects that no current will flow near the region
x1 = 0. After a regularizing procedure, we argue in Section 3.1 that this is exactly
what happens with the model studied in [CH, GK2, Wa] if I lies in a region of the
spectrum where localization has been shown.

Notation: Throughout this note 1X = 1(x,y) will denote the characteristic func-
tion of a unit cube centered X = (x, y) ∈ Z2. If A is a subset of R2, then 1A

will denote the characteristic function of this set. We recall that 1− and 1+ stand,
respectively, for 1x≤0 and 1x>0.

2. Regularizing the edge conductance in presence of impurities

2.1. Generalities.
Let V2 = V be a potential located in the region x ≥ 0. If the operator H(0, V ) has a
gap and if the interval I falls into this gap, then the edge conductance is quantized
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as mentioned above. However such a situation is not physically relevant, since the
quantization of the Hall conductance can only be related to the quantum Hall effect
in presence of impurities that create the well-known “plateaus” [BESB, vK2]. If I
falls into a region of localized states of H(0, V ), then the conductances may not be
well-defined, and a regularization is needed. In this section, we briefly recall the
regularization procedure described in [CG], and we then propose new candidates.

Assume supp g′ ⊂ I ⊂]BN , BN+1[. Let (JR)R>0 be a family of operators s.t.
C1. ‖JR‖ = 1 and limR→∞ JRψ = ψ, for all ψ ∈ EH(0,V )(I)L2(R2).
C2. JR regularizes H(0, V ) in the sense that g′(H(0, V ))i[HL,X ]JR is trace

class for all R > 0, and limR→∞ tr(g′(H(0, V ))i[HL,X ]JR) exists and is
finite.

Then if V1 = V0 is a y-invariant left confining potential with respect to I, it follows
from Theorem 1.3 that

lim
R→∞

−tr ({g′(H(V0, V ))− g′(H(0, V ))}i[HL,X ]JR) = N.

In other terms, if C1 and C2 hold, then JR also regularizes H(V0, V ). Defining the
regularized edge conductance by

σreg
e (g, V1, V2) := − lim

R→∞
tr(g′(H(V1, V2))i[HL,X ]JR), (2.1)

whenever the limit exists, we get the analog of Theorem 1.3:

σreg
e (g, V0, V ) = N + σreg

e (g, 0, V ). (2.2)

In particular, if we can show that σreg
e (g, 0, V ) = 0, for instance, under some local-

ization property, then the edge quantization for H(V0, V ) follows:

σreg
e (g, V0, V ) = − lim

R→∞
tr(g′(H(V0, V ))i[HL,X ]JR) = N. (2.3)

Let us now consider

Hω = H(0, Vω,+) = HL + Vω,+, Vω,+ =
∑

i∈Z+∗×Z

ωiu(x− i), (2.4)

a random Schrödinger operator modeling impurities located on the positive half-
plane (the (ωi)i are i.i.d. (independent, identically distributed) random variables,
and u is a smooth bump function). If Hω has pure point spectrum in I for P-a.e. ω,
then denoting by (ϕω,n)n≥1 a basis of orthonormalized eigenfunctions of Hω with
energies Eω,n ∈ supp g′ ⊂ I, one has, whenever the regularization holds,

σreg
e (g, 0, Vω,+) = − lim

R→∞

∑
n

g′(Eω,n)〈ϕω,n, i[Hω,X ]JRϕω,n〉. (2.5)

If JR = 1x≤R, the limit (2.5) actually exists [CG, Propostion 2], but it is very
likely that it will not be zero, even under strong localization properties of the
eigenfunctions such as (SULE) (see [DRJLS]) or (SUDEC) (see Definition 2.3 below
and [GK3]). We refer to [EGS] for a concrete example. This can be understood as
follows: Because the cut-off JR (even a smooth version of it) cuts classical orbits
living near x = R, it will create spurious contributions to the total current, and
the latter will no longer be zero. The quantum counter part of this picture is that
although the expectation of i[Hω,X ] in an eigenstate of Hω is zero by the Virial
Theorem, this is no longer true if this commutator is multiplied by JR. Of course,
the sum in (2.5) is zero if JR commutes with Hω, as in [CG, Theorem 3]. In the
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next two sections we investigate new regularizations that commute with Hω only
asymptotically (as R→∞).

2.2. A time averaged regularization for a dynamically localized system.
We assume that the operator H = H(0, V ) exhibits dynamical localization in an
open interval I ∈]BN , BN+1[. This means that for any p ≥ 0, there exists a
nonnegative constant Cp <∞ such that for any Borel function f on I, with |f | ≤ 1,
and for any X1, X2 ∈ R2,

sup
t∈R

‖1X1f(H)e−itH1X2‖2 ≤ Cp min(1, |X1 −X2|)−p). (2.6)

We used the Hilbert-Schmidt norm. For random Schrödinger operators Hω, this
assumption is one of the standard conclusions of multiscale analysis [GDB, GK1].
We show in Section 3.1 that as long as I ∈]BN , BN+1[ such an analysis applies to
the Hamiltonian Hω = H(0, Vω) as in (2.4).

Note that it follows from (2.6) that if X ∈ R2 and A is a subset of R2 (A may
contain X) then, for any p > 0, there exists a (new) constant 0 ≤ Cp < ∞, such
that

sup
t∈R

‖1Af(H)e−itH1X‖2 ≤ Cp min(1,dist({X}, A)−p). (2.7)

For R <∞, η > 0 and γ > 0, we set, with H = H(0, V ) and X = (x, y),

JR = η

∫ ∞

0

EH(I)eitH1x≤Re
−itHEH(I)e−ηtdt, with R = η−γ . (2.8)

Theorem 2.1. Let JR as in (2.8), with γ ∈]0, 1[. Assume that H(0, V ) exhibits
dynamical localization (i.e. (2.6)) in I ⊂]BN , BN+1[ for some N ≥ 0. Then JR

regularizes H(0, V ), and thus also H(V0, V ), in the sense that C1 and C2 hold.
Moreover the edge conductances take the quantized values: σreg

e (g, 0, V ) = 0 and
σreg

e (g, V0, V ) = N .

Remark 2.2. In [EGS], a similar regularization is considered, where γ = 1 and
H is the bulk Hamiltonian H(V, V ). We also note that if R and η are inde-
pendent variables, then one recovers the regularization [CG, Eq. (7.13)], see [CG,
Remark 13].

Proof. Since ‖JR‖ ≤ 1, to get C1 it is enough to check limR→∞ JREH(I)ψEH(I)ψ
for compactly supported states, and it is thus enough to note that by (2.7),

‖(1− JR)EH(I)10‖ ≤ η

∫ ∞

0

sup
t
‖1x>Re

−itHEH(I)10‖e−ηtdt ≤ CpR
−p. (2.9)

We turn to C2. As in [CG], we write i[H,X ] = i[H,X ]1|y|≤ 1
2
, with 1|y|≤ 1

2
=∑

x2∈Z 1(x2,0). Note that, by hypothesis on I, g′(H) = g′(H) − g′(HL), so that
terms that are far in the left half plane will give small contributions. To see this,
we develop ∥∥(g′(H)− g′(HL))i[HL,X ]EH(I)e−itH1x≤−R

∥∥
1

(2.10)
using the Helffer-Söjstrand formula [HeSj, HuSi] and the resolvent identity with
RL(z) = (HL − z)−1 and R(z) = (H − z)−1. It is thus enough to control terms of
the form, with Imz 6= 0, x1, y1, x2 ∈ Z, X1 = (x1, y1),∥∥∥R(z)V 1x≥0RL(z)i[HL,X ]1|y|≤ 1

2
EH(I)e−itH1x≤−R

∥∥∥
1

(2.11)

≤
∑

x1≥0,y1,x2

‖R(z)V 1X1‖2‖1X1RL(z)i[HL,X ]1(x2,0)‖‖1(x2,0)EH(I)e−itH1x≤−R‖2
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But, as a well-known fact, R(z)1X1 is Hilbert-Schmidt in dimension 2, e.g. [GK2,
Lemma A.4], and its Hilbert-Schmidt norm is bounded by C[dist(z, σ(H))]−1 ≤
C=z−1, uniformly in X1. Then, for some κ ≥ 1,

(2.11) ≤ C

(=z)κ

∑
x1≥0,y1,x2≤−R

2

‖1X1RL(z)i[HL,X ]1(x2,0)‖ (2.12)

+
C

(=z)κ

∑
x2≥−R

2

‖1(x2,0)EH(I)e−itH1x≤−R‖2 (2.13)

≤ C

(=z)κ
R−p, (2.14)

where the latter follows from (2.7) and from the fact that ‖1X1RL(z)i[HL,X ]1(x2,0)‖
decays faster than any polynomial in |X1−X2|, as can be seen by a Combes-Thomas
estimate together with standard computations (e.g. [CG, Lemma 3]). As a con-
sequence the trace norm (2.10) is finite and goes to zero as R → ∞, uniformly in
η.

The next step is to control contributions coming from terms living far from the
support of X ′, i.e. terms s.t. |y| ≥ Rν with ν ∈]0, 1]. Set S(R, ν) = {(x, y) ∈
R2, |x| ≤ R, |y| ≥ Rν}. Then, using (2.7),∥∥g′(H)i[HL,X ]EH(I)e−itH1S(R,ν)

∥∥
1

(2.15)

≤
∑
x2∈Z

∥∥g′(H)i[HL,X ]1(x2,0)

∥∥
2

∥∥1(x2,0)EH(I)e−itH1S(R,ν)

∥∥
2

(2.16)

≤ C
∑
x2∈Z

min(1,dist({(x2, 0)}, S(R, ν))−p) ≤ C(2R)(Rν)−p. (2.17)

Contributions from (2.15) are thus negligible as R → ∞, uniformly in η. Letting
KR,ν denote the compact set

KR,ν = {(x, y) ∈ R2, |x| ≤ R, |y| ≤ Rν},

we are left so far with the evaluation of

η

∫ ∞

0

e−ηtdt g′(H)i[HL,X ]EH(I)eitH1KR,ν
e−itHEH(I), (2.18)

which is clearly now a trace class operator (the integral is absolutely convergent
in trace norm). In other terms g′(H)i[HL,X ]JR is thus trace class. It remains to
show that its trace goes to zero as R goes to infinity. But on the account of (2.10)
and (2.15), it remains to show that the trace of (2.18) goes to zero. By cyclicity,

tr(2.18) = −η
∫ ∞

0

e−ηttr
{
g′(H)X e−itHi[HL, EH(I)1KR,ν

EH(I)]eitH
}

dt

= η

∫ ∞

0

e−ηt d

dt
tr

{
g′(H)X e−itHEH(I)1KR,ν

EH(I)eitH
}

dt

= ηtr
{
g′(H)XEH(I)1KR,ν

EH(I)
}

−η2

∫ ∞

0

e−ηttr
{
g′(H)X e−itHEH(I)1KR,ν

EH(I)eitHEH(I)
}

dt.

Thus |tr(2.18)| ≤ Cη|KR,ν | = CηR1+ν . Since R = η−γ , the trace goes to zero if
γ < 1

1+ν . �



ON THE QUANTIZATION OF HALL CURRENTS IN PRESENCE OF DISORDER 7

2.3. Regularization under a stronger form of dynamical localization.
In this section, we consider

JR = EH(0,V )(I)1x≤REH(0,V )(I). (2.19)

Note that the regularization (2.8) studied in Section (2.2) is the time average of
(2.19). The effect of the time averaging is to provide a control on the cross terms
arising in (2.19) if one expands EH(0,V )(I) over a basis of eigenfunctions. In [CG,
Eq. (7.13)], cross terms were suppressed from the very definition of JR. By showing
that JR, given in (2.19), regularizes H(0, Vω) under, basically, the same assumption
as in [CG, Theorem 3], we strengthen [CG]’s result.

Let T be the multiplication operator by T (X) = 〈X〉ν , ν > d
2 = 1, with

〈X〉 = (1 + |X|2) 1
2 , for X ∈ R2. It is well known for Schrödinger operators that

tr(T−1EH(0,V )(I)T−1) <∞, if I is compact (e.g. [GK2]).

Definition 2.3 (SUDEC). Assume H has pure point spectrum in I with eigenvalues
En and corresponding normalized eigenfunctions ϕn, listed with multiplicities. We
say that H has Summable Uniform Decay of Eigenfunction Correlations (SUDEC)
in I, if there exist ζ ∈]0, 1[ and a finite constant c0 > 0 such that for any En ∈ I
and X1, X2 ∈ Z2,

‖1X1ϕn‖‖1X2ϕn‖ ≤ c0αn‖T1X1‖2‖T1X2‖2e−|X1−X2|ζ , (2.20)

where αn = ‖T−1ϕn‖2.

Note that, ∑
n

αn = tr(T−1EH(0,V )(I)T−1) <∞. (2.21)

Remark 2.4. Property (2.20) (or a modified version of it) was called (WULE)
in [CG] and was introduced in [Ge]. The more accurate acronym (SUDEC) comes
from [GK3] and Property (SUDEC) is used in [GKS] as a very natural signature of
localization in order to get the quantization of the bulk conductance.

Theorem 2.5. Assume that H(0, V ) has (SUDEC) in I ⊂]BN , BN+1[ for some
N ≥ 0. Then JR, given in (2.19), regularizes H(0, V ), and thus also H(V0, V ), in
the sense that C1 and C2 hold. Moreover the edge conductances take the quantized
values: σreg

e (g, 0, V ) = 0 and σreg
e (g, V0, V ) = N .

Proof. That the operator g′(H(0, V ))i[H(0, V ),X ]JR is trace class follows from the
comparison g′(H(0, V )) = g′(H(0, V ))− g′(HL). In order to control the region x ≤
0, and the immediate estimate, let Pn be the eigenprojector on the eigenfunction
ϕn, and write

‖1XEH(0,V )(I)1Y ‖2 ≤
∑

n

‖1XPn1Y ‖2 =
∑

n

‖1Xϕn‖‖1Y ϕn‖ (2.22)

≤ c0(
∑

n

αn)‖T1X‖2‖T1Y ‖2e−|X−Y |ζ , (2.23)

where we used the assumption (2.20) (and recall (2.21)). We proceed and set
Λ2,R = 1x≤R. We are looking at

σ
(reg)
E (g,R) = tr(g′(H(0, V ))i[H(0, V ),X ]JR). (2.24)
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The operator being trace class, we expand the trace in the basis of eigenfunctions
of H(0, V ) in the interval I and get

|σ(reg)
E (g,R)| = |

∑
n 6=m

g′(En)(En − Em)〈ϕn,Xϕm〉〈ϕm,Λ2,Rϕn〉| (2.25)

≤ C(g, I)
∑
n 6=m

|〈ϕn,Xϕm〉||〈ϕm,Λ2,Rϕn〉|. (2.26)

It remains to show that the double sum in (2.26) is convergent (i.e. the trace
is absolutely convergent). If it is so, then we can interchange the limit in R and
the double sum to get zero due to the orthogonality of the eigenfunctions. In full
generality, dynamical localization is not enough to show that (2.26) is absolutely
convergent. This is the case if H = H(0, 0) = HL and I contains a Landau level.
The sum (2.26) will not converge, even though HL exhibits dynamical localization.
But if one has (SULE) or (SUDEC), then the sum converges absolutely. We have,
writing Λ2 instead of Λ2,R:

(2.26) (2.27)

≤
∑
n 6=m

|〈ϕn,Xϕm〉| |〈ϕm,Λ2ϕn〉| (2.28)

=
∑
n 6=m

|〈ϕn,Xϕm〉|
1
2 |〈ϕn, (1−X )ϕm〉|

1
2 |〈ϕm,Λ2ϕn〉|

1
2 |〈ϕm, (1− Λ2)ϕn〉|

1
2

≤
∑
n 6=m

(
‖
√
Xϕn‖‖

√
Xϕm‖‖

√
1−Xϕn‖‖

√
1−Xϕm‖ (2.29)

× ‖
√

Λ2ϕn‖‖
√

Λ2ϕm‖‖
√

1− Λ2ϕn‖‖
√

1− Λ2ϕm‖
) 1

2
(2.30)

≤
∑

n

(
‖
√
Xϕn‖‖

√
1−Xϕn‖‖

√
Λ2ϕn‖‖

√
1− Λ2ϕn‖

) 1
2

(2.31)

×
∑
m

(
‖
√
Xϕm‖‖

√
1−Xϕm‖‖

√
Λ2ϕm‖‖

√
1− Λ2ϕm‖

) 1
2

(2.32)

It remains to show that (2.20) implies

∑
n

(
‖
√
Xϕn‖‖

√
1−Xϕn‖‖

√
Λ2ϕn‖‖

√
1− Λ2ϕn‖

) 1
2
<∞. (2.33)

We consider division of R2 into four quadrants given by the supports of the various
localization functions: I = supp XΛ2, II = supp (1 − X )Λ2, III = supp (1 −
X )(1 − Λ2), and IV = supp X (1 − Λ2). We first note that summing (2.20) over
two opposite quadrants (I)(III) yields a constant:

‖
√
X

√
Λ2ϕn‖‖

√
1−X

√
1− Λ2ϕn‖ ≤ cαn, (2.34)

and summing over the opposite quadrants (II)(IV) yields,

‖
√
X

√
1− Λ2ϕn‖‖

√
1−X

√
Λ2ϕn‖ ≤ cαn (2.35)
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We write a term in (2.33) as

‖
√
Xϕn‖‖

√
1−Xϕn‖‖

√
Λ2ϕn‖‖

√
1− Λ2ϕn‖ (2.36)

≤ (‖
√
X

√
Λ2ϕn‖+ ‖

√
X

√
1− Λ2ϕn‖)

(‖
√

1−X
√

Λ2ϕn‖+ ‖
√

1−X
√

1− Λ2ϕn‖)
(‖
√
X

√
Λ2ϕn‖+ ‖

√
1−X

√
Λ2ϕn‖)

(‖
√
X

√
1− Λ2ϕn‖+ ‖

√
1−X

√
1− Λ2ϕn‖)

= (I + IV)(II + III)(I + II)(III + IV). (2.37)

This decomposition yields 16 terms, each of them having at least one product of the
form (2.34) or (2.35), i.e. with opposite terms: (I)(III) and (II)(IV). If we now
bound the other factors by one, we get

∑
n

√
αn in (2.33), while our assumption

only ensures that
∑

n αn < ∞. To get the missing factor
√
αn we have to be a

bit more careful. First, obviously, terms of the form (I)2(III)2, (II)2(IV)2 and
(I)(II)(III)(IV) will directly yield the desired αn. It remains to study terms of
the form (I)2(II)(III), (I)2(II)(IV), and (I)2(II)(IV), and the 9 remaining terms
beginning with (II)2, (III)2, and (IV)2. Let us treat the first case, the other two
terms being similar. Note that (I)2 =

∑
x1≤R,y1≤0 ‖1X1ϕn‖2, with X1 = (x1, y1).

Then going back to (2.20), with obvious notations, we have

(I)2(II)(III) ≤
∑

X1,X2,X3

‖1X1ϕn‖2‖1X2ϕn‖‖1X3ϕn‖ (2.38)

≤
∑

X1,X2,X3

(‖1X1ϕn‖‖1X2ϕn‖)(‖1X1ϕn‖‖1X3ϕn‖)

≤ (c0αn)2
∑

X1,X2,X3

〈X1〉4ν〈X2〉2ν〈X3〉2ν

× e−
1
4 (|y1|ζ−|y2|ζ−|x1−x2|ζ)e−

1
4 (|x1|ζ−|x3|ζ−|y1|ζ−|y3|ζ)

≤ C(R)α2
n. (2.39)

�

3. Localization for the Landau operator with a half-plane random
potential

We describe some results concerning the localization properties of the Hamilto-
nians H(V1, V2) of interest to the IQHE. First, we sketch the proof of localization
for H(0, V2), with V2 random, in the large B regime, a result mentioned in Section
2.2 and announced in [CG, Remark 12]. We then sketch the proof of localization
for H(V1, V2), where V1 is a left confining potential, and V2 is a random Anderson-
type potential in the large disorder regime and with a covering condition on the
single-site potentials. In the large disorder regime, this provides an example of edge
currents without edges. Other results for such special models of interest to edge
conductance and the IQHE are discussed in [CGH].

3.1. A large magnetic field regime.
The aim of this section is to justify Remark 12 in [CG] where localization forH(0, V )
away from the Landau levels is claimed. We let X = (x, y) ∈ R2, and consider, for
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λ > 0, B > 0 given, the Hamiltonian

Hω = H(0, Vω), with Vω = λ
∑

i∈Z+×Z

ωiu(X − i). (3.40)

The assumptions on the random variables ωi, i ∈ Z+ × Z, and on the single site
potential u are the one considered in [CH, GK2]. Namely, the ωi’s are i.i.d. random
variables with a common law µ(dt) = g(t)dt, where g is an even bounded function
with support in [−M,M ], M > 0, with, in addition, the condition µ([0, t]) ≥
cmin(t,M)ζ , for some ζ > 01. In order to apply the percolation estimate as in
[CH] we require that

supp u ∈ B(0, 1/
√

2). (3.41)

With no loss we assume that ‖u‖∞ = 1, so that the spectrum of Hω satisfies

σ(Hω) ⊂
⋃
n≥1

[Bn −M,Bn +M ].

We note that thanks to the ergodicity of Hω with respect to integer transla-
tions in the y-direction, the spectrum equals a deterministic set for almost all
ω = (ωi)i∈Z+×Z. For convenience we shall extend the ωi’s to the left half plane by
setting ωi = 0 if i ∈ Z− × Z.

The only difference between the present model and that of [CH, GK2] is that
the random potential in the left half-plane is replaced by a zero potential. This
absence of a potential creates a classically forbidden region in the spectral sense
for energies between Landau levels. This situation is different from a classically
forbidden region created by a wall. The intuition is that looking at a given distance
of a Landau level (in the energy axis), the absence of potential should help for
localization. One may think of [CH, Wa, GK2]’s result as a weak disorder result.
The disorder is kept fixed and localization is obtained for large B. In this spirit
putting ωi = 0 should be even better, for one creates fewer states at a given distance
from the Landau level. One might think that the interface at x = 0 between the
random potential in the right half-plane and the absence of potential in the left one
would create some current along the interface. It could be so for energies very close
to the Landau level where the above reasoning breaks down.

To get localization, one has to investigate how the Wegner estimate, the multi-
scale analysis (MSA), and the starting estimates of the MSA are affected by the
new geometry of the random potential. In particular, since we broke translation
invariance in the x direction, we have to check things for all boxes, regardless of
the position with respect to the interface x = 0.

The Wegner estimate: It is immediately seen that the proof of the Wegner
estimate given in [CH] is still valid with this geometry. Indeed, if a box ΛL(x, y)
is such that x < L/2, then ΛL(x, y) overlaps the left half-plane (it may even be
contained in it). Then, in [CH, (3.8)] the sum is restricted to sites i = (i1, i2)
where ωi 6= 0 (i.e. i1 > 0). The rest of the proof is unchanged, and as a result the
volume factor one gets at the end is |ΛL(x, y) ∩ (R+ × R)| rather than |ΛL(x, y)|.
In particular one gets zero if ΛL(x, y) ⊂ R− ×R, as expected. So (W) and (NE) of
[GK1] hold.

1this last hypothesis is not necessary to prove localization at a given fixed distance, independent
of B, from the Landau levels



ON THE QUANTIZATION OF HALL CURRENTS IN PRESENCE OF DISORDER 11

The multiscale analysis: The deterministic part of the MSA (properties (SLI)
and (EDI) in [GK1]) is not sensitive to changes of the random variables. Indepen-
dence of far separated boxes (property (IAD) in [GK1]) is still true. In fact, what
happens in the probabilistic estimates that appear in the MSA is that we shall
estimate probabilities of bad events related to boxes which have an overlap with
the left half-plane as if they where contained in the right half-plane, and thus by a
bigger (thus worse) probability. In particular, if a box is totally included in the left
half-plane, the probability of having a singular box is zero, and we shall estimate
it by a polynomially (or sub-exponentially) small factor in the size of the box.

The starting estimate: We follow the argument given in [CH]. Let us focus on
energies E ∈]Bn, Bn +M ], the other case E ∈ [Bn−M,Bn[ being similar. We thus
set E = Bn + 2a, a > 0. We say that a site i ∈ Z2 is occupied if ωi ∈ [−M,a], in
other words, dist(E,Bn +ωi) ≥ a (recall ‖u‖∞=1). Note that by hypothesis on ωi,
for any a > 0,

P(ωi ∈ [−M,a]) ≥ 1
2

+ caζ .

In particular, the probability is P(ωi ∈ [−M,a]) = 1, if i ∈ Z− × Z. We are thus
above the critical bond percolation threshold pc = 1

2 (in dimension 2) for all i ∈ Z2.
Consequently, bonds percolate, and [CH, Proposition 4.1] follows. The rest of the
proof leading to the initial length scale estimate [CH, Proposition 5.1] is the same.

At this stage Theorem 4.1 in [GK2] applies, and one has Anderson localization,
(SULE), and strong Hilbert-Schmidt dynamical localization as described in [GK1],
as well as (SUDEC) (following the proof of [Ge]; see also [GK3]).

We note that the above arguments are not restricted to the particular half-plane
geometry of the random potential we discussed here. Any random potential of the
form Vω =

∑
i∈J ωiu(X − i), where J ⊂ Z2 has an infinite cardinal would yield

the same localization result.

3.2. A large disorder regime.
We next consider the random Landau Hamiltonian defined in (3.40) with a left
constant confining potential V0(x, y) = V01− (see (1.2)) so that H(V0, Vω) = HL +
V01−+λVω1+, for large values of the disorder parameter λ. The random potential in
the right half-plane Vω, as in (3.40), has i.i.d. random variables ω′is with a common
positively supported distribution, say on [0, 1]. We also impose the condition that
the single site potential u ∈ C∞c (R) satisfies the following covering condition: If
Λ ⊂ R+ × R, ∑

i∈Λ

u(X − i) ≥ C01Λ. (3.42)

We show that if the disorder is large enough, then at low energy, no edge current will
exist along the interface x = 0 in the sense that the regularized edge conductance
σreg

e (g, V0, λVω) of H(V0, Vω) will be zero. As consequence of (2.2), however, the
regularized edge conductance of H(0, Vω) will be quantized to a non zero value, i.e.
σreg

e (g, 0, λVω) = −N . In other terms the random potential λVω is strong enough
to create “edge currents without edges” (as in [EJK1]). Such a situation is similar
to the model studied by S. Nakamura and J. Bellissard [NB], and revisited in [CG]
from the “edge” point of view.

The strategy to prove localization for H(V0, Vω) is the same as the one exposed
in Section 3.1, i.e. use a modified multiscale analysis taking into account the new
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geometry of the problem. Here the potential in the left half-plane is no longer zero
but a constant V0 > b, if I = [0, b] is the interval where we would like to prove
localization. As in Section 3.1, the modifications of the Wegner estimate, of the
starting estimates of the the multiscale analysis (MSA), and of the MSA itself,
have to be checked separately. While the comments made in Section 3.1 concerning
the MSA are still valid, the new geometry requires new specific arguments for the
Wegner estimate and the starting estimate.

The Wegner estimate: Its proof can no longer be borrowed from [CH] as in
Section 3.1, and one has to explicitly take into account the effect of the confining
potential V01−. We shall modify the argument given in [CHN] as follows. The only
case we have to discuss is the one of a box ΛL(X), with |x| < L

2 so that it overlaps
both types of potentials. We set

ṼL =
∑

i∈ΛL(X)∩Z2

ωiu(X − i).

Let HL denote the restriction of H(V0, Vω) to the box ΛL(X) with self-adjoint
boundary conditions (e.g. [GKS]). By Chebychev’s inequality, the proof of the
Wegner estimate is reduced to an upper bound on the expectation of the trace of
the spectral projector EHL

(I) for the interval I. Following [CHK], we write

trEHL
(I) = tr1ΛL(X)EHL

(I) (3.43)

≤ 1
V0

trV01ΛL(X)1−EHL
(I) +

λ

C0
trṼLEHL

(I) (3.44)

≤ 1
V0

tr1−HLEHL
(I) +

λ

C0
trṼLEHL

(I) (3.45)

≤ b

V0
trEHL

(I) +
λ

C0
trṼLEHL

(I), (3.46)

so that, with V0 > b by assumption,

trEHL
(I) ≤ λ

C0

(
1− b

V0

)−1

trṼLEHL
(I). (3.47)

At this point, the proof follows the usual strategy, as in [CHN, CHKN, CHK].
The starting estimate: The initial estimate follows from the analysis, at large

disorder, given in [GK2, Section 3]. Since in the left half-plane, the potential is
already very high (V0 > b), it is enough to estimate the probability that all the
random variables ωi in the right part of the box is higher than say b/2. Doing this
creates a gap in the spectrum of the finite volume operator HL. This spectral gap,
occurring with good probability, can be used to obtain the exponential decay of the
(finite volume) resolvent thanks to a Combes-Thomas argument.
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E-mail address: germinet@math.u-cergy.fr

Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027,

USA

E-mail address: hislop@ms.uky.edu


